WorldWideScience

Sample records for waste management political

  1. Nontechnical issues in waste management: ethical, institutional, and political concerns

    International Nuclear Information System (INIS)

    Hebert, J.A.; Rankin, W.L.; Brown, P.G.; Schuller, C.R; Smith, R.F.; Goodnight, J.A.; Lippek, H.E.

    1978-05-01

    The report consists of a presentation and distillation of major nontechnical issues surrounding commercial waste management, followed by ethical, institutional, and political analyses of these issues. The ethical analysis consists of a discusson of what is meant by ''ethics'' and ''morality'' in the waste management context and an illustrative attempt at an ethical analysis of the commercial nuclear waste problem. Two institutional analyses are presented: one is an analysis of the possible problems of long-term human institutions in waste management; the other is a presentation of institutional arrangements for the short term. A final chapter discusses issues and concerns involving intergovernmental relations--that is, local, state, and federal interface problems in waste management

  2. Nontechnical issues in waste management: ethical, institutional, and political concerns

    Energy Technology Data Exchange (ETDEWEB)

    Hebert, J.A.; Rankin, W.L.; Brown, P.G.; Schuller, C.R; Smith, R.F.; Goodnight, J.A.; Lippek, H.E.

    1978-05-01

    The report consists of a presentation and distillation of major nontechnical issues surrounding commercial waste management, followed by ethical, institutional, and political analyses of these issues. The ethical analysis consists of a discusson of what is meant by ''ethics'' and ''morality'' in the waste management context and an illustrative attempt at an ethical analysis of the commercial nuclear waste problem. Two institutional analyses are presented: one is an analysis of the possible problems of long-term human institutions in waste management; the other is a presentation of institutional arrangements for the short term. A final chapter discusses issues and concerns involving intergovernmental relations--that is, local, state, and federal interface problems in waste management.

  3. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  4. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  5. Waste management provisions in the political focus again

    International Nuclear Information System (INIS)

    Heller, W.

    2008-01-01

    In early January 2008, before the elections to the state parliament, the Social Democratic Party (SPD) in Hesse surprisingly announced that a state government led by the SPD would launch a legal initiative right away through the Federal Council 'to do away with the indirect subsidizing of nuclear power plant operators in connection with the provisions made for nuclear waste management and in the form of extensive exemptions from adequate nuclear liability'. The practice of making waste management provisions is subjected to a detailed analysis under aspects of law, business economics, the national economy, and fiscal regulations. The outcome shows that the legal provisions, confirmed also by a ruling of the European Court of Justice of December 2007, constitute neither a concession in the sense of a government subsidy nor a competitive advantage or a tax privilege. (orig.)

  6. Public and political issues in radioactive waste management in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Neis, A.

    1993-01-01

    The Federal Government's radioactive waste management concept and regulations governing formal public participation in licensing procedures for radioactive waste management facilities are presented. The paper focuses on public and political issues arising from widely diverging views in different social groups on nuclear energy and on radioactive waste management. The resulting conflict between Federal and Laender (Federal constituent states) authorities and the actual course of public participation in a licensing procedure are illustrated with the example of planned final disposal of radioactive waste in the Konrad mine. Major national efforts to overcome the unsatisfying present situation are presented and the role of international consensus is briefly touched. Concluding remarks will particularly justify admissibility and emphasize the need to discuss and eventually decide on radioactive waste management issues regardless of diverging views on nuclear energy

  7. Alternative management structures for municipal waste collection services: The influence of economic and political factors

    Energy Technology Data Exchange (ETDEWEB)

    Plata-Díaz, Ana María, E-mail: amplata@ugr.es; Zafra-Gómez, José Luis, E-mail: jlzafra@ugr.es; Pérez-López, Gemma, E-mail: gemmapl@ugr.es; López-Hernández, Antonio Manuel, E-mail: alopezh@ugr.es

    2014-11-15

    Highlights: • We analyzed the factors that influence on the restructuring of MSW services. • We evaluated five different alternatives for public and private service. • Our analysis covers a broad time horizon, 2002–2010. • We used a conditional fixed-effects logistic regression as the evaluation method. • Municipalities tend to contract out the MSW service in the presence of high costs and fiscal stress. - Abstract: Identifying and characterising the factors that determine why a local authority opts for a particular way of managing its waste collection service is an important issue, warranting research interest in the field of municipal solid waste (MSW) management. This paper presents empirical evidence spanning a broad time horizon (2002–2010) showing that economic and political factors impact in different ways on the provision of waste management services. We examine five alternatives in this area, including public and private service delivery formulas and, within each field, individual and joint options. Our findings highlight the importance of the service cost and that of the various indicators of fiscal stress as determinant factors of management decisions regarding the provision of MSW management services.

  8. Alternative management structures for municipal waste collection services: The influence of economic and political factors

    International Nuclear Information System (INIS)

    Plata-Díaz, Ana María; Zafra-Gómez, José Luis; Pérez-López, Gemma; López-Hernández, Antonio Manuel

    2014-01-01

    Highlights: • We analyzed the factors that influence on the restructuring of MSW services. • We evaluated five different alternatives for public and private service. • Our analysis covers a broad time horizon, 2002–2010. • We used a conditional fixed-effects logistic regression as the evaluation method. • Municipalities tend to contract out the MSW service in the presence of high costs and fiscal stress. - Abstract: Identifying and characterising the factors that determine why a local authority opts for a particular way of managing its waste collection service is an important issue, warranting research interest in the field of municipal solid waste (MSW) management. This paper presents empirical evidence spanning a broad time horizon (2002–2010) showing that economic and political factors impact in different ways on the provision of waste management services. We examine five alternatives in this area, including public and private service delivery formulas and, within each field, individual and joint options. Our findings highlight the importance of the service cost and that of the various indicators of fiscal stress as determinant factors of management decisions regarding the provision of MSW management services

  9. Environmentalism and politics in the USA: the historical underpinnings of hazardous waste management - a viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G R

    1985-01-01

    Historical analyses of the environmental movement in the United States have focused on the debate between conservationists and preservationists over the use of natural resources on public lands in the 19th century. Many contemporary environmental issues, such as hazardous waste disposal, are not simply problems of resource use; they are also problems of public health. Historians of the modern environmental movement have paid little attention to developments in public health, especially the importance of public participation in defining and solving problems during the sanitary reform movement at the turn of the century. Modern theories for solving environmental problems fall into two basic approaches, rational-comprehensive and incremental. Rational-comprehensive planning solves problems through radical change that centralizes governmental functions; incrementalism deals with problems in a piecemeal fashion that emphasizes decentralization and citizen involvement. Hazardous waste managers in New York State generally practice an incremental style of environmental planning, but their attitudes are incongruent according to the theoretical perspectives; they support both centralization and citizen participation. This inconsistency can be explained by the empirical inadequacies of theory, which has failed to observed how decisions made by state and federal governments curtail the political autonomy of local government. Historical precedent can be found in the way that federal government centralized political action by citizen participants in voluntary organizations of the sanitary reform movement.

  10. Radioactive Waste Management, its Global Implication on Societies, and Political Impact

    Science.gov (United States)

    Matsui, Kazuaki

    2009-05-01

    Reprocessing plant in Rokkasho, Japan is under commissioning at the end of 2008, and it starts soon to reprocess about 800 Mt of spent fuel per annum, which have been stored at each nuclear power plant sites in Japan. Fission products together with minor actinides separated from uranium and plutonium in the spent fuel contain almost all radioactivity of it and will be vitrified with glass matrix, which then will fill the canisters. The canisters with the high level radioactive waste (HLW) are so hot in both thermal and radiological meanings that they have to be cooled off for decades before bringing out to any destination. Where is the final destination for HLW in Japan, which is located at the rim of the Pacific Ocean with volcanoes? Although geological formation in Japan is not so static and rather active as the other parts of the planet, experts concluded with some intensive studies and researches that there will be a lot of variety of geological formations even in Japan which can host the HLW for so long times of more than million years. Then an organization to implement HLW disposal program was set up and started to campaign for volunteers to accept the survey on geological suitability for HLW disposal. Some local governments wanted to apply, but were crashed down by local and neighbor governments and residents. The above development is not peculiar only to Japan, but generally speaking more or less common for those with radioactive waste programs. This is why the radioactive waste management is not any more science and technology issue but socio-political one. It does not mean further R&D on geological disposal is not any more necessary, but rather we, each of us, should face much more sincerely the societal and political issues caused by the development of the science and technology. Second topic might be how effective partitioning and transformation technology may be to reduce the burden of waste disposal and denature the waste toxicity? The third one might

  11. Assessment of national systems for obtaining local siting acceptance of nuclear waste management facilities (October 1, 1985). Volume I. Political structure and formal system for obtaining approvals for siting waste management facilities

    International Nuclear Information System (INIS)

    Paige, H.W.; Numark, N.J.

    1985-01-01

    This report is the fourth in a series of periodic surveys of approaches and progress in other countries in dealing with the problems of obtaining local acceptance for siting of waste management facilities. This volume contains the following sections: Nation's political/industrial structure for obtaining waste management siting decisions; and Nation's formal legal procedure for obtaining necessary approvals for siting nuclear waste management facilities. Two of the countries visited, Finland and Sweden, have had major changes in the past two years in their formal/legal procedures for obtaining waste management siting decisions. (LM)

  12. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  13. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  14. Environmental impact assessment and socio political issues of nuclear waste management

    International Nuclear Information System (INIS)

    Harmaajaervi, I.; Tolsa, H.

    1997-09-01

    The study is a part of the Publicly Administrated Nuclear Waste Management Research Programme (JYT2) which was carried out in 1994-1996. The principal goal of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The main emphasis of the research programme focuses on the disposal of spent fuel. In addition to nuclear waste research in the field of natural sciences and technology, the research program- me has focused mostly on societal issues associated with nuclear waste disposal facilities and on the non-radiological environmental effects in the environs of the disposal site. Some of the local effects are already revealed in the research phase, before any final decisions are made as to the selection of the disposal site. The study has focused primarily on local and regional issues. The statutory requirement to conduct environ- mental impact assessment (EIA) chiefly concerns those who are responsible for waste management, but the authorities also need to acquire systematic information in the field to support developing requirements for the content and scope of EIA procedure and preparedness to check the assessments made. This is a report of the first parts of the study in 1994-1995. The report deals with the subject matter generally based on earlier studies in Finland and other countries. The results of the study will be reported later

  15. Scientific, legal and socio-political dimensions in radioactive waste management

    International Nuclear Information System (INIS)

    Dicus, G.J.

    2000-01-01

    Since the beginning of the twentieth century, research and development in the field of nuclear science and technology have led to wide scale applications in research, medicine and industry, and in the generation of electricity by nuclear fission. In common with certain other human activities, these practices generate waste that requires management to ensure the protection of human health and the environment now, and in the future, without imposing undue burdens on future generations. Radioactive waste may also result from the processing of raw materials that contain naturally occurring radionuclides. To achieve the objective of safe radioactive waste management requires an effective and systematic approach within a legal framework in each of our countries, in which the roles and responsibilities of all relevant parties are defined. Each Member State needs to have a national framework that sets forth the necessary and sufficient elements and requirements for radioactive waste management. It is clear that the international nuclear community has a sincere collective interest in establishing and implementing a sound infrastructure to safety manage our legacy and future spent nuclear fuel and radioactive waste inventories, and we recognize that it is our international responsibility to safely manage radioactive waste in a way that reasonably ensures adequate protection to our workers, our public and our environment for our present and for future generations. Clearly communicating our thoughts and processes to the public; involving them through formal participation mechanisms and demonstrating a willingness to be open to constructive criticism, are elements that are essential to effective and successful regulation and implementation. These interactions with vested parties and with members of the public will provide early signals regarding the dominant interests and concerns of those individuals and communities that will be directly or indirectly impacted by the action

  16. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  17. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  18. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  19. Politics and strategies for radioactive waste management: current situation and perspective for Latin America

    International Nuclear Information System (INIS)

    Amaral, Eliana; Cruz, Paulo Ferruz; Gonzalez, Abel; Telleria, Diego

    2013-01-01

    In some countries of the Latin America Region, policy and national strategy are well established and documented, while in others there is not an explicit formal declaration, although they may be implicit in the content of the laws, regulations and existing guides; but they are not consolidated in a single document, making it difficult to put into practice by the Government institutions, the organisms responsible for the regulation and those responsible for the safe management of waste. For practical reasons, the work concentrates the situation in the Region with the waste from medical, industrial practices, research and production, which generate a common problem in the region. This document also contains some recommendations to improve the situation in this topic in the Region

  20. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  1. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  2. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.; Solomon, B.D.

    1993-01-01

    This book depicts the wide diversity and the striking similarities in the international politics of nuclear waste management, using good organization and well defined terminology. The authors provide a background of geography, geology and demographics, and provide informed and common-sensical observations and conclusions. They question the ethics of leaving nuclear wastes where they are and waiting for better solutions, and they put forward a rational set of siting options, including coupling repository plans with environmental enhancement programs such as protection of coastal access, landscape improvements, and erosion control

  3. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  4. Management of radioactive waste

    International Nuclear Information System (INIS)

    Jahn, P.G.

    1986-01-01

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW) [de

  5. The political science of radioactive waste disposal

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don't overlook the need for someone to be on your side. Don't forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn't said in 1984? Nothing. open-quotes It's deja vu all over again.close quotes

  6. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  7. The politics of toxic waste

    International Nuclear Information System (INIS)

    Rahm, D.

    1998-01-01

    Toxic waste, and the public policy that deals with it, is a complex issue. Much of the complexity stems from the science and technology embedded in the topic, but a great deal also results from the intricate interactions between the social organizations and institutions involved. The politics of toxic waste plays out within three key aspects of this complexity. The first of these is the nature of the intergovernmental relations involved. For toxic waste issues, these intergovernmental relations can be between sovereign states or between a nation and an international governing organization, or they may be restricted to a domestic context. If the later is the case, the relationship can be between federal, state, and local governments or between different bureaus, departments, or agencies within the same level of government. A second feature of this complexity can be seen in the consequences of divergent organizational or institutional interests. When conflicting organizational or institutional perspectives, positions, or concerns arise, public policy outcomes are affected.The tug and pull of competing actors move policy in the direction favored by the winner. This may or may not be the most rational alternative. A third aspect of this interorganizational puzzle involves the question of where the locus of authority for decisionmaking resides and to what extent stakeholders, who do not possess direct authority, can influence policy outcomes

  8. Radioactive and Hazardous Waste Management in Sweden. Movements, Politics and Science

    International Nuclear Information System (INIS)

    Lidskog, R.

    1994-01-01

    This thesis deals with conflicts around siting of facilities for hazardous and radioactive waste. Through a case-oriented approach, focusing on two very intense and enduring conflicts in Sweden, several central dimensions of such conflicts are investigated. The point of departure is that siting can be seen as a spatial concentration of risks. Conflict around a siting proposal emerges when the actors involved have different perspectives, interests and understandings of the proposal and therefore face different decision situations. This study analyses such conflict as a struggle where different interests fight for realization of their respective perceptions and social definitions of a facility. The study concludes that scientization and de-politicization - together with economic incentives - are important means of gaining local acceptance for a facility. However, a local population's response to a siting proposal is not only dependent on their specific understanding of it, but also on their sociospatial consciousness. 355 refs. 5 tabs, 2 figs

  9. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, Andrew; Lowry, David; Solomon, B.D.

    1991-01-01

    The dilemma of disposing nuclear waste is likened to dealing with the menace of the Ring in Tolkein's 'Lord of the Ring'; there are only two courses open 'to hide the Ring or to unmake it; both are beyond our power'. This book attempts an understanding of the contemporary politics of radioactive waste. Chapters 1 and 2 set out the background and historical context for the current position where the options have been narrowed by public opposition. The main story of the book looks at the situation in the United Kingdom, but comparisons are drawn with the USA, western Germany, Sweden and France. The studies spanned six years and are based on visits, discussions and observations. The last chapter asks the question-what are the political conditions necessary for the development of publicly acceptable policies for the management of radioactive wastes ? As Tolkein put it 'we should seek a final end of this menace, even if we do not hope to make one'. (UK)

  10. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  11. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  12. Environmental impact assessment and socio political issues of nuclear waste management; Ydinjaetehuollon ympaeristoevaikutusten arviointi ja sosiopoliittiset kysymykset

    Energy Technology Data Exchange (ETDEWEB)

    Harmaajaervi, I; Tolsa, H [VTT Communities and Infrastructure, Espoo (Finland). Urban Planning; Vuori, S [VTT Energy, Espoo (Finland). Nuclear Energy; Litmanen, T [Jyvaeskylae Univ. (Finland)

    1997-09-01

    The study is a part of the Publicly Administrated Nuclear Waste Management Research Programme (JYT2) which was carried out in 1994-1996. The principal goal of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The main emphasis of the research programme focuses on the disposal of spent fuel. In addition to nuclear waste research in the field of natural sciences and technology, the research program- me has focused mostly on societal issues associated with nuclear waste disposal facilities and on the non-radiological environmental effects in the environs of the disposal site. Some of the local effects are already revealed in the research phase, before any final decisions are made as to the selection of the disposal site. The study has focused primarily on local and regional issues. The statutory requirement to conduct environ- mental impact assessment (EIA) chiefly concerns those who are responsible for waste management, but the authorities also need to acquire systematic information in the field to support developing requirements for the content and scope of EIA procedure and preparedness to check the assessments made. This is a report of the first parts of the study in 1994-1995. The report deals with the subject matter generally based on earlier studies in Finland and other countries. The results of the study will be reported later. 101 refs.

  13. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  14. The politics of nuclear-waste disposal

    International Nuclear Information System (INIS)

    Tarricone, P.

    1994-01-01

    After 72 days of public hearings and testimony from more than 100 witnesses, the first commission of its kind in the US found that politics--not science and engineering--led to the selection of Martinsville, Ill. as the host site for a nuclear-waste-disposal facility. This article examines how the plan to dispose of nuclear waste in Martinsville ultimately unraveled

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  16. The role of public involvement in managing political conflict: A comparative case study of public involvement activities in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Tzoumis, K.A.

    1992-01-01

    A model of political conflict based on the components of scope, intensity and visibility is used to rank the degree of conflict for states hosting a low-level radioactive waste facility in the US. Data were gathered from sixty-five telephone interviews and comparisons made with ten national experts. Public involvement and compensation packages (reviewed in Chapter IV) to be potential conflict management tools for practitioners. The role of the governor and the complexity of the siting process are two additional factors that are important in escalating a conflict. Technical factors of complexity and source of the waste along with the past performance of the company handling the facility have no link to conflict. Conflict escalation is proposed as a means towards understanding the agenda-building process

  17. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  18. Some political logistics of nuclear waste

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1991-01-01

    The need for a centralized, federal, interim storage facility for nuclear waste, or MRS, alledgedly has become more urgent because the date for the opening of the permanent repository has been slipped from 2003 to 2010 at the earliest. However, a MRS constrained by the linkages in the Nuclear Waste Policy Act would make little sense and has no support. DOE wants to change the NWPAA linkages but unless the size of the MRS is constrained to approximately that now permitted, DOE's proposal would be so directly antithetical to the strategic vision and political aspirations of opponents of interim storage that it would seriously retard the development of the badly needed political consensus on national nuclear waste disposal policy. A new linkage, an acceptance rate limitation, is analyzed and the argument advanced that it would yield most of the benefits attributed to an MRS by DOE without aggravating the political concerns of MRS opponents

  19. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  20. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  1. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  2. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  3. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  5. The Agenda 21: perspectives for the politic about the management of the urban solid wastes in Costa Rica

    International Nuclear Information System (INIS)

    Cerdas Loria, J. B.

    2000-01-01

    Global environmental problems like the urban solid waste residues have become a great problem, not only environmentally but also socially and economically. Even though, during the last century, we have advanced in science and technology more than ever before, it had to be related to the necessity of disposing with the residues coming from extraction, transformation and manipulation of the natural resources and evidently, to the consume of products obtained in this way. Residues of man activities with the correspondent devolution to the environment, in amounts and concentrations that can be absorbed in natural cycles, is not a problem by itself the environmental complication originates when the concentration of these residues, accumulated, gets to level that begins to cause damage to living beings, in this case, the environment is incapable of absorbing them without causing damage , at least in the amount and form in which man produces them, balance between the biosphere of our planet and the human activities, an imbalance condition caused by pollution. This makes man develops in a disturbed environment slowly more and more, inadequate for life in general and for himself in particular. This way, the damage is so rapid and evident that it will exceed the capacity of man's ability to adapt. Nowadays, in the wide expectrum of themes related to this problematic situation of such an actual interest, as it is the protection of environment, the disposition of urban waste solid residues occupies an important place in the environment management. In Costa Rica, the limited environmental laws on this matter, and specifically, its absence in the programs of international cooperation, influences among other aspects on the setting of approaches proper to the adequate management of the urban waste solid residues. Probably, this phenomenon is not recognized by those who daily take the task of solving this kind of problem, using stereotyped means and habits, most of the time, not

  6. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  7. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  8. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  9. The Politics of Management Knowledge.

    Science.gov (United States)

    Clegg, Stewart R., Ed.; Palmer, Gill, Ed.

    This book recognizes the political nature of management knowledge, as a discourse produced from, and reproducing, power processes within and between organizations. Critical examinations of certain current management theories--lean production, excellence, entrepreneurship--are examples of relations of power that intermingle with relations of…

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  11. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  12. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  13. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  14. 'When you use the term 'long term', how long is that term'. Risk, Exclusion, and the Politics of Knowledge Production in Canadian Nuclear Fuel Waste Management Policy Making

    International Nuclear Information System (INIS)

    Stanley, Anna

    2006-01-01

    Risk operates within Canadian Nuclear Fuel Waste (NFW) management policy making as a heuristic for knowledge production about its effects which reconciles the knowledge of the nuclear industry with the outcomes of the NFW management process. In so doing it marginalizes the present and historical experiences of Aboriginal peoples with the nuclear industry, and removes from view the ways in which they have been implicated in the geography and political economy of the nuclear industry. Risk is a discursive form that protects a particular group's claims about the effects of NFW by providing it a universalizing epistemological structure with which to obscure its connection to context. Further risk discourse provides the nuclear industry with a conceptual vocabulary that deliberately casts all competing knowledge as perceptions, values, or as an object of inquiry. The arguments of Aboriginal peoples about the residual effects of radiation in their lands which hosted nuclear activities, such as uranium mining and disposal, have no representation in how the discourse of risk defines and represents knowledge, and thus no purchase in the policy debate. As a result the challenge they present to the nuclear industry's claims are contained. The arrangements which permit the unloading of the negative effects of nuclear power generation onto Aboriginal peoples are thus reproduced (both materially and conceptually), but not shown, by the policy making process and likely, its outcome. In order to raise critical questions about the democratic abilities of risk, this paper has examined the role of 'risk' in Canadian NFW policy making. I have shown how when the politics of knowledge production within the philosophy of risk is analyzed, and the use and role of the notion of risk are interrogated, difficult questions are posed for the democratic potential of risk. I have suggested, through an analysis of the NWMO's representations of Aboriginal content in their process, that in this

  15. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  16. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  17. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  18. From waste management into resource management; Von der Entsorgungswirtschaft zur Ressourcenwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R.; Vogtmann, H. (eds.)

    2005-07-01

    The main topic of the meeting was the development of waste management away from deposition management into resource management. The volume contains 63 contributions, which are compiled in several sections: legal and political development; status quo, concepts and prospects of thermal and mechanical waste treatment; sanitary landfills; outage associations; wastes and resources management; international waste management. (uke)

  19. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  20. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  1. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  2. Politics of Manageability

    DEFF Research Database (Denmark)

    Berthou, Sara Kristine Gløjmar

    and practices are related to the actual experiences of citizens; who and what are the targets of local mitigation activities; and the larger societal context that supports these kinds of rationales and practices. Drawing on a combination of social practice theories and governmentality studies, the argument......This thesis revolves around ideas of social change and attempts to ameliorate the consequences of climate change at the local level. Based on extensive ethnographic fieldwork participating in the making of a Local Agenda 21 plan the thesis explores rationales and practices of planning, governing...... and managing the social as it unfolds in local climate change mitigation in the municipality of Copenhagen. The overall research objectives of the thesis seek to investigate the overall rationales and practices that shape the way climate change mitigation is conceived of; the ways in which these rationales...

  3. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  5. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  6. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  7. The political challenges of nuclear waste; Kaernavfallets politiska utmaningar

    Energy Technology Data Exchange (ETDEWEB)

    Andren, Mats; Strandberg, Urban (eds.)

    2005-07-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review{sup ,} 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'.

  8. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  9. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  10. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  11. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  12. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  13. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  14. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  15. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  16. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  17. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  18. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  19. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  2. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  3. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  5. The Management of Political Actors in Institutions

    Directory of Open Access Journals (Sweden)

    Peter Odion Omoijiade

    2016-10-01

    Full Text Available The argument that the minimization of the dysfunctional consequences of organizational politics is no longer dependent on self-equilibrating mechanism remains valid. This inquiry is therefore framed with a view to establishing suitable strategies for managing political actors. There is a nexus between the diagnosis typology of political actors and the qualitative classes of political actors and their management strategies. In the management of mixed blessing, supportive, non-supportive and marginal political actors; collaborative, involvement, defensive and information strategies respectively were found suitable. This research is based on existing theoretical knowledge on organizational politics and stakeholders management. Data was collected from the literature by means of critical analysis and dialectic reflection on the emerging themes. The study will enhance capability in contexts where the scientific management of political actors is yet to be exemplified.

  6. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  8. Political considerations of nuclear waste disposal policy

    International Nuclear Information System (INIS)

    Friedman, R.S.

    1985-01-01

    In order to create a program for the establishment of nuclear waste repositories several conditions must prevail. Perhaps foremost is the need to alter the public perception of risk. In short, there will need to be recognition that cigarette smoking and automobile driving, acts of volition, are potentially more dangerous to one's health than radiation leaks from nuclear power plants or waste repositories. Second, the process of repository site selection will have to include wide public participation in the process in order to obtain legitimacy. Without it Congress and the state legislatures are certain to override any proposal no matter how widely accepted by scientists and engineers. Finally, states and localities selected as sites for repositories will need to be compensated adequately in exchange for accepting the onus of serving as host. Political scientists have not been notably successful forecasters of policy outcomes. However, the evidence of American history does not provide encouragement that maximization of control at the state and local level and oversight by Congress of administrative actions, as meritorious as they might appear in terms of democracy, are harbingers of success for unpleasant policy decisions. States rights and Congressional intervention to block executive action were used to maintain second-class citizenship status for Black Americans until the judicial process was resorted to as a device to alter policy. Most likely, a major policy breakthrough will occur only after a mishap or tragedy, the final product involving either a waste disposal program in the context of continued use of nuclear power or one premised on its abandonment

  9. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  10. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  13. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  14. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  15. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE's waste management capabilities

  16. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1993-01-01

    One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  17. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  18. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  20. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  2. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  3. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  4. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  5. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  6. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  7. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  8. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  9. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  10. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  11. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  12. Radioactive waste management

    International Nuclear Information System (INIS)

    Syed Abdul Malik Syed Zain

    2005-01-01

    This chapter discussed the basic subjects covered in the radioactive waste management. The subjects are policy and legislation, pre-treatment, classification, segregation, treatment, conditioning, storage, siting and disposal, and quality assurance

  13. The system for waste management

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1987-01-01

    The author views the system for the management of high level radioactive waste as having five major components science and technology, domestic politics, international programs, regulation and institutions, and the ever changing rules and public perceptions. A system failure will usually occur because of the failure to communicate and not because of inadequate scientific data or engineering skills. For effective communication to occur the participants need to understand each other. The author will focus on this issue as a major theme of this presentation

  14. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  16. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  17. Defining Enrollment Management: The Political Frame

    Science.gov (United States)

    Black, Jim

    2004-01-01

    This article describes the elements of Bolman and Deal's (1991) political frame, which are widely discussed and written about among enrollment managers. Whether it is under the guise of managing change, getting things done, understanding institutional politics, or soliciting campus-wide involvement, the issues are often thorny and leave many…

  18. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  19. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  20. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  1. Management of Technology - a political process approach

    DEFF Research Database (Denmark)

    Koch, Christian

    1999-01-01

    Most management of technology writings fail to address enterprise developments as political processes, where visions, coalitions and emergence are central features. The paper report of a participants observation study of management of technology processes.......Most management of technology writings fail to address enterprise developments as political processes, where visions, coalitions and emergence are central features. The paper report of a participants observation study of management of technology processes....

  2. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  3. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  4. The challenge of the radioactive waste management

    International Nuclear Information System (INIS)

    Dupuis, M. C.

    2008-01-01

    The problem of waste management has gained relevance with the development of electronuclear production and the increased social awareness on the need to protect the environment. While most developed countries have found solutions for the disposal of waste of low intensity and duration, the storage of used fuel and other kind of waste of higher intensity and duration is one of the main challenges for the next decade. Scientific research focuses on long term safety, while questions on the need for new governance are raised at the socio political level. Organizations such as the AEN have strengthened international cooperation to overcome the scientific, technical and socio-political challenges related to the nuclear waste management. (Author) 15 refs

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  6. Nuclear waste management: a challenge to Federalism

    International Nuclear Information System (INIS)

    Lucas, P.

    1979-01-01

    The controversy over state/Federal authority over waste disposal has already had a significant effect regardless of the choice Congress ultimately makes between an informal deference to state will and a statutory authorization of state control over Federal repositories. The highly emotional issue of local disposal of nuclear waste and the assertions of state control over waste disposal have made the nation and the Federal bureaucracy more aware of the status of the waste management program. State resistance to Federal siting efforts and the passage of state waste disposal legislation has compelled the Federal government to provide the states with a larger role in waste management. State power to exclude Federal repositories would give states additional political leverage. Ideally, public attention and effective state veto power will contribute to a more successful program, without impeding progress toward the immediate goal of siting and developing permanent repositories

  7. French policy concerning radioactive waste management

    International Nuclear Information System (INIS)

    Gauvenet, Andre.

    1981-01-01

    After having mentioned the origin of nuclear waste, the problems brought about by the existence of radioactive products and the change in the regulations, the processing and packaging of waste is examined. In the economic calculations the total cost of waste management, including storage, must be allowed for, and the risks-profits study must be applied to the waste and the sum total of the doses for the populations and the workers minimized. The temporary or definitive storage depends on the sort of wastes: beta-gamma without alpha stored on the surface or at small depth, low or medium activity stored temporarily whilst awaiting a site and the high activity waste which is vitrified then stored in situ and cooled before deep storage. Although there is no complete solution as yet for the problem of waste, it is technically very advanced and it is from the political and psychological angle that it meets most difficulties [fr

  8. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  9. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  11. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  12. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  13. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  14. Legislative and political aspects of waste disposal

    International Nuclear Information System (INIS)

    Freiwald, J.

    1982-01-01

    In the Senate bill on waste disposal the definition for high-level waste was based on the source of the waste. High-level waste was defined as the liquids and solids resulting from reprocessing. The other terms defined in that bill that are crucial for any legislation dealing with high-level waste are storage and disposal. In the Senate bill, the definition of storage specifically mentioned transuranic (TRU) waste, but it did not include TRU waste in the definition of disposal. In the four House versions of the nuclear waste bill, the definition of high-level waste are addressed more carefully. This paper discusses the following four House committee's versions particularly pointing out how TRU waste is defined and handled: (1) Science Committee bill; (2) Interior Committee bill; (3) Commerce Committee bill; and (4) Armed Service Committee bill. The final language concerning TRU waste will depend on the next series of conference between these Committees. After resolving any differences, conferences will be held between the House and Senate. Here a concensus bill will be developed and it will go to the Rules Committee and then to the floor

  15. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  16. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  17. Nuclear waste management: A review of issues

    International Nuclear Information System (INIS)

    Angino, E.E.

    1985-01-01

    The subject of radioactive waste management and burial is a subject that raises strong emotional and political issues and generates sharp technical differences of opinion. The overall problem can be subdivided into the three major categories of (1) credibility and emotionalism, (2) technology, and (3) nuclear waste isolation and containment. An area of concern desperately in need of attention is that of proper public education on all aspects of the high-level radioactive-waste (rad-waste) burial problem. A major problem related to the rad-waste issue is the apparent lack of an official, all-encompassing U.S. policy for nuclear waste management, burial, isolation, and regulation. It is clear from all past technical reports that disposal of rad wastes in an appropriate geologic horizon is the best ultimate solution to the waste problem. After 25 y of dealing with the high-level radioactive waste problem, the difficulty is that no proposed plan has to date been tested properly. It is this indecision and reaction that has contributed in no small way to the public perception of inability to solve the problem. One major change that has occurred in the last few years was the enactment of the Nuclear Waste Policy Act of 1982. This act mandates deadlines, guidelines, and state involvement. It is time that strong differences of opinions be reconciled. One must get on with the difficult job of selecting the best means of isolating and burying these wastes before the task becomes impossible

  18. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  19. Integrated refinery waste management

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Y -S [ETG Environmental, Inc., Blue Bell, PA (US); Sheehan, W J [Separation and Recovery Systems, Inc., Irvine, CA (US)

    1992-01-01

    In response to the RCRA land ban regulations and TC rule promulgated by the U.S. Federal Environmental Protection Agency (EPA) in 1988-1990, an Integrated Refinery Waste Management (IRWM) program has been developed to provide cost-effective solutions to petroleum industry customers. The goal of IRWM is to provide technology based remediation treatment services to manage sludges and wastewaters generated from the oil refining processes, soils contaminated with petroleum distillates and groundwater contaminated with fuels. Resource recovery, volume reduction and waste minimization are the primary choices to mitigate environmental problems. Oil recovery has been performed through phase separation (such as centrifugation and filtration) and heating of heavy oils. Volume reduction is achieved by dewatering systems such as centrifuges and filter presses, and low temperature thermal treatment. Waste minimization can be accomplished by bioremediation and resource recovery through a cement kiln. (Author).

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  1. K. Radioactive waste management

    International Nuclear Information System (INIS)

    1976-01-01

    Radioactive waste management is a controversial and emotive subject. This report discusses radioactivity hazards which arise from each stage of the fuel cycle and then relates these hazards to the New Zealand situation. There are three appendices, two of which are detailed considerations of a paper by Dr. B.L.Cohen

  2. Nuclear waste management

    International Nuclear Information System (INIS)

    Wicks, G.G.; Ross, W.A.

    1984-01-01

    Papers from the Second International Symposium on Ceramics in Nuclear Waste Management, held during the American Ceramic Society's 85th Annual Meeting, comprise this eighth volume in the Advances in Ceramics series. The 81 papers included in this volume were compiled by George G. Wicks, of Savannah River Lab, and Wayne A. Ross, of Battelle, Pacific Northwest Labs

  3. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  4. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  5. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  6. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  7. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  8. Organizing and managing radioactive waste disposal as an experiment

    International Nuclear Information System (INIS)

    Cook, B.J.; Emel, J.L.; Kasperson, R.E.

    1990-01-01

    This paper examines organization and management issues engendered by the national program for permanent disposal of commercial radioactive wastes. The description of current organizational and managerial responses to the waste disposal problem serves as a springboard for consideration of the technical, political, and organizational constraints that impinge upon the waste-management effort. Taking these constraints into account, the authors apply ideas that have emerged from previous radioactive waste-management studies and research on organizations, concluding that a change of course is needed. As an alternative, they propose an experimental approach predicated on the waste-management organization's acknowledging uncertainty and constructing responses that seek to reduce uncertainty systematically and without distortion

  9. Issues and answers. Towards improved management of radioactive waste

    International Nuclear Information System (INIS)

    Baer, A.J.

    2000-01-01

    Society will consider radioactive waste management to be safe when technology, ethics, economy, ecology and socio-political concerns are adequately taken into account. Specialists have to recognise that the safe management of radioactive waste cannot be ensured by technology, taken by itself, but to be successful it should be taken in the context of mankind's sustainable development

  10. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  11. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  12. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  13. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  14. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  15. Waste management. Sector 6

    International Nuclear Information System (INIS)

    1994-01-01

    The waste management section of this report deals with two sectors: land disposal of solid waste and wastewater treatment. It provides background information on the type of emissions that contribute to the greenhouse gases from these two sectors, presents both sector current status in Lebanon, describes the methodology followed to estimate the corresponding emissions, and presents the results obtained regarding greenhouse emissions. The total methane emissions from solid waste disposal on land are 42.804 Gg approximately. There are no emissions from wastewater and industrial handling systems because, for the target year 1994, there was no treatment facilities in Lebanon. The wastewater (municipal, commercial and industrial) was directly discharged into the sea, rivers, ravines or septic tanks which indicate that methane or nitrous oxide emissions are significant if not nonexistent. Note that this situation will change in the future as treatment plants are being constructed around the country and are expected to come into operation by the year 2000

  16. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  17. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  18. Radioactive waste management in the former USSR

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes

  19. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  20. Management on radioactive wastes

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.

    1979-01-01

    The basic philosophy governing the radioactive waste management activities in India is to concentrate and contain as much activity as possible and to discharge to the environment only such of these streams that have radioactive content much below the nationally and internationally accepted standards. The concept of ''Zero Release'' is also kept in view. At Tarapur, the effluents are discharged into coastal waters after the radioactivity of the effluents is brought down by a factor 100. The effluents fΩm Rajasthan reactors are discharged into a lake keeping their radioactivity well within permissible limits and a solar evaporation plant is being set up. The plant, when it becomes operational, will be a step towards the concept of ''Zero Release''. At Kalpakkam, the treated wastes are proposed to be diluted by circulating sea water and discharged away from the shore through a long pipe. At Narora, ion exchange followed by chemical precipitation is to be employed to treat effluents and solar evaporation process for total containment. Solid wastes are stored/dispsed in the concrete trenches, underground with the water proofing of external surfaces and the top of the trench is covered with concrete. Highly active wastes are stored/disposed in tile holes which are vaults made of steel-lined, reinforced concrete pipes. Gas cleaning, dilution and dispersion techniques are adopted to treat gaseous radioactive wastes. (M.G.B.)

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  2. Organizational Politics, Social Network, and Knowledge Management

    Science.gov (United States)

    Lee, Hyun Jung; Kang, Sora; Lee, Jongwon

    This research identifies the social relationship and structure among members as well as organization’s political inclination, through which, it also identifies the current status of knowledge management. The result shows that the socio-technological factors (individual, knowledge and IT factors) affect knowledge transfer and the knowledge transfer influences performance and that the members’ relationship based on the political inclination of the organization has a major moderating effect on the above two relation.

  3. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  4. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  5. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  6. Management of tritium wastes

    International Nuclear Information System (INIS)

    Kisalu, J.; Mellow, D.G.; Pennington, J.D.; Thompson, H.M.; Wood, E.

    1991-07-01

    This work provides a review of the management of tritium wastes with particular reference to current practice, possible alternatives and to the implications of any alternatives considered. It concludes that reduction in UK emissions from nuclear industry is feasible but at a cost out of all proportion to the reduction in dose commitment achievable. Commercial usage of tritium involves importation at several times the UK nuclear production level although documentation is sparse. (author)

  7. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1982-04-01

    Terminology used in documents published by the IAEA is frequently defined in glossaries in the separate documents so that understanding is enhanced, particularly for terms having unique meanings in the field of radioactive waste management. This has been found to be a good practice but frequently a burdensome one, too. In addition, terms in various documents occasionally were used differently. Thus, a common glossary of terms for radioactive waste management documents is believed to have merit. This glossary has been developed for use in IAEA documentation on radioactive waste management topics. The individual items have been compiled by selecting terms and definitions from thirty sources, listed on the next page, and numerous people. An effort has been made to use the definitions in internationally-accepted glossaries (e.g. ICRP, ICRU, ISO), with minimum modification; similarly, definitions in recently published IAEA documents have been respected. Nevertheless, when modifications were believed appropriate, they have been made. The glossary, stored on magnetic tape, is intended to be used as a standard for terminology for IAEA use; it is hoped that some benefits of common international terminology may result from its use in IAEA documentation

  8. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  9. Managing Political Information: A Malaysian Perspective

    Directory of Open Access Journals (Sweden)

    Jamilah Ahmad

    2010-07-01

    Full Text Available In the development of democratization and the expression of civil and political rights of Malaysian citizens, the pattern of control developed by the regime that is currently in power (Barisan Nasional for the last 50 years in the mass media began to reap the resistance and tend to be ineffective. Malaysian citizens began to demand the Malaysian government to change the pattern of political information management. In addition, the mass media alone is expected to play a more significant role as an intermediary agent in supporting the process of transparency and accountability of government policy. This article shows that the openness of public information is a prerequisite for political democracy in Malaysia to help the government minimize the mis-management of governance policies, especially in finance and resource management.

  10. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  11. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  12. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  13. Radioactive Waste Management Strategy

    International Nuclear Information System (INIS)

    2002-01-01

    This strategy defines methods and means how collect, transport and bury radioactive waste safely. It includes low level radiation waste and high level radiation waste. In the strategy are foreseen main principles and ways of storage radioactive waste

  14. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  15. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  16. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  17. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    (organizational, technical and legislative), and on future needs and waste arisings. The technical procedures proposed for the waste types in the country should be politically, technically and economically feasible. When selecting a set of technological procedures, an appropriate end point must be identified, usually a suitable disposal option. The steps in formulating and implementing the strategy include selecting the technological procedures, allocating the responsibility for implementing the identified procedures, establishing supervisory mechanisms and developing implementation plans. Policies and strategies may need to be updated because of new national circumstances (legislative changes, plans for new nuclear facilities), new international agreements and/or experience obtained with the original policy and strategy. The lead in making changes should be taken by the body responsible for the initial formulation of the policy (government) and strategy (waste management organization); but all relevant parties in the country should be involved and consulted in this process. (author)

  18. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1979-09-01

    Reports and other Canadian literature on radioactive waste processing and disposal covering the period 1953-1979 are listed. A selected list of international conferences relating to waste management (1959-1979) is attached. (LL)

  19. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  20. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  1. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  2. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  3. Nondestructive radioassay for waste management: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  4. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  5. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.; Smith, G.M.; White, I.F

    1984-01-01

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14 N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  6. Waste management and licensing

    International Nuclear Information System (INIS)

    Dauk, W.

    1980-01-01

    It is the Court's consideration of the repercussions the regulation on waste management of Sect. 9a of the Atomic Energy Law will have, relating to the licensing of a plant according to Sect. 7 (2) of the Atomic Energy Law which is noteworthy. Overruling its former legal conception, the Administrative Court Schleswig now assumes, together with the public opinion, that the problem of waste management being brought to a point only with the initial operation of a nuclear power station is accordingly to be taken into account in line with the discretion of licensing according to Sect. 7 (2) of the Atomic Energy Law. In addition, the Administrative Court expressed its opinion on the extent to the right of a neighbour to a nuclear power station to file suit. According to the Sections 114 and 42 (2) of the rules of Administrative Courts it is true that a plaintiff cannot take action to set aside the licence because public interests have not been taken into account sufficiently, but he may do so because his own interests have not been included in the discretionary decision. The Administrative Court is reserved when qualifying the regulation on waste management with regard to the intensity of legal control. The Court is not supposed to replace controversial issues of technology and natural sciences on the part of the executive and its experts by its own assessment. According to the proceedings, the judicial review refers to the finding as to whether decisions made by authorities are suited - according to the way in which they were made - to guarantee the safety standard prescribed in Subdivision 3 of Sect. 7 (2) of the Atomic Energy Law. (HSCH) [de

  7. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  8. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  9. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  10. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  11. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  12. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  13. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  14. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  15. PHRONESIS AND POLITICAL ACTION IN MANAGEMENT DEVELOPMENT

    DEFF Research Database (Denmark)

    Larsen, Henry; Iversen, Karina Solsø

    2018-01-01

    This article takes issue with the question of quality improvement in management development. By narratively presenting a concrete experience, it is explored how management development can be located in the Aristotelian virtue of phronesis, which emphasizes the practical and ethical dimensions...... of management. By thinking about management as political action (Arendt, 1958), the question is raised: how can improving the quality of management be related to phronesis (practical judgment) in the sense of creating public spaces within which it becomes possible for managers to engage in reflective processes......? Drawing on the work of Stacey (2012) it is suggested that management development can be thought of as a practice of reflexively taking experience seriously, both individually and collectively. The contribution of this article is a novel way of thinking about quality improvement in management development...

  16. Legal, political, and institutional implications of the seabed assessment program for radioactive waste disposal

    International Nuclear Information System (INIS)

    Deese, D.A.

    1977-01-01

    Sub-seabed disposal of high-level radioactive waste is discussed. The following conclusions are drawn: The outcome will be determined largely by the national political stances taken toward a sub-seabed disposal program. Political and diplomatic responses from individual countries should be expected to be heavily influenced by the number, type, and timing of options available for high-level waste disposal. The budgetary and institutional support Washington gives to the sub-seabed program will have a crucial influence on the progress of sub-seabed science and technology over the next three to five years. Despite the growing need of nations, such as Japan and Britain, for a high-level waste disposal option, a sub-seabed program will probably not be employed if it is not strongly funded and supported by the United States. Clearly, there are enough level and political obstacles to destroy or delay a sub-seabed disposal program. The nontechnical hurdles to seabed disposal at least equal the scientific and technical ones. But, on the other hand, there are important potential social and political benefits to be gained from any serious attempt to mount a successful sub-seabed program. These lie principally in international cooperation on waste management, environmental protection, nonproliferation of nuclear weapons, and governing the deep seabed

  17. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  18. Waste management plan - plant plan

    International Nuclear Information System (INIS)

    Gaudet, F.

    2008-01-01

    The author summarizes the nuclear activity of the Pierre Fabre Research Institute (sites, used radionuclides, radioprotection organisation), indicates the applied regulation, gives a brief analytical overview of the waste collection, sorting and elimination processes, of the management process for short period wastes and for long period wastes, and of the traceability and control procedures. He briefly presents some characteristics of the storing premises

  19. Public and political issues in HLW management: The Spanish approach

    International Nuclear Information System (INIS)

    Gonzalez, V.; Molina, M.

    1993-01-01

    ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.), is a State-owned company, founded in 1985 and is responsible for radioactive waste management in Spain. ENRESA's activities are carried out in accordance with a General Radioactive Waste Plant approved by the Spanish Government. In Spain, as in most countries, the public is concerned about many of the activities involving radioactive or rad-waste management; this concern arises for different reasons, but mainly due to lack of information on the matter. This situation leads to the information available being misused by certain politicians, green groups and media, which serves to increase the distrust with which the public sometimes views responsible companies and institutions. At the root of both these problems is a lack of political consensus regarding development of the activity. To gain public acceptance, it would be necessary to develop a long-term information policy, since in the field of communications results are only ever achieved in the long term. ENRESA is carrying out an on-going Communication Plan (CP), implemented successfully in the areas surrounding a low- and intermediate-level waste disposal site and a disused uranium mill in which remedial actions are currently being performed. Implementation of this plan at national level is being accomplished stepwise. This document deals with the most relevant issues relating to the radioactive waste situation in Spain and with the efforts made in communications

  20. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  1. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  2. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Mawson, C.A.

    1967-01-01

    When I first became concerned with radioactive waste management, in the early 1950's, very little was really known about the subject. There was a general feeling that it was a serious 'problem'. Articles were appearing in the press and talks were being given on the radio suggesting that the wastes generated by the proposed nuclear power reactors might be a serious menace to humanity. The prophets pointed with alarm to the enormous quantities of fission products that would accumulate steadily over the years in tank farms associated with reactor fuel reprocessing plants, and calculations were made of the possible results from rupture of the tanks due to corrosion, earthquakes or enemy attack. Responsible people suggested seriously that the waste disposal problem might be fatal to the development of a nuclear power industry, and this attitude was reinforced by the popular outcry that arose from experience with fallout from nuclear weapons testing. The Canadian nuclear power industry was not critically involved in this controversy because our heavy-water reactors are fuelled with natural uranium, and reprocessing of the fuel is not necessary. The spent fuel contains plutonium, a potential fuel, but the cost of recovering it was such that it was not competitive with natural uranium, which is not in short supply in Canada. Our spent fuel is not dissolved in acid - it is stored. still in its zirconium cladding, under water at the reactor site, or placed in sealed concrete-and-steel pipes below ground. If the price of uranium rises sufficiently it will become profitable to recover the plutonium, and only then shall we have an appreciable amount of waste from this source. However. during the first five or six years of research and development at Chalk River we did investigate fuel processing methods, and like everybody else we grad stainless steel tanks containing high and medium level wastes. These were located quite close to the Ottawa River, and we worried about what

  3. Contribution to Radioactive Waste Management in Croatia

    International Nuclear Information System (INIS)

    Hudec, M.; Frgic, L.; Sunjerga, S.

    2002-01-01

    The problem of dangerous waste disposal in Croatia is not more only technical problem; it grew over to political one of the first degree. Nobody likes to have the repository in own courtyard. Some five hundred institutions and factories produce in Croatia low, intermediate or high level radioactive waste. Till now all the dangerous waste is keeping in basements of the institute Rudjer Boskovic in Zagreb, just one kilometre form the city centre. This temporary solution is working fore some fifty years, but cannot be conserved forever. In the paper are presented some of the solutions for radioactive waste deposition, known from the references. The deep, impermeable layers in Panonian area have conserved petroleum and gas under pressure of more hundred bars for few dozens millions of years. Therefore, we propose the underground deposition of radioactive waste in deep boreholes. The liquid waste can be injected in deep isolated layers. In USA and Russia, for many years such solutions are realised. In USA exist special regulations for this kind of waste management. In the paper is described the procedure of designing, execution and verification of deposition in Russia. In northern part of Croatia exist thousand boreholes with known geological data. The boreholes were executed for investigation and exploitation of oil and gas fields. This data can make good use to define safe deep layers capable to be used for repositories of liquid waste. For the high level radioactive waste we propose the deep boreholes of greater diameter, filled with containers. One borehole with 50 cm diameter and 1000 m deep can be safe deposition for c/a 50 m3 of solid high level radioactive waste. Croatia has not big quantity of waste and some boreholes can satisfy all the quantities of waste in Croatia. This is not the cheapest solution, but it can satisfy the strongest conditions of safety. (author)

  4. Radioactive waste management turning options into solution

    International Nuclear Information System (INIS)

    Neubauer, J.

    2000-10-01

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  5. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Kaluzny, Y.

    1994-01-01

    The public has demonstrated interest and even concern for radioactive waste. A fully demonstrated industrial solution already exists for 90% of the waste generated by the nuclear industry. Several solutions are currently under development for long-term management of long-lived waste. They could be implemented on an industrial scale within twenty years. The low volumes of this type of waste mean there is plenty of time to adopt a solution. (author). 5 photos

  6. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  7. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  8. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  9. 'When you use the term 'long term', how long is that term'. Risk, Exclusion, and the Politics of Knowledge Production in Canadian Nuclear Fuel Waste Management Policy Making

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Anna [Univ. of Guelph (Canada). Dept. of Geography

    2006-09-15

    Risk operates within Canadian Nuclear Fuel Waste (NFW) management policy making as a heuristic for knowledge production about its effects which reconciles the knowledge of the nuclear industry with the outcomes of the NFW management process. In so doing it marginalizes the present and historical experiences of Aboriginal peoples with the nuclear industry, and removes from view the ways in which they have been implicated in the geography and political economy of the nuclear industry. Risk is a discursive form that protects a particular group's claims about the effects of NFW by providing it a universalizing epistemological structure with which to obscure its connection to context. Further risk discourse provides the nuclear industry with a conceptual vocabulary that deliberately casts all competing knowledge as perceptions, values, or as an object of inquiry. The arguments of Aboriginal peoples about the residual effects of radiation in their lands which hosted nuclear activities, such as uranium mining and disposal, have no representation in how the discourse of risk defines and represents knowledge, and thus no purchase in the policy debate. As a result the challenge they present to the nuclear industry's claims are contained. The arrangements which permit the unloading of the negative effects of nuclear power generation onto Aboriginal peoples are thus reproduced (both materially and conceptually), but not shown, by the policy making process and likely, its outcome. In order to raise critical questions about the democratic abilities of risk, this paper has examined the role of 'risk' in Canadian NFW policy making. I have shown how when the politics of knowledge production within the philosophy of risk is analyzed, and the use and role of the notion of risk are interrogated, difficult questions are posed for the democratic potential of risk. I have suggested, through an analysis of the NWMO's representations of Aboriginal content in their

  10. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  11. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  12. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  13. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  14. The Scientific Management of Hazardous Wastes

    Science.gov (United States)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  15. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  16. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  17. Radioactive wastes. Management prospects

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    This article describes the perspectives of management of radioactive wastes as defined in the French law from December 30, 1991. This law defines three ways of research: abatement of the radiotoxicity of wastes (first way), reversible geological storage (second way) or long duration geological disposal (third way). This article develops these three solutions: 1 - strategic perspectives; 2 - separation, transmutation and specific conditioning: isotopes to be separated (evolution of the radio-toxicity inventory of spent fuels, migration of long-living radionuclides, abatement of radio-toxicity), research on advanced separation (humid and dry way), research on transmutation of separate elements (transmutation and transmutation systems, realistic scenarios of Pu consumption and actinides transmutation, transmutation performances), research on materials (spallation targets, fuels and transmutation targets), research on conditioning matrices for separated elements; 3 - long-term storage: principles and problems, containers, surface and subsurface facilities; 4 - disposal: reversibility and disposal, geological disposal (principle and problems, site and concept selection), adaptation to reversibility, research on materials (bentonite and cements for geologic barrier, metals for containers), underground research and qualification laboratories, quantity of containers to be stored. (J.S.)

  18. Applications to waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Uresk, V.; Schreckhise, R.G.

    1977-01-01

    Ecological studies of the 200 Area plateau waste management environs have provided preliminary answers to questions concerning the environmental health of associated biota, potential for radionuclide transport through the biotic system and risk to man. More importantly creation of this ecological data base provides visible evidence of environmental expertise so essential for maintenance of continued public confidence in waste management operations

  19. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1986-09-01

    This bibliography is an up-date to AECL-6186(Rev 3), 1952-1982, 'Radioactive Waste Management in Canada AECL Publications and Other Literature' compiled by Dianne Wallace. Canadian publications from outside contractors concerning the Canadian Nuclear Fuel Waste Management Program are included in addition to Atomic Energy of Canada Limited reports and papers. 252 refs

  20. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  1. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  2. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  3. Waste management at LAMPF

    International Nuclear Information System (INIS)

    Lambert, J.E.; Grisham, D.L.

    1982-01-01

    Future major improvements at the Clinto P. Anderson Meson Physics Facility (LAMPF) will require replacement of many large radioactive components. Proper disposal of the components presents special waste management problems caused by component size, weight, geometry, and activity level. A special, large cask trailer (54 metric tons gross) is being constructed for transporting the material to the disposal site. The cask trailer is designed so that the amount of shielding may be individually tailored to suit the geometry and activity level of eah item transported. Special handling techniques and methods of stabilizing loose contamination are being developed to facilitate transport of large radioactive components across open areas. A special Monitor remote-handling system is being constructed to perform the various preparation and rigging operations. Implementation of this equipment will expedite future improvements at LAMPF with minimum impact and/or interference with other ongoing activities

  4. Technical and socio-political issues in radioactive waste disposal 1986. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Kasperson, R.E.; Andersson, T.L.; Parker, S.A.

    1987-11-01

    The purpose of the study was to provide an integrated technical and socio-political analysis of how six countries (Federal Republic of Germany, France, Sweden, Switzerland, United Kingdom and the United States of America) have responded to four key issues in radioactive waste management: a) What constitutes 'safe' or 'absolutely safe' disposal, b) site selection processes, c) timing and type of interim storage. (orig./HP)

  5. 5 CFR 734.408 - Participation in political management and political campaigning; prohibitions.

    Science.gov (United States)

    2010-01-01

    ... management or in a political campaign, except as permitted by subpart D of this part. [61 FR 35102, July 5... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Participation in political management and political campaigning; prohibitions. 734.408 Section 734.408 Administrative Personnel OFFICE OF PERSONNEL...

  6. Hospital waste management in Lebanon

    International Nuclear Information System (INIS)

    Chaker, Alissar

    1999-01-01

    Hospital wastes comprises approximately 80% domestic waste components, also known as non-risk waste and 20% hazardous or risk waste. The 20% of the hospital waste stream or the risk waste (also known as infectious, medical, clinical wastes) comprises components which could be potentially contaminated with infections, chemical or radioactive agents. Therefore, it should be handled and disposed of in such a manner as to minimize potential human exposure and cross-contamination. Hospital risk waste and be subdivided into seven general categories as follows: infections, anatomical/pathological, chemical, pharmaceutical, radioactive waste, sharps and pressurised containers. These waste categories are generated by many types of health care establishments, including hospitals, clinics, infirmaries.... The document presents also tables of number of hospitals and estimated bed number in different regions in Lebanon; estimated hospital risk and non-risk waste generation per tonnes per day for the years 1998 until 2010 and finally sensitivity analysis of estimated generation of hospital risk waste in Lebanon per tonnes per day for the years 1998 until 2010. The management, treatment and disposal of hospital risk waste constitute important environmental and public safety issues. It is recognised that there is alack of infrastructure for the safe and environmentally acceptable disposal of hospital waste in Lebanon

  7. Conflict, public communication, and radioactive waste management

    International Nuclear Information System (INIS)

    Payne, B.A.; Williams, R.G.

    1985-01-01

    Of the technical, political, and social problems associated with radioactive waste management, least is known about the latter two. Lay persons tend to generalize negative attitudes about other nuclear activity to radioactive waste management. Thus, conflict appears inevitable between the general public, citizen action groups, and decision-makers on radioactive waste management. The basis of conflict can be found in the value orientation of certain groups and in differing perceptions of risk. The paper is in three parts. First the sources of conflict over radioactive waste management issues are reviewed. The negative attitudes and fears of the public toward different types of projects involving radioactivity, value conflicts, and differential perceptions of risk are cited as sources. Next are discussed the consequences of conflict in terms of sociological theory. Finally, discussed is how conflict can be directed and managed to produce an informed decision-making process. When the public is sensitized to an issue, when prevailing attitudes on the issue are negative, and when perceived risks are high - all of which are characteristic of waste management issues - specific steps should be taken to establish a legitimate process of communication and interaction between the public and the sponsor agency. When conflict is recognized as inevitable, the goal of a communications programs is no longer to avoid it. It is to use the increased awareness to increase knowledge about waste management issues and public participation in decisions so that the final solution is acceptable at some level to all parties. Other benefits, such as increased agency/group cohesion, can also be realized as consequence of conflict

  8. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  9. Politics and promises of nuclear waste disposal: the view from Nevada

    International Nuclear Information System (INIS)

    Bryan, R.H.

    1987-01-01

    DOE's betrayal of the principles and standards of the Nuclear Waste Policy Act (NWPA) has distorted the agency's repository-siting decisions. Leadership is needed to make midcourse corrections and to return to the promise of state-federal cooperation on which the act was built. NWPA managed to incorporate the interests of diverse factions into a decision-making process that was viewed as an equitable and workable solution to the nation's nuclear waste disposal dilemma. The House of Representatives subcommittees report documents conclusively a substantial and pervasive bias in favor of the selection of sites at Yucca Mountain and Hanford and a politization of the siting process

  10. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  11. Status and challenges for radioactive waste management

    International Nuclear Information System (INIS)

    Riotte, H.

    2011-01-01

    safety case which goes beyond demonstrating compliance with numerical safety indicators and highlights the range of underlying evidence and methods that give confidence. Regarding long-term safety regulation, the variety of approaches in national criteria and practices that reflects the different national regulatory, legal and cultural environments needs to be made transparent. Today, there is a clear understanding that the implementation of radioactive waste repositories is as much a socio-political challenge as a technical one. Public acceptance of the site needs to be secured and maintained over the lifetime of the repository and beyond. A durable relationship between a waste management facility and its host community is paramount to resolve conflicts and to deal with diverging interests that may come up during the long implementation and operational period of a geologic repository. Reversibility of decisions and retrievability of waste, under specified conditions, are typically two important requests from the local public that need to be taken into account when designing a disposal programme. While the management of short-lived, low-level waste became an industrial reality and general attention has been focusing on the management of high level waste and geologic repositories, in several countries there are still outstanding issues related to special types of radioactive waste, e.g. mixed waste and graphite, that require further consideration. As a specific case, safe and cost-effective management of waste from accident facilities, like the Fukushima plants, or from remediation of contaminated land, may pose new questions that could benefit from the international experience.

  12. Is there an ethic of radioactive waste management?

    International Nuclear Information System (INIS)

    Chouchan, M.; Montremy, J.M. de; Loisel, J.P.; Arnould, J.; Serre, J.L.; Bucaille, A.; Barre, B.; Duvert, L.; Legrand, P.; Engstorm, S.; Pavlovski, D.

    2004-01-01

    In France today, radioactive wastes are stored in a secure way, waiting for a political decision concerning their disposal. However, their evolution has to be followed and the future generations will need to be informed to eventually modify the present day choices. Thus, the reversibility is one of the ethical dimension of the question. Today, more than 90% of the radioactive wastes produced in France have found a reliable management solution for each category of wastes. This document compares the point of view of several people from nuclear and non-nuclear domains about the deontological and memory dimensions of radioactive waste management. (J.S.)

  13. Making waste management public (or falling back to sleep).

    Science.gov (United States)

    Hird, Myra J; Lougheed, Scott; Rowe, R Kerry; Kuyvenhoven, Cassandra

    2014-06-01

    Human-produced waste is a major environmental concern, with communities considering various waste management practices, such as increased recycling, landfilling, incineration, and waste-to-energy technologies. This article is concerned with how and why publics assemble around waste management issues. In particular, we explore Noortje Marres and Bruno Latour's theory that publics do not exist prior to issues but rather assemble around objects, and through these assemblages, objects become matters of concern that sometimes become political. The article addresses this theory of making things public through a study of a small city in Ontario, Canada, whose landfill is closed and waste diversion options are saturated, and that faces unsustainable costs in shipping its waste to the United States, China, and other regions. The city's officials are undertaking a cost-benefit assessment to determine the efficacy of siting a new landfill or other waste management facility. We are interested in emphasizing the complexity of making (or not making) landfills public, by exploring an object in action, where members of the public may or may not assemble, waste may or may not be made into an issue, and waste is sufficiently routinized that it is not typically transformed from an object to an issue. We hope to demonstrate Latour's third and fifth senses of politics best account for waste management's trajectory as a persistent yet inconsistent matter of public concern.

  14. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  15. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  16. Overview of the NRC nuclear waste management program

    International Nuclear Information System (INIS)

    Malaro, J.C.

    1976-01-01

    The NRC has firmly established waste management as a high-priority effort and has made the commitment to act rapidly and methodically to establish a sound regulatory base for licensing waste management activities. We believe the priorities for NRC work in waste management are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demands will increase. Recognizing that its decision will affect industry, other governmental jurisdictions, private interest groups, and the public at large, NRC has encouraged and will continue to encourage their participation in planning our program. We also recognize that the problems of nuclear waste management are international in scope. Many waste management problems (e.g., potential for contamination of oceans and atmosphere, need for isolation of some wastes for longer periods than governments and political boundaries have remained stable in the past), require a set of internationally acceptable and accepted solutions. The wastes from the U.S. nuclear industry will account for only about one third of the nuclear waste generated in the world. Therefore, we propose to cooperate and where appropriate take the lead in establishing acceptable worldwide policies, standards and procedures for handling nuclear wastes

  17. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  18. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of São João, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  19. Prioritization of proposed waste management construction projects for the Waste Management program within the Department of Energy

    International Nuclear Information System (INIS)

    Johnson, J.V.

    1995-01-01

    A prioritization process is used to evaluate and rank proposed construction projects within the Department of Energy's Waste Management program. The process is used to determine which projects should proceed with conceptual design activities. The proposed construction projects are evaluated against a set of criteria which reflect Waste Management priorities. A management review team ranks and scores the projects thereby generating a prioritized list of projects. Despite decreasing budgets and changing political climates, the process has been a successful decision-aiding tool for selecting construction projects to carry out the Waste Management mission within the Department of Energy

  20. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  1. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  2. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  3. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  4. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  5. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  6. Radioactive Waste Management Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of radioactive waste management, including decommissioning and environmental remediation, to ensure that the Nuclear Energy Basic Principles are satisfied.

  7. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  8. Solid Waste Management in Jordan

    OpenAIRE

    Aljaradin, Mohammad; Persson, Kenneth M

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced mi...

  9. Solid Waste Management in Jordan

    OpenAIRE

    Mohammad Aljaradin

    2014-01-01

    Solid waste became one of the major environmental problems in Jordan, which has been aggravated over the past 15 years by the sharp increase in the volume of waste generated as well as qualitative changes in its composition. The challenges face solid waste management (SWM) in Jordan are numerous. Financial constraints, shortage of proper equipment and limited availability of trained and skilled manpower together with massive and sudden population increases due to several waves of forced migra...

  10. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  11. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  12. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  13. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  14. Waste management at WAK

    International Nuclear Information System (INIS)

    Kuhn, K.D.; Willax, H.O.

    1986-01-01

    After a short description of the WAK plant and its reprocessing and intervention activities, types and sources of WAK wastes are described. Roughly half of the waste volume is generated during reprocessing, the other half during intervention periods. Most of the waste is transported to KfK for conditioning. Only waste from the head end cell is cementated on the spot. HLLW is stored in stainless steel tanks. Some results from analyzing this stuff are given. The corrosion behavior is acceptable for medium term storage. (orig.)

  15. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  16. Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-02-01

    This DCP establishes an interim plan for the Office of Civilian Radioactive Waste Management (OCRWM) technical baseline until the results of the OCRWM Document Hierarchy Task Force can be implemented. This plan is needed to maintain continuity in the Program for ongoing work in the areas of Waste Acceptance, Transportation, Monitored Retrievable Storage (MRS) and Yucca Mountain Site Characterization

  17. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  18. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  19. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  20. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  1. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  2. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  3. Waste management and the workplace*

    African Journals Online (AJOL)

    User

    those employed by private contractors or intermediaries providing waste management services to local .... Tension both within this coalition and between the coalition and the ruling ANC has at times been high. 12 A lifeline tariff (also called a ...

  4. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  5. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  6. Management of reactor waste

    International Nuclear Information System (INIS)

    Baatz, H.

    1976-01-01

    The author discusses the type, production and amount of radioactive waste produced in a nuclear power station (LWR) as well as its conditioning and disposal. The mobile system developed by STEAG for the solidification of medium-activity waste and sludge is referred to in this connection. (HR) [de

  7. ERDA waste management program

    International Nuclear Information System (INIS)

    Kuhlman, C.W.

    1976-01-01

    The ERDA commercial waste program is summarized. It consists of three parts: terminal storage, processing, and preparation of the Generic Environmental Impact Statement. Emplacement in geologic formations is the best disposal method for high-level waste; migration would be essentially zero, as it was in the Oklo event. Solidification processes are needed. Relations with the states, etc. are touched upon

  8. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  9. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  10. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  11. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  12. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  13. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  14. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  15. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Kizawa, Hideo

    1982-01-01

    A system of combining a calciner for concentrated radioactive liquid waste and an incinerator for miscellaneous radioactive solid waste is being developed. Both the calciner and the incinerator are operated by fluidized bed method. The system features the following points: (1) Inflammable miscellaneous solids and concentrated liquid can be treated in combination to reduce the volume. (2) Used ion-exchange resin can be incinerated. (3) The system is applicable even if any final waste disposal method is adopted; calcinated and incinerated solids obtained as intermediate products are easy to handle and store. (4) The system is readily compatible with other waste treatment systems to form optimal total system. The following matters are described: the principle of fluidized-bed furnaces, the objects of treatment, system constitution, the features of the calciner and incinerator, and the current status of development. (J.P.N.)

  17. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Detilleux, E.

    1984-01-01

    The first part of this paper briefly describes the nuclear industry in Belgium and the problem of radioactive wastes with regard to their quality and quantity. The second part emphasizes the recent guidelines regarding the management of the nuclear industry in general and the radioactive wastes in particular. In this respect, important tasks are the reinforcement of administrative structures with regard to the supervision and the control of nuclear activities, the establishment of a mixed company entrusted with the covering of the needs of nuclear plants in the field of nuclear fuels and particularly the setting up of a public autonomous and specialized organization, the 'Public Organization for the Management of Radioactive Waste and Fissile Materials', in short 'O.N.D.R.A.F.'. This organization is in charge of the management of the transport, the conditioning, the storage and the disposal of radioactive wastes. (Auth.)

  18. Solutions for Waste Management

    International Nuclear Information System (INIS)

    2013-01-01

    To safely and securely dispose of highlevel and long-lived radioactive waste, this material needs to be stored for a period of time that is very long compared to our everyday experience. Underground disposal facilities need to be designed and constructed in suitable geological conditions that can be confidently demonstrated to contain and isolate the hazardous waste from our environment for hundreds of thousands of years. Over this period of time, during which the safety of an underground waste repository system must be assured, the waste's radioactivity will decay to a level that cannot pose a danger to people or the environment. The archaeological record can help in visualizing such a long period of time. Climates change, oceans rise and vanish, and species evolve in the course of a one hundred millennia. Rocks bear witness to all of these changes. Geologists in their search for safe repositories for the long-term disposal of high level radioactive waste have identified rock formations that have proven stable for millions of years. These geological formations are expected to remain stable for millions of years and can serve as host formations for waste repositories.

  19. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  20. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  1. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  2. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  4. Waste Management Using Request-Based Virtual Organizations

    Science.gov (United States)

    Katriou, Stamatia Ann; Fragidis, Garyfallos; Ignatiadis, Ioannis; Tolias, Evangelos; Koumpis, Adamantios

    Waste management is on top of the political agenda globally as a high priority environmental issue, with billions spent on it each year. This paper proposes an approach for the disposal, transportation, recycling and reuse of waste. This approach incorporates the notion of Request Based Virtual Organizations (RBVOs) using a Service Oriented Architecture (SOA) and an ontology that serves the definition of waste management requirements. The populated ontology is utilized by a Multi-Agent System which performs negotiations and forms RBVOs. The proposed approach could be used by governments and companies searching for a means to perform such activities in an effective and efficient manner.

  5. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  6. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  7. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  8. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  9. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  10. Accrual-based and real earnings management and political connections

    NARCIS (Netherlands)

    Braam, G.J.M.; Nandy, M.; Weitzel, G.U.; Lodh, S.

    2015-01-01

    This study examines whether the trade-off between real and accrual-based management strategies differs between firms with and without political connections. We argue that politically connected firms are more likely to substitute real earnings management for accrual-based earnings management than

  11. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  12. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  13. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  14. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  15. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  16. Nuclear waste management in West Germany - the battle continues

    International Nuclear Information System (INIS)

    Hirsch, H.

    1983-01-01

    A detailed account is given of recent technical and political activities in West Germany in connexion with nuclear waste management - plans for reprocessing plant, storage and final disposal. Headings are: historical and organizational introduction; waste disposal concept (including political activities of federal and state governments); the Gorleben Hearing (concerning reprocessing); the consequences of political and scientific opposition; reprocessing makes a fast come-back 1980-1983; new concepts - new risks (proposals for spent fuel storage and reprocessing); reprocessing experience; new toxicity (reference to ICRP-30); why reprocessing; intermediate storage of spent fuel and other wastes; development of final disposal 1979 to 1983 (particular reference to Gorleben salt dome); safety of final disposal - the million-year-gamble. (U.K.)

  17. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  18. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Houy, J.C.; Rimbert, J.C.; Bouvet, C.; Laugle, S.

    1997-01-01

    radioactive wastes which do not correspond to the disposal standards will be processed by ANDRA (National Agency for Radioactive Waste Management)

  19. Radiation waste management in Poland

    International Nuclear Information System (INIS)

    Tomczak, W.

    1995-01-01

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs

  20. Waste management - nuclear style

    International Nuclear Information System (INIS)

    McCall, P.

    1977-01-01

    Possible ways of disposing of highly radioactive wastes arising from the United Kingdom nuclear industry are briefly reviewed: projecting into outer space, dumping in containers in the ocean, or storage on land. The problems in each case and, in particular, the risks of environmental contamination from marine or land disposal, are discussed. (U.K.)

  1. Industrial management of radioactive wastes

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    This article deals with the present situation in France concerning radioactive waste management. For the short and medium term, that is to say processing and disposal of low and medium level radioactive wastes, there are industrial processes giving all the guarantees for a safe containment, but improvements are possible. For the long term optimization of solution requires more studies of geologic formations. Realization emergency comes less from the waste production than the need to optimize the disposal techniques. An international cooperation exists. All this should convince the public opinion and should develop planning and realization [fr

  2. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  3. Too hot to handle. Social and policy issues in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Walker, C.A.; Gould, L.C.; Woodhouse, E.J.

    1983-01-01

    Information about the management of radioactive wastes is provided in this book. Specifically, the book attempts to supply information to further the understanding of the history of radioactive waste management in this country and the role of nuclear energy in the future of the US; the science and technology of the processes that produce radioactive wastes and of the methods proposed for managing them; the biological effects of radiation; the public attitudes about nuclear power; the nature of risks resulting from technological developments and ways of managing them; and the political institutions and processes that govern radioactive waste management. The authors have attempted to present an objective view of nuclear waste management taking a stand neither for nor against nuclear power but placing special emphasis on radioactive waste management rather than nuclear power, because they feel that the latter aspect of the subject has received much more extensive coverage elsewhere. The contents of the book are divided into 7 chapters entitled: The Radioactive Waste Management Problem, Science and Technology of the Sources and Management of Radioactive Wastes, Nuclear Waste Management and Risks to Human Health, Public Attitudes toward Radioactive Wastes, How Safe Is Safe Enough; Determinants of Perceived and Acceptable Risk, The Politics of Nuclear Waste Management, and Value Issues in Radioactive Waste Management

  4. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  5. Radioactive waste management. Response by the Town and Country Planning Association to the white paper 'Radioactive Waste Management' - Cmnd 8607

    International Nuclear Information System (INIS)

    1982-12-01

    Technical, ethical, social, political and organizational aspects of the management of low-, intermediate-, and high-level radioactive wastes arising from operations in the United Kingdom are discussed. Recommendations are made to provide scope for public discussion, to consult the appropriate local water and other authorities, and to take other specified actions relevant to town and country planning. (U.K.)

  6. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  7. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Out of sight, out of mind: The politics of nuclear waste in the United Kingdom

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.

    1987-01-01

    This paper examines the proposition that waste disposal strategy in the UK is a political rather than a 'rational' or 'scientific' process. It shows how strategy has evolved in response to the changing political environment, leading to the proposals for land burial of radioactive wastes. It explores the political controversy over this policy, with specific reference to the case of one of the proposed sites. The future implications of the contemporary conflict are discussed in the concluding sections

  9. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  10. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  11. French regulation and waste management

    International Nuclear Information System (INIS)

    1984-08-01

    The organization and the role played by French safety authorities for waste management are described. The French policy for storage and conditioning: basic objectives and waste management optimization are specified. Safety requirements are based on the barrier principle, they are mentioned for packaging and storage. The ''Institut de Protection et Surete Nucleaire'' deals not only with safety analysis but also help the ''autorites ministerielles'' for the development of fundamental safety rules. Examples for spent fuel storage and radioactive materials transport are treated in appendixes [fr

  12. Waste management CDM projects barriers NVivo 10® qualitative dataset.

    Science.gov (United States)

    Bufoni, André Luiz; de Sousa Ferreira, Aracéli Cristina; Oliveira, Luciano Basto

    2017-12-01

    This article contains one NVivo 10® file with the complete 432 projects design documents (PDD) of seven waste management sector industries registered as Clean Development Mechanism (CDM) under United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes): technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: "The financial attractiveness assessment of large waste management projects registered as clean development mechanism" and "The declared barriers of the large developing countries waste management projects: The STAR model" [2], [3]. The data allows any computer assisted qualitative content analysis (CAQCA) on the sector and it is available at Mendeley [4].

  13. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  14. An international approach to radioactive waste management

    International Nuclear Information System (INIS)

    Barlett, J.W.

    1994-01-01

    Needs and opportunities for an international approach to management and disposal of radioactive wastes are discussed. Deficiencies in current national radioactive waste management programs are described, and the impacts of management of fissile materials from nuclear weapons on waste management are addressed. Value-added services that can be provided by an international organization for waste management are identified, and candidate organizations that could provide these services are also identified

  15. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  16. Progress in waste management technology

    International Nuclear Information System (INIS)

    Hart, R.G.

    1978-08-01

    In a previous paper by the same author, emphasis was placed on the role that 'pathways analysis' would play in providing 'beyond reasonable doubt' that a particular method and a particular formation would be suitable for the safe geologic disposal of nuclear wastes. Since that paper was released, pertinent pathways analyses have been published by Bernard Cohen, de Marsily et al., the American Physical Society's Special Study Group on Nuclear Fuel Cycles and Waste Management, and KBS of Sweden. The present paper reviews and analyses the strengths and weaknesses of each of these papers and their implications for the Canadian plan for the geologic disposal of nuclear waste. The conclusion is that the Canadian plan is on the right track and that the disposal of nuclear wastes is not an intractable problem. Indeed the analyses show that several options, each with large safety factors, are likely eventually to be identified. (author)

  17. Decentralising Natural Resource Management and the Politics of ...

    African Journals Online (AJOL)

    Decentralising Natural Resource Management and the Politics of Institutional Resource Management in Uganda's Forest Sub-Sector. ... December 1992, Uganda has implemented wide-ranging public sector reforms as a part of ... insulate decision making over the allocation of licences from higher-level political pressures, ...

  18. Radioactive waste management in Tanzania

    International Nuclear Information System (INIS)

    Banzi, F.P.; Bundala, F.M.; Nyanda, A.M.; Msaki, P.

    2002-01-01

    Radioactive waste, like many other hazardous wastes, is of great concern in Tanzania because of its undesirable health effects. The stochastic effects due to prolonged exposure to ionizing radiation produce cancer and hereditary effects. The deterministic effects due to higher doses cause vomiting, skin reddening, leukemia, and death to exposed victims. The aim of this paper is to give an overview of the status of radioactive wastes in Tanzania, how they are generated and managed to protect humans and the environment. As Tanzania develops, it is bound to increase the use of ionizing radiation in research and teaching, industry, health and agriculture. Already there are more than 42 Centers which use one form of radioisotopes or another for these purposes: Teletherapy (Co-60), Brach-therapy (Cs-137, Sr-89), Nuclear Medicine (P-32, Tc-99m, 1-131, 1-125, Ga-67, In-111, Tl-206), Nuclear gauge (Am-241, Cs- 137, Sr-90, Kr-85), Industrial radiography (Am-241, C-137, Co-60, lr-92), Research and Teaching (1-125, Am241/Be, Co-60, Cs-137, H-3 etc). According to IAEA definition, these radioactive sources become radioactive waste if they meet the following criteria: if they have outlived their usefulness, if they have been abandoned, if they have been displaced without authorization, and if they contaminate other substances. Besides the origin of radioactive wastes, special emphasis will also be placed on the existing radiation regulations that guide disposal of radioactive waste, and the radioactive infrastructure Tanzania needs for ultimate radioactive waste management. Specific examples of incidences (theft, loss, abandonment and illegal possession) of radioactive waste that could have led to serious deterministic radiation effects to humans will also be presented. (author)

  19. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  20. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  1. Issues in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Ashbrook, A.W.

    1984-01-01

    All industry finds itself today enmeshed in a morass of regulation, political apathy and public antagonism when it comes to hazardous industrial waste. Our industry is a world-class leader on all three fronts. There are no disposal facilities in Canada for radioactive wastes and the prognosis for the future is bleak. As the industry gets older, more and more facilities will be closed and require decommissioning. New facilities require plans for the long-term management of their wastes. Indeed, one major public issue with the nuclear industry is the fate of the wastes produced. In looking at the situation in which we find ourselves today with respect to the long-term management of naturally-occurring low-level radioactive wastes, one must wonder where we are going in the future, and whether indeed is an end in sight

  2. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    NARCIS (Netherlands)

    Mollinga, P.P.; Bhat, A.; Cleaver, F.; Meinzen-Dick, R.; Molle, F.; Neef, A.; Subramanian, S.; Wester, P.

    2008-01-01

    EDITORIAL PREAMBLE: The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany) in 2004/2005 in the

  3. Technology, socio-political acceptance, and the low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Andrews, L.J.; Domenech, J.S.

    1986-01-01

    The technology which is required to develop and operate low-level radioactive waste disposal sites in the 1990's is available today. The push for best available technology is a response to the political difficulties in securing public acceptance of the site selection process. Advances in waste management technologies include development of High Integrity Containers (HIC), solidification media, liquid volume reduction techniques using GEODE/sub sm/ and DeVoe-Holbein technology of selective removal of target radioisotopes, and CASTOR V storage casks. Advances in technology alone, however, do not make the site selection process easier and without socio-political acceptance there may be no process at all. Chem-Nuclear has been successful in achieving community acceptance at the Barnwell facility and elsewhere. For example, last June in Fall River County, South Dakota, citizens voted almost 2:1 to support the development of a low-level radioactive waste disposal facility. In Edgemont, the city nearest the proposed site, 85% of the voters were in favor of the proposed facility

  4. Assessment of Solid Waste Management Strategies in Camarines Norte, Philippines

    Directory of Open Access Journals (Sweden)

    Maria Cristina C. Azuelo

    2016-11-01

    Full Text Available The Ecological Solid Waste Management Act of 2000 or RA 9003 mandates the local government units to take initiatives in managing their daunting problems on ecological solid waste disposal. Consequently, compliance of Camarines Norte, Philippines on this mandate needs assessment to determine the existing solid waste management (SWM strategies, the effectiveness and the possibility of adoption in each municipality. This study utilized the descriptive method using questionnaire as the main tool supplemented by interview. Results showed that the existing SWM strategies with the highest percentages of existence in the twelve (12 municipalities were provision of number of trucks in transporting solid wastes and knowledge on waste segregation conducted at every household/establishment. Varying levels were observed. However, high level of effectiveness is still required for significant impact, seeing that from the six areas assessed only four municipalities were identified to have more and highly effective SWM strategies. Generally, only availability of technology for composting was considered more effective and can be adopted in all municipalities. Better solid waste management may be fully attained through the involvement, political will and commitment of the implementers in the implementation of politically passed resolutions and undertaking of their initiatives that will stimulate active participation of the community. All these measures may bring change in health and environment in the province.

  5. Healthcare waste management in Asia

    International Nuclear Information System (INIS)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  6. Healthcare waste management in Asia.

    Science.gov (United States)

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  7. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  8. International waste management fact book

    International Nuclear Information System (INIS)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs

  9. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  10. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  11. WasteWise Resource Management: Innovative Solid Waste Contracting Methods

    Science.gov (United States)

    Resource management is an innovative contractual partnership between a waste-generating organization and a qualified contractor that changes the nature of current disposal services to support waste minimization and recycling.

  12. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  13. Explaining the ratification of nuclear waste disposal by the finnish parliament: political culture and contextual factors

    International Nuclear Information System (INIS)

    Ruostetsaari, I.

    2002-01-01

    According to the Nuclear Energy Act the government's Decision in Principle (DiP) on the nuclear waste disposal needs to be ratified by Parliament. The DiP was ratified by general consent (159-3) on 18 May 2001. How we can explain this parliamentary consensus taking account that the previous DiP concerning construction of a new nuclear power plant was overruled in 1993 and the public debate on nuclear power is still pronounced. The explanation can be sought, together with the institutional arrangements, from two sources; on one hand from the Finnish political culture, i.e., traditional and inherited ways of decision-makers to make decisions and citizens' ways to react to those decisions, and on the other hand, from current contextual factors linking to nuclear waste management. (authors)

  14. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  15. Waste minimization fundamental principles used in radioactive waste management plan for decommissioning of a CANDU - 600 nuclear power plant

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Georgescu, Roxana Cristiana; Sociu, Florin

    2009-01-01

    The objectives of waste minimization are to limit the generation and spread of radioactive contamination and to reduce the amount of wastes for storage and disposal, thereby limiting any consequent environmental impact, as well as the total costs associated with contaminated material management. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from Decontamination and Decommissioning (D and D) activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during Decontamination and Decommissioning. The main elements of a waste minimization strategy can be grouped into four areas: source reduction, prevention of contamination spread, recycle and reuse, and waste management optimization. For sustaining this objective, the following principles and procedures of wastes management are taken into account: safety and environment protection principles; principles regarding the facility operation; quality assurance procedures; procedures for material classification and releasing. (authors)

  16. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  17. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  18. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  19. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  20. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  1. Popular democracy and waste management

    International Nuclear Information System (INIS)

    Wallis, L.R.

    1986-01-01

    The US has moved from representative democracy to popular democracy and public scrutiny is unrelenting. Any hope of success on their part in resolving the nuclear waste question hinges on their ability to condition themselves to operate in a popular democracy environment. Those opposed to the siting of high- and low-level waste repositories have already developed a set of recurring themes: (1) the siting criteria are fatally flawed; (2) the criteria are not adequate; (3) the process is driven by politics not science; (4) unrealistic deadlines lead to dangerous shortcuts; (5) transportation experience is lacking; (6) the scientific community does not really know how to dispose of the wastes. They must continue to tell the public that if science has brought us problems, then the answer can be only more knowledge - not less. Failure by their profession to recognize that popular democracy is a fact and that nuclear issues need to be addressed in humanistic terms raises the question of whether America is philosophically suited for the expanded use of nuclear power in the future - or for that matter for leadership in the world of tomorrow

  2. Waste management regroups units into Rust International

    International Nuclear Information System (INIS)

    Kirschner, E.

    1992-01-01

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees

  3. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  4. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  5. Legal and Regulatory Frameworks for Decommissioning and Waste Management

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2016-01-01

    Safe and efficient decommissioning and waste management requires clear structures for allocating responsibility and funding. Organisation of decommissioning and waste management activities and the regulatory environment within which those activities are undertaken should also allow the supply chain to prosper and, wherever possible, reduce barriers to international availability of resources and waste facilities. Radioactive waste treatment and disposal in particular raises both legal and political challenges to effective international co-operation, yet options for decommissioning and waste management are maximised where international barriers can be minimised. Added to this, international nuclear liabilities issues must be managed so as to avoid unnecessary deterrents to international mobility of capability within the decommissioning market. Contractual terms and insurance arrangements for international shipments of nuclear waste and materials will also need to take into account imminent changes to liabilities conventions, ensuring compliance and management of compliance costs (of both insurance and management time). This paper explores legal and commercial structures intended to support effective decommissioning and waste management and examines regulatory and commercial factors affecting the ability of facility operators to utilise internationally available capability. It focusses on: - strategic approaches developed in the UK to address decommissioning and waste management liabilities associated with the UK's first and second generation civil nuclear sites and comparison of those approaches with other jurisdictions with significant decommissioning liabilities; - liability and compliance risks associated with navigating international nuclear liabilities regimes in context of both mobility of decommissioning capability and international waste shipment; and - regulatory issues affecting international availability of waste treatment facilities, including

  6. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrácz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  7. Radioactive waste management in Canada

    International Nuclear Information System (INIS)

    1990-11-01

    This bibliography is a review of the Canadian literature on radioactive waste management from 1953 to the present. It incorporates the references from the previous AECL--6186 revisions, and adds the current data and some of the references that had been omitted. Publications from outside organizations of concern to the Canadian Nuclear Fuel Waste Program are included in addition to AECL Research reports and papers. This report is intended as an aid in the preparation of the Concept Assessment Document and is complementary to AECL Research's internal document-ready references on the MASS-11 word processing systems

  8. Radioactive waste integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Song, D Y; Choi, S S; Han, B S [Atomic Creative Technology, Taejon (Korea, Republic of)

    2003-10-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication.

  9. Radioactive waste integrated management system

    International Nuclear Information System (INIS)

    Song, D. Y.; Choi, S. S.; Han, B. S.

    2003-01-01

    In this paper, we present an integrated management system for radioactive waste, which can keep watch on the whole transporting process of each drum from nuclear power plant temporary storage house to radioactive waste storage house remotely. Our approach use RFID(Radio Frequency Identification) system, which can recognize the data information without touch, GSP system, which can calculate the current position precisely using the accurate time and distance measured from satellites, and the spread spectrum technology CDMA, which is widely used in the area of mobile communication

  10. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  11. Oak Ridge Reservation Waste Management Plan

    International Nuclear Information System (INIS)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year

  12. Waste management - textbook for secondary schools

    International Nuclear Information System (INIS)

    Chmielewska, E.; Kuruc, J.

    2010-09-01

    This text-book consist of five parts: (I) Waste management; (II) Solid waste management; (III) Recovery and recycling of secondary raw materials; (IV) Radioactive waste management; Examples of verification knowledge and testing of the secondary students through the worksheet. (V) Suggestions for leisure time activities. This text-book is assigned for high school students.

  13. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  14. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  15. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  16. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  17. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  18. Radioactive waste management in Switzerland

    International Nuclear Information System (INIS)

    Hugi, M.

    2011-01-01

    The Federal Nuclear Safety Inspectorate ENSI is the Supervisory Authority for Nuclear Safety and Security of Swiss Nuclear Facilities. The responsibilities include the evaluation and operational monitoring of the existing five Swiss nuclear power plants, the radioactive waste disposals and the nuclear research facilities. The supervisory area includes project planning, operational issues, and decommissioning of plants. ENSI supervises the formation, handling and storage of radioactive waste, the work on deep geological disposal and the transport of radioactive materials. The disposal of radioactive waste is regulated by the Swiss Nuclear Energy Act (2005) and the Nuclear Energy Ordinance (2005). The protection of humans and the environment must be guaranteed permanently. Waste disposal must be carried out in the own country by deep geological repositories. The licensing procedure for the disposal facilities is concentrated at the federal level, the cooperation of the location canton, neighboring cantons and the neighboring countries is ensured. The general license for the deep geological repository is subject to an optional referendum. The polluter pays principle applies to the disposal of radioactive waste. The waste producers are legally obliged to dispose of them and have founded the National Cooperative for the Storage of Radioactive Waste (Nagra). The federal government is responsible for waste from medicine, industry and research (MIF). The Federal Council approved the waste management certificate for low and intermediate level waste (SMA) in 1988. High-level-waste (HAA) and long-live-intermediate-level-waste (LMA), where approved in 2006. Nagra's disposal concept envisages two separate deep geological repositories for SMA and HAA / LMA in a suitable, tectonically stable, low-permeability rock formation. If a site meets both the SMA and HAA / LMA storage requirements, the selection process may result in a common location for all radioactive waste. Until the

  19. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  20. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Faussat, A.

    1988-01-01

    Solutions for radioactive waste management are already in existence and applied on an industrial scale for short-lived wastes. France has acquired an aknowledged expertise on the international level and several foreign contemporaries are interested in the relevant techniques developed. An intensive international cooperation has allowed to define bases for an underground deep repository for long-lived wastes. It is therefore important to choose a site which meets the expected storage conditions. This development work has been started in several countries in a similar way and which should be completed by the beginning of the next century. An 'open channel' with the public about this emotional topic can smooth the way for solutions by which mankind can master its technological challenges

  1. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  2. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  3. Waste regular management: experience and progress prospects

    International Nuclear Information System (INIS)

    Lallement, R.

    1997-01-01

    Since 1990, the CEA has devoted important financial means for the radioactive civilian waste cleaning of its centers: radioactive waste processing (and especially large stocks of ancient wastes), useless-fuel management for fuels produced by experimental reactors and laboratories, and wastes produced by ancient nuclear facilities dismantlement. A policy towards waste volume reduction had already led to a 20 pc volume reduction of its low-level wastes since 1993

  4. Planning analysis and political steering with New Public Management

    DEFF Research Database (Denmark)

    Sager, Tore Øivin; Sørensen, Claus Hedegaard

    2011-01-01

    of interviews sheds light on the apparent paradox that parliamentarians accept delegation of highway investment decisions despite their profound scepticism to the cost-benefit analyses and impact calculations that are essential to management by objectives and results, which was to give them continued political...... by the Government. The political concentration on strategic steering, the concomitant delegation, and management by objectives and results are central components of New Public Management....

  5. Northeast Waste Management Alliance (NEWMA)

    International Nuclear Information System (INIS)

    Goland, A.N.; Kaplan, E.

    1993-11-01

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93

  6. Radioactive waste management in the former USSR. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  7. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  8. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  9. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  10. Radioactive waste management at KANUPP

    International Nuclear Information System (INIS)

    Tahir, Tariq B.; Qamar Ali

    2001-01-01

    This paper describes the existing radioactive waste management scheme of KANUPP. The radioactive wastes generated at KANUPP are in solid, liquid and gaseous forms. The spent fuel of the plant is stored underwater in the Spent Fuel Bay. For long term storage of low and intermediate level solid waste, 3m deep concrete lined trenches have been provided. The non-combustible material is directly stored in these trenches while the combustible material is first burnt in an incinerator and the ash is collected, sealed and also stored in the trenches. The low-level liquid and gaseous effluents are diluted and are discharged into the sea and the atmosphere. The paper also describes a modification carried out in the spent resin collection system in which a locally designed removable tank replaced the old permanent tanks. Presently the low level combustible solid waste is incinerated and stored, but it is planned to replace the present method by using compactor and storing the compacted waste in steel drums underground. (author)

  11. Ecosystem management via interacting models of political and ecological processes

    Directory of Open Access Journals (Sweden)

    Haas, T. C.

    2004-01-01

    Full Text Available The decision to implement environmental protection options is a political one. Political realities may cause a country to not heed the most persuasive scientific analysis of an ecosystem's future health. A predictive understanding of the political processes that result in ecosystem management decisions may help guide ecosystem management policymaking. To this end, this article develops a stochastic, temporal model of how political processes influence and are influenced by ecosystem processes. This model is realized in a system of interacting influence diagrams that model the decision making of a country's political bodies. These decisions interact with a model of the ecosystem enclosed by the country. As an example, a model for Cheetah (Acinonyx jubatus management in Kenya is constructed and fitted to decision and ecological data.

  12. The AREVA's waste management strategy

    International Nuclear Information System (INIS)

    Poncet, Ph.

    2011-01-01

    In accordance with its policy of sustainable development and continuous progress, AREVA is permanently seeking to reduce the impact of the management of its waste, of whatever type, and its radioactive waste in particular. This goal is taken into consideration very early in industrial projects and concerns all the phases in the life of the installations and all the activities of the Group. The resulting actions aim to guarantee that an exhaustive inventory is made of the radioactive materials and waste, to optimise how they are characterised, to ensure their traceability and to determine the best management methods. Past and future progress relies primarily on the effectiveness of zoning (in particular the concept of radiological cleanness), how work is organized, the account taken of operating experience feedback, the search for recycling solutions or appropriate removal routes, optimisation of waste storage and, whenever possible, online processing, plus of course the professionalism of all those involved. A participatory approach by the Group will enable the focus areas and required actions to be defined: networks and multidisciplinary working groups, whenever possible in association with other stake-holders or partners from the nuclear industry. (author)

  13. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  14. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  16. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  17. Waste management research abstracts no. 21

    International Nuclear Information System (INIS)

    1992-12-01

    The 21th issue of this publication contains over 700 abstracts from 35 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  18. Waste management research abstracts. No. 20

    International Nuclear Information System (INIS)

    1990-10-01

    The 20th issue of this publication contains over 700 abstracts from 32 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  19. Issues related to public perception of radioactive waste management options

    International Nuclear Information System (INIS)

    Taylor, D.M.

    2007-01-01

    Public perceptions about radioactive waste are generally rather or even strongly negative. They are also very poorly informed. This is rather unfortunate as it is these perceptions that appear to greatly influence the Public views on nuclear energy in general. This, in turn, has had an influence on political decisions. On the other hand, in a very clear majority of the Member States of the European Union, the Public have already indicated that they would be ready to accept the important role of nuclear in their future energy mix as long as all the radioactive wastes can be safely managed. However perceptions about nuclear energy and radioactive waste should be seen in the context of the Public wider perceptions on energy and, in particular, the role in the future of different sources. It may be wrong for political decisions on nuclear energy in the future to rely to heavily on the Public perceptions. (author)

  20. Assessment of methodologies for radioactive waste management

    International Nuclear Information System (INIS)

    Hoos, I.R.

    1978-01-01

    No quantitative methodology is adequate to encompass and assess all the risks, no risk/benefit calculation is fine-tuned enough to supply decision-makers with the full range and all of the dimensions. Quality assurance cannot be conceived in terms of systems design alone, but must be maintained vigilantly and with integrity throughout the process. The responsibility of the NRC is fairly well established with respect to overall reactor safety. With respect to the management of radioactive wastes, its mission is not yet so clearly delineated. Herein lies a challenge and an opportunity. Where the known quantitative methodologies are restrictive and likely to have negative feedback effect on authority and public support, the broader lens and the bolder thrust are called for. The cozy cocoon of figures ultimately protects no one. The Commission, having acknowledged that the management of radioactive wastes is not merely a technological matter can now take the socially responsible position of exploring as fully and confronting as candidly as possible the total range of dimensions involved. Paradoxically, it is Charles J. Hitch, intellectual progenitor of the methodology, who observes that we may be missing the meaning of his message by relying too heavily on quantitative analysis and thus defining our task too narrowly. We live in a closed system, in which science and technology, politics and economics, and, above all, social and human elements interact, sometimes to create the problems, sometimes to articulate the questions, and sometimes to find viable solutions

  1. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    2006-01-01

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs

  2. Management of radioactive medical waste

    International Nuclear Information System (INIS)

    Deschamps, S.; Mathey, J.C.

    1996-01-01

    Hospitals are producers of small amounts of radioactive waste. Current legislation details exactly how hospitals should manage it. Sealed sources are returned to suppliers. Disposal of unsealed sources, liquid or solid, depends upon their half-life: short-lived radioisotopes (half-life less than two months) are stocked on site while they decay; isotopes with longer half-lives (greater than two months) are handled by a specialist organization (ANDRA). (authors). 8 refs

  3. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  4. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  5. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  6. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  7. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  8. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  9. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  10. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  11. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  12. Radioactive wastes management of NPP

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Pazukhin, Eh.M.; Shigera, Yu. M.; Shigera, V.Yu.

    2005-01-01

    Modern knowledge in the field of radiation waste management on example of the most serious man-made accident at Chernobyl NPP are illuminated. This nuclear power plant that after accident in 1986 became in definite aspect an experimental scientific ground, includes all variety of problems which have to be solved by NPP personnel and specialists from scientific organizations. This book is aimed for large sphere of readers. It will be useful for students, engineers, specialists and those working in the field of nuclear power, ionizing source and radiation technology use for acquiring modern experience in nuclear material management

  13. Waste management bibliography 1979-1981

    International Nuclear Information System (INIS)

    Oakley, D.T.

    1981-10-01

    The Los Alamos National Laboratory is conducting a variety of research and development to ensure the safety of storing and treating all types of radioactive wastes. These activities include the assay and sorting of waste, the interaction of waste with the earth, and the treatment of waste to reduce the volume and mobility of radionuclides in waste. The practical lessons learned from safely storing waste at Los Alamos since the mid-1940s are an ingredient in determining the direction of our research. National waste management programs are structured according to categories of waste, for example, high level, low level, mill tailings, and transuranic. In this bibliography publications are listed since 1979 according to the following disciplines to show the relevance of work to more than one category of waste: summary and overview; material science; environmental studies; geochemistry and geology; waste assay; soil/waste interactions shallow land burial; volume reduction and technology development; and nonradioactive wastes

  14. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  15. Waste Management Quality Assurance Plan

    International Nuclear Information System (INIS)

    1993-01-01

    Lawrence Berkeley Laboratory's Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department's activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A

  16. The inherent politics of quality in public park management

    DEFF Research Database (Denmark)

    Lindholst, Andrej Christian; Konijnendijk, Cecil Cornelis; Fors, Hanna

    2012-01-01

    In this paper, we highlight and illustrate the inherent politics embedded in “quality” as a concept for managing public parks. Reflecting more generic quality concepts, contemporary quality models in park management include concepts for both operational, strategic and stakeholder management as well...... managing the park organisation itself. However, quality concepts and their application through various management models include as well as exclude the access, values and worldviews of particular interests. In this way, any particular quality concept and model embeds its own politics by inherent...... allocations of ‘who gets what, when and how’. We illustrate the inherent politics by providing a case study of a widely adopted quality model for operational management that has been adopted and implemented in Denmark as part of new public management reforms. In perspective, other quality concepts and models...

  17. National Syrian Program for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Othman, I.; Takriti, S.

    2009-06-01

    A national plan for radioactive waste management has been presented. It includes identifying, transport, recording, classifying, processing and disposal. It is an important reference for radioactive waste management for those dealing with radioactive waste, and presents a complete protection to environemnt and people. (author)

  18. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  19. Waste management research abstracts No. 18

    International Nuclear Information System (INIS)

    1987-12-01

    The eighteenth issue of this publication contains over 750 abstracts from 33 IAEA member countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed

  20. Radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Radu, Maria; Dobos, Ion; Glodeanu, Florin; Popescu, V. Ion; Rotarescu, Gheorghe; Turcanu, Cornel

    1998-01-01

    The paper presents the main aspects of management of radwastes generated within the frame of Nuclear Fuel Cycle (NFC) and out of Nuclear Fuel Cycle in Romania. There are mentioned the Romanian legislative and regulatory framework concerning nuclear activities which include provisions for radwaste management generated in Romania. The paper lists the radwaste producers, mentions waste inventory and gives future estimates for radwaste generation, all determining development of the radwaste management strategy. Choosing selected strategy for radwaste management, the main responsible organizations have been established as well as the planned facilities for treatment conditioning, storage and disposal of radwastes generated within the frame of both NFC and out of NFC fields of peaceful nuclear activity. (authors)

  1. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  2. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  3. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  4. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  5. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  6. The place of Political Risk Insurance in the political risk management strategy of multinational corporations

    Directory of Open Access Journals (Sweden)

    Violeta Iftinchi

    2016-06-01

    Full Text Available Confronted with a variety of political risks that affect their international activities, multinational corporations (MNCs can use Political Risk Insurance (PRI as a method to mitigate some of those risks. The aim of this article is to present the main characteristics of the PRI policies and participants, to highlight its benefits and to put forward three limitations that prevent MNCs in using PRI in their political risk management strategy (fluctuating capacity on the market, high premium rates and small compensation value. The recent trend in incorporating corporate social responsibility requirements as a pre-condition for providing PRI can contribute to lowering PRI premium rates.

  7. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  8. OPG Western Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Julian, J. [Ontario Power Generation, Western Waste Management Facility, Tiverton, ON (Canada)

    2011-07-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  9. OPG Western Waste Management Facility

    International Nuclear Information System (INIS)

    Julian, J.

    2011-01-01

    The Ontario Power Generation (OPG) Western Waste Management Facility (WWMF) uses a computer based Supervisory Control and Data Acquisition (SCADA) system to monitor its facility, and control essential equipment. In 2007 the WWMF Low and Intermediate Level Waste (L&ILW) technical support section conducted a review of outstanding corrective maintenance work. Technical support divided all work on a system by system basis. One system under review was the Waste Volume Reduction Building (WVRB) control room SCADA system. Technical support worked with control maintenance staff to assess all outstanding work orders on the SCADA system. The assessment identified several deficiencies in the SCADA system. Technical support developed a corrective action plan for the SCADA system deficiencies, and in February of 2008 developed an engineering change package to correct the observed deficiencies. OPG Nuclear Waste Engineering approved the change package and the WVRB Control Room Upgrades construction project started in January of 2009. The WVRB control room upgrades construction work was completed in February of 2009. This paper provides the following information regarding the WWMF SCADA system and the 2009 WVRB Control Room Upgrades Project: A high-level explanation of SCADA system technology, and the various SCADA system components installed in the WVRB; A description of the state of the WVRB SCADA system during the work order assessment, identifying all deficiencies; A description of the new design package; A description of the construction project; and, A list of lessons learned during construction and commissioning, and a path forward for future upgrades. (author)

  10. Political Public Relations − Media and Information Management

    OpenAIRE

    Tomić, Zoran; Grbavac, Ivana

    2016-01-01

    Political public relations, as one of the PR programmes, has slowly created strategies and tactics for communication with the public and the media. Media management and information management are the most important activities of the political public relations. These activities are frequently connected with non-ethical communication, whose aim is media manipulation and manipulation of the public. Media manipulation is well known as communication spin. These activities are created by governm...

  11. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  12. Public and political issues in radwaste management: The Spanish approach

    International Nuclear Information System (INIS)

    Lang-Lenton, Jorge

    1999-01-01

    ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.), is a State-owned company, founded in 1984 and is responsible for radioactive waste management in Spain. ENRESA's activities are carried out in accordance with a General Radioactive Waste Plan approved by the Spanish Government. In Spain, as in most countries, the public is concerned about many of the activities involving radioactivity or rad waste management; this concern arises for different reasons, being one of them the lack of information on the matter. This situation often leads to an information misuse by certain politicians, green groups and media, which can increase the distrust of the public to responsible companies and institutions. At the root of both these problems there is also a lack of political consensus regarding projects and related activities. To gain public acceptance, it is necessary to develop a long-term information policy since, in the field of communication, results can only be achieved in the long term. ENRESA is carrying out an on-going Communication Plan (CP), implemented successfully in the areas surrounding a low and intermediate level waste disposal site and a 500 MW nuclear power station (Vandellos 1) which is currently being dismantled. Implementation of this plan at national level is being accomplished stepwise. This document deals with the most relevant issues relating to the radioactive waste situation in Spain and with the efforts made in communications. From the very beginning the situation regarding public opinion was one of clear opposition. At regional level, and particularly in the area surrounding the El Cabril site, both the general public and the opinion leaders were opposed to any action by ENRESA. This opposition included some anti-ENRESA demonstrations right in front of the main entrance to El Cabril. At national level politicians, journalists, etc., did not show much confidence in ENRESA's activities, and the information published in the newspapers was always

  13. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  14. Managing nuclear waste: a better idea

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the findings and recommendations of the Advisory Panel with regard to alternative approaches to financing and managing the construction and operation of civilian radioactive waste management facilities. Ten organizational alternatives are considered and four of them are focussed on. These four are: present DOE waste management structure; alternative governmental approach; public/private entity; and private corporation. Advantages and disadvantages of each alternative are covered. The preferred alternative is the Federal Corporation for Waste Management (FEDCORP)

  15. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  16. Understanding Political Will in Groundwater Management: Comparing Yemen and Ethiopia

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-02-01

    Full Text Available This paper explores the role of politics in water management, in particular, comparing groundwater management in Yemen and Ethiopia. It tries to understand the precise meaning of the often-quoted term 'political will' in these different contexts and compares the autocratic and oligarchic system in Yemen with the dominant party 'developmental state' in Ethiopia. The links between these political systems and the institutional domain are described as well as the actual management of groundwater on the ground. Whereas the Ethiopian state is characterised by the use of hard power and soft ideational power, the system in Yemen relies at most on soft negotiating power. There is a strong link between the political system, the positioning of different parties and access to power, the role of central and local governments, the propensity to plan and vision, the effectiveness of government organisations, the extent of corruption, the influence of informal governance mechanisms, the scope for private initiative and the political interest in groundwater management and development in general. More important than political will per se is political capacity – the ability to implement and regulate.

  17. Infrastructure Task Force Tribal Solid Waste Management

    Science.gov (United States)

    These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.

  18. International E-Waste Management Network (IEMN)

    Science.gov (United States)

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  19. Agricultural waste concept, generation, utilization and management ...

    African Journals Online (AJOL)

    Agricultural wastes are non-product outputs of production and processing of ... less than the cost of collection, transportation, and processing for beneficial use. ... Agricultural waste management system (AWMS) was discussed and a typical ...

  20. Management of radioactive waste: A review

    OpenAIRE

    Luis Paulo Sant'ana; Taynara Cristina Cordeiro

    2016-01-01

    The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from co...

  1. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  2. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  4. Radioactive waste management in Spain

    International Nuclear Information System (INIS)

    Monroy, C.R.

    1996-01-01

    The review of the Spanish nuclear program is described with the special emphases on the radioactive waste management. The data of availability of a Centralized Temporary Storage facility will depend on the hypothesis considered regarding the service lifetime of nuclear power plants. Thay would be looking at the year 2003 for the 30 years case, and possibly at the year 2013 for the 40 year scenario, the choice between one and the other implying important economic and technical impacts. The aim for final disposal of high level wastes is to finish the preparation work by the year 2016, in order for construction of the disposal facility itself to be initiated and for operation to begin during the decade beginning with the year 2020

  5. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...... waste fractions with waste treatment statistics for Europe, and 4. illustrating the general distribution of ENM into incineration, recycling and landfilling. Our results indicate that ╲plastic from used product containers╡ is the most abundant and diverse waste fraction, comprising a variety of both...... nanoproducts and materials. While differences are seen between individual EU countries/regions according to the local waste management system, results show that all waste treatment options are significantly involved in nanowaste handling, suggesting that research activities should cover different areas...

  6. Radioactive waste management: Spanish experiences

    International Nuclear Information System (INIS)

    Beceiro, A. R.

    1996-01-01

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  7. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  8. Quality control in the radioactive waste management

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    Radioactive waste management as in industrial activities must mantain in all steps a quality control programme. This control extended from materials acquisition, for waste treatment, to the package deposition is one of the most important activities because it aims to observe the waste acceptance criteria in repositories and allows to guarantee the security of the nuclear facilities. In this work basic knowledges about quality control in waste management and some examples of adopted procedures in other countries are given. (author) [pt

  9. Radioactive waste management regulatory framework in Mexico

    International Nuclear Information System (INIS)

    Barcenas, M.; Mejia, M.

    2001-01-01

    The purpose of this paper is to present an overview of the current regulatory framework concerning the radioactive waste management in Mexico. It is intended to show regulatory historical antecedents, the legal responsibilities assigned to institutions involved in the radioactive waste management, the sources of radioactive waste, and the development and preparation of national standards for fulfilling the legal framework for low level radioactive waste. It is at present the most important matter to be resolved. (author)

  10. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  11. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  12. Flexible and robust strategies for waste management in Sweden

    International Nuclear Information System (INIS)

    Finnveden, Goeran; Bjoerklund, Anna; Reich, Marcus Carlsson; Eriksson, Ola; Soerbom, Adrienne

    2007-01-01

    Treatment of solid waste continues to be on the political agenda. Waste disposal issues are often viewed from an environmental perspective, but economic and social aspects also need to be considered when deciding on waste strategies and policy instruments. The aim of this paper is to suggest flexible and robust strategies for waste management in Sweden, and to discuss different policy instruments. Emphasis is on environmental aspects, but social and economic aspects are also considered. The results show that most waste treatment methods have a role to play in a robust and flexible integrated waste management system, and that the waste hierarchy is valid as a rule of thumb from an environmental perspective. A review of social aspects shows that there is a general willingness among people to source separate wastes. A package of policy instruments can include landfill tax, an incineration tax which is differentiated with respect to the content of fossil fuels and a weight based incineration tax, as well as support to the use of biogas and recycled materials

  13. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  14. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  15. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  16. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  17. Nuclear waste and social planning - in the need of sustainable political legitimacy

    International Nuclear Information System (INIS)

    Strandberg, Urban; Andren, Mats

    2006-01-01

    The proposition in this paper is that handling nuclear waste in an efficient, democratic and legitimate way presupposes a thorough reflection on the limits and possibilities of social planning and legitimacy, and a deliberate extension of the meaning of these concepts. The central point consists in an analysis of the concept political legitimacy. When the concept was established in the period after 1799, it had meanings of both legality and morality. A legitimate solution could be justified either in terms of (national) law or specified norms. In the nineteenth and twentieth centuries, legitimacy dealt mainly with the issues of legal foundations and moral justification based in institutions and discourses. This conception of legitimacy is inadequate when applied to the issue of nuclear waste as a social phenomenon. The time aspect is much longer than the period we reasonably can make predictions regarding the design of social institutions. How can we make guarantees that will endure for a period of time that is so long that we cannot possibly say anything about the very existence of human societies, and far less make predictions about the stability of social institutions 100,000 years into the future? Likewise, the comparatively short time period of implementation, during which the planned nuclear waste repositories are to be built and finally shut tight, is far more extended than any other societal project. When neither the ideological, nor the institutional and technological stability are possible to secure, the main question will be: Who/what grants legitimacy to the societal handling of nuclear waste? We tentatively maintain that the social handling of nuclear waste demands that social planning and legitimacy be linked with a clear and distinct assumption of responsibility. It must be a geographically and temporally universalistic assumption of responsibility. In addition, the management of nuclear waste in a sustainable and legitimate manner requires both a

  18. Nuclear waste and social planning - in the need of sustainable political legitimacy

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, Urban; Andren, Mats [Goeteborg Univ. (SE). Centre for Public Sector Research (CEFOS)

    2006-09-15

    The proposition in this paper is that handling nuclear waste in an efficient, democratic and legitimate way presupposes a thorough reflection on the limits and possibilities of social planning and legitimacy, and a deliberate extension of the meaning of these concepts. The central point consists in an analysis of the concept political legitimacy. When the concept was established in the period after 1799, it had meanings of both legality and morality. A legitimate solution could be justified either in terms of (national) law or specified norms. In the nineteenth and twentieth centuries, legitimacy dealt mainly with the issues of legal foundations and moral justification based in institutions and discourses. This conception of legitimacy is inadequate when applied to the issue of nuclear waste as a social phenomenon. The time aspect is much longer than the period we reasonably can make predictions regarding the design of social institutions. How can we make guarantees that will endure for a period of time that is so long that we cannot possibly say anything about the very existence of human societies, and far less make predictions about the stability of social institutions 100,000 years into the future? Likewise, the comparatively short time period of implementation, during which the planned nuclear waste repositories are to be built and finally shut tight, is far more extended than any other societal project. When neither the ideological, nor the institutional and technological stability are possible to secure, the main question will be: Who/what grants legitimacy to the societal handling of nuclear waste? We tentatively maintain that the social handling of nuclear waste demands that social planning and legitimacy be linked with a clear and distinct assumption of responsibility. It must be a geographically and temporally universalistic assumption of responsibility. In addition, the management of nuclear waste in a sustainable and legitimate manner requires both a

  19. Externalities in solid waste managements: Values, instruments and control

    International Nuclear Information System (INIS)

    Brisson, I. E.

    1997-01-01

    This thesis was stimulated by and completed against the backdrop of the unfolding 'waste crisis'. It critically examines whether the crisis is real or whether it merely reflects mis-perceptions. Three principal problems associated with the disposal of solid waste are identified. First, there is increasing concern over the environmental pollution of waste disposal, reflecting not just the increase in actual waste arisings, but also the increased public awareness of environmental pollution. Secondly, there is concern over the financial costs of waste collection and disposal, which can constitute a considerable drain on available public revenues. Lastly, there is the perceived scarcity of suitable land for siting disposal facilities. Although some low-lying, densely populated regions are inappropriate for the sitting of landfills, the scarcity more often reflects political constraints rather than a genuine shortage. This thesis asserts that a non-optimal quantity of waste, together with the concomitant environmental pollution and financial costs of disposal, partly result from government failure. Current practice fails to ensure that the parties generating the waste face a price at the point of disposal and that such a price reflects the full social costs of disposal. A model is presented which argues that the socially optimal configuration of waste management is that where the marginal social costs of each waste treatment method equals those of the others. In an empirical section, the external costs of landfill, incineration, recycling and composting are estimated for the European Union, based on existing studies of damage costs for different pollutants. This is followed by estimations of the financial costs of municipal solid waste management. Combining financial and external cost estimates, a cost-benefit analysis of municipal solid waste management in the European Union is undertaken. (Abstract Truncated)

  20. Waste. The political significance of the city’s suppressed other

    OpenAIRE

    Chrysanthe Constantinou

    2015-01-01

    MBeneath the city’s achievement as a grand machine of accumulation of matter, in invisibility lies the vast and vague sphere of waste accumulation. In invisibility, a huge network of waste flows is possibly rewriting economies as we know them, reproducing life conditions driven by the politics of wealth. In this parallel territory, recycling is a big business for the few.

  1. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  2. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  3. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  4. Optimizing transuranic waste management-challenges and opportunities

    International Nuclear Information System (INIS)

    Triay, I.R.; Wu, C.F.; Moody, D.C.; Jennings, S.G.

    2002-01-01

    The opening of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic (TRU) waste in March of 1999, the granting of the Hazardous Waste Facility Permit in November 1999, and over two years of operational experience have demonstrated the Department of Energy's (DOE'S) capability in closing the nuclear energy cycle. While these achievements resolved several scientific, engineering, regulatory and political issues, the DOE has identified a new set of challenges that represent opportunities for improving programmatic efficiency, cost-effectiveness, and operational safety in managing the nation's TRU waste. The DOE has recognized that the complex administrative and regulatory requirements for characterization, transportation and disposal of TRU waste are costly (1). A review by the National Academy of Sciences (NAS) states that these requirements lead to inefficient waste characterization, handling and transportation operations that in turn can lead to unnecessary radiation exposure to workers without a commensurate decrease in risk to the public and the environment (2). This paper provides an overview of the status of the WJPP repository, explains the principles of the proposed commercial business approach, and describes some of the proposed major enhancements of the TRU waste transportation systems. The DOE is developing a remote-handled (RH) waste program to enable emplacement of RH waste at WPP. This program includes appropriate facility modifications and regulatory changes (3).

  5. Modular life cycle assessment of municipal solid waste management.

    Science.gov (United States)

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  6. Radioactive waste management: a utility view

    International Nuclear Information System (INIS)

    Draper, E.L.

    1982-01-01

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  7. ERDA overview of waste management

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1976-01-01

    In ERDA it is believed that interaction is essential to the final assurance of bringing technologies on line which are acceptable to all sectors. If this can be achieved then questions surrounding waste management may not be any easier to solve, but they will certainly not crop up at the last minute to confound the technology that is needed tomorrow to meet our energy needs. At the same time, the public who needs to decide what cost and risks they are willing to accept for the benefit of energy use have the information they need and the confidence that all the issues have been addressed

  8. New strategic solid waste management in Sicily

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2005-01-01

    The solid waste management is, today, a very critical issue. In spite of all the attempts in order to recovery and to recycle waste, the dump still remains the more followed solution, while only a small part of solid waste is going to be burnt down. But the rubbish dump isn't, actually, an environmentally sustainable solution. In the last years the waste incineration systems with energy recovery are spreading more over the territory, and if on one hand they allow to recover energy, on the other they also generate waste. So the emergency remains and it has to be faced. Today, the waste incineration system with energy recovery seems to be the best solution for this problem. the following article examinates the main strategic aspects of the solid waste management in Sicily after the General Plan of Waste Management application [it

  9. Managing Mexican Oil: Politics or Economics?

    Directory of Open Access Journals (Sweden)

    Alicia Puyana Mutis

    2008-07-01

    Full Text Available During decades the policies towards oil and energy implemented in Mexico have resulted in the de pletion of reserves, the explosion of debt of Pemex (90 per cent of its capital, and the dramatic petrolization of the total fiscal revenue. High prices, the war on terror and political instability in oil rich regions have reinforced usA policy of "energy security" and the interest in the creation of the Common Market on Energy, as the way to strengthen the TLCAN. To respond to these two forces Mexico will have to reform its traditional oil policy. All possible options: to reduce the fiscal burden upon Pemex or to open to private investments the exploration of oil have excruciating political costs, which no government has shown the will to confront.

  10. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  11. Strategy implemented for a safe management of the waste arising from the Goiania accident

    Energy Technology Data Exchange (ETDEWEB)

    Miaw, Sophia T.W. [International Atomic Energy Agency, Vienna (Austria). Safety Co-ordination Section; Mezhari, Arnaldo; Shu, Jane; Xavier, Ana Maria [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Superintendencia de Licenciamento e Controle

    1997-12-31

    The management of radioactive waste after the accident is discussed. Several aspects such as properties of the waste, the available infrastructure for its collection, the decontamination logistics, the motivation and commitment of works and the politically sensitive definition of handling different waste as well as the administrative procedure to set up reliable records on the collected waste are studied. Four years after the accident, corrosion was detected in some packages. Waste reconditioning, development and implementation of waste data base and development of a national safety evaluation procedure for the final disposal facility are presented 11 refs., 5 tabs.

  12. Strategy implemented for a safe management of the waste arising from the Goiania accident

    International Nuclear Information System (INIS)

    Miaw, Sophia T.W.; Mezhari, Arnaldo; Shu, Jane; Xavier, Ana Maria

    1997-01-01

    The management of radioactive waste after the accident is discussed. Several aspects such as properties of the waste, the available infrastructure for its collection, the decontamination logistics, the motivation and commitment of works and the politically sensitive definition of handling different waste as well as the administrative procedure to set up reliable records on the collected waste are studied. Four years after the accident, corrosion was detected in some packages. Waste reconditioning, development and implementation of waste data base and development of a national safety evaluation procedure for the final disposal facility are presented

  13. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  14. The Political Representation of Women in Public Policy Management Councils

    Directory of Open Access Journals (Sweden)

    Lígia Helena Hahn Lüchmann

    2010-06-01

    Full Text Available This work raises some hypotheses to explain the significant presence of women on public policy management councils, which are spaces for discussion and deliberation of policies that have been implemented in Brazil in recent decades. The data about the profile of representatives on these spaces indicates a situation inversely proportional to the low degree of political inclusion of women in traditional spaces of political representation – executive positions, city councils, and state legislatures. There is thus a need to develop new analytical tools to understand the phenomenon of political representation. The data also question a reductive perspective of action and politics, which concludes that there is a low degree of political inclusion of women.

  15. Medical Waste Management in Community Health Centers.

    Science.gov (United States)

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  16. Waste Management System Requirement document

    International Nuclear Information System (INIS)

    1990-04-01

    This volume defines the top level technical requirements for the Monitored Retrievable Storage (MRS) facility. It is designed to be used in conjunction with Volume 1, General System Requirements. Volume 3 provides a functional description expanding the requirements allocated to the MRS facility in Volume 1 and, when appropriate, elaborates on requirements by providing associated performance criteria. Volumes 1 and 3 together convey a minimum set of requirements that must be satisfied by the final MRS facility design without unduly constraining individual design efforts. The requirements are derived from the Nuclear Waste Policy Act of 1982 (NWPA), the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel (40 CFR 191), NRC Licensing Requirements for the Independent Storage of Spent Nuclear and High-Level Radioactive Waste (10 CFR 72), and other federal statutory and regulatory requirements, and major program policy decisions. This document sets forth specific requirements that will be fulfilled. Each subsequent level of the technical document hierarchy will be significantly more detailed and provide further guidance and definition as to how each of these requirements will be implemented in the design. Requirements appearing in Volume 3 are traceable into the MRS Design Requirements Document. Section 2 of this volume provides a functional breakdown for the MRS facility. 1 tab

  17. Politics and strategies for radioactive waste management: current situation and perspective for Latin America; Politicas y estrategias para la gestion de los desechos radiactivos: situacion actual y perspectiva para America Latina

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Eliana, E-mail: amaral.e@gmail.com [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cruz, Paulo Ferruz, E-mail: p.ferruzcruz@gmail.com; Gonzalez, Abel, E-mail: agonzalez@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina); Telleria, Diego, E-mail: D.M.Telleria@iaea.org [Organismo Internacional de Energia Atomica (OIEA), Vienna (Austria). Unidad Evaluacion y Gestion de Emisiones Ambientales. Seccion de Seguridad de los Desechos y el Ambiente; Tomas Zerquera, Juan; Prendes Alonso, Miguel; Jova Sed, Luis, E-mail: jtomas@cphr.edu.cu, E-mail: prendes@cphr.edu.cu, E-mail: jova@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-07-01

    In some countries of the Latin America Region, policy and national strategy are well established and documented, while in others there is not an explicit formal declaration, although they may be implicit in the content of the laws, regulations and existing guides; but they are not consolidated in a single document, making it difficult to put into practice by the Government institutions, the organisms responsible for the regulation and those responsible for the safe management of waste. For practical reasons, the work concentrates the situation in the Region with the waste from medical, industrial practices, research and production, which generate a common problem in the region. This document also contains some recommendations to improve the situation in this topic in the Region.

  18. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  19. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  20. Radioactive wastes management: what is the situation?

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation takes stock on the situation of the radioactive wastes management in France. It gives information on the deep underground disposal, the public information, the management of the radioactive wastes in France, the researches in the framework of the law of the 30 december 1991, the underground laboratory of Meuse/Haute-Marne, the national agency for the radioactive wastes management (ANDRA) and its sites. (A.L.B.)

  1. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  2. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  3. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  4. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  5. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  6. Technology Roadmapping for Waste Management

    International Nuclear Information System (INIS)

    Bray, O.

    2003-01-01

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects

  7. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  8. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  9. Assessment of Malaysia Institutional radioactive waste management

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma; Nik Marzukee; Ibrahim Martibi

    1996-01-01

    A complete inventory of radioactive wastes from different source bas been set up in Malaysia. Wastes from external agencies were sent to the National Radioactive Waste Management Center at MINT for final disposal. MINT has been collecting information on the accumulated wastes received since 1982. Assessment of radioactive waste management in Malaysia has been conducted based on the inventory record. The information in the inventory include description of users, type volume, characteristics of the wastes; and the current and accumulated activities of the radioisotopes in the wastes forms while storing. The records indicate that there is a significant increase in the volume of wastes from medical and industrial applications. The category of users varies; there are about 270 industrial users, about 60 in medical fields and 13 in research institutes and universities. Major users generating sealed source wastes for the industrial sector are services, manufacturing and consumer companies; including government department and universities. It is estimated that by the year 2005, approximately a total accumulated processed waste package volume for disposal will be between 210-215 m sup 3. This estimate includes low level and intermediate level wastes. From this study, future waste management activities in Malaysia can be planned with proper policy decision, treatment conditioning, storage and disposal facilities. This will enable radioactive wastes to be kept under control and their potential impact on man and the environment to be minimal

  10. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  11. Waste Management During RA Reactor Decommissioning

    International Nuclear Information System (INIS)

    Markovic, M.; Avramovic, I.

    2008-01-01

    The objective of radioactive waste management during the RA reactor decommissioning is to deal with radioactive waste in a manner that protects human health and the environment now and in the future. The estimation of waste quantities to be expected during decommissioning is a very important step in the initial planning. (author)

  12. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology ... Recommendations have been made for staff training to create awareness on wastes, their effects, importance of existing guidelines and the implementation of the waste management options for the different categories of wastes so that hospitals do not become ...

  13. Adherence to Healthcare Waste Management Guidelines among ...

    African Journals Online (AJOL)

    BACKGROUND: Despite the set guidelines on Healthcare Waste Management in Kenya, mixing of different categories of waste, crude dumping and poor incineration are still a common phenomenon in public health facilities in Thika Subcounty, Kenya. Thika Subcounty generates 560 Kilograms of healthcare waste daily, ...

  14. Radioactive solid waste management at Trombay

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Balu, K.

    1977-01-01

    The Radioactive solid waste management programme at BARC, India during 1965-1975 is described in detail. The operational experience, which includes the handling treatment and disposal of these solid wastes is reported alongwith the special problems faced in the case of large volume low hazard potential wastes from the nuclear fuel cycle. (K.B.)

  15. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  16. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  17. Instructive for radioactive solid waste management

    International Nuclear Information System (INIS)

    Mora Rodriguez, Patricia

    2014-01-01

    An instructive is established for the management system of radioactive solid residues waste of the Universidad de Costa Rica, ensuring the collection, segregation, storage and disposal of waste. The radioactive solid waste have been segregated and transferred according to features and provisions of the Universidad de Costa Rica and CICANUM [es

  18. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  19. Institutional arrangements for radioactive waste management

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-01-01

    The existing organizational structure and regulations for management of high-level and TRU wastes are likely to become ineffective if left unchanged. Recommendations for institutional reforms include the establishment of a National Radioactive Waste Authority in the U.S. and of an International Radioactive Waste Commission under IAEA

  20. Politics of Natural Resource Management and Accountable Systems ...

    African Journals Online (AJOL)

    The political behaviour of public institutions exhibited in the management of critical natural ... natural resource management and the modes in which they impact on accountable systems in Uganda. ... the provision of critical resources such as water at the expense of consumers and citizens. ... AJOL African Journals Online.

  1. Waste management policy and its implementation in Finland

    International Nuclear Information System (INIS)

    Maekipentti, I.

    1984-01-01

    One of the main principles of Finnish nuclear legislation is that the waste producers - i.e. power companies - shall bear the total responsibility for all waste management operations including final disposal and for all the costs of these operations. The government shall assume the responsibility after the final repository has been approved as fulfilling the safety requirements and after sufficient financial assurances covering the costs of continued surveillance have been given to the authorities. The terms of the operation licences prefer the export of high-level waste to a foreign destination, but as an alternative require preparatory activities for final disposal in domestic territory. The spent fuel from two of the four existing units is returned to the fuel supplier country, the Soviet Union, but the management of spent fuel from the two other units is open. In Finland nuclear waste management has become one of the key problems in the public debate relating to the use of nuclear energy and especially to the licensing of additional nuclear power units. The small size of the national economy may cause some additional difficulties in the efforts to solve waste management problems. Public opinion is in favour of plans for waste management arrangements and facilities being prepared in advance of the licensing of new nuclear units, although it might accept the fact that it is not reasonable to carry out the actual management operations until after rather long storage. The small size of the national economy together with the fact that there are only four nuclear power units in Finland essentially limits the ability to allocate major resources to waste management R and D work and to develop Finnish solutions independently. The political situation which prevails as regards back-end operations internationally may even hinder the extended construction of nuclear plants and use of nuclear energy

  2. Managing for Political Corporate Social Responsibility

    DEFF Research Database (Denmark)

    Scherer, Andreas Georg; Rasche, Andreas; Palazzo, Guido

    2016-01-01

    in previous works on PCSR, including the influence of nationalism and fundamentalism, the role of various types of business organisations, the return of government regulation, the complexity of institutional contexts, the efficiency of private governance, the financialization and digitalization of the economy...... to the debate and outline the original economic and political context. The following section explores emerging changes in the institutional context relevant to PCSR and reconsiders some of the assumptions underlying Habermas’ thesis of the postnational constellation. This highlights some neglected issues...

  3. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  4. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  5. Management of small producers waste in Slovenia

    International Nuclear Information System (INIS)

    Fabjan, Marija; Rojc, Joze

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  6. Solid waste management in faisalabad using GIS

    International Nuclear Information System (INIS)

    Nasir, A.; Ali, S.; Khan, F.H.

    2011-01-01

    Waste management is a global environmental issue which concerns about a very significant problem in today's world. There is a considerable amount of disposal of waste without proper segregation which has lead to both economic and environment sufferings. It is still practiced in many cities. There is a tremendous amount of loss in terms of environmental degradation, health hazards and economic descend due to direct disposal of waste. It is better to segregate the waste at the initial stages where it is generated, rather than going for a later option which is inconvenient and expensive. There has to be appropriate planning for proper waste management by means of analysis of the waste situation of the area. This paper would deal with, how Geographical Information System can be used as a decision support tool for planning waste management. A model is designed for the case study area in Pakistan city for the purpose of planning waste management. The suggestions for amendments in the system through GIS based model would reduce the waste management workload to some extent and exhibit remedies for some of the SWM problems in the case study area. The waste management issues are considered to solve some of the present situation problems like proper allocation and relocation of waste bins, check for unsuitability and proximity convenience due to waste bin to the users, proposal of recyclable waste bins for the required areas and future suggestions. The model will be implemented on the Faisalabad city's case study area data for the analysis and results will suggest some modification in the existing system which is expected to reduce the waste management workload to a certain extent. (author)

  7. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  8. The strategy of APO-Hazardous Waste Management Agency in forming the model of public acceptance of Croatian Waste Management Facility

    International Nuclear Information System (INIS)

    Klika, M.C.; Kucar-Dragicevic, S.; Lokner, V.

    1996-01-01

    Some of basic elements related to public participation in hazardous and radioactive waste management in Croatia are underlined in the paper. Most of them are created or led by the APO-Hazardous Waste Management Agency. Present efforts in improvement of public participation in the field of hazardous and radioactive waste management are important in particular due to negligible role of public in environmentally related issues during former Yugoslav political system. For this reason it is possible to understand the public fearing to be deceived or neglected again. Special attention is paid to the current APO editions related to public information and education in the field of hazardous and radioactive waste management. It is important because only the well-informed public can present an active and respectful factor in hazardous and radioactive waste management process

  9. Ways and means of waste management

    International Nuclear Information System (INIS)

    1987-01-01

    Any decision for or against the different nuclear waste management methods has to be judged by the following three criteria: 1. Agreement with the needs of the environment and posterity. 2. Safeguards against diversion and abuse of fissionable material. 3. Social and industrial costs. The FRG decided to try the two-tier waste management system, fostering waste reprocessing on the one hand and examining methods of ultimate waste disposal on the other, and so far is the only country that has done so. This approach to solving the nuclear waste problem seems quite safe at present, following the prinicple of: do the one thing, and try the other. (orig./HP) [de

  10. TMI-2: Unique waste management technology

    International Nuclear Information System (INIS)

    Bixby, W.W.; Young, W.R.; Grant, P.J.

    1987-01-01

    The 1979 accident at TMI-2 severely damaged the reactor core and contaminated more than a million gallons of water. Subsequent activities created another million gallons of water. The damaged reactor core represented a new waste form and cleanup of the contaminated water and system components created other new waste forms requiring creative approaches to waste management. This paper focuses on technologies that were developed specific to fuel waste management, core debris shipping, processing accident generated water, and disposal of the resultant waste forms

  11. The new technologies in city waste management

    International Nuclear Information System (INIS)

    Marti, C.

    2016-01-01

    The new EU objectives included in its Circular Economy Package and the Spanish 2016-2022 Waste Plan define a new scenario of transformation of municipal solid waste management. They also define the hierarchization of waste treatment: reduction, reuse, recycling, energy valorization and, as a last resort, landfill. The use of new technologies is contributing to this transformation, including both separation at source and collection and treatment. Improved traceability of wastes via the use of sensors, technological innovation in management and the emergence of a fifth bin for selective collection of organic wastes are only some of the new elements that are increasingly common in Spanish cities. (Author)

  12. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  13. Radioactive waste management in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.)

    1978-01-01

    The technologies developed in West Germany for radioactive waste management are widely reviewed. The first topic in this review paper is the disposal of low- and middle-level radioactive liquid wastes. Almost all these liquid wastes are evaporated, and the typical decontamination factor attained is 10/sup 4/ -- 10/sup 6/. The second topic is the solidification of residuals. Short explanation is given to bituminization and some new processes. The third topic is high-level liquid wastes. Degradation of glass quality due to various radiation is discussed. Embedding of small glass particles containing radioactive wastes into metal is also explained. Disposals of low-level solid wastes and the special wastes produced from reprocessing and mixed oxide fuel fabrication are explained. Final disposal of radioactive wastes in halite is discussed as the last topic. Many photographs are used to illustrate the industrial or experimental use of those management methods.

  14. Radiation-protection standards and waste management

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1976-01-01

    This paper reviews some of the difficult questions to be addressed in the development of fundamental environmental criteria and standards for radioactive waste management. A short discussion is included of the need to develop more precise definitions of terminology, better conceptualization of long-term problems, and new concepts to express risks from waste management and to evaluate the ability of proposed technical alternatives to control such risks. EPA's plans to develop fundamental environmental criteria and generally applicable environmental radiation-protection standards for waste disposal are summarized. Finally, the principal projects in EPA's planned near-future programs are reviewed in the areas of high-level waste, transuranic solid waste, low-level waste, residual decommissioning waste, ocean disposal, and wastes containing natural radioactivity

  15. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  16. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2012-01-01

    Different countries around the globe, especially those involved in nuclear power plant operation, spent fuel reprocessing, nuclear research activities and diverse nuclear applications; generate large inventory of radioactive wastes. These waste streams generated during various stages of nuclear fuel cycle are of different categories, which require special care for handling, treatment and conditioning. Conventional treatment and conditioning methods may not be efficient for various type of waste; therefore special options may be required to manage these waste streams. Presently, Indian waste management fraternity is focused to minimize the volume of the waste to be finally disposed off, by partitioning radionuclides, regenerating separation media and re-using as much of the waste components as possible and economically feasible. This approach, together with the reuse/recycling strategy, seems to represent a robust waste treatment strategy for the future

  17. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  18. Assessment of LANL asbestos waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The intent of this effort is to evaluate the Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC) for asbestos to determine if it meets applicable DOE, EPA, and OSHA requirements. There are numerous regulations that provide specific guidelines on the management of asbestos waste. An annotated outline for a generic asbestos WAC was developed using the type of information specified by 5820.2A. The outline itself is included in Appendix A. The major elements that should be addressed by the WAC were determined to be as follows: Waste Forms; Waste Content/Concentration; Waste Packaging; and Waste Documentation/Certification

  19. Waste management '05; Entsorgung '05

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The pocket book comprises two sections. The first part discusses waste management issues in Germany: Refuse-derived fuels, emission trading, domestic waste management market, separate collecting of the biogenic waste fraction, waste management in Canada, the Belgian system Recupel for electric and electronic scrap, contracting and energy efficiency, treatment of organic waste in the EU, industrial safety, Deutsche Bundesstiftung Umwelt (DBU), funding of environmental projects, recycling and utilisation, renewables in new products, quality assurance. Part 2 contains data and figures of the waste management industry: Waste market, data of waste management organisations, waste volumes of the federal states, disposal and recycling, waste wood, water management, members of the BDE and its regional associations, press departments, European associations, authorities, environmental consulting, research institutions, energy agencies, journals. (uke) [German] Das Taschenbuch gliedert sich in 2 Teile. Der 1. Teile eroertert Themen der Entsorgungswirtschaft in Deutschland: Einsatz von Sekundaerbrennstoffen, Emissionshandel, Abfallwirtschaft im Binnenmarkt, Anspruch auf Beibehaltung der getrennten Bioabfall-Erfassung, Abfallwirtschaft und Abfallentsorgung in Kanade, das belgische System Recupelzur Sammlung und Entsorgungvon Elektro- und Electronik-Altgeraeten, Contracting und Energieeffizienz, Behandlung organische Abfaelle in der EU, Arbeitssicherheit, Deutsche Bundesstiftung Umwelt (DBU) Umweltfoerderung, Kreislaufwirtschaft, Recycling von Stoffstroemen und Einsatz nachwachsender Rohstoffe in neuen Produkten, Qualitaetsicherung. Im 2. Teil werden Daten und Zahlen der Entsorgungswirtschaft zusammengetragen: Abfallmarkt, Wirtschaftsdaten der Unternehmen, Abfallmengen in den Bundeslaendern, Entsorgung und Verwertung, Altholz, Wasserwirtschaft, Mitglieder des BDE und seiner Regionalverbaende, Pressestellen, europaeische Fachverbaende, Behoerden

  20. Waste to energy – key element for sustainable waste management

    International Nuclear Information System (INIS)

    Brunner, Paul H.; Rechberger, Helmut

    2015-01-01

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas