WorldWideScience

Sample records for waste management operations

  1. Applications to waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Uresk, V.; Schreckhise, R.G.

    1977-01-01

    Ecological studies of the 200 Area plateau waste management environs have provided preliminary answers to questions concerning the environmental health of associated biota, potential for radionuclide transport through the biotic system and risk to man. More importantly creation of this ecological data base provides visible evidence of environmental expertise so essential for maintenance of continued public confidence in waste management operations

  2. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  3. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  4. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  5. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  6. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  7. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  8. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ''Compliant''and One Trip Port DO-07402B is designated as ''Non Compliant''. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it's state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  9. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  10. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    OpenAIRE

    Joanna Kunc

    2017-01-01

    Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature...

  11. The management of intermediate-level radioactive wastes arising from reprocessing operations

    International Nuclear Information System (INIS)

    Elsden, A.D.

    1984-01-01

    The reprocessing of spent nuclear fuel results in the generation of radioactive wastes in the form of liquids, gases and solids. This paper outlines the principles and major elements of the waste management systems currently in use or under development for the category of waste known as intermediate-level wastes. To enable implementation of an optimized waste management system, engineering process evaluations, development and design in the following areas are required: The definition of cost effective options taking account of constraints which may arise from other operations in the overall system, e.g. from transport requirements or from criteria derived from environmental impact assessments of alternative disposal routes; Plant and equipment development to enable acceptable system and active plant operations on an industrial scale; Safety and reliability studies to ensure adequate protection of both the general public and plant operators during all stages of the waste management system including disposal

  12. Operational concepts for the Environmental Restoration and Waste Management Configuration Study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    DOE has initiated a planning process in anticipation of upgrading all DOE waste management operations and facilities. The EM Configuration Study examines four areas: (1) planning considerations, (2) system configuration, (3) operational concepts, and (4) resource assessments. Each area is addressed by a different team. Objective of the Operational Concepts Team 3 study is to investigate, identify, define, and evaluate alternative ways to manage DOE waste management facilities, while taking into consideration the information gathered by the other EM Configuration teams. This report provides information and criteria for evaluating the relative effectiveness and efficiency of various organizational alternatives that can be used to operate and manage DOE waste facilities. Intent of this report is not to select one best management alternative but rather to provide recommendations, conclusions, and background information from which decisions will be made at a future date.

  13. Unit costs of waste management operations

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

    1994-04-01

    This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ''cradle to grave'') cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics

  14. Management of radioactive wastes from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Hawickhorst, W.

    1997-01-01

    A prerequisite for the acceptance of the nuclear energy system is the effective management of the rad-wastes. Among the wastes to be considered, there are the wastes from the operation and decommissioning of nuclear power plants, as well as those from the nuclear fuel cycle. For the management of operating wastes, processes and facilities optimized in the course of several decades, are available, with which the raw solid and liquid wastes can be reduced in volume and turned into products which are physically and chemically stable and thus suitable for final disposal. The management of spent fuel can be done either by direct final disposal or reprocessing. The required interim storage facilities are ready for operation. The methods and a facility for packaging spent fuel for direct final disposal are in an advanced stage of development and construction. If fuel assemblies are to be reprocessed abroad, the wastes generated from the process must be taken back. Decommissioning wastes have technical properties which correspond essentially to the various groups of operating wastes and can thus be processed with similar methods; however since large quantities of them are generated in relatively short times, they present particular logistic problems. All waste types end up in final disposal sites to be built under the responsibility of the federal government. A final disposal site for low level wastes is in operation. In addition, two final disposal projects for accommodating higher level wastes including spent fuel for direct disposal and vitrified wastes from reprocessing, are being pursued. (orig.)

  15. Transportation operations functions of the federal waste management system

    International Nuclear Information System (INIS)

    Shappert, L.B.; Klimas, M.J.

    1989-01-01

    This paper documents the functions that are necessary to operate the OCRWM transportation system. OCRWM's mission is to accept and transport spent fuel and high-level waste from waste generators to FWMS facilities. The emphasis is on transportation operations and assumes that all necessary facilities are in place and equipment designs and specifications are available to permit the system to operate properly. The information reported in this paper was developed for TOPO and is compatible with the draft revision of the Waste Management System Requirements and Description (SRD). 5 refs

  16. Impact of radioactive waste management operations

    International Nuclear Information System (INIS)

    Paine, D.; Rogers, L.E.; Uresk, D.W.

    1977-01-01

    Impact assessment of radioactive waste management operations is considered separately for nonradiological impact on biota, impact on ecosystem structure and function and radiological impact on biota. Localized effects related to facility construction and maintenance activities probably occur but the large expanse of relatively undisturbed surrounding landscape minimizes any overall effects

  17. Operating document on management division waste management section in Tokai works in the 2003 fiscal year

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Akutu, Shigeru; Sasayama, Yasuo; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi; Mogaki, Isao; Aizawa, Syuichi; Sugawara, Hiroyuki

    2005-07-01

    This document is announced about the task of Waste Management Section of Waste Management Division in 2003. Mainly, our tasks are fractionating, incinerating and storing low active solid waste and storing high active solid waste. In addition, we are performing required correspondence about management program of low level waste. We had treated and stored waste safely according to our plan. As a result, we have achieved following outcomes. (1) We incinerated the combustible low active solid waste that is generated by the operation of Tokai Reprocessing Plant and the recovery operation of incident at Low Active Liquid Waste Asphalt Solidification Facility. Waste of this recovery operation is stored in the 2nd Low Active Liquid Waste Asphalt Solidification Storage Facility. We incinerated 58 ton of wastes. (2) We stored low active solid waste 854 drums that accommodate 200L. According to the time of Low-Level Waste Treatment Facility completion, we will be able to avoid full of storage. (3) We stored high active solid waste of 148 drums that accommodate 200L. For the time being, there is no problem as regards the administration of storage facility. (4) We carried out the management program of low level solid waste according to plan. (author)

  18. Operating document on Management Division Waste Management Section in Tokai Works in the 2002 fiscal year

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Isozaki, Kouei; Akutu, Shigeru; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi

    2004-05-01

    This document is announced about the task of Waste Management Section of Waste Management Division in 2004. Mainly, our tasks are fractionating, incinerating and storing low active solid waste and storing high active solid waste. In addition, we are performing required correspondence about management program of low level waste. We had treated and stored waste safely according to our plan. As a result, we have achieved following outcomes. (1) We incinerated the combustible low active solid waste that is generated by the operation of Tokai Reprocessing Plant and the recovery operation of incident at Low Active Liquid Waste Asphalt Solidification Facility. Waste of this recovery operation is stored in the 2nd Low Active Liquid Waste Asphalt Solidification Storage Facility. We incinerated 66.7 ton of wastes. (2) We stored low active solid waste 858 drums that accommodate 200L. According to the time of Low-Level Waste Treatment Facility completion, we will be able to avoid full of storage. (3) We stored high active solid waste of 154 drums that accommodate 200 L. For the time being, there is no problem as regards the administration of storage facility. (4) We carried out the management program of low level solid waste according to plan. (author)

  19. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  20. Abattoir operations and waste management in Nigeria: A review of ...

    African Journals Online (AJOL)

    Abattoir operations and waste management in Nigeria: A review of challenges ... Log in or Register to get access to full text downloads. ... militating against the establishment, operations and management of abattoirs are not given attention.

  1. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed.

  2. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed

  3. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  4. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  5. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  6. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  7. Extreme E-waste generated from successful Operations Management?

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Zhilyaev, Dmitry; Parajuly, Keshav

    This paper identifies how research in the field of Operations Management (OM) has been extremely successful in reducing costs for the manufacturing of electrical and electronic equipment by focusing on design for assembly and manufacturing. The downside is the generation of extreme amounts of e......-waste. Based on a literature survey, 2251 kg of e-waste and on case study, this research identifies the need to extend product lifetimes to drive down e-waste. The study concludes that more research is needed on designs for disassembly, repair, refurbishment, and remanufacturing to meet future requirements...

  8. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  9. Overview of Savannah River Plant waste management operations

    International Nuclear Information System (INIS)

    Haywood, J.E.; Killian, T.H.

    1987-01-01

    The Du Pont Savannah River Plant (SRP) Waste Management Program is committed to the safe handling, storage, and disposal of wastes that result from the production of special nuclear materials for the US Department of Energy (US DOE). High-level radioactive liquid waste is stored in underground carbon steel tanks with double containment, and the volume is reduced by evaporation. An effluent treatment facility is being constructed to treat low-level liquid hazardous and radioactive waste. Solid low-level waste operations have been improved through the use of engineered low-level trenches, and transuranic waste handling procedures were modified in 1974 to meet new DOE criteria requiring 20-year retrievable storage. An improved disposal technique, Greater Confinement Disposal, is being demonstrated for intermediate-level waste. Nonradioactive hazardous waste is stored on site in RCRA interim status storage buildings. 5 figs

  10. Programmatic Assessment of Radioactive Waste Management Nuclear Fuel And Waste Programs. Operational Planning and Development (Activity No. AR OS 10 05 K; ONL-WN06)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1980-06-30

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: 1) an on-site survey of ORNL radioactive waste management operations; 2) a review of radioactive waste source data, records, and regulatory requirements; 3) an assessment of existing and planned treatment, storage, and control facilities; and 4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The G/C suggestions for improving ORNL waste management operations are summarized. Regulatory requirements governing ORNL waste management operations are discussed. Descriptions and discussions of the radioactive liquid, solid, and gaseous waste systems are presented. The waste operations control complex is discussed.

  11. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Joanna Kunc

    2017-06-01

    Full Text Available Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature discontinuation of waste receipt, closure, and rehabilitation. These processes result in many irregularities in land rehabilitation which are likely to have a significant impact on the environment. The article identifies the fundamental changes which can interrupt the landfill operation cycle, and discusses the threats to the process of rehabilitation, highlighting both administrative and technical problems discovered based on processes that have been already completed. The description has been drawn up based on the study of literature, analyses and the reports of public administration bodies as well as on own research into the number of landfills faced with this problem.

  12. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  13. Modeling the design and operations of the federal radioactive waste management system

    International Nuclear Information System (INIS)

    Joy, D.S.; Nehls, J.W. Jr.; Harrison, I.G.; Miller, C.; Vogel, L.W.; Martin, J.D.; Capone, R.L.; Dougherty, L.

    1989-04-01

    Many configuration, transportation and operating alternatives are available to the Office of Civilian Radioactive Waste Management (OCRWM) in the design and operation of the Federal Radioactive Waste Management System (FWMS). Each alternative has different potential impacts on system throughput, efficiency and the thermal and radiological characteristics of the waste to be shipped, stored and emplaced. A need therefore exists for a quantitative means of assessing the ramifications of alternative system designs and operating strategies. We developed the Systems integration Operations/Logistics Model (SOLMOD). That model is used to replicate a user-specified system configuration and simulate the operation of that system -- from waste pickup at reactors to emplacement in a repository -- under a variety of operating strategies. The model can thus be used to assess system performance with or without Monitored Retrievable Storage (MRS), with or without consolidation at the repository, with varying shipping cask availability and so forth. This simulation capability is also intended to provide a tool for examining the impact of facility and equipment capacity and redundancy on overall waste processing capacity and system performance. SOLMOD can measure the impacts on system performance of certain operating contingencies. It can be used to test effects on transportation and waste pickup schedules resulting from a shut-down of one or more hot cells in the waste handling building at the repository or MRS. Simulation can also be used to study operating procedures and rules such as fuel pickup schedules, general freight vs. dedicated freight. 3 refs., 2 figs., 2 tabs

  14. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  15. Operational programs for national radioactive waste and spent fuel management programme in Slovenia

    International Nuclear Information System (INIS)

    Zeleznik, Nadja; Kralj, Metka; Mele, Irena

    2007-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005 as a supplementary part of the National Environmental Action Programme and was adopted in February 2006 by the Slovenian Parliament. The new National Programme includes all topics being relevant for the management of the radioactive waste and spent fuel which are produced in Slovenia, from the legislation and identification of different waste streams, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM in the near future from 2006 up to the 2015. The National Programme identified the existing and possible future problems and proposed the technical solutions and action plans for two distinctive periods: 2006-2009 and 2010- 2015. According to the requirement of Act on Protection against Ionising Radiation and Nuclear Safety the national Agency for Radwaste Management (ARAO) prepared the operational programmes for the four year period with technical details on implementation of the National programme. ARAO gained the detailed plans of different involved holders and proposed 9 operational programmes with aims, measures, individual organizations in charge, expenses and resources for each of the programmes. The Operational programmes were already reviewed by the Ministry of Environment and Physical Planning and are under acceptance. The orientation of the radioactive waste management according to the National Programme and operational activities within additional limitations based on the strategical decisions of Slovenian Government is presented in the paper. (authors)

  16. Biomedical waste management operating plan. Revision C

    Energy Technology Data Exchange (ETDEWEB)

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  17. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  18. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  19. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  20. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  1. Achieving RCRA compliance in DOE defense waste management operations

    International Nuclear Information System (INIS)

    Frankhauser, W.A.; Shepard, M.D.

    1989-01-01

    The U.S. Department of Energy (DOE) generates significant volumes of radioactive mixed waste (RMW) through its defense-related activities. Defense RMW is co-regulated by DOE and the U.S. Environmental Protection Agency/State agencies in accordance with requirements of the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). This paper highlights some of the problems encountered in co-regulation and discusses achievements of the defense waste management program in integrating RCRA requirements into RMW operations. Defense waste sites are planning facility modifications and major new construction projects to develop treatment, storage and disposal capacity for existing RMW inventories and projected needs

  2. Study on the construction and operation for management system of municipal domestic wastes

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Wang Shuqiang; Chen Jingxin

    2006-01-01

    In recent years, the quantity of our country's municipal domestic wastes increase rapidly, but the waste disposal still has problems, such as the simple way of processing, wasting the resources, the serious environmental pollution and so on. By holding waste minimization as the center, the developed countries have formed perfect waste management system. Based on analyzing the status quo and problems of processing in our country, on the principle of benefit, scale,waste minimization, reclamation and hazard-free treatment, according to the recycling model of processing, the article has constructed our country's domestic wastes management system, proposed the measures of promoting the operation of system. It has realized the transformation of waste management system from terminal disposal to source reduction,achieved the goals, including domestic wastes categorizing and reclaiming, industrialization and non-pollution processing,and finally brought sustainable development for resources, environment, economy and society.

  3. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  4. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  5. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  6. Present trends in radioactive waste management policies in OECD countries, and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years, waste management has received increased attention at the national level and also internationally, to harmonize to some extent the policies and practices to be followed and to continue to achieve a high safety standard. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems, covering not only the treatment and storage aspects for the short-term but also the longer-term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition, a significant effort is also being initiated on research and development. The disposal problem has been given priority, particularly regarding high-level waste and alpha-bearing wastes. Close international co-operation has been initiated in this sector as well as on the conditioning of high-level radioactive waste. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities. (author)

  7. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  8. Taking into account dismantling and decommissioning waste management in conception and operation phases

    International Nuclear Information System (INIS)

    Poncet, Philippe

    2016-01-01

    Managing waste during the Dismantling and Decommissioning (D and D) phase is quite specific and different from what it was during the operation phase. Indeed, waste generated during dismantling could present some analogy especially with regards to the radionuclides spectrum and contents. However waste from dismantling and cleanup could actually presents a lower level of radiologic activity but produced in much larger quantities, which requires new solutions. Moreover the characteristics and quantities of waste to be managed during D and D are highly depending on the way the facility was designed and also how it was actually operated during its life time. Taking future D and D into consideration in the early design as well as during the operation of new facilities is becoming more and more mandatory. It is now an explicit requirement set by safety authorities, to provide - in the license application for news plants - a description of design provisions and future plans for D and D as well as anticipated technical and financial impacts,. Two major aspects are driving the cost and complexity of future D and D operations: waste volumes by categories and occupational exposure while performing the work. To reduce such impacts, key approaches are to maintain areas clean, segregate the waste types and provide appropriate provisions in the design. The paper's first part describes the related design and operation concepts derived from lessons learned, and illustrations by examples are presented in a second part. (author)

  9. Categorizing operational radioactive wastes

    International Nuclear Information System (INIS)

    2007-04-01

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  10. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  11. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  12. The management of radioactive wastes arising from reprocessing operations

    International Nuclear Information System (INIS)

    Elsden, A.D.

    1980-01-01

    The subject is discussed under the following headings: objectives of waste management; steps in waste management (treatment prior to storage or immobilisation; interim storage; immobilisation; storage; transport; disposal); industry requirements; examples of waste management systems; what industry needs (engineering process evaluations, development and design in specified areas, to enable implementation of an optimised waste management system). (U.K.)

  13. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-07-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  14. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  15. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  16. Present trends in radioactive waste management policies in OECD countries and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years waste management has received increased attention not only at the national level but also internationally in order to harmonise to some extent the policies and practices to be followed and to continue to achieve a high safety standard in this field. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems covering not only the treatment and storage aspects for the short term but also the longer term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition to the discussion of policies and practices, a significant effort is also being initiated on research and development. The disposal problem has been given priority particularly as far as high level waste and alpha bearing wastes are concerned. Close international co-operation has been initiated in this sector as well as on the conditioning of high level radioactive waste. As a result of these efforts an international R and D programme is being established at the site of the Eurochemic reprocessing plant on the incorporation of high level waste into metal matrices. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes in detail the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities [fr

  17. Philosophy and overview of the INEL waste management program

    International Nuclear Information System (INIS)

    Gertz, C.P.; Whitsett, J.B.; Hamric, J.P.

    1986-01-01

    The INEL philosophy of ''get the job done; do it right--the first time'' is described as it applies to all phases of waste management activities. In addition, an overview of INEL's waste management programs and projects--low-level waste management operations and technology development; transuranic waste management operations and technology development; high-level waste management operations and technology development; spent fuel storage operations and equipment/technology development; transportation operations, technology development, and prototype cask procurements--are discussed. Emphasis is placed on the application of the INEL philosophy to the successful initiation and continuation of INEL waste management activities

  18. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  19. Regional co-operation in radioactive waste management from an IAEA perspective

    International Nuclear Information System (INIS)

    Bonne, A.

    2000-01-01

    This paper is intended to be a lead in to a Round Table discussion on Regional Co-operation in Radioactive Waste Management at the International Conference on N uclear Option in Countries with Small and Medium Electricity Grids , which will be held from 19 to 22 June 2000 in Dubrovnik, Croatia. The Round Table discussion will focus on international co-operation in the Eastern European region

  20. Operating document on management division waste management section in Tokai works in the 2002 fiscal year. Document on present of affairs

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Isozaki, Kouei; Akutu, Shigeru; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi

    2003-04-01

    This document is announced about task of Waste Management Division Waste Management Section in the 2002 fiscal year. Mainly, our task is that treated Low level solid waste, stored Low level solid waste and stored High level solid waste. Those wastes are generated from Tokai reprocessing plant in Tokai Works. We carried out task safely as planned. The results are as follows. (1) We incinerated that combustible Low level solid waste of 70.5 ton in Incinerate facility. Such wastes were generated from operation of Tokai reprocessing plant and cleaned up operation of Tokai bituminization facility (The fire and explosion incident of Tokai bituminization facility). (2) We stored Low level solid waste that generated the waste of 1,071 drums. It is found that Storage facilities will not fill on this condition Low level radioactive waste treatment facility is started operation. (3) We stored High level solid waste that generated the waste of 117 drums from Tokai reprocessing plant. And, it is found that there facilities will not fill on this condition generated wastes of about 100 drams by a year. (4) We started printing of the data from the 2002 fiscal year to intranet which amount of stored Low level solid waste and High level solid waste in order to educate-the amount reduction of waste generating (at those facilities). (author)

  1. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  2. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  3. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  4. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  6. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  7. Assessment of management alternatives for LWR wastes. Volume 6. Cost determination of the LWR waste management routes (treatment/conditioning/packaging/transport operations)

    International Nuclear Information System (INIS)

    Thiels, G.M.; Kowa, S.

    1993-01-01

    This report deals with the cost determination of a number of schemes for the treatment, conditioning, packaging, interim storage and transport operations of LWR wastes drawn up on the basis of Belgian, French and German practices in this particular area. In addition to the general procedure elaborated for determining, actualizing and scaling of plant and transport costs associated with the various schemes, in-depth calculations of each intermediate management stage are included in this report. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  8. Operator models for delivering municipal solid waste management services in developing countries. Part A: The evidence base.

    Science.gov (United States)

    Wilson, David C; Kanjogera, Jennifer Bangirana; Soós, Reka; Briciu, Cosmin; Smith, Stephen R; Whiteman, Andrew D; Spies, Sandra; Oelz, Barbara

    2017-08-01

    This article presents the evidence base for 'operator models' - that is, how to deliver a sustainable service through the interaction of the 'client', 'revenue collector' and 'operator' functions - for municipal solid waste management in emerging and developing countries. The companion article addresses a selection of locally appropriate operator models. The evidence shows that no 'standard' operator model is effective in all developing countries and circumstances. Each city uses a mix of different operator models; 134 cases showed on average 2.5 models per city, each applying to different elements of municipal solid waste management - that is, street sweeping, primary collection, secondary collection, transfer, recycling, resource recovery and disposal or a combination. Operator models were analysed in detail for 28 case studies; the article summarises evidence across all elements and in more detail for waste collection. Operators fall into three main groups: The public sector, formal private sector, and micro-service providers including micro-, community-based and informal enterprises. Micro-service providers emerge as a common group; they are effective in expanding primary collection service coverage into poor- or peri-urban neighbourhoods and in delivering recycling. Both public and private sector operators can deliver effective services in the appropriate situation; what matters more is a strong client organisation responsible for municipal solid waste management within the municipality, with stable political and financial backing and capacity to manage service delivery. Revenue collection is also integral to operator models: Generally the municipality pays the operator from direct charges and/or indirect taxes, rather than the operator collecting fees directly from the service user.

  9. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  10. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  11. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  12. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  13. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  14. Environmental restoration and waste management site-specific plan for Richland Operations Office

    International Nuclear Information System (INIS)

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs

  15. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  16. Site-specific waste management instruction for the 100-KR-4 Operable Unit drilling. Revision 1

    International Nuclear Information System (INIS)

    Hadley, J.T.

    1996-08-01

    This site-specific waste management instruction provides guidance for the management of waste generated as a result of groundwater well installations in the 100-KR-4 Operable Unit (OU). The well installations are necessary to implement the Remedial Action (RA) option (pump-and-treat using ion exchange) to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

  17. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    Barber, James; Buckley, James

    2003-01-01

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations

  18. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  19. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  20. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  1. Strategic planning for waste management: Characterization of chemically and radioactively hazardous waste and treatment, storage, and disposal capabilities for diverse and varied multisite operations

    International Nuclear Information System (INIS)

    Jolley, R.L.; Rivera, A.L.; Fox, E.C.; Hyfantis, G.J.; McBrayer, J.F.

    1988-01-01

    Information about current and projected waste generation as well as available treatment, storage, and disposal (TSD) capabilities and needs is crucial for effective, efficient, and safe waste management. This is especially true for large corporations that are responsible for multisite operations involving diverse and complex industrial processes. Such information is necessary not only for day-to-day operations, but also for strategic planning to ensure safe future performance. This paper reports on some methods developed and successfully applied to obtain requisite information and to assist waste management planning at the corporate level in a nationwide system of laboratories and industries. Waste generation and TSD capabilities at selected US Department of Energy (DOE) sites were studied. 1 ref., 2 tabs

  2. Waste Management Program. Technical progress report, October-December 1982

    International Nuclear Information System (INIS)

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities

  3. National facilities for the management of institutional radioactive waste in Romania: 25 years of operation for radioactive waste treatment plant, Bucharest-Magurele, 15 years of operation for national radioactive repository, Baita-Bihor

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.; Dragolici, F.; Lungu, L.; Nicu, M.; Cazan, L.; Matei, G.; Guran, V.

    1999-01-01

    The management of the non-fuel cycle radioactive wastes in Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR) Bucharest-Magurele and the National Repository of Radioactive Waste (DNDR) Baita-Bihor. From November 1974 to November 1999 there were treated at STDR nearly 26,000 m 3 LLAW, 2,100 m 3 LLSW and 4,000 spent sources resulting over 5,500 conditioned packages disposed at DNDR. After 25 years of operation for STDR and 15 years of operation for DNDR an updating programme started in 1991. The R and D programme will improve the basic knowledge and waste management practices for the increasing of nuclear safety in the field. (authors)

  4. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  5. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  6. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  7. Waste processing practices at waste management department from INR

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The Institute for Nuclear Research Pitesti (INR), subsidiary of the Romanian Authority for Nuclear Activities has its own Radioactive Waste Treatment Plant (STDR). The object of activity of STDR within the INR Pitesti is to treat and condition radioactive waste resulted from the nuclear facility. Also, it will must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from other decommissioning activities. In according with the National Nuclear Program and the Governmental order no. 11/2003, the Institute for Nuclear Research is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by the decommissioning of nuclear facilities. The classes and criteria of classification for radioactive waste generated in operation and decommissioning in Romania are established in compliance with the classification recommended by IAEA and generally valid in EU countries. The general classification takes into consideration the disposal requirements to isolate the radioactive waste from environment. In Romania, waste minimization is considered by Order No. 56/2004 of CNCAN President for approval of Fundamental regulations on the safe management of radioactive waste. According to this regulation, the generation of radioactive waste is to be kept to the minimum practicable level in terms of both its activity and volume through appropriate design measures, facility operation and decommissioning practices. In order to meet this requirement, the operator must ensure: - selection and control of materials; - recycling and reuse of materials, including clearance of materials; - implementing adequate operating procedures, including those referring to the physical, chemical and radiological characterization of the waste and sorting of different type of materials. (orig.)

  8. Operational and engineering developments in the management of low-level radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Kendall, E.W.; McKinney, J.D.; Wehmann, G.

    1979-01-01

    The Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory is a site for shallow land disposal and storage of solid radioactive waste. It is currently operated for ERDA by EG and G Idaho, Inc. The facility has accepted radioactive waste since July 1952. Both transuranic and non-transuranic wastes are handled at the complex. This document describes the operational and engineering developments in waste handling and storage practices that have been developed during the 25 years of waste handling operations. Emphasis is placed on above-ground transuranic waste storage, subsurface transuranic waste retrieval, and beta/gamma compaction disposal. The proposed future programs for the RWMC including a Molten Salt Combustion Facility and Production Scale Retrieval Project are described

  9. Decision-making methodology for management of hazardous waste

    International Nuclear Information System (INIS)

    Philbin, J.S.; Cranwell, R.M.

    1988-01-01

    A decision-making methodology is presented that combines systems and risk analysis techniques to evaluate hazardous waste management practices associated with DOE weapon production operations. The methodology provides a systematic approach to examining waste generation and waste handling practices in addition to the more visible disposal practices. Release-exposure scenarios for hazardous waste operations are identified and operational risk is determined. Comparisons may be made between existing and alternative waste management practices (and processes) on the basis of overall risk, cost and compliance with regulations. Managers can use this methodology to make and defend resource allocation decisions and to prioritize research needs

  10. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  11. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.

    1978-05-01

    A special, seven member, interdisciplinary task group of consultants was established in January 1976 to propose goals for the national waste management program. This is the report of that group. The proposed goals are intended as a basis for the NRC to establish a policy by which to guide and coordinate the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations and analysis by the authors who examined selected primary literature and interviewed many individuals concerned with waste management. The authors extended the scope of their inquiry and proposed goals to cover 'all technical and societal aspects necessary to an operating waste management system, rather than dealing with the regulatory process alone.' The waste management goals as developed are simple statements of principles which appear to the authors to be important conditions to insure the proper establishment and operation of a system to manage radioactive wastes.' In brief, the goals are designed to protect people and things of value in an equitable manner

  12. Status of Pantex Plant Waste Management Project/program control system

    International Nuclear Information System (INIS)

    Price, Wesley J.; Matthews, William L.

    1992-01-01

    During a December 1990 Waste Management Program Review held in Albuquerque, New Mexico, the Waste Management and Operational Surety Division (WMOSD) introduced the project control system to be used for the Waste Management (WM) Operations Program. The system was entitled 'TRAC-WM' (Tracking and Control for Waste Management). The stated objective for this system was to establish a frame work for planning, managing, and controlling work within the WM program. As a result Mason and Hanger (the operating contractor at the Pantex Plant) initiated the development of a computerized waste management project tracking system. (author)

  13. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  14. Waste Management Program. Technical progress report, July-December, 1984

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement

  15. Waste management research abstracts volume 27. Information on radioactive waste management research in progress or planned

    International Nuclear Information System (INIS)

    2002-10-01

    This issue of the Waste Management Research Abstracts (WMRA) contains 148 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in Volume 27 (WMRA 27) were collected between July 1, 2001 and September 30, 2002. The abstracts present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, many programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  16. DOE waste management program-current and future

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1993-01-01

    The back end of the nuclear fuel cycle, as well as many operations in the Department of Energy, involves management of radioactive and hazardous waste and spent nuclear fuel. Described herein is the current and anticipated Department's Waste Management Program and general information about the Program for managing and disposing of waste that will illustrate the importance of air cleaning and treatment in assuring protection of the public and our environment. The structure and responsibilities of the Office of Environmental Restoration and Waste Management (EM) are described. The categories of waste managed by the Office of Waste Management (OWM) are defined. The problems of waste management, waste minimization, and waste treatment, storage, and disposal are discussed. 4 figs

  17. Waste Management Program. Technical progress report, Aporil-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  18. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  19. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  20. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  1. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  2. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  3. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  4. Proposal for Managing Eco-efficient Operations Plant Dedicated to Waste Handling at Costa Rican Institute of Electricity

    Directory of Open Access Journals (Sweden)

    Annie Chinchilla

    2015-06-01

    Full Text Available In the present study, different eco-efficient specifications were established considered by Ingeniería y Construcciónor IC (Engineering and Construction, a business of the Costa Rican Institute of Electricity (ICE, in Spanish, at the time of developing an operational plant devoted to the handling of waste, in order to make rational use of resources and generate the lowest environmental impact. Initially a general diagnosis was conducted to learn about the current process of waste management in IC, as well as the identification and assessment of its aspects and environmental impacts. An ecoefficiency proposal program was subsequently prepared to be implemented once the ordinary, special and hazardous waste plant is operating. As part of this investigation, eco-efficient measures and technologies were also identified; this can be adopted by IC or any organization to improve its waste management. Finally, it is necessary that the Eco-efficient Management Program (PGE, in Spanish is organized, planned and systematized over time; in addition, the need to have an Ecoefficiency Management Committee arises, which will allow to implement it and measure it through a series of indicators.

  5. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  6. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  7. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  8. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  9. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  10. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  11. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994

    International Nuclear Information System (INIS)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, open-quotes Waste Management Plan Outline.close quotes These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES ampersand H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  12. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  13. Managing nuclear waste: a better idea

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the findings and recommendations of the Advisory Panel with regard to alternative approaches to financing and managing the construction and operation of civilian radioactive waste management facilities. Ten organizational alternatives are considered and four of them are focussed on. These four are: present DOE waste management structure; alternative governmental approach; public/private entity; and private corporation. Advantages and disadvantages of each alternative are covered. The preferred alternative is the Federal Corporation for Waste Management (FEDCORP)

  14. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  15. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  16. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 29

    International Nuclear Information System (INIS)

    2004-11-01

    The twenty-ninth issue of the Waste Management Research Abstracts (WMRA) contains 96 abstracts that describe research in progress in the field of radioactive waste management. These abstracts were collected between May 1 and October 15, 2004 and present ongoing work in Brazil(1), Finland (1), Germany (7), India (11), Mauritius (1), republic of Korea (1), Russian Federation (1) and the United States of America (70). Although the abstracts are indexed by country, some programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  17. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  18. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  19. Annual Report of Radioactive Waste Facilities Operation in 2013

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; LIU; Fu-guo

    2013-01-01

    301,a section of Department of Radiochemistry,which manages 15 facilities and undertakes the administrative tasks of radioactive waste,is the important guarantee of scientific research production and safety in CIAE.1 The safe operation of the radioactive waste management facilities In 2013,in order to ensure the operation safety,we formulated the inspection regulations,which included regular operation inspection,week safety inspection from the leaders of the section and

  20. CEA's waste management policy and strategy. Lessons learned - 59201

    International Nuclear Information System (INIS)

    Dall'ava, Didier

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Radioactive wastes are generated during operation as well as during the decontamination and dismantling of CEA's nuclear facility/installation. The safe and responsible management of radioactive wastes at all stages is an essential requirement of the regulatory system. The management covers the whole sequence of operations starting with the generation of waste and ending with its disposal. The disposal here means discarding of waste with no intention for retrieval. It is important to note here that the safety principles and practices that are applicable during the operational phase are also applicable during the decommissioning phase. As the radioactive waste arising is an inevitable outcome of decommissioning work, all the regulatory requirements associated with decommissioning remain in force in waste management. This presentation deals initially with the regulatory standards related to the management of wastes. As the management of radioactive wastes inevitably includes treatment and conditioning of wastes, following treatment and conditioning of wastes, storage, transportation and eventual disposal are the logical outcome of the radioactive wastes, processes are at any time improved based on the feedback experience and the lessons learned. (author)

  1. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  2. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  3. Managing Waste Throughout Lean-Green Perspective

    Directory of Open Access Journals (Sweden)

    Lamyaa Mohammed Dawood

    2017-11-01

    Full Text Available Managing waste has been known as a crucial need as it may reduce resource consumption, rigid regulations regarded to the environment and occupational health and safety. Lean and green management are two approaches of management that validate waste. Since performance measures are crucial to improve waste management as its  goals of  to promote the performance of organizations .In this research four primary KPIs have been employed that are significant to lean-green management; operational, environmental, economic and social performance factors, subdivided further into sixteen as (Value stream mapping, life cycle assessment,---etc. Also in this research   determination and ranking of these performance measures and their influence on waste minimization is conducted. Interpretive Structural Modeling (ISM methodology is applied to the classification of Key Performance Indicators (KPIs according to the priority of their importance and the correlation between them and their impact to waste minimization. Cronbach’s Alpha coefficient is employed  to assess the reliability of performance measures to minimize waste, and increase customer  satisfaction.  Results showed that Al-Kufa Cement plant has bad overall performance toward lean green waste management perspective. The highest individual score is for operational performance (6.6 rated as medium. But  the lowest individual score is for economic performance [very bad (2.0].   

  4. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  5. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  6. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  7. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  8. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  10. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  11. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  12. Lessons Learned From a Decade of Design, Construction, and Operations of the Environmental Management Waste Management Facility in Oak Ridge, Tennessee - 12062

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Joe [Bechtel National, Inc., Oak Ridge, TN 37830 (United States)

    2012-07-01

    The Environmental Management Waste Management Facility (EMWMF) is the Department of Energy's on-site disposal facility for radioactive and hazardous waste generated by the CERCLA cleanup of the Oak Ridge Reservation (ORR). EMWMF recently completed building out to its maximum site capacity and is approaching a decade of operating experience. In meeting the challenges of design, construction, and operation of a mixed waste and low-level radioactive waste disposal facility within the framework of CERCLA, the Bechtel Jacobs Company LLC (BJC) project team learned valuable lessons that may be beneficial to other disposal facilities. Since project inception in 1998, the scope of the effort includes five regulator-approved designs, four phases of construction, and utilization of half of EMWMF's 1.63 M m{sup 3} of airspace during disposal of waste streams from across the ORR. Funding came from the broadest possible range of sources - privatization, American Recovery and Reinvestment Act, and two funding appropriation accounts. In the process of becoming the cost effective disposal outlet for the majority of the ORR cleanup waste, EMWMF overcame numerous challenges. Lessons learned were a key factor in achieving that success. Many of EMWMF's challenges are common to other disposal facilities. Sharing the successes and lessons learned will help other facilities optimize design, construction, and operations. (author)

  13. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  14. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 there will be about 120 nuclear power reactors with 70,000 MWe in operation in Western Europe, and this number will be doubled by 1985, when the nuclear capacity in operation is expected to be 180,000 MWe. Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago waste from nuclear research and from the use of isotopes in medicine has been the dominating source. Now there is a much larger proportion from the day to day operation of nuclear power reactors. Waste amounts from reprocessing of spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. There will be around 30 reactors and other nuclear plants to take out of operation in Western Europe around 1990. The large-scale handling of these wastes calls for overall management schemes, based on clear policies for storage and disposal. Questions are identified which have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with: (i) rules and regulations, (ii) new technical evidence, (iii) administrative frameworks and responsibilities. Several areas of waste management are well suited to commercial waste operating firms, already established at present in a number of European countries. The scope for waste operators may include waste transportation, operating of own or government owned treatment and storage installations, and the carrying out of disposal operations. In the paper, development needs originally suggested by the Foratom waste study group will be discussed in the light of a late 1976 review to be carried through by European industry

  15. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 about 120 nuclear power reactors with 70,000MW(e) will be in operation in Western Europe, and this number will be doubled by the second half of the 1980s, when the nuclear capacity in operation is expected to be 180,000MW(e). Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago nuclear research and the use of isotopes in medicine have been the dominating source of radioactive waste. Now there is a much larger proportion from the day-to-day operation of nuclear power reactors. The amount of waste from reprocessing spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. Approximately 30 reactors and other nuclear plants will be taken out of operation in Western Europe by about 1990. The large-scale handling of these wastes calls for overall management schemes based on clear policies for storage and disposal. Questions are identified which will have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with (i) rules and regulations, (ii) new technical evidence, (iii) administrative framework and responsibilities. Several areas of waste management are well suited to commercial waste operating firms already established in a number of European countries. The scope for waste operators may include transport of waste, operation of own or government-owned treatment and storage installations, and disposal operations. Development requirements originally suggested by the Foratom waste study group are discussed in the light of the latest developments as seen by European industry. (author)

  16. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  17. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  18. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  19. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  20. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  1. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    International Nuclear Information System (INIS)

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals

  2. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  3. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  4. Public debate - radioactive wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    Between September 2005 and January 2006 a national debate has been organized on the radioactive wastes management. This debate aimed to inform the public and to allow him to give his opinion. This document presents, the reasons of this debate, the operating, the synthesis of the results and technical documents to bring information in the domain of radioactive wastes management. (A.L.B.)

  5. Co-operatives as a development mechanism to support job creation and sustainable waste management in South Africa

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2017-06-01

    Full Text Available relating to infrastructure, operations, and capability. They still operate largely on the fringe of municipal solid waste management, and have not been integrated effectively into such formal collection systems, making it difficult for them to access...

  6. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  7. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 28

    International Nuclear Information System (INIS)

    2003-11-01

    This issue contains 184 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in the Waste Management Research Abstracts Volume 28 (WMRA 28) were collected between October 1, 2002 and September 30, 2003. The abstracts reflect research in progress, or planned, in the field of radioactive waste management. They present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of cooperation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  8. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  9. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  10. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    Science.gov (United States)

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  11. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  12. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  13. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  14. Waste management policy and its implementation in Finland

    International Nuclear Information System (INIS)

    Maekipentti, I.

    1984-01-01

    One of the main principles of Finnish nuclear legislation is that the waste producers - i.e. power companies - shall bear the total responsibility for all waste management operations including final disposal and for all the costs of these operations. The government shall assume the responsibility after the final repository has been approved as fulfilling the safety requirements and after sufficient financial assurances covering the costs of continued surveillance have been given to the authorities. The terms of the operation licences prefer the export of high-level waste to a foreign destination, but as an alternative require preparatory activities for final disposal in domestic territory. The spent fuel from two of the four existing units is returned to the fuel supplier country, the Soviet Union, but the management of spent fuel from the two other units is open. In Finland nuclear waste management has become one of the key problems in the public debate relating to the use of nuclear energy and especially to the licensing of additional nuclear power units. The small size of the national economy may cause some additional difficulties in the efforts to solve waste management problems. Public opinion is in favour of plans for waste management arrangements and facilities being prepared in advance of the licensing of new nuclear units, although it might accept the fact that it is not reasonable to carry out the actual management operations until after rather long storage. The small size of the national economy together with the fact that there are only four nuclear power units in Finland essentially limits the ability to allocate major resources to waste management R and D work and to develop Finnish solutions independently. The political situation which prevails as regards back-end operations internationally may even hinder the extended construction of nuclear plants and use of nuclear energy

  15. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  16. A quality assurance program for environmental data operations involving waste management processes

    International Nuclear Information System (INIS)

    Johnson, G.L.; Blacker, S.M.

    1990-01-01

    This paper describes the 'core' elements needed in an effective Quality Program for environmental data operations involving nuclear, mixed, or non-nuclear wastes. For each core element, this paper examines the minimum components needed for an effective Quality Program for EDOs, and compares approaches to Quality Programs currently required by the U.S. DOE and the U.S. EPA. The comparison suggests how the Quality Program requirements used at DOE, and defined by NQA-1 and its supplements, and those used by EPA through its QAMS program guidance, may provide a basis for developing a harmonized Quality Program for EDOs involving any waste management processes, nuclear, non-nuclear, or mixed. (orig./DG)

  17. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  18. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  19. Radioactive waste management in perspective

    International Nuclear Information System (INIS)

    1996-01-01

    This report drafted by the Nuclear Energy Agency (NEA) deals with the basic principles and the main stages of radioactive waste management. The review more precisely focuses on what relates to environment protection, safety assessment, financing, social issues, public concerns and international co-operation. An annex finally summarises the radioactive waste management programs that are implemented in 15 of the NEA countries. (TEC). figs

  20. Status and challenges for radioactive waste management

    International Nuclear Information System (INIS)

    Riotte, H.

    2011-01-01

    In its 2008 Nuclear Energy Outlook the NEA reviewed the status of radioactive waste management world-wide and noted that the technology for disposal of short-lived low- and intermediate-level radioactive waste is well developed. The review concluded that all OECD countries with major nuclear programmes either operate corresponding waste disposal facilities or are in an advanced stage of developing them. By contrast, the developmental progress of HLW/SNF management programmes varies widely between countries; not to mention that there is currently no repository operating that could take spent nuclear fuel or high-level waste from reprocessing. In its collective opinion 'Moving forward with geological disposal' the NEA noted that deep underground disposal in geological formations is seen worldwide as the only sustainable endpoint for the management of these types of waste, as it affords unparalleled protection without reliance on active safety monitoring and controls. While waste management programmes in some countries are well matured and countries like Finland, France and Sweden aim to operate geologic repositories in the next decade, others need to develop their national strategies, plans and corresponding actions for managing radioactive waste further. Periodically reviewed national waste management plans, as legally required for EU member countries by a recent Directive, can provide a co-operation framework for all national institutional players and a means to measure progress. In implementing sustainable solutions for the long-term management of HLW/SNF, specific challenges lay in establishing an efficient policy and regulatory framework that (a) defines a desired level of safety over the various time scales to be considered and (b) allows for sustainable decision making procedures by involving public and stakeholder in a flexible, step-wise implementation process. Technical confidence in the safety of a repository needs to be demonstrated in a modern

  1. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  2. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  3. Industrial Program of Waste Management - Cigeo Project - 13033

    Energy Technology Data Exchange (ETDEWEB)

    Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l' energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  4. Industrial Program of Waste Management - Cigeo Project - 13033

    International Nuclear Information System (INIS)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent; Advocat, Thierry; Sacristan, Pablo; Beguin, Stephane

    2013-01-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  5. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  6. Radioactive waste management of urban area

    International Nuclear Information System (INIS)

    Huang, Z.; Gu, S.X.

    1993-01-01

    The several years experience of radioactive waste management in Shanghai of China shows that the centralized management is quite successful and effective. Rad waste generated in urban area would be treated with further concern in the respect of radiation and environmental protection. In this respect, there is a need for a professional organisation to undertake the necessary regulation, and demonstrate that high standards of design, planning, management and operation could be met. The experience in China is suitable to manage and dispose rad waste generated from the civil applications in urban area, and valuable to the developing country and area in particular. It is concluded that the centralized management of intermediate level and low level radioactive waste is an optimum choice for urban area

  7. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  8. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  9. Retention-tank systems: A unique operating practice for managing complex waste streams at research and development facilities

    International Nuclear Information System (INIS)

    Brigdon, S.

    1996-01-01

    The importance of preventing the introduction of prohibited contaminants to the sanitary sewer is critical to the management of large federal facilities such as the Lawrence Livermore National Laboratory (LLNL). LLNL operates 45 retention-tank systems to control wastewater discharges and to maintain continued compliance with environmental regulations. LLNL's unique internal operation practices successfully keep prohibited contaminants out of the sanitary waste stream and maintain compliance with federal, state, and local regulations, as well as determining appropriate wastewater-disposal options. Components of the system include sampling and analysis of the waste stream, evaluation of the data, discharge approval, and final disposition of the waste stream

  10. Management of liquid radioactive wastes at PNRI

    International Nuclear Information System (INIS)

    Garcia, C.M.

    1994-10-01

    Liquid wastes accepted at PNRI waste management facility are generated by hospitals and research institutions from all over the country including those generated from the research laboratories within the PNRI. The operation of the Philippine TRIGA Research Reactor is also a potential source of liquid waste to be handled and managed by the facility in the future. This technical report is a result of the study of the present status and development of the management of liquid wastes at PNRI. (auth.). 8 refs.; 3 figs.; 4 tabs

  11. Radioactive waste management in the Netherlands. A practical solution in full operation

    International Nuclear Information System (INIS)

    Codee, H.D.K.

    2000-01-01

    All radioactive waste produced in the Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small and in the near future ending nuclear power programme. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, the Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an important element in the management strategy that will ultimately result in final removal of the waste. Since the waste will remain retrievable for a long time, new technologies and new disposal options can be applied when available and feasible. (author)

  12. Controlling changes - lessons learned from waste management facilities

    International Nuclear Information System (INIS)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.; Waetje, W.D.

    1995-01-01

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-level waste through compaction, incineration, and sizing operations. WROC and WERF's efforts aim to improve change control processes that have worked inefficiently in the past

  13. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  14. Economic environmental management of drilling operations

    International Nuclear Information System (INIS)

    Longwell, H.J.; Akers, T.J.

    1992-01-01

    This paper presents significant environmental and regulatory initiatives developed by Exxon's New Orleans Drilling Organization. Specifically, the paper will cover drilling waste minimization techniques and disposal options, recycling of drilling waste streams, and environmentally managed drilling location design considerations. The implementation of some of these initiatives at Exxon's Chalkley field land locations have resulted in a fifty percent reduction in drilling location waste management costs. Some of these same initiatives have been successfully applied to Exxon's barge drilling locations. For operations at the environmentally sensitive Mobile Bay, Exxon contracted with a local company and assisted in the development of an economically and environmentally superior drilling waste disposal and treatment system. In summary, it is possible for drilling operators to pro-actively manage escalating environmental and regulatory challenges through the implementation of economic and practical initiatives

  15. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  16. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    part of a nuclear installation, where they can be contaminated or activated, should be treated by a specific procedure, irrespective of their activity level. Large part of these (140,000 t of wastes from dismantling of 9 power reactor) do not implies a particular type of disposal since their activity is very low; sometime their radioactivity appears to be only potential. Their storage at Center of Aube will be not appropriate and consequently a specific waste storage of very low activity should be provided for them. Implementation of the storage center of very low activity at Morvilliers, at 2 km from the storage center at Aube was followed by 2 public inquiries conducted in 2001 and 2002. The positive results of these inquiries have allowed starting the construction phase, the last stage of the project being their industrial operation by the summer of 2003, with first delivering of waste drums at 1. of October 2003. The storage center at Morvilliers constitutes now a tool of waste management significant for the most part of the volume of waste to be produced by the dismantling operation of nuclear facilities. After a phase of operation spanning 30 years, ANDRA will maintain a monitoring phase of the site and the environment, extended over tens of years for guaranteeing innocuousness for the man and its environment. After this period and after the verification of the site situation the residual constraints will be relaxed

  17. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  18. Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Brummond, W.; Celeste, J.; Steenhoven, J.

    1993-08-01

    The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE

  19. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  20. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  1. The development and implementation of a waste management strategy

    International Nuclear Information System (INIS)

    Fairhall, G.A.; Vickery, P.; Edmiston, L.

    1999-01-01

    Over the past forty years BNFL has operated 4 nuclear sites in the UK. Commercial operations on these sites span the full nuclear fuel cycle from enrichment, fuel fabrication, electricity generation, reprocessing, waste management, and decommissioning. Through the recent merger with Magnox Electric BNFL has acquired a further 8 Magnox reactor sites in the UK. Prior to 1980 BNFL adopted a policy of storing wastes generated by its activities in an unconditioned state in purpose built stores. This paper shows how BNFL's waste management strategy has developed to ensure how volume reduction technologies have been implemented for low level waste. Whilst immobilisation technologies have been implemented for high and intermediate level wastes. The paper describes how continual review of the strategy ensures waste management processes are continually monitored against progress and optimised to ensure all waste arisings are conditioned for final disposal. Finally the paper will show how the strategy can be used to develop waste management plans for customer sites. (author)

  2. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  3. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  4. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  5. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  6. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  7. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  8. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  9. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  10. LLNL radioactive waste management plan as per DOE Order 5820.2

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis)

  11. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  12. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  13. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  14. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  15. The effect of food waste disposers on municipal waste and wastewater management.

    Science.gov (United States)

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  16. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  17. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  18. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  19. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  20. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  1. Human factors in waste management - potential and reality

    International Nuclear Information System (INIS)

    Thompson, J.S.

    1996-01-01

    There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop open-quotes nice to haveclose quotes features, like a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value open-quotes through the back doorclose quotes on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development

  2. Management of radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1968-01-01

    Design data and operating experience with waste management systems at nuclear power stations in Canada, France, the United Kingdom and the United States of America are described. Although the specific designs and operating practices vary between nations, the underlying philosophies are essentially identical, being based on the protection principles of ICRP. The operating experience with different waste management systems has been excellent in maintaining the radiation exposures in the environment well below the accepted dose standards.

  3. Radioactive solid waste management at Trombay

    International Nuclear Information System (INIS)

    Jayaraman, A.P.; Balu, K.

    1977-01-01

    The Radioactive solid waste management programme at BARC, India during 1965-1975 is described in detail. The operational experience, which includes the handling treatment and disposal of these solid wastes is reported alongwith the special problems faced in the case of large volume low hazard potential wastes from the nuclear fuel cycle. (K.B.)

  4. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  5. Nuclear knowledge management in radioactive waste management programmes

    International Nuclear Information System (INIS)

    Vetere, Claudia L.; Gomiz, Pablo R.; Lavalle, Myriam; Masset, Elvira

    2015-01-01

    In late 2007, the Nuclear Knowledge Management (NKM) group of the Argentine Atomic Energy Commission (CNEA), understanding the need to preserve knowledge related with radioactive waste, formulated the CONRRaD Project with the aim of developing and implementing a sustainable knowledge management system. The CONRRaD Project was highly focused on minimising the loss of radioactive waste management knowledge related to processes and facilities as a consequence of staff ageing and retiring, promoting transfer and preservation so as to ensure that future generations interpret and improve the management of waste, protecting the environment and people's health. The National Programme for Radioactive Waste Management (NPRWM) has the responsibility of maintaining a documented record system to preserve the knowledge that is available and relates to the facilities for radioactive wastes treatment, conditioning, packaging, storing and disposal of low-level radioactive wastes. The STOReR system has been designed with the aim of ensuring traceability through all the steps of radioactive waste management from generation to storage or disposal. Apart from upgrading an application in use since 2001, the new software includes improvements in the inventory calculations according to the current regulations. Basically, the system consists of two applications. One application called PAGE is on the Net and it is available for the producers. These producers are the facilities that generate radioactive waste as a consequence of their normal operation. PAGE enables the producers to access all the services provided by AGE more easily. Not only are producers the users of PAGE, but there are also authorised owners of radioactive sources and devices because AGE provides transitory or permanent storage of these elements. The other application called STOReR is the main one which provides the capabilities needed to support the whole system, such as the databases storage and management. STORe

  6. Operational Waste Stream Assumption for TSLCC Estimates

    International Nuclear Information System (INIS)

    Gillespie, S.

    2000-01-01

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS MandO 2000a), and AP-3.11Q, ''Technical Reports''

  7. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  8. Waste management capabilities for alpha bearing wastes at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Keenan, T.K.

    1977-01-01

    Waste Management activities at the Los Alamos Scientific Laboratory (LASL) involve a broad range of effort. There are requirements for daily processing of both liquid and solid radioactive and chemical wastes using a variety of technical operations. Approximately 4.5 x 10 7 l/y of liquids and 9 x 10 3 m 3 /y of solids are processed by the Waste Management Group of the LASL. In addition, a vigorous program of research, development, and demonstration studies leading to improved methods of waste treatment is also carried out within the same group. The current developmental studies involve incineration of transuranic-contaminated combustible wastes as well as other waste management aspects of alpha emitting transuranic (TRU) isotopes

  9. Waste management capabilities for alpha bearing wastes at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Keenan, T.K.

    1978-01-01

    Waste Management activities at the Los Alamos Scientific Laboratory (LASL) involve a broad range of effort. There are requirements for daily processing of both liquid and solid radioactive and chemical wastes using a variety of technical operations. Approximately 4.5 x 10 7 l/yr of liquids and 9x10 3 m 3 /yr of solids are processed by the Waste Management Group of the LASL. In addition, a vigorous program of research, development, and demonstration studies leading to improved methods of waste treatment is also carried out within the same group. The current developmental studies involve incineration of transuranic-contaminated combustible wastes as well as other waste management aspects of alpha emitting transuranic (TRU) isotopes

  10. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  11. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  12. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  13. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  14. Data for radioactive waste management and nuclear applications

    International Nuclear Information System (INIS)

    Stewart, D.C.

    1985-01-01

    This book is a specialized handbook on the management of radioactive waste, including information applicable to related applications. It consolidates information from many sources to develop techniques for dealing with radioactive waste management and features reports and other specialized data not available in libraries. It covers physical data, chemical data, types of radioactive wastes, and data for different operations

  15. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  16. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  17. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  18. Quarterly Briefing Book on Environmental and Waste Management Activities

    International Nuclear Information System (INIS)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs

  19. Legislative impacts on Savannah River waste management operations

    International Nuclear Information System (INIS)

    Bauer, J.D.

    1987-01-01

    Today everyone has to be prepared to meet the challenges presented by new legislative actions. The Savannah River Plant is also impacted by this legislation as the exclusive nature of the Atomic Energy Act slowly erodes. This paper discusses the management of three types of radioactive waste from the production of defense nuclear materials and the impacts of major environmental legislation on the handling of these wastes. The paper briefly discusses the major environmental statutes, covers the statutes impact on the technical processes and, finally, considers the nontechnical impact of the statutes

  20. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  1. Radioactive waste management practices in India

    International Nuclear Information System (INIS)

    Raj, Kanwar

    2012-01-01

    Different countries around the globe, especially those involved in nuclear power plant operation, spent fuel reprocessing, nuclear research activities and diverse nuclear applications; generate large inventory of radioactive wastes. These waste streams generated during various stages of nuclear fuel cycle are of different categories, which require special care for handling, treatment and conditioning. Conventional treatment and conditioning methods may not be efficient for various type of waste; therefore special options may be required to manage these waste streams. Presently, Indian waste management fraternity is focused to minimize the volume of the waste to be finally disposed off, by partitioning radionuclides, regenerating separation media and re-using as much of the waste components as possible and economically feasible. This approach, together with the reuse/recycling strategy, seems to represent a robust waste treatment strategy for the future

  2. The role of the national low level waste repository operator in delivering new solutions for the management of low level wastes in the UK - 16217

    International Nuclear Information System (INIS)

    Walkingshaw, Martin

    2009-01-01

    The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site's operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors. (author)

  3. Overcoming mixed waste management obstacles - A company wide approach

    International Nuclear Information System (INIS)

    Buckley, R.N.

    1996-01-01

    The dual regulation of mixed waste by the Nuclear Regulatory Commission and the Environmental Protection Agency has significantly complicated the treatment, storage and disposal of this waste. Because of the limited treatment and disposal options available, facilities generating mixed waste are also being forced to acquire storage permits to meet requirements associated with the Resource Conservation and Recovery Act. Due to the burdens imposed by the regulatory climate, Entergy Operations has undertaken a proactive approach to managing its mixed waste. Their approach is company wide and simplistic in nature. Utilizing the peer groups to develop strategies and a company wide procedure for guidance on mixed waste activities, they have focused on areas where they have the most control and can achieve the greatest benefits from their efforts. A key aspect of the program includes training and employee awareness regarding mixed waste minimization practices. In addition, Entergy Operations is optimizing the implementation of regulatory provisions that facilitate more flexible management practices for mixed waste. This presentation focuses on the team approach to developing mixed waste managements programs and the utilization of innovative thinking and planning to minimize the regulatory burdens. It will also describe management practices and philosophies that have provided more flexibility in implementing a safe and effective company wide mixed waste management program

  4. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  5. Waste Management Program: Technical progress report, July-December 1985

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides information on operations and development programs relating to the management of radioactive wastes at the Savannah River Plant. Information on environmental and safety assessments, waste form development, and process and equipment development are reported for long-term waste management. 13 refs., 20 figs., 16 tabs

  6. Waste Management Program: Technical progress report, January-June 1985

    International Nuclear Information System (INIS)

    1987-12-01

    This report provides information on operations and development programs relating to the management of radioactive wastes at the Savannah River Plant. Information on environmental and safety assessments, waste form development, and process and equipment development are reported for long-term waste management. 35 refs., 12 figs., 8 tabs

  7. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  8. Economic optimization of nuclear waste management

    International Nuclear Information System (INIS)

    DeWames, R.E.; Grantham, L.F.; Guon, J.; McKisson, R.L.

    1984-01-01

    The paper presented here addresses the impact of waste management system operating parameters on overall system economics. The conclusion reached by this study is that currently available technology and proposed operating conditions do not lead to optimum economics. The decision to utilize the current reference waste package and non-optimum operating conditions will cause added expenditures of 7 billion dollars over the next several decades. Further, this paper points out that optimum economics is not necessarily incompatible with improved system safety

  9. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  10. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  11. The Spanish radioactive waste management programme

    International Nuclear Information System (INIS)

    Beceiro, A.R.

    1994-01-01

    All radioactive waste management activities in Spain are controlled by the Empresa Nacional de Residuos Radiactivos, installed by royal decree in 1984. The programme for low- and intermediate-level wastes is well advanced. A near-surface repository for these type of wastes has been in operation since October 1992. The programme for high-level wastes including spent fuel from the operating nuclear power plants is progressing stepwise. As the first step, effforts are made to secure the temporary storage of spent fuel. Final disposal is envisaged in an deep repository in one of the main geological media available in Spain, namely, granite, salt and clay. (orig.) [de

  12. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  13. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  14. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  15. Waste management program at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  16. Waste management program at Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Wong, P.C.F.; Chan, N.; Hawrelluk, K.

    2011-01-01

    The Atomic Energy of Canada Limited (AECL) Waste Management Program establishes requirements for waste management activities at AECL sites in Canada. It ensures that activities involving planning for, handling, processing, transporting, storage and long-term management of wastes are performed in a manner that protects the workers, the public, and the environment, and are in compliance with applicable regulatory and licence requirements. The program translates applicable legal requirements into program requirements appropriate for AECL, and assists AECL management in implementing those requirements. The Waste Management Program was formally established at AECL in 2007 as one of the nuclear programs. The activities conducted in the first two years (2007 - 09) were mainly focused on program development. Currently the program is executing the waste management improvement initiatives based on the Waste Management Program Improvement Plan. During the program implementation, close collaboration between the Waste Management Program and other departments resulted in improved waste management performance at Chalk River Laboratories (CRL). This included increased segregation of the waste at the source, reduction in waste generation, improved labeling and identification of waste packages, improved recyclables collection and initiating recycling of selected hazardous wastes. In accordance with pollution prevention, the quantities and degree of hazard of wastes requiring long-term management shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle. The annual volume of solid waste generated is one of the key indicators for waste management performance. AECL has been successful in reduction of operational waste and diversion of materials for recycling at CRL. From 2007 to 2010, the annual volume of solid waste, including inactive and radioactive wastes, generated from routine operations at CRL decreased by 26%, and the annual amount of recyclables sent

  17. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  18. Management and storage of commercial power reactor wastes

    International Nuclear Information System (INIS)

    1976-01-01

    In May 1976, a technical document, ERDA--76-43, entitled ''Alternatives for Managing Wastes from Reactors and Post-Fission Operations in the LWR Fuel Cycle'' was published by the United States Energy Research and Development Administration. This 1500-page document describes technical alternatives for managing wastes from the commercial light-water-reactor fuel cycle. It does not select preferred waste management technologies or make comparative assessments. This report, ERDA--76-162, is a brief summary of the salient points in the 1500-page document and should provide an appreciation of the present technology and methods for handling the various forms of radioactive waste. In a major expansion of ERDA's waste management program, the U.S. has initiated efforts to identify acceptable geologic formations within the continental U.S. for ultimate disposition of reactor wastes. This technique represents the most advanced alternative presently available for the long-term management of these wastes

  19. Industrial long-term waste management in France

    International Nuclear Information System (INIS)

    Marque, Y.

    1988-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction and operation of disposal centers. The French national program of waste management is running on with the construction of a second near-surface disposal which is expected to be in operation in 1991 and a selection of a site for the construction of an underground laboratory for the qualification of this site for deep disposal

  20. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  2. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  3. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The dossier published in this issue deals with all matters relating to radioactive waste management. It describes in detail the guidelines implemented by France in this field and provides a general overview of actions carried out at international level. The articles are assembled in several chapters, treating the following subjects: I. Upstream storage management. II. Storage (surface and underground). III. Research to back up the management program. There then follows a description of various processes and equipment developed by research laboratories and industrialists to provide, at the different stages, a number of operations required by the management programs [fr

  5. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  6. Department of Energy Waste Information Network: Hazardous and mixed waste data management

    International Nuclear Information System (INIS)

    Fore, C.S.

    1990-01-01

    The Department of Energy (DOE) Waste Information Network (WIN) was developed through the efforts of the DOE Hazardous Waste Remedial Actions Program (HAZWRAP) Support Office (SO) to meet the programmatic information needs of the Director, Office of Environmental Restoration and Waste Management. WIN's key objective is to provide DOE Headquarters (HQ), DOE Operations Offices, and their contractors with an information management tool to support environmental restoration and waste management activities and to promote technology transfer across the DOE complex. WIN has evolved in various stages of growth driven by continued identification of user needs. The current system provides seven key features: technical information systems, bulletin boards, data file transfer, on-line conferencing, formal concurrence system, electronic messaging, and integrated spreadsheet/graphics. WIN is based on Digital Equipment Corporation;s (DEC) VAXcluster platform and is currently supporting nearly 1,000 users. An interactive menu system, DEC's ALL-IN-1 (1), provides easy access to all applications. WIN's many features are designed to provide the DOE waste management community with a repository of information management tools that are accessible, functional, and efficient. The type of tool required depends on the task to be performed, and WIN is equipped to serve many different needs. Each component of the system is evaluated for effectiveness for a particular purpose, ease of use, and quality of operation. The system is fully supported by project managers, systems analysts, and user assistance technicians to ensure subscribers of continued, uninterrupted service. 1 ref

  7. Changing needs in a waste information management system: A disposer's viewpoint

    International Nuclear Information System (INIS)

    Fauver, S.L.

    1987-01-01

    An enhanced radioactive waste management information system (RWMIS) is currently under development to accommodate more specific reporting requirements. Radioactive waste management project (RWMP) has recently completed a draft revision of its Operational Radioactive Defense Waste Management Plan for the Nevada Test Site which identifies NTS waste acceptance criteria and revised data requirements for waste generators. Emphasis shifts to the characterization of individual waste packages. RWMP proposes that the waste generator number individual waste packages in a manner which identifies the generator, waste stream, container type, and method of treatment or stabilization. A listing of radionuclides and concentrations will be required, as well as physical and chemical data specific to each waste package. Analytical methods and techniques used for waste package characterization must be detailed by each generator in their quality assurance plan which is reviewed by DOE Nevada Operations Office

  8. System approach for the management of radioactive waste

    International Nuclear Information System (INIS)

    Fearnley, I.G.

    1997-01-01

    An integrated approach to Waste Management and Decommissioning, which takes account of the lifetime implications (safety, dose uptake, discharges and cost) is an important strategic process in forward planning. This type of approach is particularly relevant when making decisions concerning waste minimisation and segregation, packaging and surface storage of high and intermediate level waste in advance of the existence of disposal facilities. Such a systematic approach forms an integral part of a process which enable progress to be assessed and plans to be updated in response to changing demands upon business operations and can continually be applied to waste management policy and to optimise the detailed waste management plans. (author)

  9. Waste management fiscal year 1998 progress report

    International Nuclear Information System (INIS)

    1998-01-01

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project's production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks

  10. The Radioactive Waste Management Advisory Committee's advice to ministers on radioactive waste management issues at UKAEA Dounreay

    International Nuclear Information System (INIS)

    1999-01-01

    Topics discussed in the document include: problem areas in waste management; key facilities, operations and areas at Dounreay; social context, public communications and management issues at Dounreay. Background information and RWMAC review of Dounreay are given

  11. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  12. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  13. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  14. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  15. Radioactive waste management turning options into solution

    International Nuclear Information System (INIS)

    Neubauer, J.

    2000-10-01

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  16. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  17. Public service of radioactive waste management for small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2001-01-01

    By Governmental decree of May 1999, the Agency for radwaste management (ARAO) was authorized as a state public service for managing radioactive waste from small producers. By this decree the ARAO also became the operator of the Central Interim Storage intended for radioactive waste from industry, medicine and research, located in Brinje near Ljubljana. In this paper the current situation will be presented, together with plans for improving public service and the necessary refurbishment and modernization of the storage facility. Execution of the proposed measures, modifications and a modernization will ensure proper and safe storing of all radioactive waste from small producers produced in Slovenia, thus fulfilling the requirements for full operation of the public service of radioactive waste management.(author)

  18. Community Solutions for Solid Waste Pollution, Level 6. Teacher Guide. Operation Waste Watch.

    Science.gov (United States)

    Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.

    Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…

  19. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1996-03-01

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support

  20. Concepts and strategies for management of nuclear wastes

    International Nuclear Information System (INIS)

    1979-11-01

    Three modes of reactor strategies are chosen and discussed; (1) Once-through type light water reactor, (2) U-Pu cycle light water reactor, and (3) U-Pu cycle fast breeder reactor. The arising of wastes in each mode of nuclear fuel cycle is first estimated for unit nuclear power generation of 1 GWe.year and the amount of wastes to be managed in each year is then calculated. Assuming the 2nd and the 3rd reprocessing plants are not operative, the decrease of waste arising is also estimated, which, nevertheless, claims the need for spent fuel storage pools. In addition, the arisings of decommissioning wastes are evaluated to identify their effect on waste management. Based on above fact, a generic logic of waste management is brought about, placing major emphasis on volume reduction, barrier- and decay-effects. According to the characteristics, the wastes arisen at each stage of nuclear fuel cycle can be categorized into (1) extremely low-level waste, (2) low- and intermediate-level waste, (3) alpha-waste and (4) high-level waste, and the suitable isolation periods for the specified categories can be set by the aid of hazard index, suggesting that the disposal options may possibly be selected. The waste disposal gives environmental impacts through dispersion and migration of contained nuclides into biosphere; the dispersion and migration paths are investigated and a mathematical expression to evaluate the impacts as dose commitment is presented. A multi-barrier concept is proposed since combined artificial and natural barriers have possibility of lengthening the migration path to enable safe disposal. Finally, items of research/development in waste management are represented from the viewpoints of (1) establishment of management system, (2) safety assessment covering verification of technology and system, and (3) regulation, giving recommendations for national policy making as well as for international co-operation. (JPN)

  1. Legal and Regulatory Frameworks for Decommissioning and Waste Management

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2016-01-01

    Safe and efficient decommissioning and waste management requires clear structures for allocating responsibility and funding. Organisation of decommissioning and waste management activities and the regulatory environment within which those activities are undertaken should also allow the supply chain to prosper and, wherever possible, reduce barriers to international availability of resources and waste facilities. Radioactive waste treatment and disposal in particular raises both legal and political challenges to effective international co-operation, yet options for decommissioning and waste management are maximised where international barriers can be minimised. Added to this, international nuclear liabilities issues must be managed so as to avoid unnecessary deterrents to international mobility of capability within the decommissioning market. Contractual terms and insurance arrangements for international shipments of nuclear waste and materials will also need to take into account imminent changes to liabilities conventions, ensuring compliance and management of compliance costs (of both insurance and management time). This paper explores legal and commercial structures intended to support effective decommissioning and waste management and examines regulatory and commercial factors affecting the ability of facility operators to utilise internationally available capability. It focusses on: - strategic approaches developed in the UK to address decommissioning and waste management liabilities associated with the UK's first and second generation civil nuclear sites and comparison of those approaches with other jurisdictions with significant decommissioning liabilities; - liability and compliance risks associated with navigating international nuclear liabilities regimes in context of both mobility of decommissioning capability and international waste shipment; and - regulatory issues affecting international availability of waste treatment facilities, including

  2. Nuclear waste management plan of the Finnish TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 - reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor. The weekly schedule allows still one or two days for other purposes such as isotope production and neutron activation analysis. According to the Finnish legislation the research reactor must have a nuclear waste management plan. The plan describes the methods, the schedule and the cost estimate of the whole decommissioning waste and spent fuel management procedure starting from the removal of the spent fuel, the dismantling of the reactor and ending to the final disposal of the nuclear wastes. The cost estimate of the nuclear waste management plan has to be updated annually and every fifth year the plan will be updated completely. According to the current operating license of our reactor we have to achieve a binding agreement, in 2005 at the latest, between our Research Centre and the domestic nuclear power companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel. There is also the possibility to make the agreement with USDOE about the return of our spent fuel back to USA. If we want, however, to continue the reactor operation beyond the year 2006, the domestic final disposal is the only possibility. In Finland the producer of nuclear waste is fully responsible for its nuclear waste management. The financial provisions for all nuclear waste management have been arranged through the State Nuclear Waste Management Fund. The main objective of the system is that at any time there shall be sufficient funds available to take care of the nuclear waste management measures caused by the waste produced up to that time. The system is applied also to the government institutions like FiR 1 research reactor. (author)

  3. OPG's long term management proposal for low and intermediate level radioactive waste: project description, operations

    International Nuclear Information System (INIS)

    Witzke, P.

    2011-01-01

    Although the Deep Geologic Repository (DGR) is approximately 8 years away from being placed into service, it is time to start planning for operations. Ontario Power Generation's (OPG) Nuclear Waste Management Division (NWMD) has a systematic approach to preparing for operation of any new facility that is readily applicable to the DGR. The DGR Operational Readiness Plan has been benchmarked at similar facilities in North America and Europe. The operating vision is a living model, and is constantly being reviewed and refined to align with the detailed design of the DGR as it proceeds through its phases of development. Combined with 40 years of operating surface storage facilities for the storage of Low and Intermediate Level Waste (LILW), the DGR operating vision will enable NWMD to provide meaningful input during COMS (Constructability, Operability, Maintainability, and Safety) review in the DGR project detailed-design phase in 2011/2012. A Work Breakdown Structure has been used to communicate the detail of the operating vision, and also to estimate the costs of Operational Readiness and Operations during the lifetime of the facility. (author)

  4. The development of an operations system for the transort of spent nuclear fuel in the United States civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Peterson, R.W.; Joy, D.S.; Pope, R.B.; Ratledge, J.E.; Shappert, L.B.; Wankerl, M.W.; Klimas, M.J.; Darrough, M.E.

    1990-01-01

    In order to support the development of a Transportation Operations System for the Federal Waste Management System (FWMS) by the Office of Civilian Radioactive Waste Management (OCRWM), the United States Department of Energy (DOE) formed the Transportation Project Office (TPO) at its field office in Chicago. Planning and development activities are being performed in a number of areas including a major effort in operations support, providing the planning and assessment necessary for developing the future transportation operations capability needed by the FWMS. The purpose of this paper is to review significant planning and development accomplishments, and outline expected future efforts for the continued development, acquisition, test, and startup of the transportation operations component of the FWMS

  5. The development of an operations system for the transport of spent nuclear fuel in the United States Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Peterson, R.W.; Joy, D.S.; Pope, R.B.; Ratledge, J.E.; Shappert, L.B.; Wankerl, M.W.; Klimas, M.J.; Darrough, M.E.

    1990-01-01

    In order to support the development of a Transportation Operations System for the Federal Waste Management System (FWMS) by the Office of Civilian Radioactive Waste Management, the United States Department of Energy formed the Transportation Project Office at its field office in Chicago. Planning and development activities are being performed in a number of areas including a major effort in operations support, providing the planning and assessment necessary for developing the future transportation operations capability needed by the FWMS. The purpose of this paper is to review significant planning and development accomplishments, and outline expected future efforts for the continued development, acquisition, test, and startup of the transportation operations component of the FWMS. 2 refs

  6. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  7. Application research of cost construction on radioactive waste management

    International Nuclear Information System (INIS)

    Gao Yanfeng; Bi Sheng; Liu Zhenhe

    2009-01-01

    This paper summarizes the theoretical basis systems for the cost component on radioactive waste management. Through the decomposition production of various types of project content, analysis of the cost elements of operating activities, study subjects at reason-able cost and expense. On the basis of the formation of radioactive waste management costs of the various operating structure Into, and established a comprehensive system of price system. (authors)

  8. Minimization of mixed waste in explosive testing operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.; Sator, F.E.; Simmons, L.F.

    1993-02-01

    In the 1970s and 1980s, efforts to manage mixed waste and reduce pollution focused largely on post-process measures. In the late 1980s, the approach to waste management and pollution control changed, focusing on minimization and prevention rather than abatement, treatment, and disposal. The new approach, and the formulated guidance from the US Department of Energy, was to take all necessary measures to minimize waste and prevent the release of pollutants to the environment. Two measures emphasized in particular were source reduction (reducing the volume and toxicity of the waste source) and recycling. In 1988, a waste minimization and pollution prevention program was initiated at Site 300, where the Lawrence Livermore National Laboratory (LLNL) conducts explosives testing. LLNL's Defense Systems/Nuclear Design (DS/ND) Program has adopted a variety of conservation techniques to minimize waste generation and cut disposal costs associated with ongoing operations. The techniques include minimizing the generation of depleted uranium and lead mixed waste through inventory control and material substitution measures and through developing a management system to recycle surplus explosives. The changes implemented have reduced annual mixed waste volumes by more than 95% and reduced overall radioactive waste generation (low-level and mixed) by more than 75%. The measures employed were cost-effective and easily implemented

  9. A comparative assessment of alternative waste management procedures for selected reprocessing wastes

    International Nuclear Information System (INIS)

    Hickford, G.E.; Plews, M.J.

    1983-07-01

    This report, which has been prepared by Associated Nuclear Services for the Department of the Environment, presents the results of a study and comparative assessment of management procedures for low and intermediate level solid waste streams arising from current and future fuel reprocessing operations on the Sellafield site. The characteristics and origins of the wastes under study are discussed and a reference waste inventory is presented, based on published information. Waste management strategy in the UK and its implications for waste conditioning, packaging and disposal are discussed. Wastes currently arising which are not suitable for Drigg burial or sea dumping are stored in an untreated form. Work is in hand to provide additional and improved disposal facilities which will accommodate all the waste streams under study. For each waste stream viable procedures are identified for further assessment. The procedures comprise a series of on-site operations-recovery from storage, pre-treatment, treatment, encapsulation, and packaging, prior to storage or disposal of the conditioned waste form. Assessments and comparisons of each procedure for each waste are presented. These address various process, operational, economic, radiological and general safety factors. The results are presented in a series of tables with supporting text. For the majority of wastes direct encapsulation with minimal treatment appears to be a viable procedure. Occupational exposure and general safety are not identified as significant factors governing the choice of procedures. The conditioned wastes meet the general requirements for safe handling during storage and transportation. The less active wastes suitable for disposal by currently available routes meet the appropriate disposal criteria. It is not possible to consider in detail the suitability for disposal of the more active wastes for which disposal facilities are not yet available. (Author)

  10. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  11. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel

  12. The review of radioactive waste management in the world

    International Nuclear Information System (INIS)

    Jalilzadeh, R.; Mirzahosseini, A.; Rahnomaei, N. A.

    2008-01-01

    Radioactive waste is generally classified on the basis of how much radiation and the type of radiation it emits as well as the length of time over which it will continue to emit radiation. Many activities dealing with radioactive materials produce nuclear wastes, including civilian nuclear power programs (nuclear Power plant operations and nuclear fuel-cycle activities), defense nuclear programs (nuclear weapons production, naval nuclear reactor programs, and related R and D), and industrial and institutional activities (scientific research, medical operations, and other industrial uses of Radioisotopic sources or Radio chemicals). To minimize the potential adverse health and environment impacts to people and other systems including of animals, plant and etc, during the entire lifetime of the radionuclides involved, nuclear waste must be carefully and properly managed. The scope of nuclear - waste management encompasses generation, processing (treatment and packaging), storage, transport, and disposal. in this research the effect of radioactive waste on environment and also disposal methods and radioactive waste management in countries is surveyed

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  14. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  15. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  16. Consolidation and Centralization of Waste Operations Business Systems - 12319

    Energy Technology Data Exchange (ETDEWEB)

    Newton, D. Dean [Oak Ridge Operations, Oak Ridge, TN 37830 (United States)

    2012-07-01

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidation into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate

  17. Nuclear waste management and the impact of Carter Administration policies

    International Nuclear Information System (INIS)

    Williams, R.F.

    1979-01-01

    The impact of Carter Administration's policies on the nuclear waste management program are evaluated in this article. The waste management program faces numerous inconsistencies resulting from: a lack of a clearly defined schedule and division of responsibility; the requirement to meet conflicting procedural requirements; and the lack of clear statements from the President and Congress supporting the major programs. Some of the ramifications of these points are discussed with reference to the schedule for the 3 key program elements: National Waste Terminal Storage (NWTS) Facility scheduled for commercial operation in 1985 to handle commercial high-level wastes; the Spent Unreprocessed Fuel (SURF) Facility scheduled for operation in 1985 to handle spent fuel from commercial power plants; the Waste Isolation Pilot Plant (WIPP) scheduled for operation in 1983 or 1984 for the disposal of TRU defense wastes. Possible avenues for improvement are suggested

  18. Employing 3R Techniques in Managing Cement Industry Waste

    Directory of Open Access Journals (Sweden)

    Lamyaa Mohammed Dawood

    2018-01-01

    Full Text Available Waste management conserves human health, ownership, environment, and keeps valuable natural resources. Lean-green waste of an organization’s operations can be decreased through implementation 3R (Reduce, Reuse, and Recycling techniques by reduction of manufacturing system wastes. This research aims to integrate lean-green waste of the manufacturing system throughout employing 3R techniques and weighted properties method in order to manage waste. Al-Kufa cement plant is employed as a case study. Results are generated using Edraw Max Version 7 and Excel. Overall results show reduce technique of lean-green waste management has major contribution of 55 % and recycling technique has minor contribution 18 %. Defects waste has major integration of lean-green waste, while air emissions waste has minor integration of lean-green waste.

  19. The development of a high level radioactive waste management strategy

    International Nuclear Information System (INIS)

    Beale, H.

    1979-11-01

    The management of high level radioactive waste, from the removal of spent fuel from reactors to final disposal of vitrified waste, involves a complex choice of operational variables which interact one with another. If the various operations are designed and developed in isolation it will almost certainly lead to suboptimal choice. Management of highly active waste should therefore be viewed as a complete system and analysed in such a way that account is taken of the interactions between the various operations. This system must have clearly defined and agreed objectives as well as criteria against which performance can be judged. A thorough analysis of the system will provide a framework within which the necessary research and development can be carried out in a co-ordinated fashion and lead to an optimised strategy for managing highly active wastes. (author)

  20. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    International Nuclear Information System (INIS)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-01-01

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE

  1. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-02-25

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE.

  2. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  3. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  4. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  5. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  6. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  7. Summary of non-US national and international radioactive waste management programs 1981

    International Nuclear Information System (INIS)

    Harmon, K.M.; Kelman, J.A.

    1981-06-01

    Many nations and international agencies are working to develop improved technology and industrial capability for neuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of May 1981

  8. Summary of non-US national and international radioactive waste management programs 1980

    International Nuclear Information System (INIS)

    Harmon, K.M.; Kelman, J.A.; Stout, L.A.; Hsieh, K.A.

    1980-03-01

    Many nations and international agencies are working to develop improved technology and industrial capability for nuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of January 1980

  9. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  10. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrácz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  11. Management of small producers waste in Slovenia

    International Nuclear Information System (INIS)

    Fabjan, Marija; Rojc, Joze

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  12. Design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2003-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  13. Design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)] (and others)

    2003-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  14. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    . The outcome of the study indicates that, despite a common ‘minimum’ regulatory regime, the performance of waste management systems is very different among member states. The best performing member states are the nations which have promoted efficient material and energy recovery, leading to significant...... operated by each member state (structural indicators). Managing waste appropriately generates environmental benefits, leading to the comforting, and potentially misleading impression that waste generation is acceptable, as long as environmental value is gained from the recovery of materials and energy....... However, it is quite clear that, if waste is not produced in the first place, through waste prevention activities, waste management impacts and benefits cease to exist. Problem solved. The issue is that a ‘waste free’ or a ‘zero waste’ society is a purely abstract concept that has little value...

  15. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  16. ANSTO's radioactive waste management policy. Preliminary environmental review

    International Nuclear Information System (INIS)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs

  17. Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls

  18. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy syste......, environmental and resource efficiency of waste management solutions. The following chapters addresses these issues by answering some of the main research questions of the project.......The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...

  19. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  20. Toward integrated design of waste management technologies

    International Nuclear Information System (INIS)

    Carnes, S.A.; Wolfe, A.K.

    1994-01-01

    Implementation of waste management technologies has been hindered by the intervention of diverse interests. Relying on a perceived history of inadequate and improper management, operations, and technological design, critics have stymied the implementation of scientifically and governmentally approved technologies and facilities, leading to a critical shortage of hazardous, mixed, and radioactive waste management capacity. The research and development (R ampersand D) required to identify technologies that are simultaneously (1) scientifically valid, (2) economically sound, and (3) publicly acceptable must necessarily address, in an integrated and interdisciplinary manner, these three criteria and how best to achieve the integration of stakeholders early in the technology implementation process (i.e., R ampersand D, demonstration, and commercialization). The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R ampersand D might be revised to enhance the acceptability of alternative waste management technologies. Principal among these factors are the equitable distribution of costs, risks, and benefits of waste management policies and technologies, the equitable distribution of authority for making waste management policy and selecting technologies for implementation, and the equitable distribution of responsibility for resolving waste management problems. Stakeholder participation in assessing the likely distribution of these factors and mitigative mechanisms to enhance their equitable distribution, together with stakeholder participation in policy and technology R ampersand D, as informed by stakeholder assessments, should enhance the identification of acceptable policies and technologies

  1. A system approach for the management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, I.G. [British Nuclear Fuels plc, Warrington, Cheshire (United Kingdom)

    1995-12-31

    An integrated approach to Waste Management and Decommissioning, which takes account of the lifetime implications (safety, dose uptake, discharges and cost) is an important strategic process in forward planning. This type of approach is particularly relevant when making decisions concerning waste minimization and segregation, packaging and surface storage of high and intermediate level waste in advance of the existence of disposal facilities. Such a systematic approach forms an integral part of a process which enables progress to be assessed and plans to be updated in response to changing demands upon business operations and can continually be applied to waste management policy and to optimise the detailed waste management plans. (author)

  2. A system approach for the management of radioactive waste

    International Nuclear Information System (INIS)

    Fearnley, I.G.

    1995-01-01

    An integrated approach to Waste Management and Decommissioning, which takes account of the lifetime implications (safety, dose uptake, discharges and cost) is an important strategic process in forward planning. This type of approach is particularly relevant when making decisions concerning waste minimization and segregation, packaging and surface storage of high and intermediate level waste in advance of the existence of disposal facilities. Such a systematic approach forms an integral part of a process which enables progress to be assessed and plans to be updated in response to changing demands upon business operations and can continually be applied to waste management policy and to optimise the detailed waste management plans. (author)

  3. Hospital waste management in developing countries: A mini review.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  4. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  5. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  6. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  7. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  8. Radiological impact of radioactive waste management

    International Nuclear Information System (INIS)

    Beninson, D.J.; Migliori de Beninson, Ambreta.

    1985-01-01

    The radiological impacts from management of wastes from the nuclear fuel cycle have been estimated for several alternative fuel cycle strategies. The impacts are expressed as collective effective dose equivalent commitments. Mill tailings make an important contribution, which depends on the uranium requirements for each reference fuel cycle, being the largest for once-through cycles. Disposal of high level waste or spent fuel is also an important contribution, usually larger for once-through cycle where the entire actinide inventory is disposed off. Although at present conversion and enrichment tailing are not considered wastes, they have assumed to be wastes in the reference cycle. In this case, their relative contribution is significant for fuel cycles using enriched uranium. The totals for waste management and disposal are of the same order of magnitude as the collective dose commitments from occupational and public exposures arising from the operation of the nuclear fuel cycle installations. The incomplete collective dose commitments from waste management and disposal assessed by integrating the collective dose rate over a fixed period of time (usually selected as 500 years), at time when the integral is maximum, are also comparable with the corresponding quantity arising from the operation of the fuel cycle installations. The maximum per caput doses predicted for the far future are small, usually a small fraction of the relevant dose limits. The maximun future doses in the critical groups in the vicinity of the repositories will be very low, of about a few percents of that experienced from the exposure to natural radiation sources. (M.E.L.) [es

  9. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  10. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  11. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  12. Analytical method of waste allocation in waste management systems: Concept, method and case study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Francis C., E-mail: francis.b.c@videotron.ca

    2017-01-15

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  13. Analytical method of waste allocation in waste management systems: Concept, method and case study

    International Nuclear Information System (INIS)

    Bergeron, Francis C.

    2017-01-01

    Waste is not a rejected item to dispose anymore but increasingly a secondary resource to exploit, influencing waste allocation among treatment operations in a waste management (WM) system. The aim of this methodological paper is to present a new method for the assessment of the WM system, the “analytical method of the waste allocation process” (AMWAP), based on the concept of the “waste allocation process” defined as the aggregation of all processes of apportioning waste among alternative waste treatment operations inside or outside the spatial borders of a WM system. AMWAP contains a conceptual framework and an analytical approach. The conceptual framework includes, firstly, a descriptive model that focuses on the description and classification of the WM system. It includes, secondly, an explanatory model that serves to explain and to predict the operation of the WM system. The analytical approach consists of a step-by-step analysis for the empirical implementation of the conceptual framework. With its multiple purposes, AMWAP provides an innovative and objective modular method to analyse a WM system which may be integrated in the framework of impact assessment methods and environmental systems analysis tools. Its originality comes from the interdisciplinary analysis of the WAP and to develop the conceptual framework. AMWAP is applied in the framework of an illustrative case study on the household WM system of Geneva (Switzerland). It demonstrates that this method provides an in-depth and contextual knowledge of WM. - Highlights: • The study presents a new analytical method based on the waste allocation process. • The method provides an in-depth and contextual knowledge of the waste management system. • The paper provides a reproducible procedure for professionals, experts and academics. • It may be integrated into impact assessment or environmental system analysis tools. • An illustrative case study is provided based on household waste

  14. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  15. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    International Nuclear Information System (INIS)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  16. Managing wastes from the atomic age and into the future: programs, plans and challenges

    International Nuclear Information System (INIS)

    Miller, J.M.

    2011-01-01

    Various types of waste are generated at Atomic Energy of Canada Limited (AECL) nuclear sites from diversified operations, including research reactor operations, radioisotope production, hot cell operations, nuclear fuel fabrication, research and development activities, facility decommissioning, environmental restoration, etc. AECL is responsible for the safe storage and long-term management of waste generated by Chalk River Laboratories (CRL), Whiteshell Laboratories (WL) and the three partially decommissioned prototype reactors, as well as for the radioactive waste received from off-site waste generators on a fee-for-service basis. As the home for the first nuclear reactor in Canada and nuclear research facilities, CRL has been a pioneer in the management of nuclear waste. Since the dawn of the nuclear era in the 1940s, CRL's waste management facilities have evolved from storage in simple sand trenches to below-ground concrete storage, to above-ground facilities offering multiple barriers of containment. To continuously improve the waste management at AECL, a formal Waste Management Program has been introduced. An important component of this Program is a focus on waste reduction and appropriate waste characterization to ensure wastes are being handled, stored and/or disposed in the most cost-effective manner. In 2006, AECL began implementing the Government of Canada-funded Nuclear Legacy Liabilities Program (NLLP) to deal with nuclear legacy liabilities at AECL sites. Approximately 200,000 to 300,000 cubic metres of waste from earlier operations at AECL requires management through the NLLP, with a yearly increase of several thousand cubic metres. Several of the NLLP projects currently underway are focused on improving the robustness of earlier management practices, as older facilities reach the end of their design life. An important element of the NLLP is the development of an Integrated Waste Plan to ensure optimal selection of enabling facilities and their

  17. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  18. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  19. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    International Nuclear Information System (INIS)

    Tan, S T; Hashim, H; Lee, C T; Lim, J S; Kanniah, K D

    2014-01-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study

  20. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    Science.gov (United States)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  1. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  2. Low-level waste management program and interim waste operations technologies

    International Nuclear Information System (INIS)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting

  3. Waste management issues, a set of technologies

    International Nuclear Information System (INIS)

    Gautrot, J.J.

    2000-01-01

    As any other industry, nuclear fuel cycle back-end raises the major issue of waste management. In France, spent fuel is considered as valuable materials and only the ultimate waste are considered as actual waste. Accordingly, waste issue is as follows: a sorting out has to be done, in order to separate valuable materials from actual wastes, put any outlet flow under a stable form and condition them appropriately to their respective recycling or disposal routes. This implies the implementation of a comprehensive set of technologies. Actually, it is an industrial reality, as the COGEMA Group has for a long time set up a reprocessing and conditioning strategy in its plants. Waste management issues are common to many activities. European as well as French regulators already introduced the twofold necessity to reduce waste volumes, and to dispose of only ''ultimate waste'' as concerns industrial and household waste mainly. In this objective, French nuclear reprocessing and recycling industry may be seen as a breeding ground of well-proven technologies and management options. Actually, processes used can also give an answer to such different issues as excess plutonium immobilization, sites cleaning up (including for instance treatment of the liquid HLW legacy), dismantling wastes management. There are a number of operations to be dealt with worldwide that will find a solution in any of the technologies implemented and optimized in COGEMA facilities. Based on the COGEMA Group know-how, the present paper will describe those technologies and explain how they can solve the other stringent waste management issues worldwide. (author)

  4. Management of wastes from uranium mines and mills

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1981-01-01

    Uranium mining and milling operations have not given rise to much concern about their hazards, and with advancing technologies for mill processing and waste management, the situation will continue to improve. However, the disposal of large quantities of waste produced in mining and milling does have an environmental impact, owing to the long half-lives and the ready availability of the toxic radionuclides Ra-226 and Rn-222. This article deals with the management of wastes from uranium mines and mills

  5. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  6. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    This report is part of a systematic IAEA effort to improve waste management practices at WWER plants and to make them consistent with the current requirements and standards for safe and reliable operation of nuclear power plants. The report reviews the wet and dry solid waste management practices at the various types of WWER nuclear power plants (NPP) and describes approaches and recent achievements in waste minimization. Waste minimization practices in use at western PWRs are reviewed and compared, and their applicability at WWER plants is evaluated. Radioactive waste volume reduction issues and waste management practices are reflected in many IAEA publications. However, aspects of waste minimization specific to individual WWER nuclear power plant designs and WWER waste management policies are not addressed extensively in those publications. This report covers the important aspects applicable to the improvement of waste management at WWER NPP, including both plant-level and country-level considerations. It is recognized that most WWER plants are already implementing many of these concepts and recommendations with varying degrees of success; others will benefit from the included considerations. The major issues addressed are: - Review of current waste management policies and practices related to WWERs and western PWRs, including the influence of the original design concepts and significant modifications, liquid waste discharge limits and dry solid waste clearance levels applied in individual countries, national policies and laws, and other relevant aspects affecting the nature and quantities of waste arisings; - Identification of strategies and methods for improving the radioactive waste management generated in normal operation and maintenance at WWERs. This report is a composite (combination) of the two separate initiatives mentioned above. The first draft report was prepared at the meeting 26-30 May 1997 by five consultants. The draft was improved during an

  7. Management of wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Heafield, W.; Barlow, P.

    1988-01-01

    The management of wastes from the nuclear fuel cycle is a key activity which affects all stages of the cycle and in which there is intense public interest, particularly at the culmination of waste management activities where dispersal and disposal are practised or are proposed. The different categories of waste are considered - high, intermediate and low level. A description is given of how and where in the fuel cycle they are produced, giving indications of volumes and activities. The fundamental objectives of waste management are reviewed and the application of these objectives to select practicable waste management processes, covering process systems product and safety considerations is discussed. Current technology can deal with the wastes now in storage, those which will be generated from oxide fuel reprocessing and future decommissioning activities; examples of these technologies, ranging from compaction and incineration for low level waste, encapsulation for intermediate level waste through to vitrification for high level waste, are described. The specific objectives relating to disposal are considered in the context of international co-operation on development and national strategies aimed at providing safe, deep repositories over the next 20 years. (author)

  8. Radioactive waste management: Spanish experiences

    International Nuclear Information System (INIS)

    Beceiro, A. R.

    1996-01-01

    Radioactive waste generation began in Spain during the 1950's, in association with the first applications of radioactive isotopes in industry, medicine and research. Spain's first nuclear power plant began its operations in 1968. At present, there are in operation some one thousand installations possessing the administrative authorization required to use radioactive isotopes (small producers), nine nuclear groups and a tenth is now entering the dismantling phase. There are also activities and installations pertaining to the front end of the nuclear fuel cycle (mining, milling and the manufacturing of fuel elements). Until 1985, the research center Junta de Energia Nuclear (now CIEMAT) rendered radioactive waste removal, and subsequent conditioning and temporary storage services to the small producers. Since the beginning of their operations the nuclear power plants and fuel cycle facilities have had the capacity to condition and temporarily store their own radioactive wastes. ENRESA (Empresa Nacional de Residuos Radiactivos, S. A.) began its operations in the second half of 1985. It is a state-owned company created by the Government in accordance with a previous parliamentary resolution and commissioned to establish a system for management of such wastes throughout Spain, being in charge also of the dismantling of nuclear power plants and other major installations at the end of their operating lifetimes. Possibly the most outstanding characteristic of ENRESA's evolution over these last seven years has been the need to bring about a compromise between solving the most immediate and pressing day-to-day problems of operation (the first wastes were removed at the beginning of 1986) and establishing the basic organization, resources, technology and installations required for ENRESA to operate efficiently in the long term. (author)

  9. Potential pollution prevention and waste minimization for Department of Energy operations

    International Nuclear Information System (INIS)

    Griffin, J.; Ischay, C.; Kennicott, M.; Pemberton, S.; Tull, D.

    1995-10-01

    With the tightening of budgets and limited resources, it is important to ensure operations are carried out in a cost-effective and productive manner. Implementing an effective Pollution Prevention strategy can help to reduce the costs of waste management and prevent harmful releases to the environment. This document provides an estimate of the Department of Energy's waste reduction potential from the implementation of Pollution Prevention opportunities. A team of Waste Minimization and Pollution Prevention professionals was formed to collect the data and make the estimates. The report includes a list of specific reduction opportunities for various waste generating operations and waste types. A generic set of recommendations to achieve these reduction opportunities is also provided as well as a general discussion of the approach and assumptions made for each waste generating operation

  10. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  11. A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community

    Science.gov (United States)

    Kanchanabhandhu, Chanchai; Woraphong, Seree

    2016-01-01

    The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…

  12. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  13. Radioactive Waste Management in A Hospital

    Science.gov (United States)

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  14. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  15. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  16. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  17. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  18. Operations management for construction

    CERN Document Server

    March, Chris

    2009-01-01

    Students studying construction management and related subjects need to have a broad understanding of the major aspects of controlling the building processes. Operations Management for Construction is one of three textbooks (Business Organisation, Operations Management and Finance Control) written to systematically cover the field. Focusing on construction sites and operations which are challenging to run, Chris March explores issues such as the setting up of the site, the deciding of the methodology of construction, and the sequence of work and resourcing. As changing and increasing regulations affect the way sites are managed, he also considers the issues and methods of successful administering, safety, quality and environment. Finally, the contractor's responsibility to the environment, including relationships with third parties, selection of materials, waste management and sustainability is discussed. Chris March has a wealth of practical experience in the construction industry, as well as considerable exp...

  19. The management of intermediate level wastes in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.

    1980-01-01

    A brief overview of current practices and research in Sweden on the management of intermediate level wastes is given. Intermediate level wastes include spent resins, filters and core components from the six power reactors in operation; radioactive wastes from nuclear fuel development at Studsvik and from non-nuclear applications are a minor contribution. (Auth.)

  20. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  1. Strategy for management of investigation-derived waste

    International Nuclear Information System (INIS)

    Russell, Laura E.; Hopkins, Gregory G.; Smith, Edward H.; Innis, Pamela S.; Stewart, Robert K.

    1992-01-01

    Large quantities of wastes containing hazardous and/or radiological constituents are being generated as part of the field investigations at the U.S. Department of Energy's Hanford Site in Richland, Washington. A problem exists with the integration of regulations under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, the Resource Conservation and Recovery Act of 1976, the Washington Hazardous Waste Management Act of 1976, and the Washington Administrative Code Waste management criteria under these regulations need to be consolidated into a single, acceptable management approach that can reasonably be applied to the Hanford Site cleanup effort. In response to this need, a Technical Task Team of representatives from the Washington Department of Ecology, U.S. Environmental Protection Agency, U.S. Department of Energy, and Westinghouse Hanford Company was organized. As a result of nearly two years of negotiations the Technical Task Team produced a specific waste management plan which is presented in the paper as the Strategy for Management of Investigation-Derived Waste. The paper outlines the strategy for handling and storing investigation-derived waste within a given operable unit until a waste unit-specific Record of Decision can be issued. To date, the Strategy for Management of Investigation-Derived Waste has not been finalized. However, formal approval by the U.S. Environmental Protection Agency is expected soon and will result in implementation of the management strategy at waste sites in which they have been identified as the lead regulatory agency. Negotiations with the Washington State Department of Ecology are ongoing. At the time of this writing, it is uncertain what the Washington State Department of Ecology's position will be regarding investigation-derived waste. Both the U.S. Environmental Protection Agency and the U.S. Department of Energy believe the Strategy for Management of Investigation-Derived Waste to be

  2. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  3. Evaluation and development of a policy for waste generation control - electric and electronic waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    Although a policy to reduce waste amount and promote recycling for large electric appliances was introduced, it is still in the initial stage operated in a form of recommendation and the general management system of electric and electronic waste has not established yet. In this study, the generation and disposal of electric and electronic waste were examined and the effectiveness of present policy was evaluated. Based on the analysis, a policy for the more appropriate electric and electronic waste management was presented. 34 refs., 4 figs., 51 tabs.

  4. Data analytics approach to create waste generation profiles for waste management and collection.

    Science.gov (United States)

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Radioactive waste management information, 1982 summary and record-to-date

    International Nuclear Information System (INIS)

    Cassidy, G.B.

    1983-07-01

    This document summarizes radioactive waste data records for the Idaho National Engineering Laboratory (INEL) compiled since 1952. Kinds of information include volume, radioactivity, isotopic identity, origin, and decay status. The radioactive waste data presented was obtained from the INEL Radioactive Waste Management Information System (RWMIS). This report is updated annually to incorporate waste management data for the current year and reflects changes in previous annual reports. Changes are made to more accurately reflect the current status of waste operations at the INEL

  6. Process innovations in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Theyyunni, T.K.

    1995-01-01

    Innovative processes and techniques were investigated for their possible application in the management of low, intermediate and high level radioactive wastes. High decontamination, high volume reduction, process simplicity and operational safety are some of the objectives of these investigation. Based on the favourable results, it is hoped that many of these process innovations can be introduced in the waste management schemes with beneficial results. (author)

  7. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  8. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  9. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    International Nuclear Information System (INIS)

    Duncan, Garth M.; Saunders, Scott A.

    2013-01-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  10. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  11. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  12. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  13. Fifteen years of radioactive waste management at Ontario Hydro

    International Nuclear Information System (INIS)

    Carter, T.J.; Rao, P.K.M.

    1985-01-01

    Ontario Hydro is a large Canadian utility producing 84% (7394 MWe) of the Nuclear Electricity generated in Canada. The low- and intermediate-level radioactive wastes generated by the Ontario Hydro program are currently being managed at the Bruce Nuclear Power Development with various volume reduction, packaging and interim storage systems. Ontario Hydro also owns and operates a radioactive waste transportation system. Studies are in progress for final disposal of these wastes in a suitable geology in Ontario. Since its inception in 1971, Ontario Hydro's radioactive waste management program has evolved into providing a full fledged radioactive waste management capability to the utility's two nuclear generation centres at Pickering and Bruce, and later in the decade, to Darlington. This paper summarizes the various developments in this program; highlights the major facilities both in-service and planned to be built; reviews the experiences gained over fifteen years of in-house waste management; and discusses the proposed reorientation towards ultimate disposal of these wastes. 2 refs., 8 figs., 1 tab

  14. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  15. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.

    1976-01-01

    Various aspects of waste management are discussed from the viewpoint of the nuclear industry. Future amounts of waste generated in the 15 Foratom countries in Western Europe are estimated. Industrial waste questions--as seen by electricity producers, reprocessors, and waste operators--are discussed; questions concerning decommissioning are also dealt with. A number of recommendations for further action, primarily on the part of national authorities and international organizations, are put forward. One conclusion of the study is that there is no reason for waste-management problems to impede the timely development of nuclear energy as a large-scale industrial activity in Western Europe

  16. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    International Nuclear Information System (INIS)

    1995-12-01

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS)

  17. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  18. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Science.gov (United States)

    2010-09-24

    ... landfill. The scrubber water blowdown will be managed in the waste water treatment plant (WWTP). The sludge... waste streams included in the petition were: the RKI fly ash, RKI bottom ash and RKI scrubber water... water blowdown waste resulting from the operations of the rotary kiln incinerator at its facility. B...

  19. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  20. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  1. Office of Civilian Radioactive Waste Management annual report to Congress

    International Nuclear Information System (INIS)

    1990-12-01

    This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation's spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste

  2. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Energy Technology Data Exchange (ETDEWEB)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  3. Remote waste handling and feed preparation for Mixed Waste Management

    International Nuclear Information System (INIS)

    Couture, S.A.; Merrill, R.D.; Densley, P.J.

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation

  4. Cost study on waste management at three model Canadian uranium mines

    International Nuclear Information System (INIS)

    1984-03-01

    A waste management cost study was initiated to determine the capital and operating costs of three different uranium waste management systems which incorporate current technologies being used in Canadian uranium mining operations. Cost estimates were to be done to a thirty percent level of accuracy and were to include all waste management related costs of a uranium ore processing facility. Each model is based on an annual uranium production of 1,923,000 kg U (5,000,000 lbs U 3 O 8 ) with a total operating life of 20 years for the facility. The three models, A, B, and C, are based on three different uranium ore grades, 0.10 percent U 3 O 8 , 0.475 percent U 3 O 8 and 1.5 percent U 3 O 8 respectively. Yellowcake production is assumed to start in January 1984. Model A is based on a conceptual 7,180 tonne per day uranium ore processing facility and waste management system typical of uranium operations in the Elliot Lake area of northern Ontario with an established infrastructure. Model B is a 1.512 tonne per day operation based on a remote uranium operation typical of the Athabasca Basin properties in northern Saskatchewan. Model C is a 466 tonne per day operation processing a high-grade uranium ore containing arsenic and heavy metal concentrations typical of some northern Saskatchewan deposits

  5. Radioactive wastes management development in Chile

    International Nuclear Information System (INIS)

    Mir, S.A.; Cruz, P.F.; Rivera, J.D.; Jorquera, O.H.

    1994-01-01

    A Facility for immobilizing and conditioning of radioactive wastes generated in Chile, has recently started in operation. It is a Radioactive Wastes Treatment Plant, RWTP, whose owner is Comision Chilena de Energia Nuclear, CCHEN. A Storgement Building of Conditioned Wastes accomplishes the facility for medium and low level activity wastes. The Project has been carried with participation of chilean professionals at CCHEN and Technical Assistance of International Atomic Energy Agency, IAEA. Processes developed are volume reduction by compaction; immobilization by cementation and conditioning. Equipment has been selected to process radioactive wastes into a 200 liters drum, in which wastes are definitively conditioned, avoiding exposition and contamination risks. The Plant has capacity to treat low and medium activity radioactive wastes produced in Chile due to Reactor Experimental No. 1 operation, and annex Laboratories in Nuclear Research Centers, as also those produced by users of nuclear techniques in Industries, Hospitals, Research Centers and Universities, in the whole country. With the infrastructure developed in Chile, a centralization of Radioactive Wastes Management activities is achieved. A data base system helps to control and register radioactive wastes arising in Chile. Generation of radioactive wastes in Chile, has found solution for the present production and that of near future

  6. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  7. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  8. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  9. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  10. Transforming Argonne's waste management organization - the road to energy quality

    International Nuclear Information System (INIS)

    Torres, T.A.; Sodaro, M.A.; Thuot, J.R.

    1996-01-01

    Argonne National Laboratory's (ANL's) Waste Management Department began its journey to excellence in 1990. The department was organized to provide for waste cleanup, waste handling, decontamination, and other services. The staff was principally workers and foremen with few professional staff. The department has transitioned into a highly effective organization that has competed for the President's Energy Quality Award. The department is currently staffed by 58 people, including professional staff and waste mechanics. The department began by recognizing and addressing the problems that existed: There was no formal waste safety program or waste reduction culture. Formal procedures did not cover all aspects of waste operations, waste handling procedures and acceptance criteria were out of date, and the Waste Management Department did not have a customer-centered culture. The department began a step by step program to improve the waste management organization

  11. Generic impact statement for commercial radioactive waste management

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    ERDA is preparing a generic environmental impact statement on the treatment and disposal of waste resulting from commercial reactors and post fission operations in the light water reactor (LWR) fuel cycle. Expert contributions will be provided by many of the ERDA national laboratories and contractors. The waste management aspects of the statement will be based on available technology as presented in the recently issued ''Alternatives for Managing Waste from Reactors and Post Fission Operations in the LWR Fuel Cycle,'' ERDA-76-43 Document. This 1500 page, five volume Technical Alternative Document (TAD) describes the status of technology (to September, 1975) for handling post fission radioactive waste generated by the production of electricity by nuclear power light water reactor-generator systems. The statement will be generic in nature discussing typical or hypothetical facilities in typical or hypothetical environments. It is not intended to replace environmental statements required in support of specific projects nor for Nuclear Regulatory Commission licensing procedures. A major purpose of the generic statement is to inform the public and to solicit comments on the ERDA program for: (1) the final disposition of commercial radioactive waste, (2) waste treatment, (3) waste interim storage, and (4) transportation of waste. The statement will discuss the ERDA contingency program to provide retrievable storage of such waste if they should be transferred to Federal custody prior to the availability of the geologic isolation facilities for terminal disposal. The generic statement will not address radioactive waste resulting from U.S. Defense Programs, the mining or milling of uranium, the management of waste from the breeder reactor program, waste from other nations, nor will it include an evaluation of the impact of waste resulting from power sources other than light water reactors

  12. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  13. Implementation plan for waste management reengineering at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Berry, J.B.

    1997-10-01

    An intensive reengineering evaluation of the Oak Ridge National Laboratory (ORNL) waste management program was conducted from February to July 1997 resulting in the following vision for ORNL waste management: ORNL Waste Management will become an integrated Waste Management/Generator function that: (1) Treats ORNL as a single generator for expert-based waste characterization and certification purposes; (2) Recognizes Generators, Department of Energy (DOE), and the Management and Integration (M ampersand I) contractor as equally important customers; (3) Focuses on pollution prevention followed by waste generation, collection, treatment, storage, and disposal operations that reflect more cost-effective commercial approaches; and (4) Incorporates new technology and outsourcing of services where appropriate to provide the lowest cost solutions. A cross-functional Core Team recommended 15 cost-effectiveness improvements that are expected to reduce the fiscal year (FY) 1996 ORNL waste management costs of $75M by $10-$15M annually. These efficiency improvements will be realized by both Research and Waste Management Organizations

  14. Waste and energy management at airports. Paper no. IGEC-1-024

    International Nuclear Information System (INIS)

    Korul, V.; Ozen, M.

    2005-01-01

    Air transport is a high growth industry. The growth in demand for air transport has had very significant economic and environmental consequences for airlines and airports. With increased traffic, the volume of waste is increasing while the waste at airports is generated by airlines, airport operators and other airport related companies. Waste management is usually under the airport operators' responsibility. Energy management, associated with the provision of heating, ventilation, air conditioning and lighting, is also very important. With energy conservation, as with waste management, there are good financial reasons for why airports should address these issues since environmental improvements may bring about considerable cost savings. This study aims to discuss the environmental issues at airports by giving a global perspective for the sustainability of aviation industry. (author)

  15. Assessment of LANL solid low-level waste management documentation

    International Nuclear Information System (INIS)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G.; Davis, K.D.; Rutz, A.C.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  16. Safety of radioactive waste management in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Radioactive waste produced in France vary considerably by their activity level, their half lives, their volume or even their nature. In order to manage them safely, the treatment and final disposal solution must be adapted to the type of waste considered by setting up specific waste management channels. A strong principle in France is that it is the responsibility of the nuclear operators as waste producers to dispose of their waste or have them disposed of in a suitable manner. The competent authorities regulate and control the radioactive waste management activities. At present, only short-lived low and intermediate level waste have a definitive solution, the surface repository, where adequate waste packages are disposed of in concrete structures. Other types of radioactive waste are in interim storage facilities at the production sites. For very low level waste coming mainly from dismantling of nuclear facilities a dedicated repository is planned to be built in the coming years. Dedicated repositories are also planned for radiferous, tritiated and graphite waste. As for high level waste and long-lived waste coming mainly from reprocessing of spent nuclear fuel the disposal options are being sought along the lines specified by law 91-1381 concerning research on radioactive waste management, passed on December 30, 1991: research of solutions to partition and transmute long-lived radionuclides in the waste; studies of retrievable and non retrievable disposal in deep geological layers with the help of underground laboratories; studies of processes for conditioning and long term surface storage of these waste. In 2006, the French Parliament will assess the results of the research conducted by ANDRA relative to deep geological disposal as well as the work conducted by CEA in the two other areas of research and, if this research is conclusive, pass a law defining the final disposal option. (author)

  17. Systems analysis support to the waste management technology center

    International Nuclear Information System (INIS)

    Rivera, A.L.; Osborne-Lee, I.W.; DePaoli, S.M.

    1988-01-01

    This paper describes a systems analysis concept being developed in support of waste management planning and analysis activities for Martin Marietta Energy Systems, Inc. (Energy Systems), sites. This integrated systems model serves as a focus for the accumulation and documentation of technical and economic information from current waste management practices, improved operations projects, remedial actions, and new system development activities. The approach is generic and could be applied to a larger group of sites. This integrated model is a source of technical support to waste management groups in the Energy Systems complex for integrated waste management planning and related technology assessment activities. This problem-solving methodology for low-level waste (LLW) management is being developed through the Waste Management Technology Center (WMTC) for the Low-Level Waste Disposal, Development, and Demonstration (LLWDDD) Program. In support of long-range planning activities, this capability will include the development of management support tools such as specialized systems models, data bases, and information systems. These management support tools will provide continuing support in the identification and definition of technical and economic uncertainties to be addressed by technology demonstration programs. Technical planning activities and current efforts in the development of this system analysis capability for the LLWDDD Program are presented in this paper

  18. Statement of John H. Anttonen, Project Manager, Basalt Waste Isolation Project, Richland Operations Office, Department of Energy

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    My name is John Anttonen and I am the Project Manager for the Basalt Waste Isolation Project (BWIP) at the Department of Energy Richland Operation Office. The responsibilities of may office are to manage the day-to-day activities of the site suitability investigations of the basalt formations at the Hanford Site, a Department complex that is involved in a variety of national missions, including defense materials production, nuclear energy research, and radioactive waste management. In may prepared comments today I would like to touch upon four specific subject areas relating to the BWIP program and then I would be happy to answer any questions you might have. The topics I will cover are: (1) historical aspects; (2) site specific technical issues and how they will be addressed during site characterization of the basalt site at Hanford; (3) current project status and; (4) institutional interaction. For clarity, I have attached several charts to my statement

  19. Tianwan nuclear power plant operation and management practices

    International Nuclear Information System (INIS)

    Gu Yingbing

    2010-01-01

    Tianwan Nuclear Power Station is a high-tech cooperation project in nuclear sector in the spirit of promoting the political relationship, economic trading and international strategic partnership between China and Russia. It was listed as one of the key nuclear projects to be constructed during the 'Ninth Five-Year' Plan. In this article the author summarizes and feedbacks the practices of operation management in Tianwan Nuclear Power Station in 7 aspects of safety culture construction, operation team building, daily operation management, operation document management, plant chemistry control and management, solid, liquid and gaseous waste management and control of operation performance indicators. (author)

  20. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  1. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  2. Operational considerations in drift emplacement of waste packages

    International Nuclear Information System (INIS)

    Benton, H.A.

    1993-01-01

    This paper discusses the operational considerations as well as the advantages and disadvantages of emplacing waste packages in drifts in a repository. The considerations apply particularly to the potential repository for spent nuclear fuel and high-level waste glass at Yucca Mountain, although most of the considerations and the advantages and disadvantages discussed in this paper do not necessarily represent the official views of the DOE or of the Management and Operations Contractor, since most of these considerations are still under active discussion and the final decisions will not be made for some time - perhaps years. This paper describes the issues, suggests some principles upon which decisions should be based, and states some of the most significant advantages and disadvantages of the emplacement modes, and the associated waste package types and thermal loadings

  3. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  4. Japan-Australia co-operative program on research and development of technology for the management of high level radioactive wastes. Final report 1985 to 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.; Vance, E.; Lumpkin, G. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Mitamura, H.; Banba, T. [Japan Atomic Energy Research Inst. Tokai, Ibaraki (Japan)

    1998-12-01

    The overall aim of the Co-operative Program has been to promote the exchange of information on technology for the management of High-Level Wastes (HLW) and to encourage research and development relevant to such technology. During the 13 years that the Program has been carried out, HLW management strategies have matured and developed internationally, and Japan has commenced construction of a domestic reprocessing and vitrification facility for HLW. The HLW management strategy preferred is a national decision. Many countries are using vitrification, direct disposal of spent fuel or a combination of both to handle their existing wastes whereas others have deferred the decision. The work carried out in the Co-operative Program provides strong scientific evidence that the durability of ceramic waste forms is not significantly affected by radiation damage and that high loadings of actinide elements can be incorporated into specially designed ceramic waste forms. Moreover, natural minerals have been shown to remain as closed systems for U and Th for up to 2.5 b y. All of these results give confidence in the ability of second generation waste forms, such as Synroc, to handle future waste arisings that may not be suitable for vitrification 87 refs., 15 tabs., 22 figs.

  5. Environmental Regulation of Offshore (E&P Waste Management in Nigeria: How Effective?

    Directory of Open Access Journals (Sweden)

    Anwuli Irene Ofuani

    2011-09-01

    Full Text Available The advancement of technology has led to the rapid development of the offshore oil and gas industry and a corresponding increase in the amount of wastes generated from the industry. These wastes must be properly managed so as to curtail their potential to negatively affect human health and the environment. As a result, environmental regulation of offshore oil and gas operations is becoming more stringent worldwide. The Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN were issued to ensure that oil and gas industry operators do not degrade the environment in the course of their operations in Nigeria. Nonetheless, more attention has been focused on the economic aspects of offshore oil and gas industry rather than environmental aspects such as waste management. This article examines the legal aspects of offshore oil and gas waste management in Nigeria. It assesses the effectiveness of the mechanisms for the management of offshore E&P wastes in Nigeria as provided under EGASPIN in relation to other jurisdictions.

  6. Life Cycle Costing Model for Solid Waste Management

    DEFF Research Database (Denmark)

    Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2014-01-01

    To ensure sustainability of solid waste management, there is a need for cost assessment models which are consistent with environmental and social assessments. However, there is a current lack of standardized terminology and methodology to evaluate economic performances and this complicates...... LCC, e.g. waste generator, waste operator and public finances and the perspective often defines the systemboundaries of the study, e.g. waste operators often focus on her/his own cost, i.e. technology based,whereas waste generators and public finances often focus on the entire waste system, i.......e. system based. Figure 1 illustrates the proposed modeling framework that distinguishes between: a) budget cost, b) externality costs and 3) transfers and defines unit costs of each technology (per ton of input waste). Unitcosts are afterwards combined with a mass balance to calculate the technology cost...

  7. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  8. Development and design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  9. Development and design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2004-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  10. A multi-echelon supply chain model for municipal solid waste management system

    International Nuclear Information System (INIS)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-01-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well

  11. A multi-echelon supply chain model for municipal solid waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2014-02-15

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  12. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  13. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  14. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  15. Selection of Technical Solutions for the Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2017-07-01

    The objectives of this publication are to identify and critically review the criteria to be considered while selecting waste management technologies; summarize, evaluate, rank and compare the different technical solutions; and offer a systematic approach for selecting the best matching solution. This publication covers the management of radioactive waste from all nuclear operations, including waste generated from research reactors, power reactors, and nuclear fuel cycle activities including high level waste (HLW) arising from reprocessing and spent nuclear fuel declared as waste (SFW), as well as low level waste (LLW) and intermediate level waste (ILW) arising from the production and use of radionuclides in industry, agriculture, medicine, education and research.

  16. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  17. Experience gained in the management of radioactive waste from maintenance, decontamination and partial decommissioning of a reprocessing plant and conclusions resulting for the management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Hild, W.

    1983-01-01

    After a short description of the historical background of Eurochemic, its main tasks and the various operational phases, a detailed description of the waste management principles applied is presented. The practical experience in the waste treatment is reported for both the operational phase of the reprocessing plant and its decontamination and partial decommissioning after shutdown. Based on this experience and the presented data, an assessment of the practical operations is made and conclusions are drawn. Finally, recommendations are formulated both for the general waste management policy and the practical waste treatment processes in nuclear power reactors. (author)

  18. Waste management at the Ardennes power plant

    International Nuclear Information System (INIS)

    Abraham, J.P.

    1979-01-01

    In 1976, the SENA (with the participation of EDF, CEA and CEC in the framework of a research program on the management and storage of radioactive wastes) has developed an industrial pilot plant for the encapsulation of wastes in thermosetting polyester resins. The industrial putting in operation of the plant will enable most of the wastes from the nuclear station to be processed. The quality of products will be improved and the volume and processing cost reduced

  19. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    An analysis of the complete waste management system was developed to assess the total impact of managing radioactive wastes generated over the entire lifetime of a nuclear power system. The analysis considers the treatment and disposal of all post-fission TRU, gaseous and airborne and decommissioning wastes. Each radioactive waste stream is tracked each year from its origin through treatment, storage, transport, and accumulation in a geologic repository. The reference system is based on 400 GWe of nuclear power installed in the year 2000 and produces approximately 10,000 GWe-years of electric energy. An alternative low-growth projection based on 255 GWe in the year 2000 is also considered, but for fewer cases. This system produces approximately 6400 GWe year of electric energy. Capacity additions beyond the year 2000 are not considered a part of this system. After 40 years of operation each nuclear power plant is shut down and decommissioned. Thus, the last nuclear power plant is shut down in the year 2040. The last fuel reprocessing plant is shut down in the year 2044 and dismantled in the year 2075. Thus, the system operation encompasses a 101-year period from 1975 through 2075. In addition, the decay of radioactivity in the final repositories is followed over a million year period

  20. Radioactive waste management. Ukraine. WAMAP mission to Ukraine

    International Nuclear Information System (INIS)

    Bergman, C.; Samiei, M.; Takats, F.

    1993-01-01

    In February 1992, the Ukrainian State Committee on Nuclear and Radiation Safety IAEA assisted in management of radwaste and spent fuel. A three member IAEA mission was sent to Ukraine for fact-finding. The present report discusses the outcome of this mission. It gives present legislation, regulations and organizational situation in Ukraine and generation and waste management of radioactive wastes. It discusses possible area of technical co-operation, conclusions and recommendations of the mission

  1. Financial provision for future nuclear waste management in Finland

    International Nuclear Information System (INIS)

    Vaeaetaeinen, Anne

    2003-01-01

    The main principle as regards nuclear waste management in Finland is that the operator that has produced nuclear waste is responsible for the management of all such nuclear waste. It has to take care of its waste (including that of decommissioning) until it has been disposed of in a manner accepted by the authorities. Spent nuclear fuel is considered to be nuclear waste subject to disposal into a final repository. According to the Nuclear Energy Act, all nuclear waste produced in Finland must be handled, stored and disposed of in Finland. The spent fuel and other nuclear wastes are stored at the power plant sites until they are disposed of. At the both two sites there already are the final repositories for low and intermediate level waste. The funding system is based on the principle that, if a nuclear facility would stop its operation and also stop to produce more waste, the money in the Fund and the securities given to the State would, together, always suffice to handle the situation and take care of the management of all the existing waste and dismantling and decommissioning of the plant. As the actual waste management measures would not be taken immediately, the interest accrued, in the meantime, by this existing capital is used to compensate for the inflation and cost escalation. The critical question is how the system takes into account the difficulty of arriving at reliable estimates. The Finnish funding system contains some built-in features to minimise the risk of the State having to contribute additional funds to carrying out these operations. The system continuously requires new updated estimates that must take into account the practical experience accumulating world-wide. The estimates must, however, always be based on technology currently available. Additionally, the law also requires that the uncertainty of available information about prices and costs shall be taken into account, in a reasonable manner, as raising the estimated liability. In the case

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  3. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  5. Proceedings of the symposium on the on-site management of power reactor wastes

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This symposium represents a synthesis of some current practices and research and development work in the field of radioactive waste management at nuclear power plants. It includes the following sessions: radioactive waste management practices at nuclear power plants; waste production and operating experiences; coolant and liquid waste processing; solidification methods; volume reduction methods; solid waste containment

  6. 77 FR 46964 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-08-07

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  7. 77 FR 29231 - Oklahoma: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2012-05-17

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... Agency (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. The EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  8. 76 FR 26616 - Wisconsin: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Science.gov (United States)

    2011-05-09

    ... Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA... (RCRA) allows EPA to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management...

  9. 75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program

    Science.gov (United States)

    2010-08-03

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... (EPA) to authorize States to operate their hazardous waste management programs in lieu of the Federal program. EPA uses the regulations entitled ``Approved State Hazardous Waste Management Programs'' to...

  10. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  11. JET experience on managing radioactive waste and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Stephen, E-mail: Stephen.reynolds@ccfe.ac.uk [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Newman, Mark; Coombs, Dave; Witts, David [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • We describe the current waste management structure and processes in place for managing radioactive waste generated as part of JET operations. • We detail the key lessons to be learnt for future fusion experiments and specifically ITER. • Early involvement of specialist waste management advisors and representatives are recommended. • Implementation of a complete integrated electronic waste tracking system will streamline the waste management process. - Abstract: The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community. The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content. Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under

  12. Eighteenth annual report of: The Radioactive Waste Management Advisory Committee

    International Nuclear Information System (INIS)

    1998-07-01

    This annual report reviews the RWMAC's work programme and progress made in 1997-1998; discusses operational and administrative matters including financial management and policy review; and presents the 1998 RWMAC work programme. Particular chapters are devoted to the management of intermediate and high level radioactive waste and spent fuel; the Dounreay Nuclear Establishment; the radioactive waste discharge authorisations. The document presents the RWMAC's review of the Ministry of Defence's radioactive waste management practices. A separate chapter is devoted to the study of radioactive waste management practices in Spain. Annexes to the report include terms of reference and membership of the Radioactive Waste Management Advisory Committee; RWMAC financial statement; declaration and register of member's interests; the RWMAC's 1998 work programme; the RWMAC's response to the Government on Proposals for the control and remediation of radioactively contaminated land

  13. Low- and intermediate-level waste management practices in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1982-05-01

    Low- and intermediate-level wastes arise in Canada from the operation of nuclear power stations, nuclear research establishments, nuclear fuel and radioisotope production facilities, as well as from many medical, research and industrial organizations. Essentially all of the solid radioactive wastas are stored in a retrievable fashion at five waste management areas from which a portion is expected to be transferred to future disposal facilities. Waste processing for volume reduction and stabilization is becoming an increasingly important part of low-level waste management because of the advantages it provides for both interim storage currently, and permanent disposal in the future

  14. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  15. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  16. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  17. Quantification and disposal of radioactive waste from ITER operation

    International Nuclear Information System (INIS)

    Olsson, G.; Devell, L.; Johnsson, B.; Gulden, W.

    1991-01-01

    The work on the safety and environment for the Next European Torus (NET) is being performed within the European Fusion Technology Safety and Environment Programme by the NET team and under NET contracts. In the area of NET-oriented investigations concerning waste management and disposal, Studsvik is concentrating on the operational waste from both NET and ITER (International Thermonuclear Experimental Reactor). This paper gives a characterization and quantification of the radioactive waste generated from the operation of ITER during the Physics Phase, and from the replacement of all blanket segments (European shielding blanket option) at the end of the Physics Phase after an integrated first-wall loading of 0.03 MWy/m 2 . The total activity contents and volumes of packaged waste from the Physics Phase operation and from the blanket replacement are estimated. The waste volume from replacement of the shielding blanket segments of ITER is considerably larger than estimated in earlier calculations for NET due to the fact that the ITER conceptual design includes more of the stell shielding in the removable segments. The waste handling and disposal are described using existing Swedish and German concepts for similar waste categories from nuclear fission reactors. This includes the choice of suitable packagings, intermediate storage time for cooling, and type of repository for final disposal. Some typical cost figures for waste handling are also presented. (orig.)

  18. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  19. Optimizing transuranic waste management-challenges and opportunities

    International Nuclear Information System (INIS)

    Triay, I.R.; Wu, C.F.; Moody, D.C.; Jennings, S.G.

    2002-01-01

    The opening of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic (TRU) waste in March of 1999, the granting of the Hazardous Waste Facility Permit in November 1999, and over two years of operational experience have demonstrated the Department of Energy's (DOE'S) capability in closing the nuclear energy cycle. While these achievements resolved several scientific, engineering, regulatory and political issues, the DOE has identified a new set of challenges that represent opportunities for improving programmatic efficiency, cost-effectiveness, and operational safety in managing the nation's TRU waste. The DOE has recognized that the complex administrative and regulatory requirements for characterization, transportation and disposal of TRU waste are costly (1). A review by the National Academy of Sciences (NAS) states that these requirements lead to inefficient waste characterization, handling and transportation operations that in turn can lead to unnecessary radiation exposure to workers without a commensurate decrease in risk to the public and the environment (2). This paper provides an overview of the status of the WJPP repository, explains the principles of the proposed commercial business approach, and describes some of the proposed major enhancements of the TRU waste transportation systems. The DOE is developing a remote-handled (RH) waste program to enable emplacement of RH waste at WPP. This program includes appropriate facility modifications and regulatory changes (3).

  20. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  1. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  2. Feed Materials Production Center waste management plan (Revision to NLCO-1100, R.6)

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  3. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  4. Overview of the solid radioactive waste management programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Raducea, D.

    2001-01-01

    The wastes generated from nuclear power plants have a very large diversity, and can be grouped into non-radioactive and radioactive wastes. These two types are manipulated completely different ways from each other. Among radioactive wastes, solid radioactive wastes are important, because of their diversity, their method of treatment and of their volume compared to the others types. The strategy for their treatment and characterisation has a dynamic character and allows modification after the identification of new solutions at the international level, or after the production of new waste types. The Radioactive Waste Management concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment. The radioactive waste management programme has the following major characteristics: plant operation at all times ensures that radioactive wastes are minimised; procedures are established to ensure that radiation doses to operating staff and members of the public are in accordance with ALARA and contamination from collection, transportation and storage of wastes are eliminated; all staff is trained and qualified to carry out their responsibilities. This presentation does not address the management of spent fuel, contaminated heavy water and the disposal of the solid radioactive wastes.(author)

  5. Radioactive wastes and spent fuels management in Argentina

    International Nuclear Information System (INIS)

    Maset, Elvira R.

    2006-01-01

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author) [es

  6. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  7. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  8. A multi-echelon supply chain model for municipal solid waste management system.

    Science.gov (United States)

    Zhang, Yimei; Huang, Guo He; He, Li

    2014-02-01

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Proceedings of the eighth annual DOE low-level waste management forum: Technical Session 8, Future DOE low-level waste management

    International Nuclear Information System (INIS)

    1987-02-01

    This volume contains the following papers: (1) DOE Systems Approach and Integration; (2) Impacts of Hazardous Waste Regulation on Low-Level Waste Management; (3) Site Operator Needs and Resolution Status; and (4) Establishment of New Disposal Capacity for the Savannah River Plant. All papers have been processed for inclusion in the Energy Data Base. (AT)

  10. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  11. Status of the technical project design phase of the German Waste Management Center

    International Nuclear Information System (INIS)

    Mischke, J.

    1978-01-01

    Under the waste management concept of the German Federal Government the utilities are to assume responsibility for waste management of the German nuclear power plants within the framework of the polluter pays principle, the ultimate storage of radioactive waste remaining a responsibility of the government. The duties of industry chiefly include planning, construction and operation of the facilities for fuel element storage, reprocessing and waste treatment and for processing the recovered nuclear fuel. The German utilities operating and planning nuclear power plants have set up the Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH (DWK), which is to build the Waste Management Center and also works on the interim solutions planned for continuous waste management up to the completion of the planned Waste Management Center. For this purpose, DWK plans to construct temporary fuel storage facilities and has entered into agreements to secure reprocessing abroad of fuel elements from German nuclear power plants. In discharging its obligations DWK has acquired the extensive know-how available in the Federal Republic in the field of reprocessing spent fuel elements. (orig.) [de

  12. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  13. Environmental and waste management issues, causes, characteristics, and cures

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1992-01-01

    The department of Energy (DOE) views as one of its most challenging problems the minimization, management, and cleanup of waste materials generated from Departmental operations. The challenges for the DOE have striking similarities to the environmental restoration and waste management challenges associated with energy production and the mining and mineral processing industries. Their challenges relate to uranium mining and the resulting mill tailings; decontamination and decommissioning of facilities; processing of nuclear materials and production of weapons components. Add to this the challenge of environmental restoration solutions for waste disposal practices of the past. The fundamental goal of the DOE is to ensure that risks to human health and safety and to the environment posed by the department's past, present, and future operations are either eliminated to reduced to prescribed levels by the year 2019. To achieve this goal they must be able to assess environmental and health impacts resulting from the low concentrations of contaminants. This paper presents an overview of the causes, characteristics, and cures for these environmental restoration and waste management issues

  14. Fifth international conference on radioactive waste management and environmental remediation -- ICEM '95: Proceedings. Volume 2: Management of low-level waste and remediation of contaminated sites and facilities

    International Nuclear Information System (INIS)

    Slate, S.; Baker, R.; Benda, G.

    1995-01-01

    The objective of this conference is the broad international exchange of information on technologies, operations, management approaches, economics, and public policies in the critical areas of radioactive waste management and environmental remediation. The ICEM '95 technical program includes four parallel program tracks: Low/intermediate-level waste management; High-level waste, spent fuel, nuclear material management; Environmental remediation and facility D and D; and Major institutional issues in environmental management. Volume 2 contains approximately 200 papers divided into the following topical sections: Characterization of low and intermediate level waste; Treatment of low and intermediate level waste; LLW disposal and near-surface contaminant migration; Characterization and remediation of contaminated sites; and Decontamination and decommissioning technologies and experience. Papers have been processed separately for inclusion on the data base

  15. Management and disposal of used nuclear fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    1983-01-01

    The subject is dealt with in chapters, entitled: introduction (general statement of problem); policy framework (criteria for waste management policy); waste management and disposal, as practised and planned (general; initial storage; reprocessing and conditioning of reprocessing wastes; intermediate storage; transportation; packaging; disposal); international co-operation. Details of the situation in each country concerned (Australia, Belgium, Canada, France, Federal Republic of Germany, Spain, Sweden, Switzerland and United Kingdom) are included as annexes. (U.K.)

  16. An approach for the reasonable TRU waste management in NUCEF

    International Nuclear Information System (INIS)

    Mineo, H.; Dojiri, S.; Takeshita, I.; Tsujino, T.; Matsumura, T.; Nishizawa, I.; Sugikawa, S.

    1995-01-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) has started its hot operation at the beginning of 1995, where TRU (transuranic) elements are used. The management of TRU waste arisen in the facility is very important issue. Liquid and solid wastes containing TRU elements are generated mainly from the Fuel Treatment System for critical experiments and from the researches of reprocessing process and TRU waste management for reprocessing plants using hot cells and glove-boxes. The TRU waste management in NUCEF is based on the classification of waste, and is to maximize the recycle of reagents and the reuse of TRU elements separated from the waste, as well as to reduce the waste volume and to lower the risk of waste by advanced separation and solidification. In the future, the separation and solidification of TRU elements in the tanks of liquid waste, and the classification and discrimination of solid wastes, will be carried out applying the outcomes of the development by the researches in NUCEF. (authors)

  17. Radioactive waste management profiles. Compilation from the Waste Management Database. No. 3

    International Nuclear Information System (INIS)

    2000-07-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, archival and dissemination of information about radioactive waste management in Member States. This current report is a summary and compilation of waste management collected from Member States from February 1998 to December 1999 in response to the Agency's 1997/98 WMDB Questionnaire. Member States were asked to report waste accumulations up to the end of 1996 and to predict waste accumulations up to the end of 2014

  18. Developing Capacities in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Yusuf, Omar

    2014-01-01

    As the Agency’s main service-delivery mechanism, the IAEA’s technical cooperation (TC) programme plays a large part in supporting radioactive waste management around the world, helping to share information on the topic, and training personnel in the proper treatment and disposal of radioactive waste. The TC programme supports the development of policies and strategies, the assessment and upgrading (if necessary) of existing facilities, and the implementation of new management facilities, especially for near surface disposal. The programme also helps to develop competence in geological disposal for Member States operating nuclear power plants. This article presents just a few project examples to illustrate the scope of the programme

  19. Implementation of a unified system for waste management

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da

    2006-08-01

    The process of generation and disposal of wastes has been responsible for many economical, ecological and public health problems, although the importance of its safe management for the protection of human health and the environment has long been recognized. In order to manage the hazardous wastes in an environmentally-friendly manner, many technical and administrative procedures should be implemented, from prevention and control of waste generation to a final disposal. The nuclear area personnel have a long and successful experience in all administrative and operational activities involved in the handling, treatment, conditioning, transport, storage and disposal of radioactive waste. Thus, this knowledge can be considered in the development of a unified methodology for managing all kinds of hazardous waste. The main purpose of the present work is to develop and implement a methodology, primarily to institutions that generate small amounts of waste of different compositions, on the predisposal activities management. This methodology was developed to provide a facilitator tool that should be applied by expert users. To simplify and automatize its application, a software, named SUGERE - a unified system for waste management, was developed in a Windows R environment using a Borland Delphi R package. The nuclear industry was used as a reference for developing this work and many examples of this area standards and procedures are implemented. (author)

  20. Operational waste volume projection

    International Nuclear Information System (INIS)

    Koreski, G.M.; Strode, J.N.

    1995-06-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the tri-party agreement. Assumptions are current as of June 1995

  1. Operational Waste Volume Projection

    Energy Technology Data Exchange (ETDEWEB)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  2. Operational Waste Volume Projection

    International Nuclear Information System (INIS)

    STRODE, J.N.

    2000-01-01

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000

  3. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  4. Use of a Knowledge Management System in Waste Management Projects

    International Nuclear Information System (INIS)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.; Nies, R.A.

    2006-01-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspect will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)

  5. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  6. A purview of waste management evolution: Special emphasis on USA

    International Nuclear Information System (INIS)

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-01-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste

  7. A purview of waste management evolution: special emphasis on USA.

    Science.gov (United States)

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-02-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste.

  8. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  9. Alpha waste management at the Valduc Research Center

    International Nuclear Information System (INIS)

    Jouan, A.; Cartier, R.; Durec, J.P.; Flament, T.

    1995-01-01

    Operation of the reprocessing facilities at the Valduc Research Center of the French Atomic Energy Commission (CEA) generates waste with a variety of characteristics. The waste compatible with surface storage requirements is transferred to the French Radioactive Waste Management Agency (ANDRA); rest is reprocessed under a program which enables storage in compliance with the requirements of permits issued by safety Authorities. The waste reprocessing program provides for the construction of an incinerator capable of handling nearly all of the combustible waste generated by the Center and vitrification facility for treating liquid waste generated by the plutonium handling plant. (authors)

  10. Waste management plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Plant Landfill V, and restore the affected floodplain. The waste management plan addresses management and disposition of all wastes generated during the LEFPC remedial action. Most of the solid wastes will be sanitary or construction/demolition wastes and will be disposed of at existing Y- 12 facilities. Some small amounts of hazardous waste are anticipated, along with possible low-level or mixed wastes (> 35 pCi/g). Liquid wastes will be generated which will be sanitary and capable of being disposed of at the Oak Ridge Sewage Treatment Plant, except sanitary sewage.

  11. Waste management plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Plant Landfill V, and restore the affected floodplain. The waste management plan addresses management and disposition of all wastes generated during the LEFPC remedial action. Most of the solid wastes will be sanitary or construction/demolition wastes and will be disposed of at existing Y- 12 facilities. Some small amounts of hazardous waste are anticipated, along with possible low-level or mixed wastes (> 35 pCi/g). Liquid wastes will be generated which will be sanitary and capable of being disposed of at the Oak Ridge Sewage Treatment Plant, except sanitary sewage

  12. The transuranic waste management program at Savannah River

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1986-01-01

    Defense transuranic waste at the Savannah River site results from the Department of Energy's national defense activities, including the operation of production reactors, fuel reprocessing plants, and research and development activities. TRU waste has been retrievably stored at the Savannah River Plant since 1974 awaiting disposal. The Waste Isolation Pilot Plant, now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at the Savannah River Plant. The major objective of the TRU Program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of the defense TRU waste. This paper describes the specific activities at SR which will provide for the disposal of this TRU waste

  13. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  14. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 30

    International Nuclear Information System (INIS)

    2005-11-01

    This issue contains 90 abstracts that describe research in progress in the field of radioactive waste management. The abstracts present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of co-operation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications. Data provided by researchers for publication in WMRA 30 were entered into a research in progress database named IRAIS (International Research Abstracts Information System). The IRAIS database is available via the Internet at the following URL: http://www.iaea.org/programmes/irais/ This database will continue to be updated as new abstracts are submitted by researchers world-wide. The abstracts are listed by country (full name) in alphabetical order. All abstracts are in English. The volume includes six indexes: principal investigator, title, performing organization, descriptors (key words), topic codes and country

  15. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  16. Healthcare waste management research: A structured analysis and review (2005-2014).

    Science.gov (United States)

    Thakur, Vikas; Ramesh, A

    2015-10-01

    The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.

  17. Sustainable management measures for healthcare waste in China

    International Nuclear Information System (INIS)

    Chen Yang; Li Peijun; Lupi, Carlo; Sun Yangzhao; Xu Diandou; Feng Qian; Fu Shasha

    2009-01-01

    This paper discusses actions aimed at sustainable management of healthcare wastes (HCW) in China, taking into account the current national situation in this field, as well as the requirements deriving from the Stockholm Convention on Persistent Organic Pollutants and the WHO recommendations. By the end of 2005, there were 149 low-standard HCW disposal facilities in operation in China, distributed throughout different areas. According to the National Hazardous Waste and Healthcare Waste Disposal Facility Construction Plan, 331 modern, high-standard, centralized facilities will be built up in China in municipal level cities. Although incineration is still the main technical option for HCW disposal in China, it is expected that, especially for medium and small size facilities, non-incineration technologies will develop quickly and will soon become the main technical option. The basic management needs - both from the point of view of pollution control and final disposal - have been defined, and a system of technical and environmental standards has been formulated and implemented; however, there are still some shortages. This is particularly true when considering the best available techniques and best environmental practices developed under the Stockholm Convention, with which the present technological and managing situations are not completely compliant. In this framework, the lifecycle (from generation to final disposal of wastes) of HCW and holistic approaches (technology verification, facilities operation, environmental supervision, environmental monitoring, training system, financial mechanism, etc.) towards HCW management are the most important criteria for the sustainable and reliable management of HCW in China.

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  19. Data summary of municipal solid waste management alternatives. Volume I: report text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  20. Warranty obligations for the management and underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Jauho, P.; Silvennoinen, P.

    1980-01-01

    The need for financial assurances and institutional arrangements for waste management and disposal is discussed from the viewpoint of public interest. The basic principles stated in the paper include the requirement of accumulating funds for future contingencies during the active lifetime of the reactors and the fuel cycle facilities. A governmental role is seen as indispensable in assuming responsibility over at least the surveillance of underground repositories. The stage at which the operational responsibility is transferred from the plant operator to the government is determined in general by the status of the waste conditioning and disposal technology. A brief survey is presented of the current situation and technical issues.The need for special funds is discussed as well. For the part of waste management and disposal that will be taken over by the government an escrow fund should be established. Parallel to this public fund the plant operator would be obliged to reserve funds and provide guarantees within the company to cover liabilities for the remaining part of waste management and disposal obligations. A case study is presented in the paper covering the estimation of the escrow charges for spent fuel or high-level waste. (author)

  1. Radioactive waste management: the contribution of expert assessments to the implementation of safe management channels

    International Nuclear Information System (INIS)

    Besnus, F.; Jouve, A.C.

    2011-01-01

    The national Radioactive Materials and Waste Management (PNGMDR) sets objectives and defines waste management channels for all radioactive wastes produced in France. Within this framework, IRSN (Institute for Radioprotection and Nuclear Safety) expertise aims at assessing the consistency and robustness of the technical solutions set in place by the plan. As a result of this assessment, the main safety issues and priorities for upgrading the safety of the various facilities that will receive and treat waste are identified on the one hand, while possible foreseen weaknesses in terms of storage or treatment capacities are put into light on the other hand. To carry out such assessment, IRSN backs on its 'in depth' knowledge of facilities, acquired through the examination of each major step of waste management facility life (creation, commissioning, re-examination of safety...). This knowledge feeds in turn the examination of the waste management strategies implemented by operators. In addition, special attention is given to the achievement of waste packages of favourable properties as well as to the conditions for their safe disposal, since these two aspects are most often key factors for optimizing the safety of the whole management channel. By its capacity to overlook all steps of waste management channels, from production to final disposal, IRSN intends to contribute to the objective of enhancing the global safety of the management of radioactive waste. (authors)

  2. Future scenario development within life cycle assessment of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina

    Life Cycle Assessment (LCA) is an acknowledged tool for quantifying the sustainability of waste management solutions. However, the use of LCA for decision-making is hindered by the strong dependency of the LCA results on the assumptions regarding the future conditions in which the waste management...... solutions will operate. Future scenario methods from the management engineering field may provide valid approaches for formulating consistent assumptions on future conditions for the waste management system modelled with LCA. However, the standardized LCA procedure currently does not offer much guidance...... field. The quantitative modelling implications were tested within real-scale LCA models focusing on the management of residual waste in Denmark. In a wide range of scenarios, this thesis addressed the influence on the LCA model results of realistic technology and waste composition uncertainties, as well...

  3. What about radioactive waste management in the reorganization of the Russian nuclear industry?

    International Nuclear Information System (INIS)

    Krone, Juergen

    2008-01-01

    Even in the light of rising government revenues, the expansion of the Russian nuclear industry cannot be considered on safe grounds as far as funding is concerned. Decisions about new investments depend on proof that nuclear power is by far more profitable than investments into the development of new gas fields. For a long time, the way in which the unsolved issues of radioactive waste management were to be integrated into the reorganization of the Russian nuclear industry was an open question. Current developments demonstrate the efforts made by the Rosatom management to establish a sound basis for the sustainable management of radioactive waste. In late June 2008, the committees of the Russian parliament started deliberations of the draft legislation introduced by Rosatom about the management of radioactive waste, which includes the legal prerequisites for a sustainable national waste management system. The government-operated waste management company, FGUP 'RosRAO' (Sole Federal Government Enterprise, 'Russian Radioactive Waste'), was founded as a Rosatom subsidiary henceforth to be responsible also for the final storage of radioactive waste. Mainly recommendations of the R4.04/04, 'Strategy Definition for Russian Federation NPP Back End Radioactive Waste Management, including Draft Legislation and Institutional Framework', Tacis project were taken up, which had been elaborated by a consortium of 6 West European waste management organizations in close cooperation with Russian experts from Rosatom. The analysis conducted is described in an outline of the present situation of radioactive waste management in Russia and the recommendations derived from it. In addition, the most recent steps towards building a sustainable government-operated management system for radioactive waste of the Russian nuclear industry are explained. (orig.)

  4. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  5. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  6. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  7. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  8. The International Conference on Radioactive Waste Management

    International Nuclear Information System (INIS)

    1983-01-01

    's waste management programme has from the beginning given due attention to the preparation of guidance on the control of radioactive waste disposal into the seas. Since the London Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter has entered into force, the Agency exercises responsibility for recommendations relating to radioactive aspects of marine pollution under this convention. It prepared a definition of high-level waste prohibited from being dumped and recommendations for dumping of waste not coming under this definition into the deep sea. The Agency does not, however, encourage sea dumping and has not assumed any mandate to monitor sea dumping operations carried out under the Convention

  9. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  10. Predisposal management of low and intermediate level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2003-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power reactors and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of LLW. This Safety Guide deals with the safety issues associated with the predisposal management of LLW from nuclear fuel cycle facilities, large research and development installations and radioisotope production facilities. This includes all steps and activities in the management of waste, from its initial generation to its final acceptance at a waste disposal facility or the removal of regulatory control. The predisposal management of radioactive waste includes decommissioning. The term 'decommissioning' encompasses both the process of decommissioning a facility and the management of the waste that results (prior to its disposal). Recommendations on the process of decommissioning are provided in Refs. Recommendations on the management of the waste resulting from decommissioning are included in this Safety Guide. Although the mining and milling of uranium and thorium ores is part of the nuclear fuel cycle, the management of the operational waste (e.g. waste rock, tailings and effluent treatment waste) from these activities is not within the scope of this Safety Guide. The LLW that is

  11. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  12. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  13. Financing the management of wastes generated by the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Baumgartner, K.; Enderli, P.

    1996-01-01

    Since the beginning of nuclear power production in Switzerland, expenditure on managing operational waste and spent fuel has represented a fixed component of the kilowatt hour production costs which is calculated on the basis of careful estimates of waste management costs. For making these estimates, the operators of the nuclear power plants at Beznau, Muehleberg, Goesgen and Leibstadt rely on calculations performed by recognised nuclear fuel specialists and on data and empirical values from domestic and foreign waste management organisations. The calculations are subject to periodic review and, where necessary, take into account new information. The last review was concluded at the beginning of 1996. (author) 1 fig

  14. The AREVA's waste management strategy

    International Nuclear Information System (INIS)

    Poncet, Ph.

    2011-01-01

    In accordance with its policy of sustainable development and continuous progress, AREVA is permanently seeking to reduce the impact of the management of its waste, of whatever type, and its radioactive waste in particular. This goal is taken into consideration very early in industrial projects and concerns all the phases in the life of the installations and all the activities of the Group. The resulting actions aim to guarantee that an exhaustive inventory is made of the radioactive materials and waste, to optimise how they are characterised, to ensure their traceability and to determine the best management methods. Past and future progress relies primarily on the effectiveness of zoning (in particular the concept of radiological cleanness), how work is organized, the account taken of operating experience feedback, the search for recycling solutions or appropriate removal routes, optimisation of waste storage and, whenever possible, online processing, plus of course the professionalism of all those involved. A participatory approach by the Group will enable the focus areas and required actions to be defined: networks and multidisciplinary working groups, whenever possible in association with other stake-holders or partners from the nuclear industry. (author)

  15. Radioactive waste management status and trends. An overview of international status and trends in radioactive waste management. No. 3

    International Nuclear Information System (INIS)

    2003-08-01

    The purpose of this report is to compile and disseminate information about the status of and trends in radioactive waste management in Agency Member States in a timely manner. The report is suitable for radioactive waste managers and regulators, decision making organizations in both governmental and private sectors, and for Agency Departments, in both the regular and Technical Co-operation programmes. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. The plan is to have the document evolve to serve a broader audience using easy-to-understand graphical and tabular data. For this, the third report in the series, contributions on a variety of topics in radioactive waste management were solicited from persons and organizations external to the Agency. Throughout the report, submissions received from external contributors are denoted. The preparation of this annual report involves (a) a meeting with a team of consultants from a variety of government and industrial organizations to compile a first draft, (b) the optional issuance of special service contracts to polish and supplement the first draft, (c) review by Agency staff and external contributors to the report and (d) final review and approval by the Director of the Nuclear Energy and Waste Technology Division, Nuclear Energy Department, in the Agency

  16. Radioactive waste management status and trends. An overview of international status and trends in radioactive waste management. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The purpose of this report is to compile and disseminate information about the status of and trends in radioactive waste management in Agency Member States in a timely manner. The report is suitable for radioactive waste managers and regulators, decision making organizations in both governmental and private sectors, and for Agency Departments, in both the regular and Technical Co-operation programmes. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. The plan is to have the document evolve to serve a broader audience using easy-to-understand graphical and tabular data. For this, the third report in the series, contributions on a variety of topics in radioactive waste management were solicited from persons and organizations external to the Agency. Throughout the report, submissions received from external contributors are denoted. The preparation of this annual report involves (a) a meeting with a team of consultants from a variety of government and industrial organizations to compile a first draft, (b) the optional issuance of special service contracts to polish and supplement the first draft, (c) review by Agency staff and external contributors to the report and (d) final review and approval by the Director of the Nuclear Energy and Waste Technology Division, Nuclear Energy Department, in the Agency.

  17. Waste management from reprocessing: a stringent regulatory requirements for high quality conditioned residues

    International Nuclear Information System (INIS)

    Bordier, J. C.; Greneche, D.; Devezeaux, J. G.; Dalcorso, J.

    2000-01-01

    Nuclear waste production and management in France is governed by safety requirements imposed to all operators. French nuclear safety relies on two basic principles: · Responsibility of the nuclear operator, which expands to waste generated, · Safety basic objectives issued by national Safety Authority. For a long time the regulatory framework for waste production and management has been satisfactorily applied and has benefited to each actor of the process. LLW/MLW and HLW nuclear waste are currently conditioned in safe matrices or packages either likely to be disposed in surface repositories or designed with the intention to be disposed underground according to their radioactive content. France is looking into the case of VLLW and has already carried out a design for future disposal, the design being in the pipe. Other types of waste (i. e. radium bearing waste, graphite, and tritium content waste) are also considered in the whole framework of French waste management. (author)

  18. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  19. Waste assaying and radiation monitoring equipment at the waste management centre of NPP Leningrad

    Directory of Open Access Journals (Sweden)

    Šokčić-Kostić Marina

    2006-01-01

    Full Text Available The waste accumulated in the past at the Nuclear Power Plant Leningrad has to be sorted and packed in an optimal way. In the area of waste treatment and management, the completeness and quality of direct monitoring are of the outmost importance for the validity of, and confidence in, both practicable waste management options and calculations of radiological impacts. Special monitoring systems are needed for this purpose. Consistent with the scale of work during the waste treatment procedures and the complexity of the plant data have to be collected from characteristic parts in various treatment stages. To combine all the information, a tracking procedure is needed during the waste treatment process to characterize the waste for interim and/or final disposal. RWE NUKEM GmbH has developed special customer-tailored systems which fulfill the specifications required by plant operation and by the authorities.

  20. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  1. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  2. Trends in the Drilling Waste Management

    Directory of Open Access Journals (Sweden)

    Lucyna Czekaj

    2006-10-01

    Full Text Available Petroleum Industry is trying to achieve sustainable development goals. Each year new solutions are implemented to minimize the environmental impact of drilling operations. The paper presents trends in the drilling waste management caused by introducing the sustainable development into the petroleum industry. Old solutions such as the drilling waste disposal at the waste dump or dumping ground are not acceptable from the environmental point of view. The paper presents an analysis of new solutions as the sustainable solutions. The most important problem is the chemical pollution in cuttings and the waste drilling mud. The industrial solutions as well as the laboratory research on the pollution removing from drilling wastes are analysed. The most promising method seems to be the recycling and design for the environment of drilling mud.

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  4. Assessment of the indicator of sustainable development for radioactive waste management

    International Nuclear Information System (INIS)

    Jung, J. H.; Park, W. J.

    2003-01-01

    As a follow up to the agenda 21's policy statement for safe management of radioactive waste adopted at Rio Conference held in 1992, the UN invited the IAEA to develop and implement indicators of sustainable development for the management of radioactive waste. The IAEA finalized the indicators in 2002, and is planning to calculate the member states' values of indicator in connection with operation of its Net-Enabled Waste Management Database system. In this paper, the basis for introducing the indicators into the radioactive waste management was analyzed, and calculation methodology and standard assessment procedure were simply depicted. According to the proposed standard procedure, the indicators for some countries including Korea were calculated and compared, by use of each country's radioactive waste management framework and its practices. In addition, a series of measures increasing the values of the indicators was derived so as to enhance the sustainability of domestic radioactive waste management program

  5. Selecting the recommended waste management system for the midwest compact

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Robertson, B.C.; Drobny, N.L.

    1987-01-01

    One of the early important steps in the evolution of a low-level waste Compact is the development of a Regional Management Plan. Part of the Regional Management Plan is a description of the waste management system that indicates what kinds of facilities that will be available within the compact's region. The facilities in the waste management system can include those for storage, treatment and disposal of low-level radioactive waste. The Regional Management Plan also describes the number of facilities that will be operated simultaneously. This paper outlines the development of the recommended waste management system for the Midwest Compact. It describes the way a data base on low-level radioactive waste from the Compact was collected and placed into a computerized data base management system, and how that data base was subsequently used to analyze various options for treatment and disposal of low-level radioactive waste within the Midwest Compact. The paper indicates the thought process that led to the definition of four recommended waste management systems. Six methods for reducing the volume of waste to be disposed of in the Midwest Compact were considered. Major attention was focused on the use of regional compaction or incineration facilities. Seven disposal technologies, all different from the shallow land burial currently practiced, were also considered for the waste management system. After evaluating the options available, the Compact Commissioners recommended four waste disposal technologies--above-ground vaults, below-ground vaults, concrete canisters placed above ground, and concrete canisters placed below ground--to the host state that will be chosen in 1987. The Commissioners did not recommend use of a regional waste treatment facility

  6. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  7. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  8. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  9. Policies and strategies for radioactive waste management

    International Nuclear Information System (INIS)

    2009-01-01

    A policy for spent fuel and radioactive waste management should include a set of goals or requirements to ensure the safe and efficient management of spent fuel and radioactive waste in the country. Policy is mainly established by the national government and may become codified in the national legislative system. The spent fuel and radioactive waste management strategy sets out the means for achieving the goals and requirements set out in the national policy. It is normally established by the relevant waste owner or nuclear facility operator, or by government (institutional waste). Thus, the national policy may be elaborated in several different strategy components. To ensure the safe, technically optimal and cost effective management of radioactive waste, countries are advised to formulate appropriate policies and strategies. A typical policy should include the following elements: defined safety and security objectives, arrangements for providing resources for spent fuel and radioactive waste management, identification of the main approaches for the management of the national spent fuel and radioactive waste categories, policy on export/import of radioactive waste, and provisions for public information and participation. In addition, the policy should define national roles and responsibilities for spent fuel and radioactive waste management. In order to formulate a meaningful policy, it is necessary to have sufficient information on the national situation, for example, on the existing national legal framework, institutional structures, relevant international obligations, other relevant national policies and strategies, indicative waste and spent fuel inventories, the availability of resources, the situation in other countries and the preferences of the major interested parties. The strategy reflects and elaborates the goals and requirements set out in the policy statement. For its formulation, detailed information is needed on the current situation in the country

  10. Operator models for delivering municipal solid waste management services in developing countries: Part B: Decision support.

    Science.gov (United States)

    Soós, Reka; Whiteman, Andrew D; Wilson, David C; Briciu, Cosmin; Nürnberger, Sofia; Oelz, Barbara; Gunsilius, Ellen; Schwehn, Ekkehard

    2017-08-01

    This is the second of two papers reporting the results of a major study considering 'operator models' for municipal solid waste management (MSWM) in emerging and developing countries. Part A documents the evidence base, while Part B presents a four-step decision support system for selecting an appropriate operator model in a particular local situation. Step 1 focuses on understanding local problems and framework conditions; Step 2 on formulating and prioritising local objectives; and Step 3 on assessing capacities and conditions, and thus identifying strengths and weaknesses, which underpin selection of the operator model. Step 4A addresses three generic questions, including public versus private operation, inter-municipal co-operation and integration of services. For steps 1-4A, checklists have been developed as decision support tools. Step 4B helps choose locally appropriate models from an evidence-based set of 42 common operator models ( coms); decision support tools here are a detailed catalogue of the coms, setting out advantages and disadvantages of each, and a decision-making flowchart. The decision-making process is iterative, repeating steps 2-4 as required. The advantages of a more formal process include avoiding pre-selection of a particular com known to and favoured by one decision maker, and also its assistance in identifying the possible weaknesses and aspects to consider in the selection and design of operator models. To make the best of whichever operator models are selected, key issues which need to be addressed include the capacity of the public authority as 'client', management in general and financial management in particular.

  11. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  12. Assuring data quality for use in waste management system trade-off studies

    International Nuclear Information System (INIS)

    Shay, M.R.; Stiles, D.L.

    1990-04-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) has responsibility for constructing and operating facilities to accept and dispose of high-level nuclear waste generated by commercial and defense reactors. The Office of Systems Integration and Regulation within OCRWM has sponsored the development of a suite of computer models to be used in analyzing various possible alternatives for the configuration and operation of the federal high-level radioactive waste management system. This suite of models and their associated databases is referred to as the Systems Integration Modeling System (SIMS). As part of SIMS, Battelle Pacific Northwest Laboratories has developed the Systems Engineering Cost Analysis Capability (SECAC), which, working in conjunction with one or more logistics models, provides cost estimates at various levels of detail for the complete Federal Waste Management System (FWMS). The SECAC has been designed as a flexible tool for use in estimating the cost of alternative operating modes, different waste acceptance priorities and alternative designs that may be proposed for the FWMS components. A relatively large amount of data must be compiled and managed to fully represent these possible alternative FWMS configurations and operating strategies. A systems engineering approach has been implemented to ensure the integrity of this large cost data library throughout the evolution of the capability. 4 refs

  13. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  14. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  15. The management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Teng Lijun

    2001-01-01

    Full text: This paper wants to introduce the management of radioactive wastes in China. The Management System. The management system of radioactive waste consists of the institutional system and the regulatory system. During the recent 30 years, more than 50 national standards and trades standards have been issued, will be published, or are being prepared, covering essentially all the process of wastes management. State Environmental Protection Administration (SEPA) is in charge of not only the environmental protection view but also nuclear safety surveillance of radioactive waste management, especially in the aspect of HLW disposal. China Atomic Energy Authority (CAEA) is a centralized management of the government responsible. China National Nuclear Corp. (CNNC) is responsible for the management work of radioactive wastes within its system, implementing national policies on wastes management, and siting, construction and operation of LILW repositories and HLW deep geological repository. The Policies of Radioactive Waste Management. The LILW for temporary storage shall be solidified as early as possible. Regional repository for disposal of low-and intermediate-level wastes shall be built. HLW is Centralized disposal in geological repository. The radioactive wastes and waste radioisotope sources must be collected to the signified place (facilities) for a relatively centralized management in each province, The Accompanying Mineral radioactive wastes can be stored in the tailing dumps or connected to the storage place for a temporal storage, then transported to the nearby tailing dumps of installation or tailing dumps of mineral-accompanying waste for an eventual storage. Activities in the Wastes Management Radioactive wastes treatment and conditioning Since 1970, the study on the HLLW vitrification has been initiated. In 1990, a cold test bench for the vitrification (BVPM), introduced from Germany, was completed in Sichuan Province. As for the LILW, the cementation

  16. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Werthamer, N.R.

    1977-01-01

    The State of New York, some 15 years ago, became a party to an attempt to commercialize the reprocessing and storage of spent nuclear fuels at the West Valley Reprocessing Facility operated by Nuclear Fuel Services, Inc. (NFS). That attempted commercialization, and the State of New York, have fallen victim to changing Federal policies in the United States, leaving an outstanding and unique radioactive waste management problem unresolved. At the beginning of construction in 1963, the AEC assured both NFS and New York State of the acceptability of long-term liquid tank storage for high level wastes, and New York State ERDA therefore agreed to become the responsible long-lived stable institution whose oversight was needed. It was understood that perpetual care and maintenance of the wastes, as liquid, in on-site underground tanks, would provide for safe and secure storage in perpetuity. All that was thought to be required was the replacement of the tanks near the end of their 40-year design life, and the transferring of the contents; for this purpose, a perpetual care trust fund was established. In March of 1972, NFS shut West Valley down for physical expansion, requiring a new construction permit from the AEC. After four years of administrative proceedings, NFS concluded that changes in Federal regulations since the original operating license had been issued would require about 600 million dollars if operations were to resume. In the fall of 1976, NFS informed the NRC, of its intention of closing the reprocessing business. The inventories of wastes left are listed. The premises upon which the original agreements were based are no longer valid. Federal responsibilities for radioactive wastes require Federal ownership of the West Valley site. The views of New York State ERDA are discussed in detail

  17. Low-level radioactive waste management in France: two decades of experience

    International Nuclear Information System (INIS)

    Marque, Y.

    1993-01-01

    Human activities generate wastes and these wastes have potential impacts on our environment and important implications for the twilight years of the twentieth century. Radioactive wastes, in particular, is a matter of considerable concern to the public, with emotional debate often clouding the legitimate need of the public for information for the subject. In France, the development of the nuclear power program and the widespread use of radioisotopes by the medical profession, industry and the research community called for a radioactive waste management program. In 1979, the French Government created ANDRA, the National Radioactive Waste Management Agency, which has the complete responsibility for radioactive waste disposal, including design, siting, construction and operation of waste disposal facilities. In 1991, the Waste Law reaffirmed ANDRA's principle functions and created the National Waste Observatory within ANDRA, whose the mission is to establish and maintain a current inventory of all radioactive waste storage and disposal sites on French territory. The present paper describes the generation of short-lived waste in France, the french policy on short-lived waste disposal, operation and cancellation of Manche plant, design and construction of Aube plant

  18. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  19. Radioactive waste: from national programmes to community co-operation

    International Nuclear Information System (INIS)

    Sousselier, Yves

    1981-01-01

    An important community programme for the management and storage of waste was introduced 5 years ago although research and development has been carried out on a wide basis for 20 years. There is in fact no contradiction in this, but knowledge of the composition of waste has evolved with the development of nuclear energy, requirements have become stricter while the number of possible handling methods tends to result in postponement of decisions. According to the author, a thorough community co-operation in this field should make it easier to easier to known what to choose and also to decide on the course to be taken. It should also facilitate the obtaining of a consensus of opinion -acceptable to every-one- in relation to the management of radioactive waste [fr

  20. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.