WorldWideScience

Sample records for waste management practice

  1. Best Practices for Management of Biocontaminated Waste ...

    Science.gov (United States)

    Report The purpose of these best practices is to provide federal, state, territorial, and local waste management entities information on techniques and methodologies that have the potential to improve the handling and management of biocontaminated waste streams after a biological agent incident. These best practices are intended to be general in nature serving as a resource to a variety of biological agents in a variety of situations; however, these best practices also present a specific homeland security scenario – a biological attack with Bacillus anthracis (B. anthracis) – to help illustrate specific waste management considerations.

  2. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  3. Radioactive waste management - objectives and practices

    International Nuclear Information System (INIS)

    Ali, S.S.

    2002-01-01

    This article deals with the objectives, the legal frame works, regulations and the regulating authorities in India and also the technologies and practices being used for the safe management of radioactive wastes in the country

  4. Solid waste management. Principles and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  5. Waste processing practices at waste management department from INR

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The Institute for Nuclear Research Pitesti (INR), subsidiary of the Romanian Authority for Nuclear Activities has its own Radioactive Waste Treatment Plant (STDR). The object of activity of STDR within the INR Pitesti is to treat and condition radioactive waste resulted from the nuclear facility. Also, it will must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from other decommissioning activities. In according with the National Nuclear Program and the Governmental order no. 11/2003, the Institute for Nuclear Research is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by the decommissioning of nuclear facilities. The classes and criteria of classification for radioactive waste generated in operation and decommissioning in Romania are established in compliance with the classification recommended by IAEA and generally valid in EU countries. The general classification takes into consideration the disposal requirements to isolate the radioactive waste from environment. In Romania, waste minimization is considered by Order No. 56/2004 of CNCAN President for approval of Fundamental regulations on the safe management of radioactive waste. According to this regulation, the generation of radioactive waste is to be kept to the minimum practicable level in terms of both its activity and volume through appropriate design measures, facility operation and decommissioning practices. In order to meet this requirement, the operator must ensure: - selection and control of materials; - recycling and reuse of materials, including clearance of materials; - implementing adequate operating procedures, including those referring to the physical, chemical and radiological characterization of the waste and sorting of different type of materials. (orig.)

  6. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  7. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2012-01-01

    Different countries around the globe, especially those involved in nuclear power plant operation, spent fuel reprocessing, nuclear research activities and diverse nuclear applications; generate large inventory of radioactive wastes. These waste streams generated during various stages of nuclear fuel cycle are of different categories, which require special care for handling, treatment and conditioning. Conventional treatment and conditioning methods may not be efficient for various type of waste; therefore special options may be required to manage these waste streams. Presently, Indian waste management fraternity is focused to minimize the volume of the waste to be finally disposed off, by partitioning radionuclides, regenerating separation media and re-using as much of the waste components as possible and economically feasible. This approach, together with the reuse/recycling strategy, seems to represent a robust waste treatment strategy for the future

  8. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    Science.gov (United States)

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  9. Radioactive waste management practices in other countries

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1987-01-01

    The basis of classification of solid radioactive wastes is described, with reference to definitions used in France, UK and USA. By surveying the plans and the facilities for managing each type of waste in a number of countries, the general trends in technical approach are identified

  10. Waste management and disposal in Czechoslovakia: Practices and proposals

    International Nuclear Information System (INIS)

    Marek, J.

    1984-01-01

    An overview is presented on the actual practices and planning for the management of radioactive wastes in Czechoslovakia. Types and specific arisings of wastes, applied immobilization processes, and the planning for disposal of reactor wastes are outlined. A comprehensive R and D programme is focussed on the management of reactor wastes, as the spent fuel is returned to the Sovjet Union after a 10 year cooling time. (orig.)

  11. Current waste management practices at PINSTECH

    International Nuclear Information System (INIS)

    Ul Haq, E.; Aslam, M.; Orfi, S.D.

    2002-01-01

    The waste being generated at PINSTECH is of the intermediate and low level Category that is in the form of gas, liquid and solids. It is collected, monitored, segregated, treated, packed and immobilized for its final disposal. Basic concepts of delay decay, disposal and containment of radioactive waste are followed to prevent its direct contact with human and its environment. PINSTECH follows shallow ground disposal in the restricted area. The disposal site has favorable characteristics e.g. sun shine dry climate and high evaporation rate. The gaseous waste is directed towards stack, where it passes through charcoal and HEPA filters and then released to the atmosphere. Post disposal monitoring of the disposal area is performed to check leaching/migration of radionuclides from disposal locations to the surrounding environment. No migration of radioactivity has been detected indicating satisfactory performance of the waste management system. (author)

  12. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  13. A Study of Hospital Waste Generation and Management Practice in ...

    African Journals Online (AJOL)

    This study was carried out in Akure, the capital of Ondo State, Nigeria to assess the current practice of hospital wastes management, the magnitude and variety of wastes and the awareness of the stakeholders on the implications of their activities. The composition of wastes found in the 20 healthcare facilities visited ...

  14. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    Science.gov (United States)

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  15. Radioactive waste management practices in India: achievements and challenges

    International Nuclear Information System (INIS)

    Wattal, P.K.; Basu, S.

    2013-01-01

    Safe and effective management of radioactive waste has been given utmost importance from the very inception of nuclear industry in India. This article gives an account of the basic principles, practices being followed in our country to achieve this objective. A brief description of the existing methods for management of diverse kinds of radioactive wastes including high level radioactive waste and also the research and development activities to address the future challenges is presented in the article. (author)

  16. Analyzing solid waste management practices for the hotel industry

    Directory of Open Access Journals (Sweden)

    S.T. Pham Phu

    2018-01-01

    Full Text Available The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. The results showed that the mean of waste generation rate of the hotels was 2.28 kg/guest/day and strongly correlated to internal influencing factors such as the capacity, the price of the room, garden, and level of restaurant. The differences in waste generation rate of the hotels were proved to be statistically significant. The higher the scale of hotels, the higher the waste generation rate. Moreover, the waste composition of the hotels was identified by 58.5% for biodegradable waste, 25.8% for recyclables and 15.7% for others. The relative differences in the waste composition of the hotels by climate, the features of hotels, and the types of the guest were explained. Whereby, the higher size of the hotels, the higher percentage of biodegradable and less proportion of recyclable waste. Also, this study revealed that the implementation status of waste management practices of the hoteliers initially reaped quite positive achievements with 76% for sorting, 39% for recycling, 29% for reduction, and 0.8% for composting. The rate of waste management practices was proportional to the scale of the hotel. This study provided information on waste management practice of hotel industry and contributed to the overall assessment of municipal solid waste management practices of Hoi An city.

  17. Safety issues in established predisposal waste management practices

    International Nuclear Information System (INIS)

    Thomas, W.

    2000-01-01

    Radioactive wastes generated at various stages in the nuclear fuel cycle vary considerably in relation to volume, physical and chemical properties, and radioactivity. The management of these wastes prior to disposal has to be adapted to these conditions, which calls for suitable characterization and minimization, collection, interim storage and conditioning of the wastes. Experience gained over decades shows that current predisposal waste management practices are well advanced. Whereas problems related to inadequate waste management practices in the past have been encountered at several sites and need ongoing remedial actions, modern practices have good safety records. Considerable development and improvement of waste management practices have been achieved and as a consequence of delays in implementing repositories in several countries they remain important tasks. Decommissioning and dismantling of nuclear facilities also have to be taken into account. In most cases, these activities can be performed using existing technical means and practices. No significant safety concerns have been found for the long term storage of spent fuel and vitrified waste. Dry storage has reached technical maturity and appears to be attractive, especially for aged fuel. It has, however, to be stressed that long term storage is not the ultimate solution. Continued efforts to implement repositories are mandatory in order to maintain a credible and responsible strategy for waste management. (author)

  18. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2016-01-01

    Nuclear technologies are used for generation of electricity and for production of a wide range of radionuclides for use in research and development, health care and industry. One of the special features of nuclear industry is that it uses nuclear fission as source of energy. As a result, a large amount of energy is available from relatively small amount of fuel. The resultant quantities of waste are relatively very small in case of nuclear power as compared to same for conventional thermal power stations. In India, 'closed fuel cycle' has been adopted treating spent nuclear fuel as a material of resource. The closed fuel cycle aims at recovery and recycle of U and Pu, separation of useful isotopes of Cs and Sr for use in health care and industry. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Programme is the attention paid from the very beginning to the safe management of radioactive waste

  19. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    An Investigation into Waste Management Practices in Nigeria (A Case Study of ... West African Journal of Industrial and Academic Research ... toilets adequate provision of wash hand basins, provision of health education for the residents.

  20. Health care waste management practice in a hospital.

    Science.gov (United States)

    Paudel, R; Pradhan, B

    2010-10-01

    Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.

  1. Best Practice of Construction Waste Management and Minimization

    Directory of Open Access Journals (Sweden)

    Khor Jie Cheng

    2014-07-01

    Full Text Available Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effective material management must be well comprehended for the sake of waste minimization. Another convincing fact about waste is that poor site management accounts for the largest factor of waste generation. Hence the site condition is very crucial in developing effective material management. Factors contributing to the efficiency of material management process are effective logistical management and supply chain management. The logistics system must be performing as schedule so that materials are wisely managed on-site without encountering presence of excessive materials. As materials management is closely related to logistics in construction projects, there will be delay in construction projects when materials are not delivered to site as scheduled. The management must be effective in terms of delivery, off-loading, storage, handling, on-site transportation and on-site utilization of materials.

  2. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  3. Analyzing solid waste management practices for the hotel industry

    OpenAIRE

    S.T. Pham Phu; M.G. Hoang; T. Fujiwara

    2018-01-01

    The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. The results showed that the mean of waste generation rate of the hotels was 2.28 kg/guest/day and strongly correlated to internal influencing factors such as the capacity, the price of the room...

  4. Bioorganic Municipal Waste Management to Deploy a Sustainable Solid Waste Disposal Practice in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino-German RRU-BMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population's behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.

  5. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  6. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  7. Toolkit - South Africa's good waste management practices: lessons learned

    CSIR Research Space (South Africa)

    Afrika, M

    2010-02-01

    Full Text Available priority afforded to waste management and capacity problems to deliver services, although to different degrees. Despite this rather discouraging situation, certain municipalities have managed to overcome some of these challenges and good waste management...

  8. Principles and practices in managing the wastes resulting from decommissioning

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Oprescu, Theodor; Niculae, Ortenzia; Stan, Camelia

    2004-01-01

    The main objective in the management of radioactive wastes is the population and environment protection now and for the future without burdening the next generation with tasks other than their own. Achieving this objective is feasible if one takes into account the general principles internationally adopted and also the practices referring to the radioactive wastes, which can be summarized as: avoiding, minimizing, recovering, recycling, and storing. Minimizing the amount of wastes already produced resides in freeing part of them from the nuclear control by means of a process coined as classification. To implement such a process one must have in mind the premises required by classification and freeing the radioactive wastes from the regulating control, based on the legislation regarding the radioactive waste management and the measuring techniques and the corresponding procedures, as well. The target of this work was elaborating a proposal concerning the kind of classifying the radioactive waste in order to take them out from the nuclear control complying at the same time with the principles of minimizing and re-using as much as possible. The chapter 2.1 presents the frame of policy and regulations governing the process of management radioactive wastes. Here a proposal of classification of radioactive wastes is advanced based on the Romanian excepting levels adopted also by other countries, interpretation of the natural background, and the constraints concerning the radioactive and dangerous wastes. The chapter 2.2 presents the general principles of classifying the radioactive materials, of diluting the non-homogeneous distribution in solid materials as well as of the principles implied in the process of taking out some radioactive materials from the reach of regulating nuclear control. The chapter 2.3 deals with application of the radioactive waste management principles to reach a classification that entails taking these waste out from the reach of nuclear control

  9. Solid waste management in Kolkata, India: Practices and challenges

    International Nuclear Information System (INIS)

    Hazra, Tumpa; Goel, Sudha

    2009-01-01

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920 ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less than 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes

  10. Challenges for municipal solid waste management practices in Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Luong

    2013-11-01

    Full Text Available Municipal solid waste (MSW management is currently one of the major environmental problems facing by Vietnam. Improper management of MSW has caused adverse impacts on the environment, community health, and social-economic development. This study attempts to provide a review of the generation and characterization, disposal and treatment technologies of MSW to evaluate the current status and identify the problems of MSW management practices in Vietnam. Finally, this study is concluded with fruitful recommendations which may be useful in encouraging the responsible agencies to work towards the further improvement of the existing MSW management system.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21Citation:  Luong, N.D., Giang, H.M., Thanh, B.X. and Hung, N.T.  2013. Challenges for municipal solid waste management practices in Vietnam. Waste Technology 1(1:6-9.Doi: http://dx.doi.org/10.12777/wastech.1.1.17-21

  11. Fifty years of federal radioactive waste management: Policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.G.

    1997-04-01

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

  12. Fifty years of federal radioactive waste management: Policies and practices

    International Nuclear Information System (INIS)

    Bradley, R.G.

    1997-04-01

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission's program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance

  13. Medical Waste Management Practices in a Southern African Hospital

    African Journals Online (AJOL)

    Offsite transportation of the hospital waste is undertaken by a private waste management company. Small pickups are mainly used to transport waste daily to an off-site area for treatment and disposal. The main treatment method used in the final disposal of infectious waste is incineration. Noninfectious waste is disposed off ...

  14. Knowledge, Attitudes and Practices of Coastal Communities on Waste Management in Ghana

    OpenAIRE

    Essuman, Nasir

    2017-01-01

    Waste management has been a worldwide issue which most countries are finding the best ways of dealing with. Managing waste improperly poses threat to the health of individuals and the environment. Ghana as a developing country, its coastal communities are faced with a lot of challenges regarding waste management due to actions towards waste management. This research seeks to examine the knowledge, attitudes and practices of coastal communities on waste management and how their actions have a...

  15. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  16. Unravelling of Waste in a Touristic Area of Pangandaran from Neglecting Towards Embracing Informal Waste Management Practices, West Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Bastiaan Schippers

    2017-06-01

    Full Text Available Increased attention for sustainable waste management practices has in Indonesia resulted in legislation that seeks participation and self-regulation amongst people in urban and rural areas. However districts are trying to meet the expectations of the national government, implementing Westernized-recycling systems. We demonstrate that these top-down waste management practices as well as the current approach towardsscavenging systemsas being problematic and undesirable, will not lead to effective waste management. Using a holistic approach we explore the subjectivity of waste and alternating perceptions of these objects in both formal and informal waste management practices.Moreover this article considers the functioning of informal waste management systems to be dynamic and profitable. Within the context of a touristic area that can’t keep up with the increasing amount of solid waste, this article advocates a highly potential informal waste management practices that are systematically overlooked.

  17. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.

    Science.gov (United States)

    Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba

    2014-07-08

    Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.

  18. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    Science.gov (United States)

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  19. Codes of practice and related issues in biomedical waste management

    Energy Technology Data Exchange (ETDEWEB)

    Moy, D.; Watt, C. [Griffith Univ. (Australia)

    1996-12-31

    This paper outlines the development of a National Code of Practice for biomedical waste management in Australia. The 10 key areas addressed by the code are industry mission statement; uniform terms and definitions; community relations - public perceptions and right to know; generation, source separation, and handling; storage requirements; transportation; treatment and disposal; disposal of solid and liquid residues and air emissions; occupational health and safety; staff awareness and education. A comparison with other industry codes in Australia is made. A list of outstanding issues is also provided; these include the development of standard containers, treatment effectiveness, and reusable sharps containers.

  20. Municipal solid waste management in Malaysia: Practices and challenges

    International Nuclear Information System (INIS)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-01-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  1. Healthcare waste management practices and safety indicators in Nigeria.

    Science.gov (United States)

    Oyekale, Abayomi Samuel; Oyekale, Tolulope Olayemi

    2017-09-25

    Adequate management of healthcare waste (HCW) is a prerequisite for efficient delivery of healthcare services. In Nigeria, there are several constraints militating against proper management of HCW. This is raising some environmental concerns among stakeholders in the health sector. In this study, we analyzed the practices of HCW management and determinants of risky/safe indices of HCW disposal. The study used the 2013/2014 Service Delivery Indicator (SDI) data that were collected from 2480 healthcare facilities in Nigeria. Descriptive statistics, Principal Component Analysis (PCA) and Ordinary Least Square (OLS) regression were used to analyze the data. The results showed that 52.20% and 38.21% of the sampled healthcare facilities from Cross River and Bauchi states possessed guidelines for HCW management, respectively. Trainings on management of HCW were attended by 67.18% and 53.19% of the healthcare facilities from Cross River and Imo states, respectively. Also, 32.32% and 29.50% of healthcare facilities from rural and urban areas previously sent some of their staff members for trainings on HCW management, respectively. Sharp and non-sharp HCW were burnt in protected pits in 45.40% and 45.36% of all the sampled healthcare facilities, respectively. Incinerators were reported to be functional in only 2.06% of the total healthcare facilities. In Bauchi and Kebbi states, 23.58% and 21.05% of the healthcare facilities respectively burnt sharp HCW without any protection. Using PCA, computed risky indices for disposal of sharp HCW were highest in Bayelsa state (0.3070) and Kebbi state (0.2172), while indices of risky disposal of non-sharp HCW were highest in Bayelsa state (0.2868) and Osun state (0.2652). The OLS results showed that at 5% level of significance, possession of medical waste disposal guidelines, staff trainings on HCW management, traveling hours from the facilities to local headquarters and being located in rural areas significantly influenced indices of

  2. Healthcare waste management practices and safety indicators in Nigeria

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2017-09-01

    Full Text Available Abstract Background Adequate management of healthcare waste (HCW is a prerequisite for efficient delivery of healthcare services. In Nigeria, there are several constraints militating against proper management of HCW. This is raising some environmental concerns among stakeholders in the health sector. In this study, we analyzed the practices of HCW management and determinants of risky/safe indices of HCW disposal. Methods The study used the 2013/2014 Service Delivery Indicator (SDI data that were collected from 2480 healthcare facilities in Nigeria. Descriptive statistics, Principal Component Analysis (PCA and Ordinary Least Square (OLS regression were used to analyze the data. Results The results showed that 52.20% and 38.21% of the sampled healthcare facilities from Cross River and Bauchi states possessed guidelines for HCW management, respectively. Trainings on management of HCW were attended by 67.18% and 53.19% of the healthcare facilities from Cross River and Imo states, respectively. Also, 32.32% and 29.50% of healthcare facilities from rural and urban areas previously sent some of their staff members for trainings on HCW management, respectively. Sharp and non-sharp HCW were burnt in protected pits in 45.40% and 45.36% of all the sampled healthcare facilities, respectively. Incinerators were reported to be functional in only 2.06% of the total healthcare facilities. In Bauchi and Kebbi states, 23.58% and 21.05% of the healthcare facilities respectively burnt sharp HCW without any protection. Using PCA, computed risky indices for disposal of sharp HCW were highest in Bayelsa state (0.3070 and Kebbi state (0.2172, while indices of risky disposal of non-sharp HCW were highest in Bayelsa state (0.2868 and Osun state (0.2652. The OLS results showed that at 5% level of significance, possession of medical waste disposal guidelines, staff trainings on HCW management, traveling hours from the facilities to local headquarters and being located in

  3. Practices regarding hospital waste management at public and private sector hospitals of Lahore

    International Nuclear Information System (INIS)

    Mahmood, S.; Din, N.U.; Mohsin, J.

    2011-01-01

    Health care (Biomedical) waste is a term used for all waste arising from health care establishments. In most of health care centers of Pakistan, including Lahore, hospital wastes are simply mixed with the municipal waste in collecting bins at road-sides and disposed off similarly. Proper Management of biomedical waste, especially the hazardous one, being produced in hospital settings is important in terms of their ability to cause harm to the related per-sons and the environment as well. To Observe and compare the practices regarding Hospital Waste management of the public sector hospital with private sector hospital. Descriptive, Cross sectional. Methodology: Standardized checklist was used to assess the practices of nursing and sanitary staff. Practices regarding waste segregation were same at both hospitals. While practices regarding waste collection and transportation were better at The Children's Hospital. Public sector hospital has, paradoxically, better practices regarding hospital waste management in comparison to private sector hospital. (author)

  4. Policy and practice of radioactive waste management in India

    International Nuclear Information System (INIS)

    Sunder Radzhan, N.S.

    1986-01-01

    The Indian program on radioactive waste management comprising two main variants: engineering subsurface repositories for low- and intermediate-level wastes and deep geological formations for alpha-bearing and high-level wastes (HLW) is presented. One of the problems deals with the matrices with improved properties for HLW inclusion. The other aspect concerns development of management with alpha-emitting radionuclides in HLW. Special attention is paid to the problems of safety

  5. Nairobi solid waste management practices: Need for improved ...

    African Journals Online (AJOL)

    Abstract. In the globalized world, the current focus in municipal waste management is on the development of sustainable and integrated waste management system, where the central role would be played by the public through effective participation. The reason for this is that the traditional system of collection, transportation ...

  6. Philosophy and practice of waste management at CRNL

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-06-01

    The history of development of waste management practices at CRNL is outlined. The policy has been to develop a system that could be operated safely at a site close to a built-up area and tn demonstrate the construction and use of facilities that can be made and operated at a reasonable cost. The waste facilities are described and an account is given of experiments designed to test the behaviour of fission products moving through the ground water zone. Other experiments on dispersion of radionuclides through the environment are outlined. The basis for setting working limits for certain types of disposals is given, especially the connection between maximum discharge levels to the river and the MPC w recommendations of the ICRP. It is shown that waste at present pumped tn Reactor Pit 2 could be discharged to the river without approaching the ICRP limits, but it is pointed out that this would cause a large increase in the measured levels of Sr-90 and Cs-137 in the river water. (author)

  7. Nuclear power plants waste management practices in France

    International Nuclear Information System (INIS)

    Matsuda, Fumio

    1998-01-01

    This survey offers a complete review concerning the nuclear power plants waste management in France from generation to disposal, as well as future evolutions. Fundamental Safety Rule specified by the government defines safety objectives, design bases for surface disposals and preliminary terms for acceptance of waste packages on the surface disposal site. A governmental decree authorizes the creation of CSA (Centre de Stockage de l'Aude; French surface repository), and defines the limits of radiological inventory of the disposal facility. The national waste agency ANDRA was established in 1979 by government (turned into public in 1991), and ANDRA defines the technical specifications involving acceptance criteria of the waste packages. The main feature of the French management includes; Comprehensive quality assurance program that encompasses all area of the management. Centralized installation for the melting of contaminated scrap metals and incineration of low level technological wastes. Mobile unit for common treatment of ion exchange resin. Concrete package assuring the long term containment. Complete tracking system of wastes from generation to disposal. This survey would be useful in the consideration of Japanese waste management including miscellaneous wastes, high βγ wastes, large metallic wastes, etc. (author)

  8. Certain Hospital Waste Management Practices in Isfahan, Iran

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Zeinab; Narenjkar, Parisa

    2012-01-01

    Objectives: Infected hospital wastes are among hazardous wastes, and special treatment methods are needed for their disposal. Having information about present status of medical waste management systems is of great importance in finding weak, and for future planning. Such studies have not been done for most of the hospitals in Iran. Methods: This paper reports the results of a study on the present status of medical waste management in Isfahan hospitals. A ten page researcher made questionnaire was used to collect data in terms of collection, transportation, segregation, treatment and disposal. For assessment of autoclaves, standard tests including TST (Time, Steam, and Temperature) strip test and spore tests were used. Samples were made of stack gases of incinerators. Quantity and composition of hospital wastes in Isfahan were also measured manually. Results: Of all wastes in selected hospitals, 40% were infected wastes (1.59 kg/day/bed), which is 15 to 20% higher than World Health Organization (WHO) standards. TST and Spore test results were negative in all samples. Stack gases analysis showed high concentration of CO in some samples. Besides, the combustion efficiency in some samples is less than 99.5%, which is the standard criterion in Iran. Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations. PMID:22826762

  9. Preliminary study on enhancing waste management best practice model in Malaysia construction industry

    Science.gov (United States)

    Jamaludin, Amril Hadri; Karim, Nurulzatushima Abdul; Noor, Raja Nor Husna Raja Mohd; Othman, Nurulhidayah; Malik, Sulaiman Abdul

    2017-08-01

    Construction waste management (CWM) is the practice of minimizing and diverting construction waste, demolition debris, and land-clearing debris from disposal and redirecting recyclable resources back into the construction process. Best practice model means best choice from the collection of other practices that was built for purpose of construction waste management. The practice model can help the contractors in minimizing waste before the construction activities will be started. The importance of minimizing wastage will have direct impact on time, cost and quality of a construction project. This paper is focusing on the preliminary study to determine the factors of waste generation in the construction sites and identify the effectiveness of existing construction waste management practice conducted in Malaysia. The paper will also include the preliminary works of planned research location, data collection method, and analysis to be done by using the Analytical Hierarchy Process (AHP) to help in developing suitable waste management best practice model that can be used in the country.

  10. Low- and intermediate-level waste management practices in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1982-05-01

    Low- and intermediate-level wastes arise in Canada from the operation of nuclear power stations, nuclear research establishments, nuclear fuel and radioisotope production facilities, as well as from many medical, research and industrial organizations. Essentially all of the solid radioactive wastas are stored in a retrievable fashion at five waste management areas from which a portion is expected to be transferred to future disposal facilities. Waste processing for volume reduction and stabilization is becoming an increasingly important part of low-level waste management because of the advantages it provides for both interim storage currently, and permanent disposal in the future

  11. Improved low-level radioactive waste management practices for hospitals and research institutions

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the more detailed analysis

  12. Solid Waste Management Practices of Select State Universities in CALABARZON, Philippines

    Directory of Open Access Journals (Sweden)

    Amado C. Gequinto

    2017-02-01

    Full Text Available The enactment of the Ecological Solid Waste Management Act prompted higher education institutions including state universities and colleges (SUCs to incorporate ecological waste management in the school system. Thus, this paper aimed to assess the extent of implementation of solid waste management practices in select SUCs in CALABARZON in terms of waste reuse, waste reduction, waste collection, waste recycling, waste treatment, and final waste disposal. Respondents of the study included university administrators, faculty members, non-teaching staff, students and concessionaries for a total of 341. A survey questionnaire was used to gather data from Batangas State University (BatState-U, Cavite State University (CavSU, Laguna State Polytechnic University (LSPU and Southern Luzon State University (SLSU. Result revealed that solid waste management practices are implemented to a great extent. Among the practices, waste collection got the highest composite mean particularly on the promotion of 3Rs (reduce, reuse, recycle in the collection of waste. On the other hand, waste recycling and waste treatment obtained the lowest composite mean. In terms of waste recycling, establishing partnership with local or private business for recyclable recovery program was to moderate extent. Waste treatment particularly neutralization of acid bases was also of moderate extent. The study recommended strengthening of publicprivate partnership (PPP on the recycling and treatment of wastes.

  13. Waste management and radiation protection overview of the practices in the NEA member countries

    International Nuclear Information System (INIS)

    Takahashi, M.; Riotte, H.; Ruegger, B.

    2000-01-01

    For many years the NEA has been reviewing waste management practices in Member States. Measures applied in the nuclear fuel cycle to reduce waste generation are outlined and characteristics of waste management in all steps of the nuclear fuel cycle are described. Views gained are discussed. (author)

  14. EVALUATION OF BIOMEDICAL WASTE MANAGEMENT PRACTICES IN MULTI-SPECIALITY TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Shalini Srivastav

    2010-06-01

    Full Text Available Background: Biomedical Waste (BMW, collection and proper disposal has become a significant concern for both the medical and the general community The scientific “Hospital waste Management “is of vital importance as its improper management poses risks to the health care workers ,waste handlers patients, community in general and largely the environment. Objectives: (i To assess current practices of Bio-medical Waste management including generation, collection, transportation storage, treatment and disposal technologies in tertiary health care center. (ii To assess health andsafetypracticesfor the health care personnel involved in Bio-Medical waste Management. Materials and Methods: Waste management practices in tertiary care-centre was studied during May 2010 June 2010. The information/data regarding Bio-Medical Waste Management practices and safety was collected by way of semi structured interview, proforma being the one used for WASTE AUDITING QUESTIONNAIRE. The information collected was verified by personal observations of waste management practices in each ward of hospital. Results : SRMS-IMS generates 1. 25Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in each ward for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory it was not due to unavailability of Personal protective measures but because of un-awareness of health hazards which may occur due to improper waste management practices. Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute, training and motivation must be given paramount importance to meet the current needs and standard of bio-medical waste management.

  15. Urban strategies for Waste Management in Tourist Cities. D2.7: Compendium of waste management practices in pilot cities and best practices in touristic cities

    OpenAIRE

    Gruber, Iris; Mayerhofer, Johannes; Obersteiner, Gudrun; Ramusch, Roland; Romein, A.; Eriksson, Mattias; Grosse, Juliane; MC. Nascimento, Gisela; Bjorn Olsen, Trine; de Luca, Claudia; Zapata Aranda, Pilar; Kazeroni, Marie; Kovacs, Ernest

    2017-01-01

    This report (Deliverable D2.7) refers to URBANWASTE Work Package 2, Task 2.8. Under this Task the current waste prevention and management practices in the URBANWASTE pilot cases are investigated and best practices coming from the EU context (focussing on touristic processes) are identified. This document shall support the selection of innovative strategies to be carried out within Work Package WP 4. A comparative policy review of national waste management strategies and targets in the Europea...

  16. Knowledge, Attitude and Practice of Healthcare Managers to Medical Waste Management and Occupational Safety Practices: Findings from Southeast Nigeria.

    Science.gov (United States)

    Anozie, Okechukwu Bonaventure; Lawani, Lucky Osaheni; Eze, Justus Ndulue; Mamah, Emmanuel Johnbosco; Onoh, Robinson Chukwudi; Ogah, Emeka Onwe; Umezurike, Daniel Akuma; Anozie, Rita Onyinyechi

    2017-03-01

    Awareness of appropriate waste management procedures and occupational safety measures is fundamental to achieving a safe work environment, and ensuring patient and staff safety. This study was conducted to assess the attitude of healthcare managers to medical waste management and occupational safety practices. This was a cross-sectional study conducted among 54 hospital administrators in Ebonyi state. Semi-structured questionnaires were used for qualitative data collection and analyzed with SPSS statistics for windows (2011), version 20.0 statistical software (Armonk, NY: IBM Corp). Two-fifth (40%) of healthcare managers had received training on medical waste management and occupational safety. Standard operating procedure of waste disposal was practiced by only one hospital (1.9%), while 98.1% (53/54) practiced indiscriminate waste disposal. Injection safety boxes were widely available in all health facilities, nevertheless, the use of incinerators and waste treatment was practiced by 1.9% (1/54) facility. However, 40.7% (22/54) and 59.3% (32/54) of respondents trained their staff and organize safety orientation courses respectively. Staff insurance cover was offered by just one hospital (1.9%), while none of the hospitals had compensation package for occupational hazard victims. Over half (55.6%; 30/54) of the respondents provided both personal protective equipment and post exposure prophylaxis for HIV. There was high level of non-compliance to standard medical waste management procedures, and lack of training on occupational safety measures. Relevant regulating agencies should step up efforts at monitoring and regulation of healthcare activities and ensure staff training on safe handling and disposal of hospital waste.

  17. Electronic waste (e-waste): Material flows and management practices in Nigeria

    International Nuclear Information System (INIS)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue

  18. Solid waste management practices under public and private sector in Lahore, Pakistan

    Directory of Open Access Journals (Sweden)

    Usman Ashraf

    2016-10-01

    Full Text Available Solid waste management (SWM practices in Lahore, provincial capital of Punjab, were privatised in 2012. This study draws a comparison of solid waste management practices by public and private sector in Lahore. The comparison is done by taking following factors in consideration; administrative structure, waste collection, street sweeping, waste storage capacity and logistics, disposal, mechanical sweeping and washing, monitoring system. Privatisation of solid waste management in Lahore is celebrated as complete success story. In contrast to this, we found the results of privatisation are mixed. Privatisation has improved some components of the system. Monitoring system has been the key innovation under private sector. It has enabled better allocation, management and channelization of available resources. Yet little to no improvement has been done in street sweeping, disposal of waste and administrative structure of waste management in the city.

  19. Assessment of waste characteristics and waste management practices for the Midwest Compact Region: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    This report has described how the Midwest Compact region's low-level radioactive waste characteristics were determined and has provided assessments of several key characteristics of the waste. Sources of the data used and comments on the validity and uncertainty of both the raw information and the region-wide estimates that have been generated are indicated. The contents and organization of the computerized Midwest Data Base are also presented. This data base is a resource for rational development of the Midwest Compact's Regional Management Plan. The value of the level of detail contained in Midwest Data Base is demonstrated in its use to analyze the viability of LLW treatment alternatives in other aspects of the regional management plan (RAE86). 10 refs., 7 figs., 13 tabs

  20. Waste management practices in Ontario`s workplaces: An emerging industrial ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Describes a study commissioned to evaluate employee attitudes and behaviours with respect to participation in workplace initiatives in waste diversion/reduction, to examine management initiatives related to waste diversion and reduction/recycling/reuse, and to report on Ontario Ministry of Environment & Energy activities related to industrial, commercial, and institutional (ICI) waste diversion activities. Linkages between management and employees, management and government, and ICI activities and government were also studied. The study methodology included a literature review, a series of interviews with key stakeholders, industry associations, and waste management companies, and a series of 12 case studies spanning major industrial sectors in Ontario. Issues addressed in the study include the factors that trigger waste diversion activities by ICI establishments, barriers to the initiation of waste diversion practices, and the social aspects of waste reduction/recycling/reuse practices.

  1. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-12-01

    Dec 1, 2014 ... Does poor Basic hygiene to Waste Management of FEPB affect the Public Negatively? Table 1:10. ..... dangerous reptile's e.g. snake and rats which cause Lassa .... quantity of refuse into dust or fire powder. This is done by the ...

  2. General directions and practices for management of radioactive waste

    International Nuclear Information System (INIS)

    Fioroni, M.

    1990-12-01

    The present work underlines and synthesises the essential principles, directions and methodologies developed by Industrialized Nations and by the International Organizations for management of radioactive waste of high, intermediate and low levels. It fills a gap in scientific Italian literature and represents a valid introduction to the subject. (author)

  3. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  4. Urban strategies for Waste Management in Tourist Cities. D2.7 : Compendium of waste management practices in pilot cities and best practices in touristic cities

    NARCIS (Netherlands)

    Gruber, Iris; Mayerhofer, Johannes; Obersteiner, Gudrun; Ramusch, Roland; Romein, A.; Eriksson, Mattias; Grosse, Juliane; MC. Nascimento, Gisela; Bjorn Olsen, Trine; de Luca, Claudia; Zapata Aranda, Pilar; Kazeroni, Marie; Kovacs, Ernest

    2017-01-01

    This report (Deliverable D2.7) refers to URBANWASTE Work Package 2, Task 2.8. Under this Task the current waste prevention and management practices in the URBANWASTE pilot cases are investigated and best practices coming from the EU context (focussing on touristic processes) are identified. This

  5. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  6. Exploring Secondary School Students' Understanding and Practices of Waste Management in Ogun State, Nigeria

    Science.gov (United States)

    Ifegbesan, Ayodeji

    2010-01-01

    This study examined the level of awareness, knowledge and practices of secondary schools students with regard to waste management. Few studies have captured waste management problems in Nigerian educational institutions, particularly the views of students. Using a structured, self-administered questionnaire, 650 students were surveyed from six…

  7. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  8. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  9. Waste Management: A Case Study of Ongoing Traditional Practices at East Calcutta Wetland

    OpenAIRE

    Shaon Raychaudhuri; Madhusmita Mishra; Poulomi Nandy; Ashoke R. Thakur

    2008-01-01

    Calcutta has a unique waste management system which uses the traditional non conventional practice for treating both the solid as well as soluble waste for its 12 million inhabitants . It not only detoxifies the waste but also generates resources for the existing society in form of employment as well as edibles like sufficient vegetable, fish as well as paddy for consumption. The elemental analysis of these products showed no metal toxicity due to their cultivation using waste resource. Thus ...

  10. Knowledge, attitude, and practices about biomedical waste management among healthcare personnel: A cross-sectional study

    OpenAIRE

    Vanesh Mathur; S Dwivedi; M A Hassan; R P Misra

    2011-01-01

    Background: The waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Inadequate and inappropriate knowledge of handling of healthcare waste may have serious health consequences and a significant impact on the environment as well. Objective: The objective was to assess knowledge, attitude, and practices of doctors, nurses, laboratory technicians, and sanitary staff regarding biomedical waste management. Material...

  11. Knowledge, attitude, and practices about biomedical waste management among healthcare personnel: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Vanesh Mathur

    2011-01-01

    Full Text Available Background: The waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Inadequate and inappropriate knowledge of handling of healthcare waste may have serious health consequences and a significant impact on the environment as well. Objective: The objective was to assess knowledge, attitude, and practices of doctors, nurses, laboratory technicians, and sanitary staff regarding biomedical waste management. Materials and Methods: This was a cross-sectional study. Setting: The study was conducted among hospitals (bed capacity >100 of Allahabad city. Participants: Medical personnel included were doctors (75, nurses (60, laboratory technicians (78, and sanitary staff (70. Results: Doctors, nurses, and laboratory technicians have better knowledge than sanitary staff regarding biomedical waste management. Knowledge regarding the color coding and waste segregation at source was found to be better among nurses and laboratory staff as compared to doctors. Regarding practices related to biomedical waste management, sanitary staff were ignorant on all the counts. However, injury reporting was low across all the groups of health professionals. Conclusion: The importance of training regarding biomedical waste management needs emphasis; lack of proper and complete knowledge about biomedical waste management impacts practices of appropriate waste disposal.

  12. Assessment of sharps waste management practices in a referral ...

    African Journals Online (AJOL)

    hospital (40.8 kg/day) was higher than values reported in district hospitals, but the sharps waste ... Key words: Sharps waste, sharps waste container, overfilled safety box, sharps waste proportion, .... requirements and availability of technology.

  13. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  14. Destined for indecision? A critical analysis of waste management practices in England from 1996 to 2013

    International Nuclear Information System (INIS)

    Farmer, T.D.; Shaw, P.J.; Williams, I.D.

    2015-01-01

    Highlights: • Critical analysis of municipal waste management practices and performance in England. • Trends visualised via innovative ternary plots and changes and reasons explored. • Performance 1996–2013 moved slowly away from landfill dominance. • Large variations in %s of waste landfilled, incinerated and recycled/composted. • Progress to resource efficiency slow; affected by poor planning and hostile disputes. - Abstract: European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused on recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste

  15. Destined for indecision? A critical analysis of waste management practices in England from 1996 to 2013

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, T.D.; Shaw, P.J.; Williams, I.D., E-mail: idw@soton.ac.uk

    2015-05-15

    Highlights: • Critical analysis of municipal waste management practices and performance in England. • Trends visualised via innovative ternary plots and changes and reasons explored. • Performance 1996–2013 moved slowly away from landfill dominance. • Large variations in %s of waste landfilled, incinerated and recycled/composted. • Progress to resource efficiency slow; affected by poor planning and hostile disputes. - Abstract: European nations are compelled to reduce reliance on landfill as a destination for household waste, and should, in principle, achieve this goal with due recognition of the aims and principles of the waste hierarchy. Past research has predominantly focused on recycling, whilst interactions between changing waste destinies, causes and drivers of household waste management change, and potential consequences for the goal of the waste hierarchy are less well understood. This study analysed Local Authority Collected Waste (LACW) for England, at national, regional and sub-regional level, in terms of the destination of household waste to landfill, incineration and recycling. Information about waste partnerships, waste management infrastructure and collection systems was collected to help identify and explain changes in waste destinies. Since 1996, the proportion of waste landfilled in England has decreased, in tandem with increases in recycling and incineration. At the regional and sub-regional (Local Authority; LA) level, there have been large variations in the relative proportions of waste landfilled, incinerated and recycled or composted. Annual increases in the proportion of household waste incinerated were typically larger than increases in the proportion recycled. The observed changes took place in the context of legal and financial drivers, and the circumstances of individual LAs (e.g. landfill capacity) also explained the changes seen. Where observed, shifts from landfill towards incineration constitute an approach whereby waste

  16. Impact of intervention on healthcare waste management practices in a tertiary care governmental hospital of Nepal.

    Science.gov (United States)

    Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj

    2014-09-26

    Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues

  17. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J.A.L.; Pereira, F.A.; Tomich, S. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  18. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J A.L.; Pereira, F A; Tomich, S [CETREL S.A., Camacari, BA (Brazil)

    1994-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  19. The radioactive waste management policy and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kucerka, M.

    1996-01-01

    In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses for radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic

  20. Critical management practices influencing on-site waste minimization in construction projects.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced

  2. Healthcare waste management practices and risk perceptions: findings from hospitals in the Algarve region, Portugal.

    Science.gov (United States)

    Ferreira, Vera; Teixeira, Margarida Ribau

    2010-12-01

    The management of healthcare wastes is receiving greater attention because of the risks to both human health and the environment caused by inadequate waste management practices. In that context, the objective of this study was to analyse the healthcare waste management practices in hospitals of the Algarve region, Portugal, and in particular to assess the risk perceptions of, and actual risk to, healthcare staff. The study included three of the six hospitals in the region, covering 41% of the bed capacity. Data were collected via surveys, interviews, and on-site observations. The results indicate that waste separation is the main deficiency in healthcare waste practice, with correct separation being positively related to the degree of daily contact with the waste. Risk perceptions of healthcare staff show the highest levels for the environment (4.24) and waste workers (4.08), and the lowest for patients (3.29) and visitors (2.80), again being positively associated with the degree of daily contact. Risk perceptions of healthcare staff are related to the difficulties of the correct separation of wastes and the lack of knowledge concerning the importance of that separation. The risk of infection with needlesticks/sharps is higher during patient care than during waste handling, and the frequency of these injuries is related to the daily tasks of each healthcare group (doctors, nurses, and housekeepers). Furthermore, legislative definitions and classifications of healthcare wastes appear to have conditioned the management practices associated with, and the perceptions of risk concerning, healthcare wastes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Waste characterization practices: summary paper

    International Nuclear Information System (INIS)

    Logan, J.A.

    1987-01-01

    Recent reviews of the records on disposal waste at several DOE sites have indicated that records still contain little information practical to waste management. Much of the disposed waste is identified by vague terms, i.e., general plant waste. Attached to this paper is a new waste characterization code devised by the Idaho National Engineering Laboratory to aid in waste volume reduction and stabilization. It is recommended that every facility involved in waste generation and disposal needs to be detailing its wastes to support upgrading of waste management practices. 1 table

  4. Segregation practices in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1981-10-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. For improved processing and disposal of LLW, it is recommended that waste segregation be practiced wherever it is technically feasible and cost-effective to do so. It is noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day

  5. Solid waste management in Macao: Practices and challenges

    International Nuclear Information System (INIS)

    Jin Jianjun; Wang Zhishi; Ran Shenghong

    2006-01-01

    The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future

  6. Management of tritium contaminated wastes national strategies and practices at some European countries, USA and Canada

    International Nuclear Information System (INIS)

    Mannone, F.

    1992-01-01

    The European Tritium Handling Experiment Laboratory (ETHEL) is the Commission of European Communities facility designed for handling multigram quantities of tritium for safety inherent R and D purposes. Tritium contamined wastes in gaseous, liquid and solid forms will be generated in ETHEL during the experiments as well as during the maintenance operations. All such wastes must be adequately managed under the safest operating conditions to minimize the releases of tritium to the environment and the consequent radiological risks to workers and general population. This safety requirement can be met by carefully defining strategies and practices to be applied for the safe management of these wastes. To this end an adequate background information must be collected which is the intent of this report. Through an exhaustive literature survey current strategies and practices applied in Europe, USA and Canada for managing tritiated wastes from specific tritium handling laboratories and plant have been assessed. For some countries, where only tritium bearing wastes simultaneously contaminated with nuclear fission products are generated, the attention has been focused on the strategies and practices currently applied for managing fission wastes. Operational criteria for waste collection, sorting, classification, conditioning and packaging as well as acceptance criteria for their storage or disposal have been identified. Waste storage or disposal options already applied in various countries or still being investigated in terms of safety have also been considered. Even if the radwaste management strategy is submitted to a nearly continuing process of review, some general comments resulting from the assessment of the present waste management scenario are presented. 60 refs., 16 figs., 13 tabs

  7. Report: Hospital waste management--awareness and practices: a study of three states in India.

    Science.gov (United States)

    Rao, P Hanumantha

    2008-06-01

    The study was conducted in Andhra Pradesh, Maharashtra and Uttar Pradesh in India. Hospitals/nursing homes and private medical practitioners in urban as well as rural areas and those from the private as well as the government sector were covered. Information on (a) awareness of bio-medical waste management rules, (b) training undertaken and (c) practices with respect to segregation, use of colour coding, sharps management, access to common waste management facilities and disposal was collected. Awareness of Bio-medical Waste Management Rules was better among hospital staff in comparison with private medical practitioners and awareness was marginally higher among those in urban areas in comparison with those in rural areas. Training gained momentum only after the dead-line for compliance was over. Segregation and use of colour codes revealed gaps, which need correction. About 70% of the healthcare facilities used a needle cutter/destroyer for sharps management. Access to Common Waste Management facilities was low at about 35%. Dumping biomedical waste on the roads outside the hospital is still prevalent and access to Common Waste facilities is still limited. Surveillance, monitoring and penal machinery was found to be deficient and these require strengthening to improve compliance with the Bio-medical Waste Management Rules and to safeguard the health of employees, patients and communities.

  8. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  9. IAEA provisional code of practice on management of radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    1982-10-01

    This Code of Practice defines the minimum requirements for operations and design of structures, systems and components important for management of wastes from thermal nuclear power plants. It emphasizes what safety requirements shall be met rather than specifies how these requirements can be met; the latter aspect is covered in Safety Guides. The Code defines the need for a Government to assume responsibility for regulating waste management practices in conjunction with the regulation of a nuclear power plant. The Code does not prejudge the organization of the regulatory authority, which may differ from one Member State to another, and may involve more than one body. Similarly, the Code does not deal specifically with the functions of a regulatory authority responsible for such matters, although it may be of value to Member States in providing a basis for consideration of such functions. The Code deals with the entire management system for all wastes from nuclear power plants embodying thermal reactors including PWR, BWR, HWR and HTGR technologies. Topics included are: design, normal and abnormal operation, and regulation of management systems for gaseous, liquid and solid wastes, including decommissioning wastes. The Code includes measures to be taken with regard to the wastes arising from spent fuel management at nuclear power plants. However, the options for further management of spent fuel are only outlined since it is the subject of decisions by individual Member States. The Code does not require that an option(s) be decided upon prior to construction or operation of a nuclear power plant

  10. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    Queiser, H.

    1976-01-01

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.) [de

  11. A Study of Hospital Waste Generation and Management Practice in ...

    African Journals Online (AJOL)

    Nekky Umera

    The composition of wastes found in the 20 healthcare facilities visited included garbage, ... and allied, clothing materials, wastewater with blood traces and the likes. ... personally controlled. ... containers or recapped and stored in a special safety box kept ... Finally disinfection of waste before any kind of contact was done.

  12. Low- and intermediate-level waste management practices in Japan

    International Nuclear Information System (INIS)

    Tsuchiya, M.

    1982-01-01

    At present, disposal of low-level radioactive wastes is yet to be carried out in Japan. Liquid wastes, except for the diluted discharge of very low-level waste into the environment, are mostly solidified with cement or bitumen to be packed in 200 litre drums and put in storage. Solid wastes, on the other hand, are mostly put into in 200 litre drums, some of them being incinerated beforehand. Efforts are being made to develop technology for reducing the production of wastes. Regarding sea disposal, a test dumping program has been forestalled by the opposition of South Pacific islanders, but we are endeavoring to promote their understandings on this matter. Regarding land disposal, first we are going to start centralized storage, then shift to underground disposal

  13. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  14. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    Science.gov (United States)

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  15. Investigating composition and production rate of healthcare waste and associated management practices in Bandar Abbass, Iran.

    Science.gov (United States)

    Koolivand, Ali; Mahvi, Amir Hossein; Alipoor, Vali; Azizi, Kourosh; Binavapour, Mohammad

    2012-06-01

    The objective of this study was to identify the composition and production rate of healthcare waste and associated management practices in healthcare centres in Bandar Abbas, southern Iran. A total of 90 centres, including 30 physician offices, 30 dental offices and 30 clinics were selected in random way. Two samples in summer and two samples in winter were taken and weighed from each selected centre at the end of successive working day on Mondays and Tuesdays. Results showed that the mean of daily production rate for each clinic, dental and physician office were 2125.3, 498.3 and 374.9 g, respectively. Domestic-type and potentially infectious waste had the highest and chemical and pharmaceutical waste and sharps had the lowest percentages in all centres. Questionnaire results indicated that there were no effective activity for waste minimization, separation, reuse and recycling in healthcare centres and management of sharps, potentially infectious and other hazardous waste was poor.

  16. awareness and practice on biomedical waste management among

    African Journals Online (AJOL)

    2013-02-02

    Feb 2, 2013 ... University of Agriculture and Technology P. O. Box 62000-00200 Nairobi, C. Mutai, Senior Research Scientist, Kenya .... bags and strong plastic containers for infectious waste ..... at Command Hospital, Air Force, Bangalore.

  17. Research and practice of informatization construction in waste treatment and management

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun; Yu Ren; Xiang Xinmin

    2013-01-01

    The goal, content and requirement of the informatization construction in waste treatment and management in nuclear power system are discussed in the paper, as well as some key problems in this process. Taking the engineering practice of informatization construction in a waste treatment center as an example, the composition and architecture of the information system, the consideration and the solution methods of some key problems in system design and development are introduced in the paper. (authors)

  18. Analysis of the solid waste management practices in Chinhoyi: bridging the missing link

    Directory of Open Access Journals (Sweden)

    Ishumael SANGO

    2010-12-01

    Full Text Available Over the years, there has been noticeable and steady mismatch between urban population growth and capacity for managing the corresponding increases in solid wastes. The local community is greatly concerned because it is aware of the clear link between poorly managed waste and the potential for the spread of diseases. This study was carried out to examine the solid waste management practices in Chinhoyi urban area and assess the impacts on the environment and human health. The study combined quantitative and qualitative data collected through fieldwork, questionnaires, interviews and document reviews. The population of Chinhoyi stands at about 60 000 generating more than 100 tons of waste per day. Results of the study include high percentage of uncollected waste, high levels of health and safety related problems such as lacerations, contusions, strain/sprains, and illness as well as noticeable deterioration of facilities and the environment. Issues affecting the effective management of waste are discussed. Recommendations based on the sustainable principle of integrated solid waste management are suggested. Sustainability requires the system to be environmentally effective, economically affordable, and socially acceptable.

  19. Hospital solid waste management practices in Limpopo Province, South Africa: A case study of two hospitals

    International Nuclear Information System (INIS)

    Nemathaga, Felicia; Maringa, Sally; Chimuka, Luke

    2008-01-01

    The shortcomings in the management practices of hospital solid waste in Limpopo Province of South Africa were studied by looking at two hospitals as case studies. Apart from field surveys, the generated hospital waste was weighed to compute the generation rates and was followed through various management practices to the final disposal. The findings revealed a major policy implementation gap between the national government and the hospitals. While modern practices such as landfill and incineration are used, their daily operations were not carried according to minimum standards. Incinerator ash is openly dumped and wastes are burned on landfills instead of being covered with soil. The incinerators used are also not environmentally friendly as they use old technology. The findings further revealed that there is no proper separation of wastes according to their classification as demanded by the national government. The mean percentage composition of the waste was found in the following decreasing order: general waste (60.74%) > medical waste (30.32%) > sharps (8.94%). The mean generation rates were found to be 0.60 kg per patient per day

  20. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Kofoworola, O.F.

    2007-01-01

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods clean have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested

  1. Assessment of waste characteristics and waste management practices for the Midwest compact region:

    International Nuclear Information System (INIS)

    Sutherland, A.A.

    1986-01-01

    To define that system and optimize its components, it is necessary to know various characteristics of the LLW generated in the Midwest Compact Region. It must have projections for the annual volumes from the states in the compact to determine the size and lifetimes of waste management facilities. Information on the different volumes of the region's LLW that fall into NRC waste classes will help determine volumes of waste that may need separate disposal. Eventually, licensing a LLW disposal facility will require source terms /emdash/ quantities and concentrations of nuclides placed in the facility /emdash/ in order to conduct performance assessments. To provide the information needed to make informed decisions about the nature and size of the Midwest region's low-level waste management system, information was gathered from a number of sources. The information was placed in a computer data base to preserve it and to facilitate extracton of combinations of data. This report describes how the information was assembled and the nature of the computerized data base. It also provides a baseline characterization of the low-level waste being generated and shipped for disposal from the Midwest region in the late 1980's. 10 refs., 7 figs., 13 tabs

  2. The role of quantitative optimization techniques in assessment of best practicable environmental options for radioactive waste management

    International Nuclear Information System (INIS)

    Johnston, P.D.

    1987-01-01

    The interpretation of the Best Practicable Environmental Option (BPEO) and ALARA concepts in radioactive waste management is given. The quantitative analysis of the financial and radiological impacts of different options for waste management is discussed. Finally, the role of quantitative multi-attribute analysis in the DOE's assessment of BPEOs for radioactive waste is described. (UK)

  3. Awareness and Practice on Biomedical Waste Management among ...

    African Journals Online (AJOL)

    Background: The proper handling and disposal of Bio-medical waste (BMW) is very imperative. There are well defined set rules for handling BMW worldwide. Unfortunately, laxity and lack of adequate training and awareness in execution of these rules leads to staid health and environment apprehension. Objective: To ...

  4. A review of legal framework applicable for the management of healthcare waste and current management practices in Ethiopia.

    Science.gov (United States)

    Haylamicheal, Israel Deneke; Desalegne, Solomon Akalu

    2012-06-01

    The management of healthcare waste (HCW) requires special attention due to the risk posed by the presence of hazardous waste. The first step towards this is the issuance of national legislation complemented by policy documents, regulations and technical guidelines. In Ethiopia there is no specific legislation for healthcare waste management (HCWM). However, there are various legislations which may provide a legal framework for the management of HCW. This review assesses the various legislations that are relevant to HCWM. It also looks into the institutional arrangements put in place and waste management practices that prevail in the country. It was found that, although the existing legislations have provisions that may provide a legal framework for the management of HCW in Ethiopia, they are not comprehensive and lack specificity in terms of defining hazardous HCW and its categories; in indicating legal obligations of healthcare facilities (HCFs) in handling, transporting, treating and disposing HCW, and record keeping and reporting. There is overlapping of mandates and lackof co-ordination among various government institutions that are responsible for HCWM. The HCWM practices also do not conform to the principles of waste management in general and HCWM in particular. Thus, to better manage HCW in Ethiopia, a specific and comprehensive legislation and policy document on HCWM with clear designation of responsibilities to various stakeholders should be issued immediately. Moreover, training and awareness raising activities on proper HCWM should be undertaken targeting medical staffs, HCF administrators, waste handlers, policy and decision makers and the general public.

  5. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  6. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  7. Clinical solid waste management practices and its impact on human health and environment - A review

    International Nuclear Information System (INIS)

    Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.; Omar, A.K. Mohd

    2011-01-01

    Research highlights: → Appropriate waste management technology for safe handling and disposal of clinical solid waste. → Infectious risk assessment on unsafe handling of clinical solid waste. → Recycling-reuse program of clinical solid waste materials. → Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This article summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non

  8. Sustainable Practices for Landfill Design and Operation (Part of book series Waste Management Principles and Practice)

    Science.gov (United States)

    The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...

  9. [Health care waste management of potentially infectious medical waste by healthcare professionals in a private medical practice: a study of practices].

    Science.gov (United States)

    Brunot, Alain; Thompson, Céline

    2010-01-01

    A cross-sectional study was conducted with a sample of 278 health professionals (GPs and specialists, dentists, physical therapists and nurses) in a private medical practice in Paris to study the medical waste management practices related to the production and disposal of potentially hazardous health care waste. With the exception of physical therapists, most professionals produced medical waste (72% to 96,2% according to occupation), with a monthly median of 3 liters (inter-quartile range 1-15 liters). All sharp objects and needles were separated and 91% of them eliminated via a specific process for that sector. These percentages were respectively 84% and 69% concerning contaminated waste that was neither needles or used for cutting. 48% of the professionals reported the existence of documents that could track the disposal of their medical waste. To improve practice, professionals cited collection on-site at the office (74%) and reliability of the contracted service provider to collect the waste (59%). The study showed that health professionals need information on the regulations regarding potentially infectious medical waste, in particular on the traceability of its elimination. They also noted the lack of clarity and precision with regard to the definition of risk of infection: 31,7% of professionals only declare the production of sharp or cutting waste without having specified criteria for risk of infection.

  10. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  11. Waste management practices to control biological transport of radioactivity at the Hanford Site

    International Nuclear Information System (INIS)

    Conklin, A.W.

    1985-01-01

    One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  13. Investigation of Barriers and Factors Affecting the Reverse Logistics of Waste Management Practice: A Case Study in Thailand

    Directory of Open Access Journals (Sweden)

    Sumalee Pumpinyo

    2014-10-01

    Full Text Available Economic growth in developing countries accelerated waste generation, and Thailand also is experiencing issues related to increased waste generation and improper waste management. The country’s domestic waste utilization is only 20%–26%. Efficient waste management and increased quantity of waste utilization is possible only by overcoming problems and constraints in reverse logistics (RL systems in Thailand. To address these issues and constraints, this study aims to focus the investigation on the current practices in the RL systems. The study was conducted in Bangkok and its vicinity. An integrated approach of qualitative and quantitative methods was employed to investigate the systems’ and stakeholders’ characteristics and to explore the factors influencing and constraining RL practices. Data were gathered through: (1 existing literature and in-depth interviews of key stakeholders involved in RL; and (2 a questionnaire survey of 98 managers of separation centers (SCs probing their practices and studying the factors influencing those practices. The findings showed that RL systems can be separated into three levels, i.e., downstream, middle stream and upstream. SCs are key stakeholders in RL of waste management, and they collect waste from downstream, manage waste in a systematic way and send it upstream. The factors influencing and the barriers in the flow of recyclable waste are related to environmental, economic and social aspects. The analysis shows that waste managed by a cooperative-like franchise of SCs perceived that their practices were more efficient than those of a non-franchise practices. Additionally, these SCs have more bargaining power with waste buyers and sellers to set prices in the RL system. The constraints in RL practice are related to finance, market, labor, management/technology and legal issues.

  14. Impact of pedagogical method on Brazilian dental students' waste management practice.

    Science.gov (United States)

    Victorelli, Gabriela; Flório, Flávia Martão; Ramacciato, Juliana Cama; Motta, Rogério Heládio Lopes; de Souza Fonseca Silva, Almenara

    2014-11-01

    The purpose of this study was to conduct a qualitative analysis of waste management practices among a group of Brazilian dental students (n=64) before and after implementing two different pedagogical methods: 1) the students attended a two-hour lecture based on World Health Organization standards; and 2) the students applied the lessons learned in an organized group setting aimed toward raising their awareness about socioenvironmental issues related to waste. All eligible students participated, and the students' learning was evaluated through their answers to a series of essay questions, which were quantitatively measured. Afterwards, the impact of the pedagogical approaches was compared by means of qualitative categorization of wastes generated in clinical activities. Waste categorization was performed for a period of eight consecutive days, both before and thirty days after the pedagogical strategies. In the written evaluation, 80 to 90 percent of the students' answers were correct. The qualitative assessment revealed a high frequency of incorrect waste disposal with a significant increase of incorrect disposal inside general and infectious waste containers (p<0.05). Although the students' theoretical learning improved, it was not enough to change behaviors established by cultural values or to encourage the students to adequately segregate and package waste material.

  15. Mercury and Other Biomedical Waste Management Practices among Dental Practitioners in India

    Directory of Open Access Journals (Sweden)

    Raghuwar D. Singh

    2014-01-01

    Full Text Available Objectives. The objective of the study was to assess the awareness and performance towards dental waste including mercury management policy and practices among the dental practitioners in North India. Materials and Methods. An epidemiologic survey was conducted among 200 private dental practitioners. The survey form was composed of 29 self-administered questions frame based on knowledge, attitude, and those regarding the practices of dentists in relation to dental health-care waste management. The resulting data were coded and a statistical analysis was done. Results and Discussion. About 63.7% of the dentists were not aware of the different categories of biomedical waste generated in their clinics. Only 31.9% of the dentists correctly said that outdated and contaminated drugs come under cytotoxic waste. 46.2% said they break the needle and dispose of it and only 21.9% use needle burner to destroy it. 45.0% of the dentists dispose of the developer and fixer solutions by letting them into the sewer, 49.4% of them dilute the solutions and let them into sewer and only 5.6% return them to the supplier. About 40.6% of the dentists dispose of excess silver amalgam by throwing it into common bin. Conclusion. It was concluded that not all dentists were aware of the risks they were exposed to and only half of them observe infection control practices.

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  17. Caught between the global economy and local bureaucracy: the barriers to good waste management practice in South Africa.

    Science.gov (United States)

    Godfrey, Linda; Scott, Dianne; Trois, Cristina

    2013-03-01

    Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.

  18. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    Science.gov (United States)

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  19. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  20. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  1. Healthcare waste management practice in the West Black Sea Region, Turkey: A comparative analysis with the developed and developing countries.

    Science.gov (United States)

    Ciplak, Nesli; Kaskun, Songul

    2015-12-01

    The need for proper healthcare waste management has been a crucial issue in many developing countries as it is in Turkey. The regulation regarding healthcare wastes in Turkey was updated in 2005 in accordance with the European Union (EU) waste directives, but it still falls behind meeting the requirements of current waste treatment technologies. Therefore, this study aims to reveal deficiencies, inconsistencies, and improper applications of healthcare waste management in the western part of the Turkish Black Sea Region. In this study, it was revealed that nearly 1 million people live in the region, resulting in 5 million hospital admissions annually. All the healthcare waste produced (1000 tons yr(-1)) is treated in an autoclave plant. However, treating some categories of healthcare wastes in autoclave units mismatches with the EU waste regulations, as alternative treatment technologies are not technically able to treat all types of healthcare wastes. A proper waste management system, therefore, requires an internal segregation scheme to divert these wastes from the main healthcare waste stream. The existing malpractice in the region could cause serious health problems if no measure is taken urgently. It is expected that healthcare waste management in the region and then all across Turkey will be improved with the significant deficiencies and inconsistencies pointed out in this research. In developed countries, specific rules and regulations have already been implemented along with the recommendations for handling of healthcare waste. However, in Turkey, these wastes are treated in autoclave units, which mismatches with the European Union waste regulations, as alternative treatment technologies are not technically capable to treat all types of healthcare wastes. The existing malpractice could cause serious health problems if no measure is taken urgently. The authors demonstrated the existing status of Turkish waste management and revealed deficiencies

  2. Practices, Concerns, and Willingness to Participate in Solid Waste Management in Two Urban Slums in Central Uganda

    Science.gov (United States)

    Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O.; Ssempebwa, John C.

    2016-01-01

    Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. Methods. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Results. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Conclusion. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices. PMID:27066081

  3. Practices, Concerns, and Willingness to Participate in Solid Waste Management in Two Urban Slums in Central Uganda.

    Science.gov (United States)

    Mukama, Trasias; Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O; Ssempebwa, John C

    2016-01-01

    Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices.

  4. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  5. Waste management in the Irkutsk Region, Siberia, Russia: Environmental assessment of current practice focusing on landfilling

    DEFF Research Database (Denmark)

    Starostina, Vlada; Damgaard, Anders; Rechberger, Helmut

    2014-01-01

    The municipal waste management system of the region of Irkutsk is described and a life cycle assessment (LCA) performed to assess the environmental performance of the system. Annually about 500 000 tons of waste are managed. The waste originates from three sources: household waste (27%), commercial...... waste (23%) and office & institutional waste (44%). Other waste of unknown composition constitutes 6%. Only 3% of the waste is recycled; 97% of the municipal waste is disposed of at the old Alexandrovsky landfill. The environmental impact from the current system is dominated by the landfill, which has...... no gas or leachate collection system. The global warming contribution is due to the emission of methane of the order of 420 000 tons CO2-equivalents per year. Collection and transport of the waste are insignificant compared with impacts from the landfill. As the old landfill runs out of capacity in a few...

  6. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  7. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  8. Development of a waste management protocol based on assessment of knowledge and practice of healthcare personnel in surgical departments.

    Science.gov (United States)

    Mostafa, Gehan M A; Shazly, Mona M; Sherief, Wafaa I

    2009-01-01

    Good healthcare waste management in a hospital depends on a dedicated waste management team, good administration, careful planning, sound organization, underpinning legislation, adequate financing, and full participation by trained staff. Hence, waste management protocols must be convenient and sensible. To assess the knowledge and practice related to waste management among doctors, nurses, and housekeepers in the surgical departments at Al-Mansoura University Hospital, and to design and validate a waste management protocol for the health team in these settings. This cross-sectional study was carried out in the eight surgical departments at Al-Mansoura University Hospital. All health care personnel and their assistants were included: 38 doctors, 106 nurses, and 56 housekeepers. Two groups of jury were included for experts' opinions validation of the developed protocol, one from academia (30 members) and the other from service providers (30 members). Data were collected using a self-administered knowledge questionnaire for nurses and doctors, and an interview questionnaire for housekeepers. Observation checklists were used for assessment of performance. The researchers developed the first draft of the waste management protocol according to the results of the analysis of the data collected in the assessment phase. Then, the protocol was presented to the jury group for validation, and then was implemented. Only 27.4% of the nurses, 32.1% of the housekeepers, and 36.8% of the doctors had satisfactory knowledge. Concerning practice, 18.9% of the nurses, 7.1% of the housekeepers, and none of the doctors had adequate practice. Nurses' knowledge score had a statistically significant weak positive correlation with the attendance of training courses (r=0.23, pwaste management. The knowledge among nurses is positively affected by attendance of training programs. Based on the findings, a protocol for healthcare waste management was developed and validated. It is recommended to

  9. Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries

    Directory of Open Access Journals (Sweden)

    Vivian Wing-Yan Tam

    2016-02-01

    Full Text Available Construction waste management (CWM has received worldwide attention for some time. As a result, a plethora of research, investigating a wide array of CWM issues such as their profiles, practices, and performance, has been reported in individual economies around the globe. However, a cross-jurisdictional comparison of these issues is limitedly presented in the literature despite its importance to benchmarking performance and identifying best CWM practices in the context of globalization whereby knowledge sharing has already transcended traditional country boundaries. The aim of this ex post facto research is to compare CWM profiles, practices, and performance in Australia, Europe (Europe refers to EU-27 member countries in the European Union, including Belgium, France, Germany, Italy, Luxembourg, Netherlands, Denmark, Great Britain, Ireland, Portugal, Spain, Greece, Austria, Finland, Sweden, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia, Slovenia, Malta, Cyprus, Bulgaria, and Romania., Hong Kong, and the United Kingdom at a national-level, with a view to facilitating CWM knowledge sharing internationally. It does so by triangulating empirical data collected from various national statistical yearbooks with research papers and professional reports on CWM in these economies. It is found that in producing one million (US dollars’ work, construction contributes a volume of solid waste ranging from 28 to 121 tons among countries. Conscientious CWM practices can make a significant difference in reducing, reusing, or recycling construction waste, as evident in the large variation in the CWM performance. While it might be oversimplified to conclude that the best practices in one country can be applied in another, the research provides insightful references into sharing CWM knowledge across boundaries.

  10. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  11. Solid Waste Management Practices in the Eastern Province of Saudi Arabia

    Science.gov (United States)

    Khan, Hasin U.; Husain, Tahir; Khan, Suhail M.

    1987-11-01

    Solid waste management practices in the Eastern Province of Saudi Arabia are reviewed. The officials of various municipalities and agencies responsible for collecting and disposing of municipal waste were interviewed. The refuse generation rate found is in the range of 1.61 2.72 kg per capita per day. The refuse composition data indicate a high percentage of glass, metals, and wood. For storage purposes, 0.2-m3 barrels are used in residential areas and 0.75 to 1.50 m3-capacity containers are used in commerical areas. The present solid-waste collection system is labor-intensive, and a significant part of the budget is spent on collection and haul operations. The unit collection and haul cost is much higher than the unit disposal cost of refuse. The direct haul of refuse is the common practice, and the use of transfer stations has not yet been considered. It is also observed that the disposal methods used at these sites are not in line with modern techniques for refuse disposal. Landfilling and combined burning and landfilling are the common disposal methods at all the sites.

  12. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  13. An assessment of management practices of wood and wood-related wastes in the urban environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The US Environmental Protection Agency estimates that yard waste{sup 1} accounts for approximately 16% of the municipal solid waste (MSW) stream (US EPA, 1994). Until recently, specific data and related information on this component of the (MSW) stream has been limited. The purposes of this study, phase two of the three-phase assessment of urban wood waste issues, are to assess and describe current alternatives to landfills for urban wood waste management; provide guidance on the management of urban wood waste to organizations that produce or manage wood waste; and clarify state regulatory and policy positions affecting these organizations. For this study, urban wood waste is defined as solid waste generated by tree and landscape maintenance services (public and private). Urban wood waste includes the following materials: unchipped mixed wood, unchipped logs, and unchipped tops and brush; clearing and grubbing waste; fall leaves and grass clippings; and chips and whole stumps. Construction and demolition debris and consumer-generated yard waste are not included in this study. Generators of urban wood waste include various organizations; municipal, county, and commercial tree care divisions; nurseries, orchards, and golf courses; municipal park and recreation departments; and electric and telephone utility power line maintenance, excavator and land clearance, and landscape organizations. (1) US EPA defines yard waste as ''yard trimmings'' which includes ''grass, leaves and tree brush trimmings from residential, institutional, and commercial sources.''

  14. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Directory of Open Access Journals (Sweden)

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cement –based grouts.

  15. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed.

  16. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed

  17. Radioactive waste management in the Netherlands. A practical solution in full operation

    International Nuclear Information System (INIS)

    Codee, H.D.K.

    2000-01-01

    All radioactive waste produced in the Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small and in the near future ending nuclear power programme. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, the Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an important element in the management strategy that will ultimately result in final removal of the waste. Since the waste will remain retrievable for a long time, new technologies and new disposal options can be applied when available and feasible. (author)

  18. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  19. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  20. Environmental assessment of waste management in Greenland: current practice and potential future developments

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Christensen, Thomas Højlund

    2013-01-01

    ) for a system serving 56 000 inhabitants), but significant environmental loads are caused by air emissions from the incinerators and leachate from the landfills. Several alternative management scenarios were modelled and results show that increased use of incineration, full utilization of the heat production...... for district heating and separation of hazardous waste probably could improve Greenland’s waste management system. Segregation of recyclable materials as paper, cardboard and biowaste will do little to environmentally improve the waste management system due to loss of energy recovery from incineration...... and the long transport of the recyclables to markets. Export of waste to Denmark for incineration at modern waste incinerators with advanced flue gas cleaning could also be considered as a means to achieve better environmental performance of the waste management system....

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  2. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  3. Previous management practices for naturally occurring radionuclide wastes: current radiological status

    International Nuclear Information System (INIS)

    Goldsmith, W.A.; Crawford, D.J.; Haywood, F.F.; Leggett, R.Q.

    1979-01-01

    Many installations used during the early days of the United States atomic energy program have been released in recent years for unrestricted private uses. These installations include lands and buildings used for the storage of radioactive wastes resulting from refining and processing of uranium and thorium. Waste management practices at these sites in the 1940's and 1950's were not conducted with today's emphasis on as-low-as-reasonably-achievable (ALARA) principles. Consequently, many of these older waste storage areas are contaminated with naturally occurring radionuclides in concentrations which are orders of magnitude greater than those found ordinarily in the earth's crust. current and potential elevated human exposures at fifteen of these sites are due primarily to radon daughters and external-gamma radiation. A wide variety of exposure conditions may be found at these sites - ranging from slightly above background to more than thirty times the guidelines recommended for the public. Remedial actions are contemplated for a number of these sites where contamination levels or radiaion exposures exceed current guidelines

  4. Environmental and sustainability evaluation of livestock waste management practices in Cyprus.

    Science.gov (United States)

    Lijó, Lucía; Frison, Nicola; Fatone, Francesco; González-García, Sara; Feijoo, Gumersindo; Moreira, Maria Teresa

    2018-04-05

    The aim of this study was to compare the environmental performance and sustainability of different management options for livestock waste in Cyprus. The two most common practices in the country, i.e. the use of anaerobic lagoons and conventional biogas plants, were compared with the innovative scheme developed in the LiveWaste project (LIFE12 ENV/CY/000544), which aims not only to produce bioenergy, but also to treat the digestate for nutrient recovery and water reuse. The Life Cycle Assessment (LCA) methodology was combined with the Analytic Hierarchy Process (AHP) to compare the performance of these alternatives. Four relevant indicators were selected for each dimension of sustainability (environmental, social and economic). The results of the evaluations showed that anaerobic lagoons are not an appropriate option for the sustainable management of livestock waste due to environmental (e.g. climate change, acidification and eutrophication) and social impacts (e.g. noise exposure, visual impact and risk perception for human health). The most important strengths and weaknesses of anaerobic treatment with and without digestate treatment were identified. Compared to conventional anaerobic digestion where digestate is directly applied as an organic fertiliser, the technology proposed in the project entails higher technological complexity due to nitrogen removal and phosphorus recovery. The rise in chemical and electricity requirements increased the impacts on some indicators, such as climate change and operational cost (emissions of greenhouse gases and operation costs were around 50% higher), while reduced impacts in others due to proper nutrient management, as acidification and eutrophication impacts (which were 10 and almost two times lower, respectively). For the specific Cypriot conditions, where the overapplication of nutrients leads to pollution of water bodies, the innovative treatment scheme with higher technological development presents an interesting

  5. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  6. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension.

    Science.gov (United States)

    Aleluia, João; Ferrão, Paulo

    2016-12-01

    This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition

  7. Curbing dioxin emissions from municipal solid waste incineration in China: re-thinking about management policies and practices.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-09-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Multi-criteria decision making to support waste management: A critical review of current practices and methods.

    Science.gov (United States)

    Goulart Coelho, Lineker M; Lange, Liséte C; Coelho, Hosmanny Mg

    2017-01-01

    Solid waste management is a complex domain involving the interaction of several dimensions; thus, its analysis and control impose continuous challenges for decision makers. In this context, multi-criteria decision-making models have become important and convenient supporting tools for solid waste management because they can handle problems involving multiple dimensions and conflicting criteria. However, the selection of the multi-criteria decision-making method is a hard task since there are several multi-criteria decision-making approaches, each one with a large number of variants whose applicability depends on information availability and the aim of the study. Therefore, to support researchers and decision makers, the objectives of this article are to present a literature review of multi-criteria decision-making applications used in solid waste management, offer a critical assessment of the current practices, and provide suggestions for future works. A brief review of fundamental concepts on this topic is first provided, followed by the analysis of 260 articles related to the application of multi-criteria decision making in solid waste management. These studies were investigated in terms of the methodology, including specific steps such as normalisation, weighting, and sensitivity analysis. In addition, information related to waste type, the study objective, and aspects considered was recorded. From the articles analysed it is noted that studies using multi-criteria decision making in solid waste management are predominantly addressed to problems related to municipal solid waste involving facility location or management strategy.

  9. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  10. Technology-neutral green procurement in practice - an example from Swedish waste management.

    Science.gov (United States)

    Arvidsson, Anders; Stage, Jesper

    2012-05-01

    Green public procurement has been criticized for its excessive reliance on detailed technology specifications, which can distort incentives in the short term and discourage innovation in the longer term. Economists therefore tend to prefer technology-neutral procurement, which rewards outcomes rather than technologies. However, technology-neutral procurement can also be problematic in practice. The present study investigated green public procurement of waste management, a rapidly growing field. In one of the most sophisticated models for technology-neutral procurement applied in Sweden in recent years, different environmental impacts were assigned weights, but no weight was given to the particular technology employed. Even here, however, potential inefficiencies were found where the scoring rule could have led to arbitrary, and presumably unwanted, outcomes. Explicitly assigning monetary surcharges to desirable and undesirable environmental effects may be a better way to reach environmental targets.

  11. What factors influence choice of waste management practice? Evidence from rice straw management in the Philippines.

    Science.gov (United States)

    Launio, Cheryll C; Asis, Constancio A; Manalili, Rowena G; Javier, Evelyn F; Belizario, Annabelle F

    2014-02-01

    This study applied a multinomial logit model to understand why farmers choose to burn, incorporate or remove rice straw in the field. Four hundred randomly selected farmers were interviewed in four major rice-producing provinces covering the 2009 wet and 2010 dry seasons. Results of the model with burning as the baseline category indicate farm type, location dummies, number of household members with older than 13 years, cow ownership and distance from farm to house as significant variables influencing farmers' choice of straw incorporation or removal over burning. Significant perception variables are the negative impacts of open-field burning, awareness of environmental regulations and attitude towards incentives. Other factors significantly influencing the decision to incorporate over-burn are training attendance and perceptions of effects of straw incorporation. Income from non-rice farming, total area cultivated, tenure status, presence of burning and solid waste management provincial ordinances are significant factors affecting choice to remove over burn. Continually providing farmers' training in rice production, increasing demand for rice straw for other uses, and increasing awareness of environmental laws and regulations are policy directions recommended.

  12. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  13. Impact of an educational program on knowledge and practice of health care staff toward pharmaceutical waste management in Gaza, Palestine.

    Science.gov (United States)

    Tabash, Mohammed I; Hussein, Rim A; Mahmoud, Aleya H; El-Borgy, Mohamed D; Abu-Hamad, Bassam A

    2016-04-01

    In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. Poor knowledge about their potential downstream impacts may be a primary factor for improper disposal behavior. The objective of this study was to determine the impact of an intervention program on knowledge and practice of health care staff regarding pharmaceutical waste management. The study was designed as a pre/posttest intervention study. Total sample size was 530 in the pre-intervention phase, and then a subsample of 69 individuals was selected for the intervention and the post-intervention phases. Paired-sample t test was used to assess the difference between pretest and follow-up test results. A statistically significant improvement in knowledge and practice was achieved (Ppharmaceutical waste management. In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. A lack of knowledge about the potential impacts of this type of waste may be a leading factor in improper disposal behavior. Following an educational program, statistically significant improvement in knowledge and practice of health care staff as regards to pharmaceutical waste management (PWM) was achieved. It is thus recommended that authorities implement training-of-trainers (TOT) programs to educate health care staff on PWM and organize refreshment workshops regularly.

  14. URBAN SOLID WASTE MANAGEMENT IN CAXIAS DO SUL/BRAZIL: PRACTICES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Matheus Poletto

    2016-01-01

    Full Text Available Solid waste management is becoming a challenge for the cities’ authorities in developing countries mainly due to the rapid economic growth and population increasing. In cities of the developing world, the informal sector plays an important role in the management of urban solid waste. This work examines the participation of scavengers in an integrated municipal solid waste management system. The paper is based on direct field observations, interviews with scavengers and characterization of the urban solid waste generated in Caxias do Sul. The partnership between municipal government and local scavengers were also evaluated as well as the contribution of the scavengers in the urban solid waste management system. The study reveals that it is necessary to realize a campaign for improving the waste segregation at source. The infrastructure of the scavengers associations need to be improved and finally the scavengers need to be more deeply involved in the policies associated with the urban solid waste management system adopted in the city.

  15. Recommendations for future low-level and mixed waste management practices at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Jennrich, E.A.; Klein, R.B.; Murphy, E.S.; Shuman, R.; Hickman, W.W.; Rutz, A.C.; Uhl, D.L.

    1989-01-01

    This report describes recommendations concerning the management of low-level radioactive wastes and mixtures at Los Alamos National Laboratory. Performance assessments, characterization, site disposal design, shipment, and storage are discussed

  16. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    DEFF Research Database (Denmark)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna

    2014-01-01

    conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements......Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper...... compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs. © 2013 Elsevier Ltd. All...

  17. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  18. The strategy and practice of radioactive waste management in the Pacific Basin

    International Nuclear Information System (INIS)

    Norman, N.; Gray, B.R.

    1992-01-01

    Radioactive waste management is an integral part of the planning process for the nuclear industry in Pacific Basin countries. This paper reviews areas of common interest and cooperation, sources of waste and current inventories, production rates, and future plans. Each level of radioactive waste requires different methods for handling, storage, and disposal. Definitions may vary In detail from country to country, but generally high level wastes are defined as those deriving from spent fuel and from reprocessing of fuel. These wastes contain transuranic elements and fission products that are highly radioactive, heat-generating and long-lived. Intermediate level and low level wastes may include, respectively, material from fuel fabrication and power generation other than spent fuel, and those wastes produced by research institutions, hospitals, and in other non-power producing Industrial uses of radioisotopes. The energy requirements of most countries are likely to continue to grow, and the use of radioactive isotopes in medicine and other non-energy industrial sectors is also expanding. The Pacific Nuclear Council member states participating in the Waste Management Working Group, are predicting, therefore, that the volume of radioactive waste for disposal will continue to grow

  19. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model

    International Nuclear Information System (INIS)

    Chen, T.-C.; Lin, C.-F.

    2008-01-01

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions

  20. Greenhouse gases emissions from waste management practices using Life Cycle Inventory model.

    Science.gov (United States)

    Chen, Tsao-Chou; Lin, Cheng-Fang

    2008-06-30

    When exploring the correlation between municipal solid waste management and green house gas emission, the volume and physical composition of the waste matter must be taken into account. Due to differences in local environments and lifestyles the quantity and composition of waste often vary. This leads to differences in waste treatment methods and causes different volumes of greenhouse gases (GHGs), highlighting the need for local research. In this study the Life Cycle Inventory method was used with global warming indicator GHGs as the variables. By quantifying the data and adopting a region-based approach, this created a model of household MSWM in Taipei City, a metropolitan region in Taiwan. To allow analysis and comparison a compensatory system was then added to expand the system boundary. The results of the analysis indicated that out of all the solid waste management sub-models for a function unit, recycling was the most effective method for reducing GHG emissions while using kitchen food waste as swine feeding resulted in the most GHG emissions. As for the impact of waste collection vehicles on emissions, if the efficiency of transportation could be improved and energy consumption reduced, this will help solid waste management to achieve its goal of reducing GHG emissions.

  1. Practice management.

    Science.gov (United States)

    Althausen, Peter L; Mead, Lisa

    2014-07-01

    The practicing orthopaedic traumatologist must have a sound knowledge of business fundamentals to be successful in the changing healthcare environment. Practice management encompasses multiple topics including governance, the financial aspects of billing and coding, physician extender management, ancillary service development, information technology, transcription utilization, and marketing. Some of these are universal, but several of these areas may be most applicable to the private practice of medicine. Attention to each component is vital to develop an understanding of the intricacies of practice management.

  2. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  3. Review of Solid Waste Management Practice, Handling and Planning in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Fiza Mohd Noh

    2017-11-01

    Full Text Available The building and construction industry is a major contributor to the source of national economy. However, inappropriate construction waste management lead to various problems such as illegal dumping along the roadsides, demolition waste and disposal of construction at landfills that Malaysia is facing serious shortage of landfill space and recently the issue has become more serious throughout the country, which these have caused major government sources and environmental issue. Solid waste management is one of the environmental issues which always been a concerned to most governments. In urban areas, 46% of the population in the statistics that shows the world population has reached six billion. In 1997, generation of the municipal solid waste was about 0.49 billion tons around the globe with an estimated annual growth rate of 3.2-4.5% in develop nations and 2-3% in developing countries. The characteristics of solid waste generated were changed due to the rapid urbanization and industrialization.

  4. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    International Nuclear Information System (INIS)

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  5. Biomedical waste management: Study on the awareness and practice among healthcare workers in a tertiary teaching hospital

    Directory of Open Access Journals (Sweden)

    L Joseph

    2015-01-01

    Full Text Available Bio-medical waste has a higher potential of infection and injury to the healthcare worker, patient and the surrounding community. Awareness programmes on their proper handling and management to healthcare workers can prevent the spread of infectious diseases and epidemics. This study was conducted in a tertiary care hospital to assess the impact of training, audits and education/implementations from 2009 to 2012 on awareness and practice of biomedical waste segregation. Our study reveals focused training, strict supervision, daily surveillance, audits inspections, involvement of hospital administrators and regular appraisals are essential to optimise the segregation of biomedical waste.

  6. Biomedical waste management: study on the awareness and practice among healthcare workers in a tertiary teaching hospital.

    Science.gov (United States)

    Joseph, L; Paul, H; Premkumar, J; Paul, R; Michael, J S

    2015-01-01

    Bio-medical waste has a higher potential of infection and injury to the healthcare worker, patient and the surrounding community. Awareness programmes on their proper handling and management to healthcare workers can prevent the spread of infectious diseases and epidemics. This study was conducted in a tertiary care hospital to assess the impact of training, audits and education/implementations from 2009 to 2012 on awareness and practice of biomedical waste segregation. Our study reveals focused training, strict supervision, daily surveillance, audits inspections, involvement of hospital administrators and regular appraisals are essential to optimise the segregation of biomedical waste.

  7. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa, E-mail: hefac@umich.ed [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Hu Yuanan [Education Program for Gifted Youth, Stanford University, Stanford, CA 94025 (United States)

    2010-09-15

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  8. Curbing dioxin emissions from municipal solid waste incineration in China: Re-thinking about management policies and practices

    International Nuclear Information System (INIS)

    Cheng Hefa; Hu Yuanan

    2010-01-01

    As one of the countries with large amounts of dioxin releases, the control of dioxins is a major challenge for China. Municipal solid waste (MSW) incineration should be considered a high priority source of dioxin emissions because it is playing an increasingly more important role in waste management. MSW incineration in China has much higher emission rates of dioxins than in the developed countries, partially resulting from the gaps in the technologies of incineration and flue gas cleaning. Moreover, the current management policies and practices also contribute significantly to the problem. We recommend lowering dioxin emission standard, strengthening fly ash management, and improving regulation enforcement to reduce dioxin releases into the environment from MSW incineration. We also propose that alternative strategies should be considered on dioxin control and call for an expansion of economic instruments in waste management to reduce waste generation and thus the need for incineration. - The management policies and practices need to be improved to curb the increasing dioxin releases from municipal solid waste incineration in China.

  9. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  10. Best management practices plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This Best Management Practices (BMP) Plan has been developed as part of the environmental monitoring program at Waste Area Grouping (WAG) 6. The BMP Plan describes the requirements for personnel training, spill prevention and control, environmental compliance, and sediment/erosion control as they relate to environmental monitoring activities and installation of Monitoring Station 4 at WAG 6

  11. Regulatory inspection practices for radioactive and non-radioactive waste management facilities

    International Nuclear Information System (INIS)

    Roy, Amitava

    2017-01-01

    Management of nuclear waste plays an important role in the nuclear energy programme of the country. India has adopted the Closed Fuel Cycle option, where the spent nuclear fuel is treated as a material of resource and the nuclear waste is wealth. Closed fuel cycle aims at recovery and recycle of valuable nuclear materials in to reactors as fuel and also separation of useful radio isotopes for the use in health care, agriculture and industry. India has taken a lead role in the waste management activities and has reached a level of maturity over a period of more than forty decades. The nuclear waste management primarily comprises of waste characterization, segregation, conditioning, treatment, immobilization of radionuclides in stable and solid matrices and interim retrievable storage of conditioned solid waste under surveillance. The waste generated in a nuclear facility is in the form of liquid and solid, and it's classification depends on the content of radioactivity. The liquid waste is characterized as Low level (LLW), Intermediate level (ILW) and High Level (HLW). The LLW is relatively large in volume and much lesser radioactive. The LLW is subjected to chemical precipitation using various chemicals based on the radionuclides present, followed by filtration, settling, ion exchange and cement fixation. The conditioning and treatment processes of ILW uses ion exchange, alkali hydrolysis for spent solvent, phase separation and immobilization in cement matrix. The High Level Waste (HLW), generated during spent fuel reprocessing and containing more than 99 percent of the total radioactivity is first subjected to volume reduction/concentration by evaporation and then vitrified in a meIter using borosilicate glass. Presently, Joule Heated Ceramic Meter is used in India for Vitrification process. Vitrified waste products (VWP) are stored for interim period in a multibarrier, air cooled facility under surveillance

  12. Practices and developments in the management of low and intermediate level radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1983-06-01

    In the Swedish nuclear power program ten reactors are in operation and two more under construction. About 100000 m 3 of low and intermediate level radioactive waste will be produced from the operation of these reactors until the year 2010 and about 150000 m 3 from their decommissioning. All burnable radioactive wastes are sent to the Studsvik incineration plant for incineration. Spent resins are incorporated into cement or bitumen. The volume of non-combustible solid waste is reduced by compaction where possible. At the Studsvik research centre a substantial program for improved management of accumulated and future radioactive waste is at the beginning of its implementation. This includes advanced treatment and intermediate storage in a rock cavity. An R and D program on volume reduction of spent resins has reached the point of process verification and equipment design. All low and intermediate radioactive waste will be disposed in a rock cavity planned for commissioning by 1988. The paper reviews actual management experience and development efforts for low and intermediate level radioactive waste in Sweden. Contribution to the Seminar on the Management of Radioactive Waste, Taipei, Taiwan, 25-26 June, 1983. (Author)

  13. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  14. Assessment of Infectious Waste Management Practices at Hospital with Excellent Accreditation Level in Bandung, Cimahi and East Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Fitria Novi

    2018-01-01

    Full Text Available This study includes the procedures available and methods of handling and disposing of infectious waste at Military hospital with Excellent Accreditation level in Bandung, Cimahi and East Jakarta, Indonesia. A total three (3 military hospitals with equal type of hospital and level accreditation were surveyed during the course of this research. The methods consisted of survey and interview with the authorities of the hospital and the personal involved in the management of the generated waste. The information was collected using forms specially developed for this purpose. Site visits were conducted to support and supplement information gathered in the survey. Assessment of infectious waste handling divided into six parameters: Hospital policy at organizational structure, status of cleaning services worker, classification/segregation process, collect and transport the infectious waste, condition of temporary storage of infectious waste and disposal phase of infectious waste. The result showed that the hospital with highest level of accreditation have less appropriate practices when it comes to segregation, collecting, storage and disposal of waste generated in comparison to developed country. It appears that hospital authorities should pay better attention to educational planning, organizational resources and supervision at infectious waste management.

  15. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  16. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  17. Current biomedical waste management practices and cross-infection control procedures of dentists in India.

    Science.gov (United States)

    Singh, Balendra Pratap; Khan, Suleman A; Agrawal, Neeraj; Siddharth, Ramashanker; Kumar, Lakshya

    2012-06-01

    To investigate the knowledge, attitudes and behaviour of dentists working in dental clinics and dental hospitals regarding biomedical waste management and cross-infection control. A national survey was conducted. Self-administered questionnaires were sent to 800 dentists across India. A total of 494 dentists responded, giving a response rate of 61.8%. Of these, 228 of 323 (70.6%) general dentists reported using boiling water as a sterilising medium and 339 (68.6%) dentists reported disposing of hazardous waste such as syringes, blades and ampoules in dustbins and emptying these into municipal corporation bins. Dentists should undergo continuing education programmes on biomedical waste management and infection control guidelines. Greater cooperation between dental clinics and hospitals and pollution control boards is needed to ensure the proper handling and disposal of biomedical waste. © 2012 FDI World Dental Federation.

  18. A review of waste management practices and their impact on human health

    International Nuclear Information System (INIS)

    Giusti, L.

    2009-01-01

    This work reviews (i) the most recent information on waste arisings and waste disposal options in the world, in the European Union (EU), in Organisation for Economic Co-operation and Development (OEDC) countries, and in some developing countries (notably China) and (ii) the potential direct and indirect impact of waste management activities on health. Though the main focus is primarily on municipal solid waste (MSW), exposure to bioaerosols from composting facilities and to pathogens from sewage treatment plants are considered. The reported effects of radioactive waste are also briefly reviewed. Hundreds of epidemiological studies reported on the incidence of a wide range of possible illnesses on employees of waste facilities and on the resident population. The main conclusion of the overall assessment of the literature is that the evidence of adverse health outcomes for the general population living near landfill sites, incinerators, composting facilities and nuclear installations is usually insufficient and inconclusive. There is convincing evidence of a high risk of gastrointestinal problems associated with pathogens originating at sewage treatment plants. In order to improve the quality and usefulness of epidemiological studies applied to populations residing in areas where waste management facilities are located or planned, preference should be given to prospective cohort studies of sufficient statistical power, with access to direct human exposure measurements, and supported by data on health effect biomarkers and susceptibility biomarkers.

  19. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  20. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    International Nuclear Information System (INIS)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H.; Hauschild, Michael Z.

    2014-01-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs

  1. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO – Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  2. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  3. Status of foreign practices for the management of alpha-contaminated radioactive wastes

    International Nuclear Information System (INIS)

    Lakey, L.T.

    1982-08-01

    Alpha-contaminated radioactive wastes, a product of mixed-oxide fuel fabrication, fuel reprocessing, weapons production and decommissioning programs, are being generated in at least ten countries. There is general agreement worldwide that these wastes should be treated differently than the beta-gamma or low-level waste. There is no consensus, however, on a quantitative definition of alpha-contaminated wastes. Reported definitions vary from > 0.035 nCi/g to > 100 nCi/g. Incineration is the most common treatment, with cement and bitumen the most common fixation agents. The only disposal means in use today are the sea dumping practice by Belgium and the United Kingdom and the surface disposal and deep-well discharge by the USSR. Sea dumping, however, is restricted to low levels of alpha activity, while the USSR appears to be favoring geologic disposal. All countries appear to be moving toward deep geologic repositories as the favored means of disposing of alpha-contaminated radioactive wastes. West Germany has actually disposed of such wastes in the Asse Salt Mine but has discontinued that operation for political reasons. Repository projects are actively under way in Belgium, West Germany, India, Sweden, and the Unted States, with many other countries planning repository programs. One US project, the Waste Isolation Pilot Plant, will, according to present schedules, be the first repository operational since Asse. 6 tables

  4. Waste management, decommissioning and environmental restoration for Canada's nuclear activities: 'Current practices and future needs'

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held on May 8-11, 2005 in Ottawa, Ontario, Canada. The objective of this Conference was to provide a forum for discussion and exchange of views on the technical, regulatory and social challenges and opportunities in radioactive waste management, nuclear facility decommissioning and environmental restoration activities in Canada. The Conference was organized into several plenary sessions and eight technical tracks: Low- and intermediate-level wastes; Uranium mining and milling wastes; Used nuclear fuel; Decommissioning; Environmental restoration; Policy, economics and social issues; Licensing and regulatory issues; and, Radioactive materials transportation. The three-day Conference involved waste management, decommissioning and environmental technology practitioners; delegates from industry, academia, and government agencies and regulators; consulting engineers; financial and legal experts; and other specialists working in the field. While the Conference had a primarily Canadian focus, about 10 per cent of the submissions received came from foreign and international organizations, which provided insights into how other countries are dealing with similar issues

  5. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  7. Emission of toxic components as a factor of the best practice options for waste management: Application of LCA (Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Stevanović-Čarapina Hristina D.

    2011-01-01

    Full Text Available Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization and societal acceptability. Integrated waste management using Life Cycle Assessment (LCA attempts to offer the most benign options for waste management. LCA is a compilation and evaluation of the inputs, the outputs and the potential environmental impacts of a product system throughout its life cycle. It can be successfully applied to municipal solid waste management systems to identify the overall environmental burdens and to assess the potential environmental impacts. This paper deals with the LCA of the two waste management options for final disposal of municipal waste, landfilling (landfill without landfill gas collection or leachate collection and sanitary landfilling (landfill with landfill gas collection and recovery and leachate collection and treatments analyzed for town Sombor, Serbia. The research is conducted with the use of the Software Package IWM-2. The indicators which are used in the assessment are air and water emissions of toxic compounds. The results indicated that waste disposal practice has a significant effect on the emission of the toxic components and environmental burdens. Sanitary landfilling of municipal solid waste significantly reduces toxic emission and negative influence on the environment.

  8. The right place. Solid waste management in the Republic of Maldives: between infrastructural measures and local practices

    Directory of Open Access Journals (Sweden)

    Malatesta Stefano

    2015-06-01

    Full Text Available The 2010 UNPD’s Assessment of Development Results defined the Maldives “a vulnerable Small Island Developing State” by pointing out the influence of both external and local human factors on their fragile ecosystems. This impact is deeply related to a main geographical feature: the high dispersion of land mass and population, both of them spread over a distance of 860 km. Above all, this dispersion has an effect on two environmental issues: energy distribution and solid waste management. The latter is particularly interesting for the geographical analysis of Small Island Countries. Due to centre-periphery distance and cost benefits analysis, in the Maldives public and private actors have developed different solid waste management models: central and regional waste management dumpsites, hybrid systems implemented by resorts and “informal” practices still followed by local communities. In this paper, we discuss these systems stressing on the relevance of combining infrastructural measures with “informal” practices at local level. Furthermore, we report the outcomes of The Right Place, a participatory waste management action carried out by MaRHE Center (a Milano- Bicocca Research Center in Faafu Magoodhoo Island.

  9. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  10. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  11. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  12. Management of tritium wastes

    International Nuclear Information System (INIS)

    Kisalu, J.; Mellow, D.G.; Pennington, J.D.; Thompson, H.M.; Wood, E.

    1991-07-01

    This work provides a review of the management of tritium wastes with particular reference to current practice, possible alternatives and to the implications of any alternatives considered. It concludes that reduction in UK emissions from nuclear industry is feasible but at a cost out of all proportion to the reduction in dose commitment achievable. Commercial usage of tritium involves importation at several times the UK nuclear production level although documentation is sparse. (author)

  13. Awareness and practices regarding bio-medical waste management among health care workers in a tertiary care hospital in Delhi.

    Science.gov (United States)

    Bhagawati, G; Nandwani, S; Singhal, S

    2015-01-01

    Health care institutions are generating large amount of Bio-Medical Waste (BMW), which needs to be properly segregated and treated. With this concern, a questionnaire based cross-sectional study was done to determine the current status of awareness and practices regarding BMW Management (BMWM) and areas of deficit amongst the HCWs in a tertiary care teaching hospital in New Delhi, India. The correct responses were graded as satisfactory (more than 80%), intermediate (50-80%) and unsatisfactory (less than 50%). Some major areas of deficit found were about knowledge regarding number of BMW categories (17%), mercury waste disposal (37.56%) and definition of BMW (47%).

  14. Awareness and practices regarding bio-medical waste management among health care workers in a tertiary care hospital in Delhi

    Directory of Open Access Journals (Sweden)

    G Bhagawati

    2015-01-01

    Full Text Available Health care institutions are generating large amount of Bio-Medical Waste (BMW, which needs to be properly segregated and treated. With this concern, a questionnaire based cross-sectional study was done to determine the current status of awareness and practices regarding BMW Management (BMWM and areas of deficit amongst the HCWs in a tertiary care teaching hospital in New Delhi, India. The correct responses were graded as satisfactory (more than 80%, intermediate (50–80% and unsatisfactory (less than 50%. Some major areas of deficit found were about knowledge regarding number of BMW categories (17%, mercury waste disposal (37.56% and definition of BMW (47%.

  15. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  16. Domestic food practices: A study of food management behaviors and the role of food preparation planning in reducing waste.

    Science.gov (United States)

    Romani, Simona; Grappi, Silvia; Bagozzi, Richard P; Barone, Ada Maria

    2018-02-01

    Recent research has started to show the key role of daily food provision practices in affecting household food waste. Building on and extending these previous contributions, the objective of this paper is to investigate how individuals' everyday practices regarding food (e.g., shopping, cooking, eating, etc.) lead to food waste, and how policy makers and the food industry can implement effective strategies to influence such practices and ultimately help consumers reduce food waste. The research performs three Studies; a critical incident qualitative study (Study 1; N = 514) and a quantitative, survey-based study (Study 2; N = 456) to identify and examine relevant food management behaviors associated with domestic waste. Lastly, findings from a field experiment (Study 3; N = 210) suggest that a specific educational intervention, directed at increasing consumers' perceived skills related to food preparation planning behaviors, reduces domestic food waste. Implications of the research for policy makers and the food industry are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  18. Review of LCA studies of solid waste management systems--part II: methodological guidance for a better practice.

    Science.gov (United States)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H; Hauschild, Michael Z

    2014-03-01

    Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  20. Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

    1994-01-01

    Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described

  1. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  2. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  3. The constraints of good governance practice in national solid waste management policy (NSWMP) implementation: A case study of Malaysia

    Science.gov (United States)

    Wee, Seow Ta; Abas, Muhamad Azahar; Chen, Goh Kai; Mohamed, Sulzakimin

    2017-10-01

    Nowadays, international donors have emphasised on the adoption of good governance practices in solid waste management which include policy implementation. In Malaysia, the National Solid Waste Management Policy (NSWMP) was introduced as the main guideline for its solid waste management and the Malaysian government has adopted good governance practice in the NSMWP implementation. However, the good governance practices implemented by the Malaysian government encountered several challenges. This study was conducted to explore the good governance constraints experienced by stakeholders in the NSWMP implementation. An exploratory research approach is applied in this study through in-depth interviews with several government agencies and concessionaires that involved in the NSWMP implementation in Malaysia. A total of six respondents took part in this study. The findings revealed three main good governance constraints in the NSWMP implementation, namely inadequate fund, poor staff's competency, and ambiguity of policy implementation system. Moreover, this study also disclosed that the main constraint influenced the other constraints. Hence, it is crucial to identify the main constraint in order to minimise its impact on the other constraints.

  4. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  5. Radioactive waste management and their ultimate disposal technologies in India: recent practices and developments

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2015-01-01

    The radioactive wastes that arise from the use of uranium, thorium and other radioactive isotopes during their various applications in the field of power generation, industry, agriculture and medicine are among the most talked about and at time even highly dreaded substances created by man in recent past. Most of the fears owe their genesis to extraordinary periods of time over which such waste remain radioactive and continue to emit radiations which are invisible to human eyes. These time periods run into tens of thousands of years and as a result any solution for management and permanent isolation of such waste needs to demonstrate safety of mankind and environment over such lengthy time frames. For example a radioactive isotope of strontium, known as 90 Sr takes about 300 years to loose its entire radioactivity. Similarly a popular isotope of plutonium 239 Pu needs almost 2.5 lakhs years to shed its entire radioactivity by converting itself to a non radioactive element. In this talk some salient aspects of radioactive waste management and solutions for their permanent isolation under consideration in India are discussed

  6. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  7. Partnering for long-term management of radioactive waste. Evolution and current practice in thirteen countries

    International Nuclear Information System (INIS)

    2010-01-01

    National radioactive waste management programmes are in various phases of siting facilities and rely on distinct technical approaches for different categories of waste. In all cases, it is necessary for institutional actors and the potential or actual host community to build a meaningful, workable relationship. Partnership approaches are effective in achieving a balance between the requirements of fair representation and competent participation. With host community support, they also help ensure the desirable combination of a licensable site and management concept as well as a balance between compensation, local control and development opportunities. This report provides up-to-date information on experience with local partnership arrangements in 13 countries. The characteristics, advantages and aims of community partnerships are also described in addition to the concept's evolution over the past decade. (authors)

  8. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. Assess Knowledge, Attitudes and Practices of Solid Waste Management in Taghbostan Mountain Climbers from Kermanshah City in 2014

    Directory of Open Access Journals (Sweden)

    Seyyed Alireza Mosavi

    2017-03-01

    Full Text Available Background: The performance of Cultural programs with environmental aims needs to check the status of knowledge, attitude and practice of community towards the subject as is desired, which one of those programs is solid waste management programs in the mountainous areas as a general duty. In the meantime, Mountaineers play role in the environmental cultural activities This study aimed to determine the level of knowledge, attitude and practice of people Methods: This study was a cross-sectional study of knowledge, attitude and behavior towards the management of solid waste in the mountain climbers of Kermanshah Taqbstan in 2014. Based on random sampling of 385 questionnaires were distributed among mountain climbers Taqbstan. The results of this study have been analyzed based on a statistical approach; ANOVA, by using SPPS version 16 Results: The results show an insignificant relationship between job and gender with awareness and performance. However, the age as a main variable has a significant relation with the knowledge but has an insignificant relation with attitude and performance. The results of correlation studies of education level with the knowledge and practice with p equal to 0.045 is statistically significant Conclusions: Solid Waste Management mountain climbers' education level is the most influential parameter. So that people with higher education have better performance. On the other hand, suffer climbers aged 20 to 40 and higher had better awareness about the Solid Waste Management. The results of this study should be noted that in any job can be diligent in protecting the mountain environment and includes a certain occupational group not be affected

  10. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  12. Knowledge, attitude, and practice (KAP) of 'teaching laboratory' technicians towards laboratory safety and waste management: a pilot interventional study.

    Science.gov (United States)

    El-Gilany, A-H; El-Shaer, S; Khashaba, E; El-Dakroory, S A; Omar, N

    2017-06-01

    A quasi-experimental study was performed on 20 technicians working in the Faculty of Medicine, Mansoura University, Egypt. The knowledge, attitude, and practice (KAP) of laboratory technicians was measured before and two months after enrolling them in an intervention programme about laboratory best practice procedures. The programme addressed laboratory safety and medical waste management. The assessment was performed using a validated Arabic self-administered questionnaire. Pre- and post-intervention scores were compared using non-parametric tests. There are significant increases in the scores of KAP after implementation of the training programme. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  14. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece.

    Science.gov (United States)

    Boemi, Sn; Papadopoulos, Am; Karagiannidis, A; Kontogianni, S

    2010-11-01

    Renewable energy sources (RES), excluding large hydroelectric plants, currently produce 4.21% of total electricity production in Greece. Even when considering the additional production from large hydroelectric plants, which accounts for some 7.8%, the distance to be covered towards the objective of 20% electricity produced from RES by 2010 and respectively towards 20% of total energy production by 2020 is discouraging. The potential, however, does exist; unfortunately so do serious barriers. On the other hand, solid waste management (SWM) is an issue that generates continuously increasing interest due to the extra amounts of solid waste generated; the lack of existing disposal facilities with adequate infrastructure and integrated management plans, also often accompanied by legislative and institutional gaps. However, socio-economic and public awareness problems are still met in the planning and implementation of RES and SWM projects, together with the lack of a complete national cadastre and a spatial development master plan, specifying areas eligible for RES and SWM development. Specific barriers occur for individual RES and the on-going inclusion of waste-derived renewable energy in the examined palette further increases the complexity of the entire issue. The consolidated study of this broad set of barriers was a main task of the present study which was carried out within the frame of a Hellenic-Canadian research project; the main results will be discussed herein.

  15. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  16. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  17. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of São João, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  18. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  19. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  20. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  1. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs

  2. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  3. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  4. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  5. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  6. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  7. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  8. Evaluating awareness and practices pertaining to radioactive waste management among scrap dealers in Delhi, India.

    Science.gov (United States)

    Makkar, Nayani; Chandra, Tany; Agrawal, Prachi; Bansal, Harshit; Singh, Simranjeet; Anand, Tanu; Gupta, Mannan Kumar; Kumar, Rajesh

    2014-01-01

    With nuclear technology rapidly taking the spotlight in the last 50 years, radiation accidents seem to be a harsh reality of the modern world. The Mayapuri Radiation accident of 2010 was the worst radiation accident India has yet dealt with. Two years thereafter, we designed a study to assess the awareness and practices regarding radioactive waste among scrap dealers aiming to assess deficiencies in radiation disaster preparedness. A community based cross-sectional study. The study population consisted of 209 volunteers (from 108 scrap dealerships) including 108 shop-owners and 101 workers segregated as Group A consisting of 54 dealerships in Mayapuri and Group B of 54 dealerships from the rest of the city. Subjects were then interviewed using a semi-structured questionnaire. Awareness about radioactive waste varied significantly with level of education (p = 0.024), Kuppuswamy's socio-economic scale (p = 0.005), age of the scrap dealer (p = 0.049) and his work experience (p = 0.045). The larger dealerships in Mayapuri were more aware about radioactive waste (p = 0.0004), the accident in 2010 (p = 0.0002), the symbol for radiation hazard (p = 0.016), as well as the emergency guidelines and the agencies to contact in the event of a radiation accident. Our findings seem to signify that while governmental and non-governmental agencies were successful in implementing prompt disaster response and awareness programs, the community continues to be inadequately prepared. These go on to suggest that though concerted awareness and training programs do benefit the affected community, economic and social development is the key to disaster prevention and mitigation.

  9. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  10. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  11. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  12. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  13. Evaluation of knowledge, practices, and possible barriers among healthcare providers regarding medical waste management in Dhaka, Bangladesh.

    Science.gov (United States)

    Sarker, Mohammad Abul Bashar; Harun-Or-Rashid, Md; Hirosawa, Tomoya; Abdul Hai, Md Shaheen Bin; Siddique, Md Ruhul Furkan; Sakamoto, Junichi; Hamajima, Nobuyuki

    2014-12-09

    Improper handling of medical wastes, which is common in Bangladesh, could adversely affect the hospital environment and community at large, and poses a serious threat to public health. We aimed to assess the knowledge and practices regarding medical waste management (MWM) among healthcare providers (HCPs) and to identify possible barriers related to it. A cross-sectional study was carried out during June to September, 2012 including 1 tertiary, 3 secondary, and 3 primary level hospitals in Dhaka division, Bangladesh through 2-stage cluster sampling. Data were collected from 625 HCPs, including 245 medical doctors, 220 nurses, 44 technologists, and 116 cleaning staff who were directly involved in MWM using a self-administered (researcher-administered for cleaning staff), semi-structured questionnaire. Nearly one-third of medical doctors and nurses and two-thirds of technologists and cleaning staff had inadequate knowledge, and about half of medical doctors (44.0%) and cleaning staff (56.0%) had poor practices. HCPs without prior training on MWM were more likely to have poor practices compared to those who had training. Lack of personal protective equipment, equipment for final disposal, MWM-related staff, proper policy/guideline, and lack of incinerator were identified as the top 5 barriers. Strengthening and expansion of ongoing educational programs/training is necessary to improve knowledge and practices regarding MWM. The government should take necessary steps and provide financial support to eliminate the possible barriers related to proper MWM.

  14. Dataset on the knowledge, attitude and practices of biomedical wastes management among Neyshabur hospital’s healthcare personnel

    Directory of Open Access Journals (Sweden)

    Mahmood Alimohammadi

    2018-04-01

    Full Text Available The data presented in this article are related to the research article entitled “knowledge, attitude and performance regarding waste management among the HCWs in hospitals affiliated with the Neyshabur City, Iran”. A researcher-made questionnaire (accessible as an attachment containing 4 parts of demographic information, knowledge (24 questions, attitude (6 questions and practices (6 questions was used for data gathering. Kruskal- Wallis test, Mann-Whitney U and Spearman correlation coefficient were used to analyze the data. The significance level was set at 0.05 for the test. Data Analyzing showed the relationship between attitude and Practices with a correlation coefficient of 0.177 was statistically significant (P = 0.01. Also, according to this research, the relationship between the individuals' work experience with knowledge, attitude, and Practices with their correlation coefficients of 0.178, 0.247, and 0.152, respectively were significant (P = 0.018, P = 0.001, P = 0.043. Furthermore, the relationship between age with knowledge and practice was not significant (P = 0.605 and P = 0.102, respectively and its relationship with attitude was significant with a correlation coefficient of 0.154 (P = 0.028. Keywords: Bio-medical waste, Health care worker, Knowledge, Awareness, Attitude

  15. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  16. Quantity & quality analysis and associated management practices of solid waste generated in the general dentistry offices in the city of Arak, 2015

    Directory of Open Access Journals (Sweden)

    Ali Koolivand

    2016-10-01

    Full Text Available Abstract Background: As dental solid waste are among the most important environmental pollutants due to its high contents of toxic and hazardous agents, suitable treatment and management of it are of great importance. The objective of this study was to quantity & quality analyses of dental solid waste and associated management practices in the general dentistry offices in the city of Arak. Materials and Methods: 15 samples of solid waste were taken from the 5 selected general dentistry offices, classified into 66 components and 4 fractions, and then the quantity & quality characteristics were evaluated. Management practices of the solid waste were also investigated by using a questionnaire. Results: According to the results, per capita and the average generation rate of each dentistry office were 66.71 g/day-patient and 1340.45 g/day, respectively. Potential infectious, domestic-type, chemical & pharmaceutical, and toxic wastes consisted of 54.25%, 35.14%, 8.19%, and 2.14% of the waste generated, respectively. 10 components including latex gloves, nylon & plastic, saliva & blood-contaminated kleenex, paper & cardboard, used ampoules, saliva ejector tubes, gypsum, food waste, saliva & blood-contaminated dental rolls, and nylon gloves were responsible for more than 80% of the total waste generated, respectively. Conclusion: Each fraction of dental solid waste (toxic, chemical & pharmaceutical, potential infectious and domestic-type wastes should be separately collected and disposed of according to the related criteria.

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  18. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  19. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  20. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  1. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  2. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  3. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  4. Impact of an intervention programme on knowledge, attitude and practice of healthcare staff regarding pharmaceutical waste management, Gaza, Palestine.

    Science.gov (United States)

    Tabash, M I; Hussein, R A; Mahmoud, A H; El-Borgy, M D; Abu-Hamad, B A

    2016-09-01

    To assess knowledge, attitude and practice (KAP) of healthcare staff regarding pharmaceutical waste management; and to determine the impact of an educational programme on the KAP survey items. Pre-post-test intervention study. The pre-intervention phase was performed using a sample of 530 out of 1500 healthcare workers. A predesigned interview questionnaire was used to assess KAP. Next, an educational programme was designed and offered to a subsample of 69 healthcare workers. KAP were re-assessed for the programme attendees using the same interview questionnaire, both immediately (post-test) and six months after the end of the programme (follow-up test). The parametric paired sample t-test was used to assess the difference between pre-test and follow-up test results. Poor knowledge and poor practice levels (scores 50%) detected in the pre-intervention phase were found to improve to satisfactory levels (scores ≥75%) in the follow-up phase. Attitude was found to be positive (score ≥75%) in all phases of the study. The educational programme led to a significant improvement in KAP of healthcare staff regarding pharmaceutical waste management (P<0.001). Copyright © 2016. Published by Elsevier Ltd.

  5. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  7. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  8. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    Science.gov (United States)

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  9. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2013-01-01

    Full Text Available The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes.

  10. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  12. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  13. Radioactive waste management practices and issues in developing countries. Proceedings of a seminar held in Beijing, China, 10-14 October 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. While this programme is developing and various related Safety Series publications are becoming available, it is important to compare the existing national waste management regulations, organization, technologies and methods with internationally accepted requirements and practices. In response to the growing interest in this area, the IAEA, in co-operation with the Government of the People`s Republic of China, held a Seminar on Radioactive Waste Management Practices and Issues in Developing Countries at Beijing from 10 to 14 October 1994. Refs, figs and tabs.

  14. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  16. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  17. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  18. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  19. Waste dumping sites as a potential source of POPs and associated health risks in perspective of current waste management practices in Lahore city, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hafeez, Saba [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mahmood, Adeel [Department of Biosciences, COMSATS Institute of Information Technology, Islamabad PO: 45550 (Pakistan); State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Syed, Jabir Hussain; Li, Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ali, Usman [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Malik, Riffat Naseem, E-mail: r_n_malik2000@yahoo.co.uk [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zhang, Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2016-08-15

    Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) were analyzed in air, dust, soil and water samples from waste dump site, Lahore, Pakistan. It was revealed that PCB levels were detected higher in all matrices than PBDEs and DPs. Principal Component Analysis (PCA) showed higher usage of BDE-47, -99 and di-CBs, tri-CBs, tetra-CBs and penta-CBs. Health risk assessment of PCBs and PBDEs from soil and dust indicated low to moderate risk to the local population via different exposure pathways. It is recommended to improve current waste management practices in order to avoid emissions of contaminants and open dumping grounds should be modified into sanitary landfill. - Highlights: • The pioneer study provides the baseline data from waste dumping site from Lahore. • Dump site of Lahore is the potential source of PCBs, PBDEs and DPs in nearby environment. • Fugacity fractions indicated air to soil deposition of PCBs and PBDEs.

  20. Waste dumping sites as a potential source of POPs and associated health risks in perspective of current waste management practices in Lahore city, Pakistan

    International Nuclear Information System (INIS)

    Hafeez, Saba; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Ali, Usman; Malik, Riffat Naseem; Zhang, Gan

    2016-01-01

    Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) were analyzed in air, dust, soil and water samples from waste dump site, Lahore, Pakistan. It was revealed that PCB levels were detected higher in all matrices than PBDEs and DPs. Principal Component Analysis (PCA) showed higher usage of BDE-47, -99 and di-CBs, tri-CBs, tetra-CBs and penta-CBs. Health risk assessment of PCBs and PBDEs from soil and dust indicated low to moderate risk to the local population via different exposure pathways. It is recommended to improve current waste management practices in order to avoid emissions of contaminants and open dumping grounds should be modified into sanitary landfill. - Highlights: • The pioneer study provides the baseline data from waste dumping site from Lahore. • Dump site of Lahore is the potential source of PCBs, PBDEs and DPs in nearby environment. • Fugacity fractions indicated air to soil deposition of PCBs and PBDEs.

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  2. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  4. Dental perspective on biomedical waste and mercury management: A knowledge, attitude, and practice survey

    Directory of Open Access Journals (Sweden)

    Ashima Garg Sood

    2011-01-01

    Conclusions: There is need for education regarding hazards associated with improper waste disposal at all levels of dental personnel. It is imperative that waste should be segregated and disposed off in a safe manner to protect the environment as well as human health.

  5. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  6. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  7. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  8. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  9. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  10. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  11. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  12. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  13. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  14. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  15. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  16. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  18. Institutional solid waste management practices in developing countries. A case study of three academic institutions in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mbuligwe, Stephen E. [Faculty of Lands and Environmental Engineering, Department of Environmental Engineering, University College of Lands and Architectural Studies UCLAS, PO Box 35176, Dar es Salaam (Tanzania, United Republic of)

    2002-05-01

    This paper reports on institutional solid waste management in three Tanzanian institutions. It is noted that there are indeed advantages in managing solid waste at institutional level because of the institutions' unique characteristics that also influence their waste management needs. The paper outlines findings from a yearlong study on institutional solid waste management at three institutions: University of Dar es Salaam (UDSM), University College of Lands and Architectural Studies (UCLAS) and Water Resources Institute (WRI). Surveys and field investigations, including on-site waste measurements and questionnaire surveys were done at UDSM, UCLAS and WRI. The study has revealed, among other things, that per capita waste generation rates, W{sub G} vary between staff and students within each institution as well as among the three institutions. The composition of the waste was found to be predominantly organic in nature, suggesting a strong resource recovery potential in terms of animal feed or production of biogas through anaerobic digestion. Additionally, the W{sub G} was found to vary in line with changes in institutional activities like normal studies, examinations and holidays. The study has shown that resource recovery could greatly enhance solid waste management at the case study institutions.

  19. Waste management bibliography 1979-1981

    International Nuclear Information System (INIS)

    Oakley, D.T.

    1981-10-01

    The Los Alamos National Laboratory is conducting a variety of research and development to ensure the safety of storing and treating all types of radioactive wastes. These activities include the assay and sorting of waste, the interaction of waste with the earth, and the treatment of waste to reduce the volume and mobility of radionuclides in waste. The practical lessons learned from safely storing waste at Los Alamos since the mid-1940s are an ingredient in determining the direction of our research. National waste management programs are structured according to categories of waste, for example, high level, low level, mill tailings, and transuranic. In this bibliography publications are listed since 1979 according to the following disciplines to show the relevance of work to more than one category of waste: summary and overview; material science; environmental studies; geochemistry and geology; waste assay; soil/waste interactions shallow land burial; volume reduction and technology development; and nonradioactive wastes

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  1. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  2. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  3. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  4. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  5. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  6. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  7. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  8. Menstrual Hygiene, Management, and Waste Disposal: Practices and Challenges Faced by Girls/Women of Developing Countries.

    Science.gov (United States)

    Kaur, Rajanbir; Kaur, Kanwaljit; Kaur, Rajinder

    2018-01-01

    Menstruation and menstrual practices still face many social, cultural, and religious restrictions which are a big barrier in the path of menstrual hygiene management. In many parts of the country especially in rural areas girls are not prepared and aware about menstruation so they face many difficulties and challenges at home, schools, and work places. While reviewing literature, we found that little, inaccurate, or incomplete knowledge about menstruation is a great hindrance in the path of personal and menstrual hygiene management. Girls and women have very less or no knowledge about reproductive tract infections caused due to ignorance of personal hygiene during menstruation time. In rural areas, women do not have access to sanitary products or they know very little about the types and method of using them or are unable to afford such products due to high cost. So, they mostly rely on reusable cloth pads which they wash and use again. Needs and requirements of the adolescent girls and women are ignored despite the fact that there are major developments in the area of water and sanitation. Women manage menstruation differently when they are at home or outside; at homes, they dispose of menstrual products in domestic wastes and in public toilets and they flush them in the toilets without knowing the consequences of choking. So, there should be a need to educate and make them aware about the environmental pollution and health hazards associated with them. Implementation of modern techniques like incineration can help to reduce the waste. Also, awareness should be created to emphasize the use of reusable sanitary products or the natural sanitary products made from materials like banana fibre, bamboo fibre, sea sponges, water hyacinth, and so on.

  9. Menstrual Hygiene, Management, and Waste Disposal: Practices and Challenges Faced by Girls/Women of Developing Countries

    Directory of Open Access Journals (Sweden)

    Rajanbir Kaur

    2018-01-01

    Full Text Available Menstruation and menstrual practices still face many social, cultural, and religious restrictions which are a big barrier in the path of menstrual hygiene management. In many parts of the country especially in rural areas girls are not prepared and aware about menstruation so they face many difficulties and challenges at home, schools, and work places. While reviewing literature, we found that little, inaccurate, or incomplete knowledge about menstruation is a great hindrance in the path of personal and menstrual hygiene management. Girls and women have very less or no knowledge about reproductive tract infections caused due to ignorance of personal hygiene during menstruation time. In rural areas, women do not have access to sanitary products or they know very little about the types and method of using them or are unable to afford such products due to high cost. So, they mostly rely on reusable cloth pads which they wash and use again. Needs and requirements of the adolescent girls and women are ignored despite the fact that there are major developments in the area of water and sanitation. Women manage menstruation differently when they are at home or outside; at homes, they dispose of menstrual products in domestic wastes and in public toilets and they flush them in the toilets without knowing the consequences of choking. So, there should be a need to educate and make them aware about the environmental pollution and health hazards associated with them. Implementation of modern techniques like incineration can help to reduce the waste. Also, awareness should be created to emphasize the use of reusable sanitary products or the natural sanitary products made from materials like banana fibre, bamboo fibre, sea sponges, water hyacinth, and so on.

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  11. The impact of past waste management practices on future tourist development. Turner Valley gas plant: A case study

    International Nuclear Information System (INIS)

    Hill, D.

    1992-12-01

    The reclamation of older sour gas plants in western Canada poses a number of problems as past production and waste management practices were not well documented, leading to a concern about possible soil and groundwater contamination. The Turner Valley Gas Plant, the oldest sour gas plant in Alberta, was examined as a site for an industrial museum. Production methods and waste disposal techniques were researched and documented, areas of environmental contamination were located and sampling regimes were established, and a site redevelopment concept was developed that would be sensitive to tourism needs, environmental concerns and reclamation requirements. Data were derived from government and company archives, airphotos, site visits, and interviews with former employees. A number of specific areas on the site requiring reclamation were identified, including areas where likely soil contamination with sulfur, hydrocarbons, mercury, polychlorinated biphenyls, or chromate exists. Methods that can be used to remediate soils and groundwater at the site at low cost are presented. The viability of an industrial museum is supported, with recommendations that the existing buildings be reused, the site be revegetated to reduce heat and dust, that underground hazards such as pits and tanks be buried, and visitor interest be encouraged. 49 refs., 32 figs., 2 tabs

  12. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M.; Kinjo, K. [Kagoshima University, Kagoshima (Japan). United Graduate School of Agricultural Science

    2008-12-15

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to substitute the conventional peat substrate for lettuce cultivation. In addition, this can be proposed as an alternative waste management practice.

  13. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    EJIRO

    African Journal of Environmental Science and Technology Vol. 3 (12), pp. ... Full Length Research Paper ... practices in hospitals and compared same with international standards. ... recommended waste management practices as prescribed by World Health Organization and other ..... Lowering standards of clinical waste.

  14. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  15. Supplemental Information Source Document Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Halpern, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mond, Michael du [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shain, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This Supplemental Information Source Document for Waste Management was prepared in support of future analyses including those that may be performed as part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Environmental Impact Statement. This document presents information about waste management practices at SNL/NM, including definitions, inventory data, and an overview of current activities.

  16. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  17. Healthcare waste management in Asia

    International Nuclear Information System (INIS)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  18. Healthcare waste management in Asia.

    Science.gov (United States)

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  20. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  1. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  2. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  3. Code of practice on the management of radioactive wastes from the mining and milling of radioactive ores 1982

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This Code, issued by the Department of Home Affairs and Environment, was formulated under the provisions of the Environment Protection (Nuclear Codes) Act 1978. The Code provides for prior development, approval and subsequent updating of a waste management programme for each mining or milling operation to which it applies, for the purpose of ensuring an approach to waste management best suited to the particular circumstances of each operation. It also prescribes the duties of the owners, operators and managers of mines and mills. (NEA) [fr

  4. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  5. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  6. Harmonizing nuclear safety practices in Europe: WENRA activities in the area of waste management

    International Nuclear Information System (INIS)

    Theis, St.; Dandrieux, G.; Feron, F.

    2011-01-01

    The Western European Nuclear Regulators Association (WENRA) was created in 1999. It originally consisted of the heads of the nuclear safety authorities of the member countries of the European Union (E.U.), plus Switzerland. The original objectives of the Association were: -) to develop a common approach to nuclear safety and regulation, in particular within the E.U.; -) to provide the E.U. with an independent capability to examine nuclear safety and regulation in candidate countries; -) to evaluate and achieve a common approach to nuclear safety and regulatory issues which arise. For the detailed work WENRA set up two working groups, for reactor safety (RHWG: reactor harmonization working group) and a little later for waste and decommissioning (WGWD: working group on waste and decommissioning). The basis for all WENRA work is the WENRA policy statement which as a major promoter of developments contains a self commitment of all WENRA member states to implement without undue delay harmonized requirements produced by the working groups after approval of the WENRA plenary. First WENRA publications receiving much public interest were mainly dedicated to the safety of power reactor, and more recently on new reactors and on long term operation of currently operating reactors. (authors)

  7. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  8. Integrated refinery waste management

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Y -S [ETG Environmental, Inc., Blue Bell, PA (US); Sheehan, W J [Separation and Recovery Systems, Inc., Irvine, CA (US)

    1992-01-01

    In response to the RCRA land ban regulations and TC rule promulgated by the U.S. Federal Environmental Protection Agency (EPA) in 1988-1990, an Integrated Refinery Waste Management (IRWM) program has been developed to provide cost-effective solutions to petroleum industry customers. The goal of IRWM is to provide technology based remediation treatment services to manage sludges and wastewaters generated from the oil refining processes, soils contaminated with petroleum distillates and groundwater contaminated with fuels. Resource recovery, volume reduction and waste minimization are the primary choices to mitigate environmental problems. Oil recovery has been performed through phase separation (such as centrifugation and filtration) and heating of heavy oils. Volume reduction is achieved by dewatering systems such as centrifuges and filter presses, and low temperature thermal treatment. Waste minimization can be accomplished by bioremediation and resource recovery through a cement kiln. (Author).

  9. Management and disposal of alpha-contaminated wastes. A survey of current practices, strategies and R and D activities in some EC countries and the USA

    International Nuclear Information System (INIS)

    Mannone, F.

    1983-01-01

    In view of the rationalization of radwaste treatment, conditioning and storage procedures so far applied at the Ispra Establishment, a survey of alpha-waste management practices and strategies currently in use or under development in some EC countries and in the USA has been carried out. In considering radwastes arising at nuclear research centres and nuclear plants, the most importance has been attached here to their alpha- rather than to their beta- or gamma-contamination degree. Various process technologiques currently practised for pre-treatment, conditioning, storage and/or disposal of alpha-waste at several European nuclear centres and plants, as well as at some US DOE laboratories, have been scrutinized, including also process operations aimed at recovering Pu, both for economical and ecological reasons. The present alpha-waste management and disposal scenario has been completed by the survey of research, development and demonstration work underway in Europe and in the USA in this field. Finally, national organizations, policies and strategies for radwastes management and disposal have been briefly outlined. As main source of information, the proceeding of several technical seminars, symposia, meetings and conferences, individually and jointly organized by the NEA (OECD), IAEA, CEC and published during about the last 20 years have been utilized. This report is intended to give the necessary background for the critical review of waste management practices so far applied at the Ispra Establisment, as well as for their possible modifications according to more up-to-date management schemes

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  11. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  12. Management of radioactive waste

    International Nuclear Information System (INIS)

    Jahn, P.G.

    1986-01-01

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW) [de

  13. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  14. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  15. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  16. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  17. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  18. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  19. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  20. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  1. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  2. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  3. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  4. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  5. General directions and practices for management of radioactive waste; Indirizzi generali e pratiche di gestione dei rifiuti radioattivi

    Energy Technology Data Exchange (ETDEWEB)

    Fioroni, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy)

    1990-12-15

    The present work underlines and synthesises the essential principles, directions and methodologies developed by Industrialized Nations and by the International Organizations for management of radioactive waste of high, intermediate and low levels. It fills a gap in scientific Italian literature and represents a valid introduction to the subject. (author)

  6. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  7. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  8. Waste management. Sector 6

    International Nuclear Information System (INIS)

    1994-01-01

    The waste management section of this report deals with two sectors: land disposal of solid waste and wastewater treatment. It provides background information on the type of emissions that contribute to the greenhouse gases from these two sectors, presents both sector current status in Lebanon, describes the methodology followed to estimate the corresponding emissions, and presents the results obtained regarding greenhouse emissions. The total methane emissions from solid waste disposal on land are 42.804 Gg approximately. There are no emissions from wastewater and industrial handling systems because, for the target year 1994, there was no treatment facilities in Lebanon. The wastewater (municipal, commercial and industrial) was directly discharged into the sea, rivers, ravines or septic tanks which indicate that methane or nitrous oxide emissions are significant if not nonexistent. Note that this situation will change in the future as treatment plants are being constructed around the country and are expected to come into operation by the year 2000

  9. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  10. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  11. Radioactive waste management in the Federal Republic of Germany: Industrial practices and results

    International Nuclear Information System (INIS)

    Grabener, K.H.

    1987-01-01

    In the Federal Republic of Germany (FRG), the production and use of nuclear-generated electricity expanded steadily despite the fact that opposition from the environmentalists led to the impression of an upcoming moratorium for nuclear energy. With this increase in capacity--by the year 1990, nearly 25 000 MW will be on the line--there will be an increase in the volume of low-level (non-heat-generating) radwaste originating from nuclear power plants. Radwaste management has been influenced to a considerable extent by the requirements of the final repository. Following a period of trial storage in the Asse repository, preparations are now being made for storage in the Konrad ore mine. It is intended to begin storage in 1991. Requirements for the packages specify containers with a volume from 3.9 to 10.9 m/sup 3/ or cast iron safety drums. These drums are suitable for radioactive materials in powder form (resins, dried concentrates) without the need for embedding materials. Storage in standard 55-gal drums is no longer permitted. The costs for final storage will be very high so that volume reduction is of prime importance. Kraftwerk Union (KWU) as a supplier of nuclear power plants (NPPs) examined the radwaste market and decided to combine delivery of radwaste treatment systems to NPPs with service jobs including radwaste handling and conditioning in its own service and maintenance plant at Karlstein

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  13. Issues and trends in radioactive waste management in Turkey

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.

    2002-01-01

    This paper focuses on issues associated with the waste management aspects of Turkey. Predisposal management of radioactive wastes covers a broad range of activities. This also includes waste identification, characterization and conditioning. Experience gained over years shows that current predisposal waste management practices are well advanced. The paper concludes these activities based on experience gained by CWPSF (CNAEM Waste Processing and Storage Facility) and includes issues and trends in radioactive waste management. In addition general information is presented on ongoing national projects and IAEA research projects on various issues of waste management. (author)

  14. Solid waste management in faisalabad using GIS

    International Nuclear Information System (INIS)

    Nasir, A.; Ali, S.; Khan, F.H.

    2011-01-01

    Waste management is a global environmental issue which concerns about a very significant problem in today's world. There is a considerable amount of disposal of waste without proper segregation which has lead to both economic and environment sufferings. It is still practiced in many cities. There is a tremendous amount of loss in terms of environmental degradation, health hazards and economic descend due to direct disposal of waste. It is better to segregate the waste at the initial stages where it is generated, rather than going for a later option which is inconvenient and expensive. There has to be appropriate planning for proper waste management by means of analysis of the waste situation of the area. This paper would deal with, how Geographical Information System can be used as a decision support tool for planning waste management. A model is designed for the case study area in Pakistan city for the purpose of planning waste management. The suggestions for amendments in the system through GIS based model would reduce the waste management workload to some extent and exhibit remedies for some of the SWM problems in the case study area. The waste management issues are considered to solve some of the present situation problems like proper allocation and relocation of waste bins, check for unsuitability and proximity convenience due to waste bin to the users, proposal of recyclable waste bins for the required areas and future suggestions. The model will be implemented on the Faisalabad city's case study area data for the analysis and results will suggest some modification in the existing system which is expected to reduce the waste management workload to a certain extent. (author)

  15. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  16. Solid healthcare waste management in Anambra State of Nigeria ...

    African Journals Online (AJOL)

    Aim: This study aims at ascertaining the current healthcare waste management practices in Anambra State. It highlights the sources of healthcare waste, its classification, the hazards associated with it and the gold standard in its management. The specific objectives are: to determine current practice of healthcare waste ...

  17. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  18. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  19. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  20. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  1. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  2. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  3. Impact of Environmental Policies on the Adoption of Animal Waste Management Practices in the Chesapeake Bay Watershed

    OpenAIRE

    Savage, Jeff; Ribaudo, Marc

    2012-01-01

    We use data from the ERS-NASS ARMS surveys to compare the use of best management practices on poultry and livestock farms inside the watershed and outside the watershed. Animal operations within the Chesapeake Bay States were found to be adopting some important manure management practices at a greater rate than operations outside the watershed. Adoption was taking place before the implementation of the TMDL, indicating that farmers may have been acting in response to building public pressure ...

  4. Waste management in ancient Greece from the Homeric to the Classical period: concepts and practices of waste, dirt, recycling and disposal

    OpenAIRE

    Lindenlauf, A.

    2000-01-01

    This doctoral thesis has two purposes. First, it develops a universally applicable model for the analysis of waste disposal and recycling practices. This model synthesises Schiffer's behavioural analysis of the formation processes of the archaeological record with the history, sociology and anthropology of conceptualisations of dirt. Second, it shows how this model may be applied to ancient Greece. In the tradition of material culture studies, it aims to challenge the entrenche...

  5. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  6. Decision-making methodology for management of hazardous waste

    International Nuclear Information System (INIS)

    Philbin, J.S.; Cranwell, R.M.

    1988-01-01

    A decision-making methodology is presented that combines systems and risk analysis techniques to evaluate hazardous waste management practices associated with DOE weapon production operations. The methodology provides a systematic approach to examining waste generation and waste handling practices in addition to the more visible disposal practices. Release-exposure scenarios for hazardous waste operations are identified and operational risk is determined. Comparisons may be made between existing and alternative waste management practices (and processes) on the basis of overall risk, cost and compliance with regulations. Managers can use this methodology to make and defend resource allocation decisions and to prioritize research needs

  7. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  8. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  9. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  10. Reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Mogg, C.S.; Howarth, G.G.

    1987-01-01

    The paper concerns the progress in irradiated fuel reprocessing and waste management at the Sellafield site. Magnox fuel reprocessing is reviewed and oxide fuel reprocessing, due to commence in the early 1990s, is compared with existing practices. The article describes how magnox fuel reprocessing will be sustained by recent additions of new plant and shows how waste management downstream of reprocessing will be integrated across the Sellafield site. This article was first presented as a paper at the Waste Management '87 (1-5 March, Tucson, Arizona) conference. (author)

  11. Radioactive waste management in the former USSR

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes

  12. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  13. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  14. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  15. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  16. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  17. Development of Municipal Solid Waste Management

    OpenAIRE

    Teibe, Inara

    2015-01-01

    This paper is based on an empirical work done by author on a series of case studies such us document studies and analyzing the best practices examples. The objective of this research is to find out barriers to reach regional waste management plan demands in three municipalities: Salacgriva, Saulkrasti and Ikskile. Author gives proposal with some recommendations for development of municipal waste management as well. There are several views and attitudes of local stakeholders such us municipali...

  18. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    2006-01-01

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  19. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  20. Possible global environmental impacts of solid waste practices

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C. [Pacific Northwest Lab., Richland, WA (United States); Dibari, J.C. [Heritage College, Toppenish, WA (United States)

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  1. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.; Smith, G.M.; White, I.F

    1984-01-01

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14 N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  2. Waste management and licensing

    International Nuclear Information System (INIS)

    Dauk, W.

    1980-01-01

    It is the Court's consideration of the repercussions the regulation on waste management of Sect. 9a of the Atomic Energy Law will have, relating to the licensing of a plant according to Sect. 7 (2) of the Atomic Energy Law which is noteworthy. Overruling its former legal conception, the Administrative Court Schleswig now assumes, together with the public opinion, that the problem of waste management being brought to a point only with the initial operation of a nuclear power station is accordingly to be taken into account in line with the discretion of licensing according to Sect. 7 (2) of the Atomic Energy Law. In addition, the Administrative Court expressed its opinion on the extent to the right of a neighbour to a nuclear power station to file suit. According to the Sections 114 and 42 (2) of the rules of Administrative Courts it is true that a plaintiff cannot take action to set aside the licence because public interests have not been taken into account sufficiently, but he may do so because his own interests have not been included in the discretionary decision. The Administrative Court is reserved when qualifying the regulation on waste management with regard to the intensity of legal control. The Court is not supposed to replace controversial issues of technology and natural sciences on the part of the executive and its experts by its own assessment. According to the proceedings, the judicial review refers to the finding as to whether decisions made by authorities are suited - according to the way in which they were made - to guarantee the safety standard prescribed in Subdivision 3 of Sect. 7 (2) of the Atomic Energy Law. (HSCH) [de

  3. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  4. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  5. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  6. Effectiveness of Training Program Related to Infection Control and Waste Management Practices in a Private Dental College, Pune − A Quasi-Experimental Study

    Directory of Open Access Journals (Sweden)

    Shruti Ladia

    2017-01-01

    Full Text Available Introduction: Healthcare workers, in general, are susceptible to contracting with infectious diseases. Thus, appropriate infection control practices are of prime importance in academic institutions, wherein under-graduate students form a major part of the oral healthcare team right from the 3rd year of the curriculum. This fact underlines the need to provide extensive training to prevent healthcare-related infections to the patient and themselves. Aim: To assess the effectiveness of training related to infection control and waste management practices among under-graduate students in a private dental institution. Materials and Methods: The present study conducted among 3rd year under-graduate dental students in Pune, 2015 assessed their knowledge, attitude, and practices related to infection control and waste management followed by an intervention in the form of training. A quasi-experimental design (before and after comparison was employed. Complete enumeration was performed. Results: Out of the 88 students, 46 (52.27% had good knowledge at baseline, which improved to 72 (81.81% after the training; 80 (90.90% had good attitude, which improved to 88 (100%; and 67 (76.13% had good practice, which improved to 88 (100%. At the baseline, the results showed that the mean knowledge score was 3.45 ± 1.03, the mean attitude score was 2.90 ± 0.28, and the mean practice score was 7.3 ± 0.76. After the training, the results showed that the mean knowledge score was 4.5 ± 0.25, the mean attitude score was 3, and the mean practice score was 8.1 ± 0.5. Conclusion: The training was effective in improving the over-all score of the participants related to the knowledge, attitude, and practice regarding infection control and waste management. Thus, we propose to train the students on various aspects of infection control and waste management and introduce an on-going training program in the curriculum.

  7. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  8. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  9. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  10. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  11. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2015-03-01

    Full Text Available Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months. It was a descriptive, hospital based, cross-sectional study. A total of 240 nurses participated in the present study, randomly chosen from various departments A pre-designed, pre-tested, structured proforma was used for data collection after getting their informed consent. Self-made scoring system was used to categorize the participants as having good, average and poor scores. Data was tabulated and analyzed using percentages and chi-square test. Results: The knowledge regarding general information about BMW management was assessed(with scores 0-8,it was found  that level of knowledge was better in student nurses than staff nurses as student nurses scored good(6-8correct answers in more than half of the questions (65%.Whereas staff nurses scored good in only 33.33% questions. When the practical information regarding the BMW management is assessed (with scores 0-8, it was found that staff nurses had relatively better practice regarding BMW management than students as they scored good(6-8correct answers in 40% and 30% respectively. Conclusion: Though overall knowledge of study participants was good but still they need good quality training to improve their current knowledge about BMW. 

  12. The management of radioactive waste in laboratories

    International Nuclear Information System (INIS)

    McLintock, I.S.

    1996-01-01

    Many laboratories in universities, colleges, research institutions and hospitals produce radioactive wastes. The recently-coined term for them is small users of radioactive materials, to distinguish them from concerns such as the nuclear industry. Until recently the accepted official view was that small users had few problems in disposing of their radioactive wastes. This misconception was dispelled in 1991 by the 12th Annual Report of the Radioactive Waste Management Advisory Committee. This book includes a description of the principles of the management and disposal of radioactive wastes from these laboratories. Its main intention, however, is to provide practical information and data for laboratory workers as well as for those responsible for management and ultimate disposal of radioactive wastes. I hope that it succeeds in this intention. (UK)

  13. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  14. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  15. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  16. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  17. Solid waste management: an overview

    International Nuclear Information System (INIS)

    Ayoub, G.M.

    1995-01-01

    The source, effect and characterization of solid wastes are discussed. Constituents of municipal solid wastes and a comparative compositions of municipal solid waste with some data on Lebanon are given. Collection, transport and processing practices are next introduced. Finally treatment and disposal techniques are presented with emphasis on the solid waste as energy source and as material source. Methods of recycling are evaluated in respect with their environmental impact. 7 refs. 2 tabs

  18. Position of the American Dietetic Association: dietetics professionals can implement practices to conserve natural resources and protect the environment. (Previously titled "natural resource conservation and waste management").

    Science.gov (United States)

    2001-10-01

    It is the position of the American Dietetic Association to encourage environmentally responsible practices that conserve natural resources, minimize the quantity of waste that is generated, and have the least adverse affect on the health of all living organisms and the environment. All components of the food system, from farmer to consumer, are affected by the availability and cost of energy and the availability and quality of water. Outdoor and indoor air quality significantly impacts the health of all living organisms. Decisions that dietetics professionals make as practitioners and consumers can affect the quantity and type of solid waste generated. The demand for natural resources should be evaluated when selecting the most cost-effective, environmentally sensitive approach to the management of solid waste. Special precautions are needed when using and disposing of hazardous and medical waste to protect the safety of our clients and employees. This position paper provides information and resources for dietetics professionals for addressing the complexity of the environmental issue presented. Conservation strategies are identified that dietetics professionals can use in their worksites and at home. These conservation practices may reduce cost and decrease the environmental impact we have on our communities and the world.

  19. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  20. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  1. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  2. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  3. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  4. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  5. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  6. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  7. E-waste: Environmental Problems and Current Management

    Directory of Open Access Journals (Sweden)

    D. Aktsoglou

    2010-01-01

    Full Text Available In this paper the environmental problems related with the discarded electronic appliances, known as e-waste, are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste management schemes in Greece and othercountries (Japan, Switzerland are also quoted.

  8. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  9. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  10. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  11. Knowledge and Practice of Nursing Staff about Sharp Waste Management in Selected Hospitals of Military (Tehran and Non- Military (Qom in 2012

    Directory of Open Access Journals (Sweden)

    Norouz Mohmoudi

    2017-01-01

    Full Text Available Healthcare wastes are a major challenge in public health and comprise all types of wastes generated by healthcare centers, research facilities, and laboratories. The aim of this study was surveying the knowledge and practice of nursing staff about sharp waste management in selected military (Tehran and non- military (Qom hospitals in 2012. This was a descriptive-analytical study on 143 nursing stuff in Military and Non-Military hospitals. Data was collected using a self-report questionnaire. Statistical tests such as the student t-test, one-way analysis of variance and Pearson correlation were used to data analysis. The mean age of participants was 32(±6.3 and the majority were female. The mean score of knowledge was 54.7(±14.4 and their knowledge classified on a moderate level. Also, the mean score of practice was 65.44(±11.6 and was classified on a moderate level. The means of these variables were higher among personnel of Military than Non-Military. There were positive correlations between knowledge, practice and age variables (P

  12. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  13. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  14. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  15. Applications to waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Uresk, V.; Schreckhise, R.G.

    1977-01-01

    Ecological studies of the 200 Area plateau waste management environs have provided preliminary answers to questions concerning the environmental health of associated biota, potential for radionuclide transport through the biotic system and risk to man. More importantly creation of this ecological data base provides visible evidence of environmental expertise so essential for maintenance of continued public confidence in waste management operations

  16. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  17. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  18. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  19. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  20. Waste management at LAMPF

    International Nuclear Information System (INIS)

    Lambert, J.E.; Grisham, D.L.

    1982-01-01

    Future major improvements at the Clinto P. Anderson Meson Physics Facility (LAMPF) will require replacement of many large radioactive components. Proper disposal of the components presents special waste management problems caused by component size, weight, geometry, and activity level. A special, large cask trailer (54 metric tons gross) is being constructed for transporting the material to the disposal site. The cask trailer is designed so that the amount of shielding may be individually tailored to suit the geometry and activity level of eah item transported. Special handling techniques and methods of stabilizing loose contamination are being developed to facilitate transport of large radioactive components across open areas. A special Monitor remote-handling system is being constructed to perform the various preparation and rigging operations. Implementation of this equipment will expedite future improvements at LAMPF with minimum impact and/or interference with other ongoing activities

  1. Hospital waste management in Lebanon

    International Nuclear Information System (INIS)

    Chaker, Alissar

    1999-01-01

    Hospital wastes comprises approximately 80% domestic waste components, also known as non-risk waste and 20% hazardous or risk waste. The 20% of the hospital waste stream or the risk waste (also known as infectious, medical, clinical wastes) comprises components which could be potentially contaminated with infections, chemical or radioactive agents. Therefore, it should be handled and disposed of in such a manner as to minimize potential human exposure and cross-contamination. Hospital risk waste and be subdivided into seven general categories as follows: infections, anatomical/pathological, chemical, pharmaceutical, radioactive waste, sharps and pressurised containers. These waste categories are generated by many types of health care establishments, including hospitals, clinics, infirmaries.... The document presents also tables of number of hospitals and estimated bed number in different regions in Lebanon; estimated hospital risk and non-risk waste generation per tonnes per day for the years 1998 until 2010 and finally sensitivity analysis of estimated generation of hospital risk waste in Lebanon per tonnes per day for the years 1998 until 2010. The management, treatment and disposal of hospital risk waste constitute important environmental and public safety issues. It is recognised that there is alack of infrastructure for the safe and environmentally acceptable disposal of hospital waste in Lebanon

  2. WNA's Policy Document : sustaining global best practices in uranium, mining and processing, principles for managing radiation, health and safety, waste and the environment

    International Nuclear Information System (INIS)

    Saint-Pierre, S.; Waste Management and Decommissioning Working Group-WM and DW

    2008-01-01

    The worldwide community of uranium mining and processing recognizes that managing radiation, health and safety, waste and the environment is paramount. Such responsible management applies at all stages of planning and activities. Today we are acting to ensure that all parties directly involved in uranium mining and processing strive to achieve the highest levels of excellence in these fields. We are doing so by sustaining a strong safety culture based on a commitment to common, internationally shared principles. This paper sets out principles for the management of radiation, health and safety, waste and the environment applicable to sites throughout the world. In national and regional settings where nuclear fuel cycle activities are well developed, these principles already serve as the underpinning for 'Codes of Practice' that govern uranium mining and processing. In any given setting, a Code of Practice is needed to guide practical implementation of these principles according to the regional, national or site-specific context. These principles are published in the belief that they hold special relevance for emerging uranium producing countries that do not yet have fully developed regulations for the control of radiation, health and safety, waste and the environment associated with uranium mining and processing. The principles are equally relevant for operators, contractors, and regulators newly engaged in uranium mining and processing. Once national regulations are fully developed, they can be expected to embody these principles. Each principle affirmed here will not apply to the same extent for each party. Ultimately, the precise allocation of responsibilities must be set at the national and local levels. This document holds the status of a policy and ethical declaration by the full WNA membership, which the global nuclear industry. The principles affirmed here are supported by key relevant international organizations, including the IAEA and the global mining

  3. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  4. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  5. Proceedings of the symposium on the on-site management of power reactor wastes

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This symposium represents a synthesis of some current practices and research and development work in the field of radioactive waste management at nuclear power plants. It includes the following sessions: radioactive waste management practices at nuclear power plants; waste production and operating experiences; coolant and liquid waste processing; solidification methods; volume reduction methods; solid waste containment

  6. Assessment of logistic outlays in industrial solid waste management

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Out of concern for environmental protection is an increasingly common practice. Companies thus have an additional task which is the correct organization of the industrial waste management. This is achieved through the use of logistics processes in industrial waste management, mainly such as warehousing, transport, storage and recovery. These processes involve the formation of logistics costs resulting from waste management. The paper presents a mathematical model for cost of logistics management of industrial waste resulting from the above-mentioned processes. It also shows the interpretation of these costs and the relations between them. The model can increase costefficiency in companies managing industrial waste, while increasing attention to the environment.

  7. Factors Influencing Household Solid Waste Management in Urban ...

    African Journals Online (AJOL)

    The main objective of this study was to determine factors that influence household solid waste management practices in urban Nyeri Municipality. Descriptive cross- sectional ... Results from the survey showed that 26.2% of households practiced correct methods of household solid waste management. The percentage of ...

  8. Sustainable wood waste management in Nigeria

    Directory of Open Access Journals (Sweden)

    Owoyemi Jacob Mayowa

    2016-09-01

    Full Text Available Wood industries produce large volumes of residues which must be utilized, marketed or properly disposed of. Heaps of wood residues are common features in wood industries throughout the year. In Nigeria, this residue is generally regarded as waste and this has led to open burning practices, dumping in water bodies or dumping in an open area which constitutes environmental pollution. Sawmills in Nigeria generated over 1,000,000 m3 of wood waste in 2010 while about 5000 m3 of waste was generated in plywood mills. Nigeria generates about 1.8 million tons of sawdust annually and 5.2 million tons of wood wastes. The impact of improper disposal of waste wood on the environment affects both the aquatic and terrestrial ecosystems. Also burning of waste wood releases greenhouse gases into the atmosphere causing various health issues. Reuse/recycling of these wood residues in Nigeria will reduce the pressure on our ever decreasing forests, reduce environmental pollution, create wealth and employment. The literature available on this subject was reviewed and this article, therefore, focuses on the various methods of wood waste disposal and its utilization in Nigerian wood industries, the effects of wood waste on the environment as well as on human health and the benefits of proper wood waste management practices.

  9. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  10. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  11. Menstrual Hygiene, Management, and Waste Disposal: Practices and Challenges Faced by Girls/Women of Developing Countries

    OpenAIRE

    Rajanbir Kaur; Kanwaljit Kaur; Rajinder Kaur

    2018-01-01

    Menstruation and menstrual practices still face many social, cultural, and religious restrictions which are a big barrier in the path of menstrual hygiene management. In many parts of the country especially in rural areas girls are not prepared and aware about menstruation so they face many difficulties and challenges at home, schools, and work places. While reviewing literature, we found that little, inaccurate, or incomplete knowledge about menstruation is a great hindrance in the path of p...

  12. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  13. The IAEA Promotes the Application of Safety Standards and Best Practices for the Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA works to promote a high level of safety as it facilitates peaceful uses of nuclear energy worldwide. The IAEA’s Statute authorizes it to establish or adopt standards of safety for protection of health and minimization of danger to life and property, and to provide for the application of these standards. The Statute also mandates the IAEA to foster the exchange of scientific and technical information to facilitate the peaceful uses of atomic energy. To this end, the IAEA develops safety standards on different topics, including on the safety of radioactive waste management. These standards, issued in the IAEA Safety Standards Series, reflect an international consensus on what constitutes a high level of safety for protecting people from harmful effects of ionizing radiation and protecting the environment

  14. Indian radioactive waste management programme: an overview

    International Nuclear Information System (INIS)

    Raj, Kanwar; Ozarde, P.D.

    2009-01-01

    The salient features of the closed fuel cycle are recovery and recycle of uranium and plutonium for reconversion as fuel. Emphasis is also being given to separation of useful isotopes of cesium and strontium for use in healthcare and in heat source applications and partitioning of minor actinides for transmutation. This finally leaves a very small percentage of material present in the spent fuel as radioactive waste, which needs to be managed. Radioactive waste management practices in India have roots in indigenous research and development in view of the importance accorded to it from the very inception of the country's nuclear energy programme. India's experience in the management of radioactive waste from research and power reactors, fuel reprocessing, and allied facilities is rich and comparable with international practices. (author)

  15. 40 CFR 60.2065 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Management Plan § 60.2065 What should I include in my waste management plan? A waste management plan must... additional waste management measures and implement those measures the source considers practical and feasible, considering the effectiveness of waste management measures already in place, the costs of additional measures...

  16. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  17. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  18. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  19. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  20. Utilizing a 'systems' approach to improve the management of waste from healthcare facilities: best practice case studies from England and Wales.

    Science.gov (United States)

    Tudor, Terry L; Woolridge, Anne C; Bates, Margaret P; Phillips, Paul S; Butler, Sharon; Jones, Keith

    2008-06-01

    Changes in environmental legislation and standards governing healthcare waste, such as the Hazardous Waste Regulations are expected to have a significant impact on healthcare waste quantities and costs in England and Wales. This paper presents findings from two award winning case study organizations, the Cardiff and Vale NHS Trust and the Cornwall NHS Trust on 'systems' they have employed for minimizing waste. The results suggest the need for the development and implementation of a holistic range of systems in order to develop best practice, including waste minimization strategies, key performance indicators, and staff training and awareness. The implications for the sharing of best practice from the two case studies are also discussed.

  1. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  2. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  3. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  4. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  5. Strategy on radioactive waste management in Lithuania

    International Nuclear Information System (INIS)

    Poskas, P.; Adomaitis, J.E.

    2003-01-01

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalian NPP which has two non-upgradable RBMK-1500 type reactors. The unit 1 will be closed by 2005. The decision on unit 2 should be made in Lithuanian Parliament very soon taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management in 2002. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in EU Member States. Ignalina NPP is undertaking a program of decommissioning support projects, financed by grants from the International Ignalina Decommissioning Support Fund, administered by the European Bank for Reconstruction and Development. This program comprises also the implementation of investment projects in a number of pre-decommissioning facilities including the management of radioactive waste and spent nuclear fuel. (orig.)

  6. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management

    International Nuclear Information System (INIS)

    Ho, Wai Shin; Hashim, Haslenda; Lim, Jeng Shiun; Lee, Chew Tin; Sam, Kah Chiin; Tan, Sie Ting

    2017-01-01

    Highlights: • A novel method known as Waste Management Pinch Analysis (WAMPA) is presented. • WAMPA aims to identify waste management strategies based on specific target. • WAMPA is capable to examine the capacity of waste management strategies through graphical representation. - Abstract: Improper waste management happened in most of the developing country where inadequate disposal of waste in landfill is commonly practiced. Apart from disposal, MSW can turn into valuable product through recycling, energy recovery, and biological recovery action as suggested in the hierarchy of waste management. This study presents a method known as Waste Management Pinch Analysis (WAMPA) to examine the implication of a dual-objective – landfill and GHG emission reduction target in sustainable waste management. WAMPA is capable to identify the capacity of each waste processing strategy through graphical representation. A general methodology of WAMPA is presented through a demonstration of a SWM case followed by a detailed representation of WAMPA for five waste types. Application of the WAMPA is then applied on a case study for sustainable waste management planning from year 2015 to 2035. Three waste management strategies are incorporated into the case study – landfill, Waste-to-Energy (WtE), and reduce, reuse, and recycle (3R). The results show a 13.5% of total GHG emission reduction and 54.6% of total reduction of landfill are achieved. The major contributor of GHG emission which are from food waste (landfill emission) and plastic (WtE emission) is reduced.

  7. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    OpenAIRE

    Larissa A. R. U. Freitas; Alessandra Magrini

    2017-01-01

    The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ec...

  8. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  9. development of improved solid hospital waste management ...

    African Journals Online (AJOL)

    A pre-intervention situation analysis was conducted to assess Hospital Waste Management (HWM) practices, solutions were proffered for the observed inadequacies and advocacy was made to Hospital administration for which a number of interventional measures were instituted. A post interventional survey was conducted ...

  10. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  11. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  12. The Management of the Solid Radioactive Waste and Used (Spent) Fuel in South Africa: An Overview of Past, Present and Future Practices

    International Nuclear Information System (INIS)

    Maree, V.

    2015-01-01

    As a country with a nuclear program, the Republic of South Africa (RSA) generates radioactive waste through numerous activities. Radioactive waste, for legal and regulatory purposes, is defined as “material that contains or is contaminated with radio-nuclides at concentrations or activities greater than clearance levels as established by the regulatory body and for which no use is foreseen”. The RSA recognises the importance of the safe management of spent fuel and radioactive waste, for this reason the country is a contracting party to the International Atomic Energy Agency (IAEA) Joint Convention on the Safety of Spent Nuclear Fuel Management and Safety of Radioactive Waste Management. South Africa fulfils its obligations under the Joint Convention by the establishment of a Radioactive Waste Management Policy and Strategy for the Republic of South Africa (Policy and Strategy). It lists the principles and provides direction relating to solid radioactive waste management. Although all key players i.e. government agencies and the private sector are participating to implement the national commitment in a coordinated and cooperative manner, huge uncertainty remains. This poster presents the South African National Radioactive Waste Management Model with a description of – the radioactive waste generated, – the hierarchy of waste management options, – the waste classification scheme adopted, – the current disposal option, – the current management of used (spent) fuel. Good intentions have not always been matched by action and measures are still needed to improve safety especially to integrate the lessons learnt from the Fukushima accident, management of legacy waste, monitoring of disused sealed sources, recovery of orphan sources and additional waste due to operation of potential new nuclear power plants etc. This poster also addresses current discussions and ideas relating to the above challenges. (author)

  13. Knowledge, Attitude And Practices of Healthcare Workers (HCWs Regarding Biomedical Waste (BMW Management: A Multispeciality Hospital Based CrossSectional Study In Eastern India

    Directory of Open Access Journals (Sweden)

    Ravishekar N. Hiremath

    2016-10-01

    Full Text Available Background: The evolving health care system of India, in its goal of solving health issues and minimizing possible health risks, has unavoidably created waste, which itself may be harmful for health. Inefficient and inadequate knowledge of managing health care waste may have detrimental effects on health and environment. Aim and Objectives: To asses level of Knowledge, Attitude, Practices (KAP about Biomedical Waste (BMW management among Health Care Workers (HCWs with an endeavor to improve the standards and protect the health of HCWs and the environment. Methodology: A Hospital- based cross sectional descriptive study was carried out at one of the Multispecialty Hospital in Eastern India. A total of 80 HCWs who were available at the time of study were included and the data were collected by means of 'personal interview technique' by using a pre-designed semi-structured questionnaire in Hindi (local language. The relevant data was collected, compiled and analyzed using SPSS 17.0 version. Results: Assessment of KAP with pre-decided scoring system showed, 17.5 % had excellent knowledge, 70% with good to average and 12.5% had poor knowledge with respect to BMW management. Knowledge status was not significantly associated with any of the sociodemographic characteristics. When asked about needle stick injuries, 88% felt that needle stick injury was a concern to them and 86% of them were well aware about the consequences of needle-stick injuries. Conclusion: Although the awareness level was high with various aspects of BMW management among HCWs compared to other studies, but still there exists scope for more improvement. Regular awareness capsule with proper BMW committee monitoring is the need of the hour. All measures to sensitize the HCWs against needle stick injuries including both pre and post incident measures need to be taken.

  14. Nondestructive radioassay for waste management: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  15. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  16. Current practices of construction waste reduction through 3R practice among contractors in malaysia: Case study in penang

    Science.gov (United States)

    Ng, L. S.; Tan, L. W.; Seow, T. W.

    2017-11-01

    The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.

  17. Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-02-01

    This DCP establishes an interim plan for the Office of Civilian Radioactive Waste Management (OCRWM) technical baseline until the results of the OCRWM Document Hierarchy Task Force can be implemented. This plan is needed to maintain continuity in the Program for ongoing work in the areas of Waste Acceptance, Transportation, Monitored Retrievable Storage (MRS) and Yucca Mountain Site Characterization

  18. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  19. Enhanced solid waste management by understanding the effects of gender, income, marital status, and religious convictions on attitudes and practices related to street littering in Nablus - Palestinian territory

    International Nuclear Information System (INIS)

    Al-Khatib, Issam A.; Arafat, Hassan A.; Daoud, Raeda; Shwahneh, Hadeel

    2009-01-01

    Litter is recognized as a form of street pollution and a key issue for solid waste managers. Nablus district (West Bank, Palestinian Territory), which has an established network of urban and rural roads, suffers from a wide-spread litter problem that is associated with these roads and is growing steadily with a well-felt negative impact on public health and the environment. The purpose of this research was to study the effects of four socio-economic characteristics (gender, income, marital status, and religious convictions) of district residents on their attitudes, practices, and behavior regarding street litter generation and to suggest possible remedial actions. All four characteristics were found to have strong correlations, not only with littering behavior and practices, but also with potential litter prevention strategies. In particular, the impact of religious convictions of the respondents on their littering habits and attitudes was very clear and interesting to observe

  20. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  1. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  2. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  3. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  4. Waste management and the workplace*

    African Journals Online (AJOL)

    User

    those employed by private contractors or intermediaries providing waste management services to local .... Tension both within this coalition and between the coalition and the ruling ANC has at times been high. 12 A lifeline tariff (also called a ...

  5. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  6. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  7. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  8. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  9. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  10. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  11. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  12. Hospital waste management in developing countries: A mini review.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  13. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  14. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    and overseas. AECL, with the support of Ontario Power Generation, also continues deep geologic repository-based research and development in support of the long-term management of Canada's nuclear fuel waste. Decommissioning activities on AECL sites are also increasing significantly - many of the facilities first established in the 1940s and 1950s are now redundant and need to be safely dismantled and the resulting wastes managed. Several such projects are now underway at CRL. and include the removal of several radioactively contaminated buildings and laboratories, remediating contaminated lands arising from past practices, and the establishment of new facilities that, for example, will optimize the quantities of decommissioning wastes that can be issued for ''free release'' to conventional landfills. In addition, good progress is being made to decommission the entirety of Whiteshell Laboratories

  15. Waste management in small hospitals: trouble for environment.

    Science.gov (United States)

    Pant, Deepak

    2012-07-01

    Small hospitals are the grassroots for the big hospital structures, so proper waste management practices require to be initiated from there. Small hospitals contribute a lot in the health care facilities, but due to their poor waste management practices, they pose serious biomedical waste pollution. A survey was conducted with 13 focus questions collected from the 100 hospital present in Dehradun. Greater value of per day per bed waste was found among the small hospitals (178 g compared with 114 g in big hospitals), indicating unskilled waste management practices. Small hospitals do not follow the proper way for taking care of segregation of waste generated in the hospital, and most biomedical wastes were collected without segregation into infectious and noninfectious categories.

  16. Radioactive waste management in Lebanon

    International Nuclear Information System (INIS)

    Assi, Muzna

    2011-01-01

    The disused sealed radioactive sources including orphan sources in Lebanon, along with the growing industry of sealed radioactive sources in medical, industrial and research fields have posed a serious problem for authorities as well as users due to the lack of a national store for disused radioactive sources. Assistance from the International Atomic Energy Agency (IAEA) was requested to condition and store disused radium needles and tubes present at two facilities. The mission took place on July 25, 2001 and was organized by the IAEA in cooperation with the Lebanese Atomic Energy Commission (LAEC). Other disused radioactive sources were kept in the facilities till a safer and securer solution is provided; however orphan sources, found mainly during export control, were brought and stored temporarily in LAEC. The necessity of a safe and secure store became a must. Prior to October 2005, there was no clear legal basis for establishing such store for disused radioactive sources, until the ministerial decree no 15512 dated October 19, 2005 (related to the implementation of decree-law no 105/83) was issued which clearly stated that 'The LAEC shall, in cooperation with the Ministry of Public Health, establish a practical mechanism for safe disposal of radioactive waste'. Following this, the work on inventory of disused sealed sources along with collecting orphan sources and placing them temporarily in LAEC was legally supported. Moreover, several missions were planned to repatriate category I and II sources, one of which was completed specifically in August 2009; other missions are being worked on. In 2008, a national technical cooperation project with the IAEA was launched. Under the Technical Cooperation (TC) project with reference number LEB3002, the project was entitled 'Assistance in the establishment of a safe temporary national storage at the LAEC for orphan sources and radioactive waste' which cycle is 2009-2011. Under this project, a national store for

  17. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  18. The management of intermediate level wastes in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.

    1980-01-01

    A brief overview of current practices and research in Sweden on the management of intermediate level wastes is given. Intermediate level wastes include spent resins, filters and core components from the six power reactors in operation; radioactive wastes from nuclear fuel development at Studsvik and from non-nuclear applications are a minor contribution. (Auth.)

  19. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  20. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  1. practice managers in Scotland

    Directory of Open Access Journals (Sweden)

    Lisa Hanna

    2011-03-01

    Conclusion Practice managers are likely to play a central role in the introduction of new consultation/ communication technologies within general practice. They hold varying views on the appropriateness of these technologies, influenced by a complex mix of contextual characteristics.Managers from areas in which the ethos of the practice prioritises personalised care in service delivery are less enthusiastic about the adoption of remote consultation/ communication technologies.

  2. The management of radioactive wastes produced by radioisotope users

    International Nuclear Information System (INIS)

    1965-01-01

    This code of practice deals with the problem of handling the relatively small quantities of waste arising from the use of radionuclides in laboratories, hospitals and industry when no special facilities for radioactive waste disposal are available on the site. It stresses the need for proper governmental control of the arrangements made for receiving, using and disposing of radioactive materials. The document discusses waste management that can be left to the individual user, waste management in a central facility serving a number of users, and waste storage and environmental containment. A table showing the types of waste associated with some of the more common uses of a number of radionuclides is appended.

  3. Infectious waste management in Japan: A revised regulation and a management process in medical institutions

    International Nuclear Information System (INIS)

    Miyazaki, M.; Une, H.

    2005-01-01

    In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reduction of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article

  4. Management of municipal solid waste incineration residues

    International Nuclear Information System (INIS)

    Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; Heuss-Assbichler, S.; Klein, R.; Lechner, P.

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  6. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  7. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  8. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Larissa A. R. U. Freitas

    2017-07-01

    Full Text Available The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ecology contributions to waste management in industrial construction. The waste management strategies adopted in two industrial construction projects in Brazil are analyzed. The main waste streams generated are identified, recycling and landfilling diversion rates are presented and waste recovery through Industrial Symbiosis is discussed. A SWOT analysis was carried out. Results demonstrate that 9% of the waste produced in one of the projects was recovered through Industrial Symbiosis, while in the other project, waste recovery through Industrial Symbiosis achieved the rate of 30%. These data reveal Industrial Symbiosis’ potential to reduce landfilling of industrial construction wastes, contributing to waste recovery in construction. In addition, results show that industrial construction projects can benefit from the following synergies common in Industrial Ecology place-based approaches: centralized waste management service, shared waste management infrastructure and administrative simplification.

  9. Solutions for Waste Management

    International Nuclear Information System (INIS)

    2013-01-01

    To safely and securely dispose of highlevel and long-lived radioactive waste, this material needs to be stored for a period of time that is very long compared to our everyday experience. Underground disposal facilities need to be designed and constructed in suitable geological conditions that can be confidently demonstrated to contain and isolate the hazardous waste from our environment for hundreds of thousands of years. Over this period of time, during which the safety of an underground waste repository system must be assured, the waste's radioactivity will decay to a level that cannot pose a danger to people or the environment. The archaeological record can help in visualizing such a long period of time. Climates change, oceans rise and vanish, and species evolve in the course of a one hundred millennia. Rocks bear witness to all of these changes. Geologists in their search for safe repositories for the long-term disposal of high level radioactive waste have identified rock formations that have proven stable for millions of years. These geological formations are expected to remain stable for millions of years and can serve as host formations for waste repositories.

  10. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  11. Step-By-Step: Life Cycle Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Radioactive waste is an unavoidable by-product when nuclear technologies are used for electricity production and for beneficial practices in medicine, agriculture, research and industry. When the radioactivity of the waste is above a certain threshold, the waste requires special disposal methods. Through extensive research, standards and approaches have been developed for safely and securely preparing for and managing radioactive waste disposal. In the course of its journey from the point of generation to disposal, radioactive waste undergoes a number of predisposal management treatment steps to transform it into a safe, stable and manageable form suitable for transport, storage and disposal

  12. Waste Management Project Contingency Analysis

    International Nuclear Information System (INIS)

    Edward L. Parsons, Jr.

    1999-01-01

    The purpose of this report is to provide the office of Waste Management (WM) with recommended contingency calculation procedures for typical WM projects. Typical projects were defined as conventional construction-type activities that use innovative elements when necessary to meet the project objectives. Projects involve treatment, storage, and disposal of low level, mixed low level, hazardous, transuranic, and high level waste. Cost contingencies are an essential part of Total Cost Management. A contingency is an amount added to a cost estimate to compensate for unexpected expenses resulting from incomplete design, unforeseen and unpredictable conditions, or uncertainties in the project scope (DOE 1994, AACE 1998). Contingency allowances are expressed as percentages of estimated cost and improve cost estimates by accounting for uncertainties. The contingency allowance is large at the beginning of a project because there are more uncertainties, but as a project develops, the allowance shrinks to adjust for costs already incurred. Ideally, the total estimated cost remains the same throughout a project. Project contingency reflects the degree of uncertainty caused by lack of project definition, and process contingency reflects the degree of uncertainty caused by use of new technology. Different cost estimation methods were reviewed and compared with respect to terminology, accuracy, and Cost Guide standards. The Association for the Advancement of Cost Engineering (AACE) methods for cost estimation were selected to represent best industry practice. AACE methodology for contingency analysis can be readily applied to WM Projects, accounts for uncertainties associated with different stages of a project, and considers both project and process contingencies and the stage of technical readiness. As recommended, AACE contingency allowances taper off linearly as a project nears completion

  13. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  14. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  15. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  16. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  17. Status and challenges for radioactive waste management

    International Nuclear Information System (INIS)

    Riotte, H.

    2011-01-01

    safety case which goes beyond demonstrating compliance with numerical safety indicators and highlights the range of underlying evidence and methods that give confidence. Regarding long-term safety regulation, the variety of approaches in national criteria and practices that reflects the different national regulatory, legal and cultural environments needs to be made transparent. Today, there is a clear understanding that the implementation of radioactive waste repositories is as much a socio-political challenge as a technical one. Public acceptance of the site needs to be secured and maintained over the lifetime of the repository and beyond. A durable relationship between a waste management facility and its host community is paramount to resolve conflicts and to deal with diverging interests that may come up during the long implementation and operational period of a geologic repository. Reversibility of decisions and retrievability of waste, under specified conditions, are typically two important requests from the local public that need to be taken into account when designing a disposal programme. While the management of short-lived, low-level waste became an industrial reality and general attention has been focusing on the management of high level waste and geologic repositories, in several countries there are still outstanding issues related to special types of radioactive waste, e.g. mixed waste and graphite, that require further consideration. As a specific case, safe and cost-effective management of waste from accident facilities, like the Fukushima plants, or from remediation of contaminated land, may pose new questions that could benefit from the international experience.

  18. Hospital waste management status in Lebanon

    International Nuclear Information System (INIS)

    Karam, R.; Oueida, F.; Tissot-Guerraz, F.; Trepo, D.; Collombel, C.

    2000-01-01

    author.The existing management of hospital waste in Lebanon currently poses both an environmental hazard as well as a public health risk. This is due mainly to lack of legislation, information and modern treatment and disposal facilities designed for this purpose. A nation-wide questionnaire survey was conducted to asses the status of hospital waste management. The study started from October 1997 till August 1998. We found that 75% of the surveyed hospitals completely ignore their total waste quantity: 73% of hospitals surveyed practice segregation at source of infectious, pathological, sharps and pharmaceuticals; more than 40% dispose of their hospital risk wastes through the municipality waste disposal, 24% by burning in open fires, 14% by on-site hospital incinerators, 11% in on-site dumping, 8% handled by a private contractor and 1% in uncontrolled landfill. We conclude that with some exceptions, the hospital waste management situation in Lebanon is very far from being satisfactory and therefore needs to be reconsidered. 1 Fig., 6 tabs., 18 refs

  19. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  20. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  1. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  2. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  3. Hazardous healthcare waste management in the Kingdom of Bahrain

    International Nuclear Information System (INIS)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-01-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  4. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    Science.gov (United States)

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p waste generated at government HCFs was more than at private HCFs (p waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  5. Managing previously disposed waste to today's standards

    International Nuclear Information System (INIS)

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determine extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs

  6. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  7. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  8. Integrated solid waste management in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.S. [CSI Resource Systems, Boston, MA (United States)

    1993-12-31

    The Japanese, through a combination of public policy, private market conditions, and geographic necessity, practice integrated municipal solid waste management as defined by the US Environmental Protection Agency. The Japanese have not defined a specific hierarchical preference for alternative waste management practices, i.e., waste reduction, reuse and recycling, combustion, composting, and landfill disposal. However, in marked contrast to the US approach, the Japanese system relies heavily on waste combustion, with and without energy recovery. {open_quotes}Discards{close_quotes}, as the term is used in this paper, refers to all materials considered used and spent by residential and commercial generators. That which is discarded (whether recyclable or nonrecyclable) by a municipality is referred to as MSW. This paper provides an overview of MSW management practices and private-sector recycling in Japan. Estimates of the total generation of residential and commercial discards and their disposition are also presented. Such an overview of Japanese practices can be used to assess the potential effectiveness of US integrated solid waste management programs. Of the estimated 61.3 to 72.1 million tons of residential and commercial discards generated in Japan during its 1989 fiscal year (April 1, 1989, through March 31, 1990), an estimated 55 to 64 percent was incinerated; 15 to 28 percent was recycled (only 2 to 3 percent through municipal recycling activities); less than 0.1 percent was composted or used as animal feed; and 17 to 20 percent was landfilled. Including ash disposal, 26 to 30 percent, by weight, of the gross discards were landfilled.

  9. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  10. The biomedical waste management in selected hospitals of Chittoor ...

    African Journals Online (AJOL)

    Introduction: Poor waste management practices pose a huge risk to the health of the public, patients, professionals and contribute to environmental degradation. Aims and objectives: Our study was aimed to assess the present status of biomedical waste management in Government and Private Hospitals. Materials and ...

  11. An assessment of pharmaceutical waste management in some ...

    African Journals Online (AJOL)

    Thirty four (34) of the fifty (50) selected Nigerian based pharmaceutical businesses, mainly acting as local manufacturers and major importers of medicines were interviewed using questionnaires to ascertain their waste management practices, knowledge of waste management policies and subjection to regulatory control.

  12. Update on waste management policies and programmes

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide concise information on current radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc.). For practical purposes, the Bulletin does not include an exhaustive description of national programmes. The reader is therefore invited to go back to the information given in previous bulletins and, if necessary, to contact national correspondents in order to obtain a more complete picture of on-going activities. (authors)

  13. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    radioactive wastes which do not correspond to the disposal standards will be processed by ANDRA (National Agency for Radioactive Waste Management)

  14. Radiation waste management in Poland

    International Nuclear Information System (INIS)

    Tomczak, W.

    1995-01-01

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs

  15. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  16. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  17. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  18. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  19. 2002 Report to Congress: Evaluating the Consensus Best Practices Developed through the Howard Hughes Medical Institute’s Collaborative Hazardous Waste Management Demonstration Project

    Science.gov (United States)

    This report discusses a collaborative project initiated by the Howard Hughes Medical Institute (HHMI) to establish and evaluate a performance-based approach to management of hazardous wastes in the laboratories of academic research institutions.

  20. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)