WorldWideScience

Sample records for waste management aspects

  1. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  2. Public perceptions of aspects of radioactive waste management

    International Nuclear Information System (INIS)

    1985-04-01

    The paper concerns a study of peoples' attitude towards the siting of radioactive waste repositories, carried out by the University of Surrey, United Kingdom. The work has been commissioned by the Department of the Environment as part of its radioactive waste management research programme. The people taking part were asked to mark on a map of Great Britain places they felt radioactive waste repositories would be least objectionable. The degree to which people worried about the technology and the management of radioactive waste disposal was monitored. Questions were asked about storage, disposal and transportation aspects, and about present and future worries. (UK)

  3. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.

    1976-01-01

    Various aspects of waste management are discussed from the viewpoint of the nuclear industry. Future amounts of waste generated in the 15 Foratom countries in Western Europe are estimated. Industrial waste questions--as seen by electricity producers, reprocessors, and waste operators--are discussed; questions concerning decommissioning are also dealt with. A number of recommendations for further action, primarily on the part of national authorities and international organizations, are put forward. One conclusion of the study is that there is no reason for waste-management problems to impede the timely development of nuclear energy as a large-scale industrial activity in Western Europe

  4. Aspects of nuclear safety in the management of the radioactive wastes

    International Nuclear Information System (INIS)

    Popescu, D.; Iliescu, E.

    1997-01-01

    The paper reviews aspects of nuclear safety which should be taken into account in the management of the radioactive wastes. The paper considers underlying criteria concerning the management, collecting, sorting transportation and treatment of radioactive wastes as well as safety engineering measures taken when designing a facility for the treatment of radioactive wastes. The paper also brings forward the removal radioactive wastes and some points on the policy of radioactive wastes management in Romania. (authors)

  5. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  6. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  7. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  8. Radioactive waste management. What are the institutional aspects

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The report on ''Long term management of radioactive wastes. Legal administrative and financial aspects'' published by the NEA is commented in this paper. Storage, disposal, monitoring, financing liability and national policy are evoked [fr

  9. Current issues and regulatory infrastructure aspects on radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2002-01-01

    The nuclear facilities that exist throughout Romania perform a broad range of missions from research to nuclear materials production to radioactive waste management, and to deactivation and decommissioning. As a consequence, there is a broad array of external regulations and internal requirements that potentially applies to a facility or activity. Therefore, the management of radioactive waste occurs within a larger context of managing hazards, both radiological and industrial, at these facilities. At the same time, concern for upgrading existing facilities used for radioactive waste management, as called for in Article 12, fits into a larger framework of safety management. The primary objective of the Romanian Nuclear Regulatory Body-CNCAN on legislation and regulatory infrastructure for the safety of radioactive waste management is to protect human health and the environment now and in the future. It is unanimously recognized that a well developed regulated system for the management and disposal of radioactive waste is a prerequisite for both public and market acceptance of nuclear energy. It is to underline that the continuing internationalization of the nuclear industry following terrorist attacks of 11 September 2001 stresses the need for national legislation and regulatory infrastructure to be based on internationally endorsed principles and safety standards. The paper presents some aspects of the Romanian experience on the national legislative and regulatory system related to the followings aspects of the safety aspects of radioactive waste management: definition of responsibilities; nuclear and radiation safety requirements; siting and licensing procedures; regulatory functions; international co-operation and coherence on strategies and criteria in the area of safety of radioactive waste management. Finally, prescriptive and goal oriented national as well international regimes in the field of the safety of radioactive waste management are briefly commented

  10. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  11. Social and economic aspects of radioactive waste disposal: considerations for institutional management

    National Research Council Canada - National Science Library

    National Research Council Staff; Board on Radioactive Waste Management; Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1984-01-01

    ... for Institutional Management Panel on Social and Economic Aspects of Radioactive Waste Management Board on Radioactive Waste Management Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1984 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritative ...

  12. Social and economic aspects of radioactive waste disposal: considerations for institutional management

    International Nuclear Information System (INIS)

    Carter, L.J.

    1985-01-01

    The problem of nuclear waste disposal has always been recognized as one that is as much political as it is technical. This could explain why the National Academy of Science is just now showing interest in the social and economic aspects of nuclear waste disposal. It has just now issued a report called Social Aspects of Radioactive Waste Disposal: Considerations for Industrial Management. This article is a critical review of the content of this report

  13. Management of radioactive waste from reprocessing including disposal aspects

    International Nuclear Information System (INIS)

    Malherbe, J.

    1991-01-01

    Based on a hypothetical scenario including a reactor park of 20 GWe consisting of Pressurised-Water-Reactors with a resulting annual production of 600 tonnes of heavy metal of spent fuel, all aspects of management of resulting wastes are studied. Waste streams from reprocessing include gaseous and liquid effluents, and a number of solid conditioned waste types. Disposal of waste is supposed to be performed either in a near-surface engineered repository, as long as the content of alpha-emitting radionuclides is low enough, and in a deep geological granite formation. After having estimated quantities, cost and radiological consequences, the sensitivity of results to modification in reactor park size, burn-up and the introduction of mixed-oxide fuel (MOX) is evaluated

  14. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    management strategy was the first critical task in the strategic planning. Using a waste led decommissioning approach this work has set the scene for the further strategic and overall decommissioning planning. This paper will discuss the important aspects in the work to develop a state of the art waste management strategy for a safe, fast and cost efficient waste management in decommissioning. It will also contain reflections and give certain recommendations for decommissioning planning in general as well as an overview of some specific findings, results and recommendations from the actual project at Oskarshamn. (authors)

  15. Legal Aspects of Radioactive Waste Management: Relevant International Legal Instruments

    International Nuclear Information System (INIS)

    Wetherall, Anthony; Robin, Isabelle

    2014-01-01

    The responsible use of nuclear technology requires the safe and environmentally sound management of radioactive waste, for which countries need to have stringent technical, administrative and legal measures in place. The legal aspects of radioactive waste management can be found in a wide variety of legally binding and non-binding international instruments. This overview focuses on the most relevant ones, in particular those on nuclear safety, security, safeguards and civil liability for nuclear damage. It also identifies relevant regional instruments concerning environmental matters, in particular, with regard to strategic environmental assessments (SEAs), environmental impact assessments (EIAs), public access to information and participation in decision-making, as well as access to justice

  16. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  17. Aspects of chemistry in management of radioactive liquid wastes from nuclear installations

    International Nuclear Information System (INIS)

    Yeotikar, R.G.

    2007-01-01

    Nuclear energy is the only source available to the mankind to fulfill the continuous and ever increasing demand of energy. The public acceptance and popularity of nuclear energy depends to a large extent on management of radioactive waste. The nuclear waste management demands eco-friendly process/systems. This article highlights the sources of different types of radioactive liquid wastes generated in the nuclear installation and their treatment process. The radioactive liquid waste is classified mainly into three categories based on activity levels e.g. low, intermediate and high level. The management of radioactive liquid waste is very critical because of its 'mobility and liquid' nature. Secondly the liquid wastes have wide range of activity and chemistry spectrum and their volumes are also different. Hence the methods for management of different types of liquid wastes are also different. Mostly the treatment and conditioning processes are chemical processes. The chemistry involved in the treatment and conditioning of these wastes, problems related with chemistry for each processes and efforts to solve these problems, aspects of adoption on plant scale, etc., have been discussed in this article. (author)

  18. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  19. Socio-economic aspects of waste management facilities

    International Nuclear Information System (INIS)

    Ruetter, H.

    2008-01-01

    Besides technical aspects and those of safety, it is the economic and social environment of a future underground geologic repository which plays a major role. Compared to other large scale technical plants, facilities for radioactive waste management must overcome incomparably greater obstacles. All the more care must be taken in clarifying the issues affecting the public and the economy in the region of a potential site. On behalf of the Swiss Federal Office for Energy (BFE), Ruetter + Partner conducted a basic study which, in a number of case studies, dealt with the socio-economic aspects of experiences with existing and planned facilities in Switzerland and abroad. The study focused on these main points, which are outlined briefly in the article: - Socio-economic issues in the site selection procedure. - Methodological approach. - Findings made in the case studies. - Factors influencing the acceptance of a repository. (orig.)

  20. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  1. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  2. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant

  3. Institutional aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1996-01-01

    Rules and regulations in force, the work of specialized agencies and the control exercised by regulatory authorities in the area of radioactive waste management need to emphasised in public information programmes. Radioactive waste management is a well-regulated area, with government institutions aiming for long-term safety, in particular for the final disposal of wastes, and imposing strict obligations on the nuclear industry. The issue of public perception of the problems involved with the long-term safety of radioactive waste management is sensitive. Given the complexity of this issue, and the public's legitimate doubts regarding the continued efficiency of long- or very long-term waste management policies, public information specialists must seek to reassure. The major factors that need to be made clear to the public are the following: our capacity to master long-term risks will depend upon the quality of the decisions taken today; experience has shown that the functioning of institutional mechanisms is generally efficient and permanent when their purpose is to protect society's vital interests; a well-informed public, together with other factors can contribute to the maintenance of these; the importance of the 'passive' safety of technological systems, as well as institutional instruments with respect to guaranteeing long-term safety, must be underlined; institutional instruments, although indispensable with regard to long-term safety, should only be considered as making a contribution of relative importance and of limited duration, and this must be made clear. Public information policies should therefore underline the relative contribution of institutional instruments, as well as their limited duration, in the safety of long-term radioactive waste management. (authors)

  4. Regulatory aspects of the radioactive waste management in Argentina

    International Nuclear Information System (INIS)

    Siraky, Graciela

    2000-01-01

    This paper describes briefly the legislative and regulatory framework in which the radioactive waste management is carried out in Argentina. The activities of the Nuclear Regulatory Authority (NRA) and the applied approaches in relation to inspection of facilities, safety assessments of associated systems and collaboration in the matter with international agencies are also exposed. The 'National Law of the Nuclear Activity' (No. 24804), in force since April 1997, assigns to NRA the following functions: to regulate and to inspect nuclear activities regarding radiological and nuclear safety, physical protection of nuclear materials, in order to verify that such materials are used exclusively with peaceful purposes and also, to advise the National Executive Power in matters of its competence. For the fulfilment of these functions the Law grants to NRA the necessary legal competence to develop, to establish and to apply a regulatory system to all nuclear activities carried out in Argentina. The activity of NRA is carried out in the framework of a regulatory system whose fundamental aspect in the approach adopted to establish the requirements of safety, which is know as 'of performance'. This system has a group of rules known as 'AR Standards' (AR: abbreviation of Regulatory Authority) that, among other requirements, establish that the construction, operation and decommissioning of a nuclear installation can not start without the corresponding construction, operation or decommissioning license. In that sense, besides having the legal competence in the topic, NRA has developed its necessary technical competence to evaluate, with own criteria, all radiological and nuclear safety aspects involved in the grant of licenses and to guarantee an appropriate level of control in the facilities. In relation to the radioactive waste management, NRA has developed some basic criteria. These criteria underline the requirements put to the 'Responsible Entity' that generates or manages

  5. Ethical aspects of radioactive waste management and public information. The Belgian situation

    International Nuclear Information System (INIS)

    Minon, J.P.

    1996-01-01

    Belgium has a well-developed nuclear programme and has elaborated several research and nuclear fuel cycle facilities on its territory since the beginning of the nineteen fifties. About 60 per cent of the electricity produced is of nuclear origin. All these facilities produce waste. In 1980, waste management was entrusted by law to the ONDRAF. The Agency new controls all aspects of waste management and has indicated the direction for final disposal of waste. Both public information and the justification, from an ethical point of view, of the solutions proposed have become an essential topic in radioactive waste management. The situation as it exists today in Belgium is described in this paper. The paper indicates that all decision-making process now pass through an objective information phase, involving the public and the various decision makers. This is intended to provoke discussion and encourage the public to become more active and responsible, and should be based on new ethical concepts. We need to be sure that we put into place for the future, systems based on passive technology, full information and with sufficient financial provision for future needs. (authors)

  6. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  7. Technical, environmental and regulatory aspects of waste management and their reflection in the IAEA programme

    International Nuclear Information System (INIS)

    Richter, D.K.

    1982-01-01

    Within the IAEA training course on waste management this paper is intended to overview technological, radiological, encironmental, regulatory and institutional aspects of importance in establishing a waste management policy for nuclear power programmes; the objectives and results of IAEA activities in this field; and some current issues from a national and international perspective with special consideration on the needs of countries embarking on nuclear power. (orig./RW)

  8. Solid Waste Management with Emphasis on Environmental Aspect

    Science.gov (United States)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  9. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  10. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  11. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  12. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    Science.gov (United States)

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  14. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), P.O. Box 611, 8600 Dübendorf (Switzerland); Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com [Wageningen University, Education and Competence Studies, Wageningen (Netherlands)

    2015-10-15

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.

  15. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  16. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  17. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  18. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  19. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  20. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 there will be about 120 nuclear power reactors with 70,000 MWe in operation in Western Europe, and this number will be doubled by 1985, when the nuclear capacity in operation is expected to be 180,000 MWe. Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago waste from nuclear research and from the use of isotopes in medicine has been the dominating source. Now there is a much larger proportion from the day to day operation of nuclear power reactors. Waste amounts from reprocessing of spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. There will be around 30 reactors and other nuclear plants to take out of operation in Western Europe around 1990. The large-scale handling of these wastes calls for overall management schemes, based on clear policies for storage and disposal. Questions are identified which have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with: (i) rules and regulations, (ii) new technical evidence, (iii) administrative frameworks and responsibilities. Several areas of waste management are well suited to commercial waste operating firms, already established at present in a number of European countries. The scope for waste operators may include waste transportation, operating of own or government owned treatment and storage installations, and the carrying out of disposal operations. In the paper, development needs originally suggested by the Foratom waste study group will be discussed in the light of a late 1976 review to be carried through by European industry

  1. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 about 120 nuclear power reactors with 70,000MW(e) will be in operation in Western Europe, and this number will be doubled by the second half of the 1980s, when the nuclear capacity in operation is expected to be 180,000MW(e). Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago nuclear research and the use of isotopes in medicine have been the dominating source of radioactive waste. Now there is a much larger proportion from the day-to-day operation of nuclear power reactors. The amount of waste from reprocessing spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. Approximately 30 reactors and other nuclear plants will be taken out of operation in Western Europe by about 1990. The large-scale handling of these wastes calls for overall management schemes based on clear policies for storage and disposal. Questions are identified which will have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with (i) rules and regulations, (ii) new technical evidence, (iii) administrative framework and responsibilities. Several areas of waste management are well suited to commercial waste operating firms already established in a number of European countries. The scope for waste operators may include transport of waste, operation of own or government-owned treatment and storage installations, and disposal operations. Development requirements originally suggested by the Foratom waste study group are discussed in the light of the latest developments as seen by European industry. (author)

  2. Waste management aspects of the DTE1 and RTE campaigns

    International Nuclear Information System (INIS)

    Haigh, A.D.; Middleton, R.; Newbert, G.

    1999-03-01

    The waste management activities at JET include not only the collection, processing and dispatch of radioactive and beryllium contaminated waste, but also for the operation of several supporting facilities (the beryllium controlled areas); the provision of respiratory protection; (including pressurised suit operations) and the procedural support for maintenance of active handling operations. The consequences of carrying out the Deuterium-Tritium experiment (DTE1) were reviewed throughout 1996 and 1997 in order that appropriate preparations could be implemented. Several procedural, regulatory, technical and managerial functions were identified for modification and the planning and subsequent execution of these functions is described here. In general the regulatory and procedural aspects were accurately anticipated, e.g. radioactive waste authorisations, the operation of the radioactive drainage system and improvements in managerial control were successfully implemented. However in the case of materials storage the increased tritium off gassing rates were higher than expected. This required the engineering controls and storage facilities to be enhanced before the DTE1 tile modules could be transferred from the Torus Hall. The predicted consequences of DTE1 and the preparations made are detailed here with discussion of further actions which proved necessary in practice. (author)

  3. Waste management aspects of the DTE1 and RTE campaigns

    International Nuclear Information System (INIS)

    Haigh, A.D.; Middleton, R.; Newbert, G.

    1999-01-01

    The waste management activities at JET include not only the collection, processing and dispatch of radioactive and beryllium contaminated waste, but also for the operation of several supporting facilities (the beryllium-controlled areas); the provision of respiratory protection; (including pressurised suit operations) and the procedural support for maintenance of active handling operations. The consequences of carrying out the Deuterium-Tritium experiment (DTE1) were reviewed throughout 1996 and 1997 in order that appropriate preparations could be implemented. Several procedural, regulatory, technical, and managerial functions were identified for modification and the planning and subsequent execution of these functions is described here. In general the regulatory and procedural aspects were accurately anticipated, e.g. radioactive waste authorisations, the operation of the radioactive drainage system and improvements in managerial control were successfully implemented. However, in the case of materials storage the increased tritium off-gassing rates were higher than expected. This required the engineering controls and storage facilities to be enhanced before the DTE1 tile modules could be transferred from the Torus Hall. The predicted consequences of DTE1 and the preparations made are detailed here with discussion of further actions which proved necessary in practice. (orig.)

  4. Waste management research abstracts No. 18

    International Nuclear Information System (INIS)

    1987-12-01

    The eighteenth issue of this publication contains over 750 abstracts from 33 IAEA member countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed

  5. Long-term radiological aspects of management of wastes from uranium mining and milling

    International Nuclear Information System (INIS)

    1984-09-01

    Due to the contamination of uranium mill tailings by long-lived natural radionuclides, their management presents specific radiation protection aspects in the long term. This report presents several examples of the application of the International Commission of Radiological Protection (ICRP) methodology for the optimisation of radiation protection to these types of waste. The advantages and disadvantages of such an approach are discussed and several important limitations are identified

  6. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  7. Socioeconomic aspects and public opinion concerning radioactive wastes

    International Nuclear Information System (INIS)

    Gonzalez, Valentin

    1997-01-01

    Nuclear energy aspects in Spain are presented. The role of ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.) a public company, that manages low and intermediate-level radioactive wastes in Spain is discussed. ENRESA activities such as radioactive wastes transportation and processing, radioactive wastes disposal, decommissioning of an uranium plant, environmental recovery procedures, geological studies, information dissemination of nuclear energy, sponsoring of conferences, courses, etc, are briefly reported

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  9. Waste management research abstracts no. 21

    International Nuclear Information System (INIS)

    1992-12-01

    The 21th issue of this publication contains over 700 abstracts from 35 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  10. Waste management research abstracts. No. 20

    International Nuclear Information System (INIS)

    1990-10-01

    The 20th issue of this publication contains over 700 abstracts from 32 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  11. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  12. Waste management aspects of entire PWR LOOP decontamination

    International Nuclear Information System (INIS)

    Murray, A.P.; Roesmer, J.

    1988-01-01

    The waste management parameters for decontamination of an entire PWR primary circuit have been determined for dilute alkaline-permanganate/citric acid (APCA), LOMI, ozone and cerium acid process variations. APCA processes generate the largest waste volumes; over 140 m 3 (5000 ft 3 ) in some cases. This represents a potential disposal cost of one million dollars. The cation regeneration column makes the greatest contribution to the disposal volume. In contrast, the LOMI process generates approximately half as much waste, but it is expected to contain relatively high metal concentrations (200-800 ppm). The ozone and cerium acid processes product the least waste, usually under 45 m 3 . These waste volume estimates represent considerable fractions of a utility's annual disposal volume. Consequently, improved waste processing technology is required, and several approaches are suggested

  13. Management of radioactive waste

    International Nuclear Information System (INIS)

    Jahn, P.G.

    1986-01-01

    The text comprises three sections, i.e. theological and moral aspects, scientific and technical aspects, and administrative and political aspects. The book informs on the scientific and legal situation concerning nuclear waste management and intends to give some kind of decision aid from a theological point of view. (PW) [de

  14. Regulatory safety aspects of nuclear waste management operations in India

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2000-01-01

    The Department of Atomic Energy in India as part of its programme to harness the nuclear energy for generation of nuclear power has been operating a whole range of nuclear fuel cycle facilities including waste management plants for more than four decades. The waste management plants include three high level waste immobilisation plants, one in operation, one under commissioning and one more under construction. Atomic Energy Regulatory Board is mandated to review and authorise from the safety angle the siting, the design, the construction and the operation of the waste management plants. The regulatory procedures, which involve multi-tier review adopted for ensuring the safety of these facilities, are described in this paper. (author)

  15. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  16. Waste management aspects of decontamination and decommissioning (D ampersand D) projects

    International Nuclear Information System (INIS)

    Becker, B.D.

    1993-01-01

    History shows that waste management concepts have generally been overlooked during the planning stages of most projects and experiments. This is resulting,in the generation of vast amounts of waste during the clean up or D ampersand D of these facilities. Managers are not only being frustrated in their waste minimization efforts (a relatively new concept) but are also facing the prospect of not being able to dispose of the waste materials at all. At the least, managers are having to budget extraordinary amounts of time, money, and effort in defending their positions that the waste materials are not only humanly and environmentally safe, but that the waste materials are in fact what management says they are. The following discussion will attempt to provide some guidance to D ampersand D managers to help them avoid many of the common pitfalls associated with the ultimate disposal of the materials generated during these projects

  17. Guide to radioactive waste management literature

    International Nuclear Information System (INIS)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals

  18. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  19. Healthcare waste management in Asia

    International Nuclear Information System (INIS)

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  20. Healthcare waste management in Asia.

    Science.gov (United States)

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  1. The management of radioactive wastes; La gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  2. GREEN MARKETING ROLE IN WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Corina Anamaria IOAN

    2014-12-01

    Full Text Available This study have exploratory character, aiming to conduct an analysis of the terminology used in the ecomarketing, and the way to approach green- marketing and waste collection activities in Romania. Aside from ecological waste management process and we consider the economic component of sustainable development, supported component of the legal aspects related to the subject. In other words, in this paper we intend to analyze in terms of terminology, legal and environmental policies but the most important aspects of waste management in companies in Romania. The importance of the study is on both the analysis corroborated information relating to waste collection in Romania, and the SWOT analysis performed on the present situation in Romania.

  3. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  4. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  5. The International Conference on Radioactive Waste Management

    International Nuclear Information System (INIS)

    1983-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's wastes management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical documents and reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases. The Agency

  6. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  7. Innovative waste management solutions: An outlook for the future

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    At a conference on various aspects of waste management, papers were presented on the effects of landfills, plastic debris in the marine environment, skills development and training in the waste industry, composting, remediation of contaminated soils, disposal methods, sludge derived byproducts, recycling, waste management economics, municipal solid waste management, ship-generated waste, managing waste in national parks, and septic tank sludge treatment. Separate abstracts have been prepared for five papers from this conference.

  8. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  9. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  10. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  11. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  12. Issues and trends in radioactive waste management in Turkey

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.

    2002-01-01

    This paper focuses on issues associated with the waste management aspects of Turkey. Predisposal management of radioactive wastes covers a broad range of activities. This also includes waste identification, characterization and conditioning. Experience gained over years shows that current predisposal waste management practices are well advanced. The paper concludes these activities based on experience gained by CWPSF (CNAEM Waste Processing and Storage Facility) and includes issues and trends in radioactive waste management. In addition general information is presented on ongoing national projects and IAEA research projects on various issues of waste management. (author)

  13. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  14. Flexible and robust strategies for waste management in Sweden

    International Nuclear Information System (INIS)

    Finnveden, Goeran; Bjoerklund, Anna; Reich, Marcus Carlsson; Eriksson, Ola; Soerbom, Adrienne

    2007-01-01

    Treatment of solid waste continues to be on the political agenda. Waste disposal issues are often viewed from an environmental perspective, but economic and social aspects also need to be considered when deciding on waste strategies and policy instruments. The aim of this paper is to suggest flexible and robust strategies for waste management in Sweden, and to discuss different policy instruments. Emphasis is on environmental aspects, but social and economic aspects are also considered. The results show that most waste treatment methods have a role to play in a robust and flexible integrated waste management system, and that the waste hierarchy is valid as a rule of thumb from an environmental perspective. A review of social aspects shows that there is a general willingness among people to source separate wastes. A package of policy instruments can include landfill tax, an incineration tax which is differentiated with respect to the content of fossil fuels and a weight based incineration tax, as well as support to the use of biogas and recycled materials

  15. Extended storage for radioactive wastes: relevant aspects related to the safety

    International Nuclear Information System (INIS)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F.

    2013-01-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man

  16. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  17. LLNL radioactive waste management plan as per DOE Order 5820.2

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis)

  18. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  19. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  20. Waste management for JAERI fusion reactors

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-01-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (∼4000 t)

  1. Waste management and environmental compliance aspects of a major remedial action program

    International Nuclear Information System (INIS)

    Devgun, J.S.; Beskid, N.J.

    1991-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) is one of four major programs undertaken by the US Department of Energy (DOE) to remediate various sites where radiological contamination remained from programs conducted during the nation's early years of research and development in atomic energy. The remedial actions at the 33 sites that are currently in FUSRAP could generate an estimated total volume of about 1.6 million cubic meters of radioactive waste. Waste disposal is currently estimated to represent about one-third of the total estimated $2.1 billion cost for the entire program over its total duration. Waste management aspects within the program are diverse. The sites range in size from small areas used only for storage operations to large-scale decommissioned industrial facilities where uranium processing and other operations were carried out in the past. Currently, four sites are on the National Priorities List for remediation. Remedial actions at FUSRAP sites have to satisfy the requirements of both the National Environmental Policy Act and the Comprehensive Environmental Response, Compensation and Liability Act, as amended. In addition, a number of federal, state, and local laws as well as Executive Orders and DOE Orders may be applicable or relevant to each site. Several key issues currently face the program, including the mixed waste issue, both from the environmental compliance (with Resource Conservation and Recovery Act) and the disposal technology perspectives. 7 refs., 1 tab

  2. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  3. Implementation of the Environmental Management System in Radioactive Waste Management

    International Nuclear Information System (INIS)

    Fabjan, M.; Kralj, M.; Rojc, J.

    2008-01-01

    Agency for Radwaste Management (ARAO) is a public institution assigned to provide effective, safe and responsible management of all kinds of radioactive waste in Slovenia from the moment they arise to their final disposal. Therefore it holds an important role in environmental protection. Its main assignment is to provide conditions for permanent disposal of radioactive waste. It is also authorised to perform public service of radioactive waste management from small producers that includes: collection of the waste from small producers at the producers' premises, transportation to the storage facility, treatment, conditioning storage of RW from small producers; acceptance of radioactive waste in case of emergency situation (e.g. transport accidents); acceptance of radioactive waste in case of unknown producer; operation and management of Central Interim Storage of Radioactive Waste. The quality of ARAO performance in carrying out its mission is assured by implementing the environmental management system according to the standard ISO 14001:2004. Its effectiveness was confirmed by certification in October 2007. The ISO 14001:2004 certificate represents a permanent commitment of ARAO to implement and improve the environmental management system and to include environmental aspects in all its activities, especially in performing the public service. We developed own evaluation criteria for determination of relevant environmental impacts and aspects. ARAO has defined its environmental policy and objectives, it evaluates its environmental impacts yearly, and defines its environmental programmes that not only fulfil legal requirements but tend even to reduce the impacts below legally set levels. A very important environmental programme in the last few years was the reconstruction of the storage facility. Public information and communication programmes are considered to be important also from the environmental management point of view, because public shows great interest in

  4. Indexed bibliography on tritium: its sources and projections, behavior, measurement and monitoring techniques, health physics aspects, and waste management

    International Nuclear Information System (INIS)

    Dixon, M.N.; Holoway, C.F.; Houser, B.L.; Jacobs, D.G.

    1975-08-01

    References are presented to the world literature on sources of tritium in the environment, the migration of tritium in the environment and uptake by biological materials, monitoring methods, health aspects, and radioactive waste management. Subject, author, and permuted title indexes are included. (U.S.)

  5. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Antonioli, S.; Manet, M.

    1985-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled France to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsibilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  6. Radioactive waste management in France

    International Nuclear Information System (INIS)

    Lefevre, J.; Brignon, P.

    1986-01-01

    The experience acquired over forty years through an extensive nuclear power program has enabled FRANCE to develop a corresponding comprehensive waste management policy, covering rules and regulations, health and safety aspects for both the short and the long term, technologies from the design of installations to their decommissioning, and the conditioning, transport and disposal of the entailed wastes. The various partners, their role and responsabilities, specially those involved in industrial activities, are briefly introduced. The principles and objectives of French waste management policy, the techniques adopted and the long term disposal program are then presented [fr

  7. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  8. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  9. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  10. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.

    1978-05-01

    A special, seven member, interdisciplinary task group of consultants was established in January 1976 to propose goals for the national waste management program. This is the report of that group. The proposed goals are intended as a basis for the NRC to establish a policy by which to guide and coordinate the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations and analysis by the authors who examined selected primary literature and interviewed many individuals concerned with waste management. The authors extended the scope of their inquiry and proposed goals to cover 'all technical and societal aspects necessary to an operating waste management system, rather than dealing with the regulatory process alone.' The waste management goals as developed are simple statements of principles which appear to the authors to be important conditions to insure the proper establishment and operation of a system to manage radioactive wastes.' In brief, the goals are designed to protect people and things of value in an equitable manner

  11. Affecting Factors on Local Waste Management in Penyangkringan Village, Weleri: an Identification

    Science.gov (United States)

    Puspita Adriyanti, Nadia; Candra Dewi, Ova; Gamal, Ahmad; Joko Romadhon, Mohammad; Raditya

    2018-03-01

    Villages in Indonesia usually does not have proper waste management and it is affecting the environmental and social condition in those places. Local governments have been trying to implement many kinds of solid waste management systems and yet many of them does not bear fruit. We argue that the failure of the waste management implementation in Indonesian villages is due to several aspects: the geographic condition of the villages, the social conditions, and the availability of facilities and infrastructures in those villages. Waste management should be modeled in accordance to those three aspects.

  12. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  13. Order of magnitude cost appraisal for selected aspects of clad waste management

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-02-01

    A simple formula, incorporating the fixed charge rate principle, is applied to a clad waste management exercise involving densification, canning, transportation and salt disposal. For the purpose of comparison with the bulk of published nuclear waste management costs, cost and fixed charge rate data appropriate to roughly the period 1970 to 1973 are used. Within the context of this order of magnitude appraisal, densification displays some cost advantage, reflected principally in the transportation cost. Dependent on the degree of densification, above a certain clad waste generation rate the transportation savings may be expected to exceed reasonable densification costs. There is no explicit consideration of the decontamination step in this appraisal. The limited accessibility of surface effect decontamination to internal transuranic and activation product contamination suggests a quite small influence of decontamination on the transportation and disposal costs. Decontamination may, however, have a significant effect on the ease of establishing a practicable containment envelope of high reliability throughout the clad waste history. A brief comparison is made of clad waste management costs with the major costs of the nuclear power economy. This comparison implies a virtually unlimited technical latitude for clad waste treatment in accommodating the public safety without significant perturbation of nuclear power costs. It is submitted that clad waste management optimization will be under the primal constraint of maximizing thelong term public safety, with economic analysis useful only as a discriminator between waste handling alternatives of sensibly equivalent containment qualities. Some areas of clad waste treatment meriting increased attention are noted

  14. Waste management capabilities for alpha bearing wastes at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Keenan, T.K.

    1977-01-01

    Waste Management activities at the Los Alamos Scientific Laboratory (LASL) involve a broad range of effort. There are requirements for daily processing of both liquid and solid radioactive and chemical wastes using a variety of technical operations. Approximately 4.5 x 10 7 l/y of liquids and 9 x 10 3 m 3 /y of solids are processed by the Waste Management Group of the LASL. In addition, a vigorous program of research, development, and demonstration studies leading to improved methods of waste treatment is also carried out within the same group. The current developmental studies involve incineration of transuranic-contaminated combustible wastes as well as other waste management aspects of alpha emitting transuranic (TRU) isotopes

  15. Waste management capabilities for alpha bearing wastes at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Keenan, T.K.

    1978-01-01

    Waste Management activities at the Los Alamos Scientific Laboratory (LASL) involve a broad range of effort. There are requirements for daily processing of both liquid and solid radioactive and chemical wastes using a variety of technical operations. Approximately 4.5 x 10 7 l/yr of liquids and 9x10 3 m 3 /yr of solids are processed by the Waste Management Group of the LASL. In addition, a vigorous program of research, development, and demonstration studies leading to improved methods of waste treatment is also carried out within the same group. The current developmental studies involve incineration of transuranic-contaminated combustible wastes as well as other waste management aspects of alpha emitting transuranic (TRU) isotopes

  16. The Research Results of Radioactive Waste Management Technology Center Year 1997/1998

    International Nuclear Information System (INIS)

    1998-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1997/1998 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 26 papers indexed individually (ID)

  17. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  18. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  19. Environmental development plan. LWR commercial waste management

    International Nuclear Information System (INIS)

    1980-08-01

    This Environmental Development Plan (EDP) identifies the planning and managerial requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Commercial Waste Management Program (CWM). Environment is defined in its broadest sense to include environmental, health (occupational and public), safety, socioeconomic, legal and institutional aspects. This plan addresses certain present and potential Federal responsibilities for the storage, treatment, transfer and disposal of radioactive waste materials produced by the nuclear power industry. The handling and disposal of LWR spent fuel and processed high-level waste (in the event reprocessing occurs) are included in this plan. Defense waste management activities, which are addressed in detail in a separate EDP, are considered only to the extent that such activities are common to the commercial waste management program. This EDP addresses three principal elements associated with the disposal of radioactive waste materials from the commercial nuclear power industry, namely Terminal Isolation Research and Development, Spent Fuel Storage and Waste Treatment Technology. The major specific concerns and requirements addressed are assurance that (1) radioactivity will be contained during waste transport, interim storage or while the waste is considered as retrievable from a repository facility, (2) the interim storage facilities will adequately isolate the radioactive material from the biosphere, (3) the terminal isolation facility will isolate the wastes from the biosphere over a time period allowing the radioactivity to decay to innocuous levels, (4) the terminal isolation mode for the waste will abbreviate the need for surveillance and institutional control by future generations, and (5) the public will accept the basic waste management strategy and geographical sites when needed

  20. The Research Results of Radioactive Waste Management Technology Center Year 1996/1997

    International Nuclear Information System (INIS)

    Budiman, P.; Martono, H.; Las, T.; Lubis, E.; Mulyanto; Wisnubroto, D. S.; Sucipta

    1997-12-01

    The research results of Radioactive Waste Management Technology Center, National Atomic Energy Agency of Indonesia year 1996/1997 contain paper as form of research results on radioactive waste management related fields. There were included many aspects such as radioactive waste processing, storage, decontamination, decommissioning, safety and environmental aspects. There are 24 papers and 12 short communications indexed individually(ID)

  1. Waste management research abstracts vols. 23/24. Information on radioactive waste management research in progress or planned

    International Nuclear Information System (INIS)

    1999-01-01

    The research abstracts contained in this issue have been collected during recent months and cover the period between March 1994 - June 1998. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. This issue contains 678 abstracts that present ongoing work in 33 countries and an international organization

  2. Waste management research abstracts vols. 23/24. Information on radioactive waste management research in progress or planned

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The research abstracts contained in this issue have been collected during recent months and cover the period between March 1994 - June 1998. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. This issue contains 678 abstracts that present ongoing work in 33 countries and an international organization.

  3. New strategic solid waste management in Sicily

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2005-01-01

    The solid waste management is, today, a very critical issue. In spite of all the attempts in order to recovery and to recycle waste, the dump still remains the more followed solution, while only a small part of solid waste is going to be burnt down. But the rubbish dump isn't, actually, an environmentally sustainable solution. In the last years the waste incineration systems with energy recovery are spreading more over the territory, and if on one hand they allow to recover energy, on the other they also generate waste. So the emergency remains and it has to be faced. Today, the waste incineration system with energy recovery seems to be the best solution for this problem. the following article examinates the main strategic aspects of the solid waste management in Sicily after the General Plan of Waste Management application [it

  4. The IAEA's activities in the field of radioactive waste management

    International Nuclear Information System (INIS)

    Semenov, B.A.

    1984-01-01

    The IAEA has been concerned with radioactive waste management since its inception. Its programme in this area was expanded in the mid 1970s as questions related to the management and disposal of radioactive wastes came into focus in conjunction with the further industrial development of nuclear power. The objectives of the Agency's waste management programme are to assist its Member States in the safe and effective management of wastes by organizing the exchange and dissemination of information, providing guidance and technical assistance and supporting research. The current programme addresses all aspects of the industrial use of nuclear power under the aspects (a) technology of handling and treatment of wastes, (b) underground disposal of wastes, (c) environmental aspects of nuclear energy, including sea disposal of radioactive wastes. Systematic reviews have been made and publications issued concerning the technology of handling, treating, conditioning, and storing various categories of wastes, including liquid and gaseous wastes, wastes from nuclear power plants, spent fuel reprocessing and mining and milling of uranium ores, as well as wastes from decommissioning of nuclear facilities. As waste disposal is the current issue of highest interest, an Agency programme was set up in 1977 to develop a set of guidelines on the safe underground disposal of low-, intermediate- and high-level wastes in shallow ground, rock cavities or deep geological repositories. This programme will continue until 1990. Eleven Safety Series and Technical Documents and Reports have been published under this programme so far, which also addresses safety and other criteria for waste disposal. The environmental part of the waste management programme is concerned with the assessment of radiological and non-radiological consequences of discharges from nuclear facilities, including de minimis concepts in waste disposal and environmental models and data for radionuclide releases

  5. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  6. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  7. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  9. Ethical aspects of the disposal of long-lived radioactive waste

    International Nuclear Information System (INIS)

    McCombie, C.

    1997-01-01

    Absolving waste management responsibilities requires consensus within the present, waste-producing society, but also fairness towards future generations. This situation has been discussed at length in the formulation of disposal strategies for long-lived radioactive waste, although some other activities practised today are likely to lead to much more dramatic, permanent changes to our environment. Drawing on recent publications on ethical aspects of waste disposal, this article provides an overview of the topic, highlighting both those principles for which there already is a consensus and those which are still regarded as controversial. (author) 3 figs., 1 tab., refs

  10. A Study on the Evaluation of Industrial Solid Waste Management ...

    African Journals Online (AJOL)

    Industrial solid waste is a serious health concern in Aba, South East Nigeria. This study was undertaken to assess the approaches of some industries toward some aspects of waste management in Aba. Interviews, observation and questionnaires administered to industry executives and waste managers were used to ...

  11. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  12. The radioactive waste management programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, Alvaro R.; Vico, Elena

    2002-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  13. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  14. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  15. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  16. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  17. Use of a Knowledge Management System in Waste Management Projects

    International Nuclear Information System (INIS)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.; Nies, R.A.

    2006-01-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspect will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)

  18. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  19. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  20. Waste management for Shippingport Station Decommissioning Project: Extended summary

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP

  1. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  2. Social and economic aspects of radioactive waste disposal: considerations for institutional management

    International Nuclear Information System (INIS)

    1984-01-01

    Issues addressed in this book include: magnitude, characteristics, and trends of public concerns over radioactive waste; the issue of public trust and confidence in the institutions responsible for radioactive waste management; effects of the number and location of waste repositories on socioeconomic and institutional burdens associated with nuclear waste management; effects associated with interim storage facilities located at reactors or away from reactors; kinds and relative magnitudes of effects associated with the use of alternative forms of transportation (rail, truck, barge); participation by local citizens in identifying, assessing, and proposing ways to ameliorate social and economic siting effects; and potential options for resolving conflict at federal, state, and local levels over repository siting

  3. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  4. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  5. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    International Nuclear Information System (INIS)

    Zaelen, Gunter van; Verheyen, Annick

    2007-01-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) an acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)

  6. Management of radioactive wastes of iodine therapy

    International Nuclear Information System (INIS)

    Silva, Andre R.M.; Santos, Helena C.

    2015-01-01

    The main objective of waste radioactive management is to ensure the protection of man and the preservation of the environment. The regulation that established the basis for the good radioactive waste management was elaborated by the Comissao Nacional de Energia Nuclear (CNEN), in 1985. It is the CNEN-NE-6:05: 'Management radioactive waste in radioactive facilities', which although it an important standard related to radioactive waste management and help largely in the design of a management system in radioactive facilities of radioisotope users, covers the topics in a general way and does not consider individuals aspects of the different plants, as is the case of nuclear medicine units. The main objective of this study is to show the segregation and safe packaging, avoiding unnecessary exposure of professionals involved and public individuals in general

  7. SOME ECONOMIC AND ECOLOGIC ASPECTS OF WASTE MANAGEMENT IN A MIDDLE SIZED TOWN

    Directory of Open Access Journals (Sweden)

    Florin Dumescu

    2013-09-01

    Full Text Available Regulations of the European Union establish for local authorities obligations concerning waste management inside their area of competence. Carrying out these obligations need to connect result in economic and municipal fields to those in environment protection. After a short presentation of these obligations the paper contains a study of waste management in Lipova, a middle sized town in Arad County, Romania. The study is focused mainly on the waste dump of the town, which is planned to be shut down during the following years. This makes necessary to carry out preparing concerning waste management in the new conditions and also to assure environment protection on the actual emplacement after shutting down the existing dump.

  8. Aspects of nuclear waste management after a 4-year Nordic programme

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-01-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (author)

  9. The Radioactive Waste Management Programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  10. Safety aspects in fuel reprocessing and radioactive waste management

    International Nuclear Information System (INIS)

    Agarwal, K.

    2018-01-01

    Nuclear energy is used for generation of electricity and for production of a wide range of radionuclides for use in research and development, healthcare and industry. Nuclear industry uses nuclear fission as source of energy so a large amount of energy is available from very small amount of fuel. As India has adopted c losed fuel cycle , spent nuclear fuel from nuclear reactor is considered as a material of resource and reprocessed to recovery valuable fuel elements. Main incentive of reprocessing is to use the uranium resources effectively by recovering/recycling Pu and U present in the spent fuel. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Program is the attention paid from the very beginning to the safe management of radioactive waste

  11. The institutional aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Hubert, E.H.

    1988-01-01

    Public opinion is particularly concerned by radioactive wastes due to the special scientific, technical, economic, administrative and legal characteristics of their management. The authors have therefore concentrated on describing the regulatory procedures for their storage and disposal, the distribution of tasks and associated institutional controls, as well as the problems raised by financing and third party liability. Harmonization of these different fields is of interest, in particular for installations close to borders, international installations and extraterritorial sites, but also to convince the public of the credibility of nuclear safety (NEA) [fr

  12. Strategic solid waste management in cities in Japan

    International Nuclear Information System (INIS)

    Tanaka, M.

    2005-01-01

    SWM (Solid Waste Management) systems have always been compatible with the societal need at every point of time. In 1950's it was oriented towards maintaining public health standards mainly to control infectious diseases. While in 1970's energy generation was considered as the vital aspect of the system. In 1990's reduction in waste generation and recycling were officially incorporated in the waste management regulation. By enacting basic law in 2000 A.D.; the society is poised to become a recycling based society in its drive towards sustainable society. The document explain the actual solid waste strategic management, and related issues, in Japan [it

  13. Radioactive waste management in Brazil: a realistic view

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador; Xavier, Ana Maria

    2014-01-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  14. Radioactive waste management in Brazil: a realistic view

    Energy Technology Data Exchange (ETDEWEB)

    Heilbron Filho, Paulo Fernando Lavalle; Perez Guerrero, Jesus Salvador, E-mail: paulo@cnen.gov.br, E-mail: jperez@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Xavier, Ana Maria, E-mail: axavier@cnen.gov.br [Comissao Nacional de Energia Nuclear (ESPOA/CNEN-RS), Porto Alegre, RS (Brazil)

    2014-07-01

    The objective of this article is to present a realistic view of the main issues related to the management of radioactive waste in Brazil as well as a comprehensive picture of the regulatory waste management status in the country and internationally. Technical aspects that must be considered to ensure a safe construction of near surface disposal facilities for radioactive waste of low and medium levels of radiation are addressed. Different types of deposits, the basic regulatory issues involving the licensing of these facilities, the development of a financial compensation model for the Brazilian Municipalities where deposits are to be placed, the importance of the participation of the scientific community and society in the process of radioactive waste site selection and disposal, guidance for the application of the basic requirements of safety and radiation protection, the general safety aspects involved and the current actions for the disposal of radioactive waste in Brazil are highlighted. (author)

  15. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  16. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  17. ECONOMIC AND LEGAL ASPECTS OF MANAGEMENT OF WASTES AND SECONDARY MATERIAL RESOURCES (ON THE EXAMPLE OF CONSTRUCTION COMPLEX

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2018-05-01

    Full Text Available Subject: technical and economic processes and aspects of handling wastes and secondary material resources; stages of transition of anthropogenic object of environment to wastes and secondary material resources; technical possibility and economic feasibility of using secondary material resources as a secondary raw material for making products, providing energy, works, services. The problem of economy and rational use of material and power resources is relevant and significant within the limits of maintenance of a strategic course of Russia on innovative sustainable development. In this article, issues of actualization and harmonization of the regulatory and legal base in the field of management of wastes and secondary material resources are considered from the viewpoint of maintenance of minimization of waste formation and maximum use of secondary material resources in an industrial-economic cycle, provision of economic incentives for innovative activity in the given field. The actual multi-plan problem, chosen here as a topic of research, concerns regulations in management of wastes and secondary material resources in construction complex, in which economic, civil-law, ecological, social, industrial and legal relations are closely coordinated and define a subject of the present research. Production and consumption waste is a dangerous anthropogenic object of the environment but at the same time, it is a valuable secondary material resource. The non-use of wastes to be recycled as secondary raw materials for energy generation, production and, as a result, their increasing accumulation in the environment causes irreparable harm to natural objects and human health due to their dangerous properties. Research objectives: scientific and methodological substantiation of legal regulation, economic basis for formation of wastes and secondary material resources management system (on the example of construction complex and building materials industry

  18. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones.

  19. Waste management research abstracts no. 16. Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1985-11-01

    The research abstracts contained in this issue have been collected during recent months ending August 1985. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones

  20. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  1. Management of Municipal Solid Waste in One of the Galapagos Islands

    Directory of Open Access Journals (Sweden)

    Marco Ragazzi

    2014-12-01

    Full Text Available This paper analyses some aspects of the management of municipal solid waste in one of the islands of the Galapagos archipelago. The aim is to point out a few aspects of an interesting experience that could help decision managers faced with the organization of the waste sector in similar realities. The relevance of this case study consists in the presence of a very famous National Park surrounding the inhabited area. The role of tourism in the generation of waste is analyzed too.

  2. Policy and practice of radioactive waste management in India

    International Nuclear Information System (INIS)

    Sunder Radzhan, N.S.

    1986-01-01

    The Indian program on radioactive waste management comprising two main variants: engineering subsurface repositories for low- and intermediate-level wastes and deep geological formations for alpha-bearing and high-level wastes (HLW) is presented. One of the problems deals with the matrices with improved properties for HLW inclusion. The other aspect concerns development of management with alpha-emitting radionuclides in HLW. Special attention is paid to the problems of safety

  3. The role of citizenship education and participation in waste management

    OpenAIRE

    ALIPOUR, Shadi; RAHMATI, Fatem Sadat; RAHMATI, Fatem Sadat; AKBARBEYKI, Mina

    2015-01-01

    Abstract. With growing urban population and thus production of more waste, the attention of urban managers to   the issue of waste materials has significantly increased during the last decades. The harmful effects of waste in our country have been taken into consideration from different aspects by the authorities. However, consideration of the social problems resulting from the production of waste and development of these issues for improving waste management has been neglected. The present p...

  4. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  5. Environmental Regulation of Offshore (E&P Waste Management in Nigeria: How Effective?

    Directory of Open Access Journals (Sweden)

    Anwuli Irene Ofuani

    2011-09-01

    Full Text Available The advancement of technology has led to the rapid development of the offshore oil and gas industry and a corresponding increase in the amount of wastes generated from the industry. These wastes must be properly managed so as to curtail their potential to negatively affect human health and the environment. As a result, environmental regulation of offshore oil and gas operations is becoming more stringent worldwide. The Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN were issued to ensure that oil and gas industry operators do not degrade the environment in the course of their operations in Nigeria. Nonetheless, more attention has been focused on the economic aspects of offshore oil and gas industry rather than environmental aspects such as waste management. This article examines the legal aspects of offshore oil and gas waste management in Nigeria. It assesses the effectiveness of the mechanisms for the management of offshore E&P wastes in Nigeria as provided under EGASPIN in relation to other jurisdictions.

  6. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  7. Methodology for the cost evaluation of radioactive waste management routes

    International Nuclear Information System (INIS)

    Kowa, S.; Stenersen, F.; Shamsi, T.; Thiels, G.M.

    1990-01-01

    One of the significant aspects of radioactive waste management is cost. To determine plant costs for radioactive waste management routes, a method was developed by the Joint Venture Kraftanlagen Heidelberg (FRG) and Task R ampersand S (Italy) to perform a realistic, economic cost assessment of different waste management schemes. This assessment procedure was first developed for System Studies concerning the Management and Storage of radioactive waste in the frame of the 2nd R ampersand D program of the Commission of the European Communities (CEC) and is presently being applied in the 3rd R ampersand D program to assess the costs of different management schemes for LWR Waste and Zircaloy hulls. 9 refs., 4 figs., 3 tabs

  8. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    This report is part of a systematic IAEA effort to improve waste management practices at WWER plants and to make them consistent with the current requirements and standards for safe and reliable operation of nuclear power plants. The report reviews the wet and dry solid waste management practices at the various types of WWER nuclear power plants (NPP) and describes approaches and recent achievements in waste minimization. Waste minimization practices in use at western PWRs are reviewed and compared, and their applicability at WWER plants is evaluated. Radioactive waste volume reduction issues and waste management practices are reflected in many IAEA publications. However, aspects of waste minimization specific to individual WWER nuclear power plant designs and WWER waste management policies are not addressed extensively in those publications. This report covers the important aspects applicable to the improvement of waste management at WWER NPP, including both plant-level and country-level considerations. It is recognized that most WWER plants are already implementing many of these concepts and recommendations with varying degrees of success; others will benefit from the included considerations. The major issues addressed are: - Review of current waste management policies and practices related to WWERs and western PWRs, including the influence of the original design concepts and significant modifications, liquid waste discharge limits and dry solid waste clearance levels applied in individual countries, national policies and laws, and other relevant aspects affecting the nature and quantities of waste arisings; - Identification of strategies and methods for improving the radioactive waste management generated in normal operation and maintenance at WWERs. This report is a composite (combination) of the two separate initiatives mentioned above. The first draft report was prepared at the meeting 26-30 May 1997 by five consultants. The draft was improved during an

  9. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  10. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  11. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  12. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    International Nuclear Information System (INIS)

    Salvetti, T.C.; Marumo, J.T.

    2017-01-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  13. Survey of legal aspects, regulations, standards and guidelines applicable to radioactive waste management of the Brazilian Multipurpose Reactor - RMB

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, T.C.; Marumo, J.T., E-mail: salvetti@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In Brazil, the Brazilian Nuclear Energy Commission (CNEN) and Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) are the agencies responsible for the execution, regulation and control of nuclear and environmental policies, respectively. Such regulatory activities are very comprehensive (IBAMA) or too specific (CNEN), revealing other aspects that would, also, need to be observed so that the management could be carried out efficiently (quality) and effectively (safety), including the three governmental administrative levels: Federal, State and Municipal. In addition to laws, regulations, decrees and resolutions, there are also national and international standards and guides that provide guidelines for structuring the current management and the use of best regulatory practices. The Brazilian Multipurpose Reactor Enterprise (RMB) is a CNEN project, complying with a Multi-Year Plan of the Brazilian Ministry of Planning, Development and Management (MPDG). The Enterprise is being developed under the responsibility of the Directorate of Research and Development - DPD of CNEN and will have a facility for treatment and initial temporary storage of the radioactive waste generated by the operation of the research reactor and the activities carried out in the associated laboratories. The RMB will be built in the city of IPERÓ, located in the state of São Paulo, near ARAMAR Experimental Center of the Brazilian Navy. This work aims to present the research results regarding the various aspects that regulate, legislate and standardize the practices proposed to the Radioactive Waste Management of the RMB project. (author)

  14. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  15. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  16. Medical wastes management in the south of Brazil

    International Nuclear Information System (INIS)

    Silva, C.E. da; Hoppe, A.E.; Ravanello, M.M.; Mello, N.

    2005-01-01

    In developing countries, solid wastes have not received sufficient attention. In many countries, hazardous and medical wastes are still handled and disposed together with domestic wastes, thus creating a great health risk to municipal workers, the public and the environment. Medical waste management has been evaluated at the Vacacai river basin in the State of Rio Grande do Sul, Brazil. A total of 91 healthcare facilities, including hospitals (21), health centers (48) and clinical laboratories (22) were surveyed to provide information about the management, segregation, generation, storage and disposal of medical wastes. The results about management aspects indicate that practices in most healthcare facilities do not comply with the principles stated in Brazilian legislation. All facilities demonstrated a priority on segregation of infectious-biological wastes. Average generation rates of total and infectious-biological wastes in the hospitals were estimated to be 3.245 and 0.570 kg/bed-day, respectively

  17. Ethical aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Kamp, G.

    2011-01-01

    The appeal to 'ethics' often raised in social disputes about the consequences of technological developments and the demand to orient oneself in 'ethical standards' in the upcoming decisions is often based on an inadequate understanding of the discipline in question. Therefore, in the short term - with regard to the particular case of radioactive waste management - it is necessary to question what ethics is capable of doing and what is not. At the center of the lecture will then be the critical examination of arguments which relied on ethical principles such as the 'principle of responsibility', the 'polluter pays' principle or principles of (transgenerational) justice, in order to dispose first of all as an obligation of the present generation and secondly as to prove national task. Both demands are more likely to be met with skepticism from an ethical point of view. (roessner)

  18. Waste management for the Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station Decommissioning Project (SSDP) is being performed by the US Department of Energy (DOE) with the objectives of placing the station in a radiologically safe condition, demonstrating safe and cost effective dismantlement and providing useful data for future decommissioning projects. This paper describes the development of the Waste Management Plan which is being used for the accomplishment of the SSDP. Significant aspects of the Plan are described, such as the use of a process control and inventory system. The current status of waste management activities is reported. It is concluded that SSDP has some unique aspects which will provide useful information for future decommissioning projects

  19. Activities of the IAEA in the area of radioactive waste management

    International Nuclear Information System (INIS)

    Efremenkov, V.M.

    1998-01-01

    The IAEA activity in the area of radioactive waste management mainly concentrates on three areas, namely: (i) the establishing of international principles and standards for the safe management of radioactive waste; (ii) to promote the development and improvements of waste processing technologies, including handling, treatment, conditioning, packaging, storage and disposal of waste; and (iii) assisting developing Member States in establishing good waste management practice through dissemination of technical information, providing technical support and training. These activities are carried out by the Waste Technology Section, Department of Nuclear Energy, and the Waste Safety Section, Department of Nuclear Safety. The Waste Technology Section's activities are organized into four subprogrammes covering: the handling, processing and storage of radioactive waste; radioactive waste disposal; technology and management aspects of decontamination, decommissioning and environmental restoration; and waste management information and support services

  20. Radiological aspects of postfission waste management for light-water reactor fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Shipler, D B; Nelson, I C [Battelle Pacific Northwest Laboratories, Richland, WA (United States)

    1978-12-01

    A generic environmental impact statement on the management of radioactive postfission wastes from various light-water reactor fuel cycles in the United States has been prepared. The environmental analysis for post-fission waste management includes an examination of radiological impacts related to different waste treatment, storage, transportation, and disposal options at the process level. Effects addressed include effluents from plants, and radiological impacts from facility operation (routine and accidents), and decommissioning. Environmental effects are combined for fuel reprocessing plants, mixed-oxide fuel fabrication plants, and waste repositories. Radiological effects are also aggregated for several fuel cycle options over the period 1980 and 2050. Fuel cycles analyzed are (1) once-through cycle in which spent reactor fuel is cooled in water basins for at least 6-1/2 years and then disposed of in deep geologic repositories; (2) spent fuel reprocessing in which uranium only and uranium and plutonium is recycled and solidified high level waste, fuel residues, and non-high-level transuranic wastes are disposed of in deep geologic repositories; and (3) deferred cycle that calls for storage of spent fuel at Federal spent fuel storage facilities until the year 2000 at which time a decision is made whether to dispose of spent fuel as a waste or to reprocess the fuel to recover uranium and plutonium. Key environmental issues for decision-making related to waste management alternatives and fuel cycle options are highlighted. (author)

  1. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  2. Re-thinking incentives and penalties: Economic aspects of waste management in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Cossu, R. [IMAGE, Department of Hydraulic, Maritime, Environmental and Geotechnical Engineering, University of Padua, Via Loredan, 35131 Padua (Italy); Masi, S., E-mail: salvatore.masi@unibas.it [DIFA, Department of Environmental Engineering and Physics, University of Basilicata, Via dell’Ateneo 10, 85100 Potenza (Italy)

    2013-11-15

    Highlights: • We focused on the dynamics the formation of operational costs of waste management. • We provide the basic elements to compose a picture of economic management. • We present a reflection on the last hidden costs associated with the consumption of goods and packaging. • Reduction of waste production. - Abstract: This paper focuses on the dynamics the formation of operational costs of waste management in Italy and the effect of economic measures. Currently incentives and penalties have been internalized by the system no differently from other cost items and revenues. This has greatly influenced the system directing it towards solutions that are often distant from the real environmental objectives. Based on an analysis of disaggregated costs of collection treatment and recovery, we provide the basic elements to compose a picture of economic management in various technical–organizational scenarios. In the light of the considerations contained in the paper it is proposed, e.g. for controlled landfills, that the ecotax, currently based on weight, could be replaced by one based on the volume consumption. Likewise, for tax reduction on disposal system, instead a pre-treatment might ask an environmental balance of the overall system. The article presents a reflection on the last hidden costs associated with the consumption of goods and packaging, and how to reduce waste production is the necessary path to be followed in ecological and economic perspectives.

  3. Re-thinking incentives and penalties: Economic aspects of waste management in Italy

    International Nuclear Information System (INIS)

    Cossu, R.; Masi, S.

    2013-01-01

    Highlights: • We focused on the dynamics the formation of operational costs of waste management. • We provide the basic elements to compose a picture of economic management. • We present a reflection on the last hidden costs associated with the consumption of goods and packaging. • Reduction of waste production. - Abstract: This paper focuses on the dynamics the formation of operational costs of waste management in Italy and the effect of economic measures. Currently incentives and penalties have been internalized by the system no differently from other cost items and revenues. This has greatly influenced the system directing it towards solutions that are often distant from the real environmental objectives. Based on an analysis of disaggregated costs of collection treatment and recovery, we provide the basic elements to compose a picture of economic management in various technical–organizational scenarios. In the light of the considerations contained in the paper it is proposed, e.g. for controlled landfills, that the ecotax, currently based on weight, could be replaced by one based on the volume consumption. Likewise, for tax reduction on disposal system, instead a pre-treatment might ask an environmental balance of the overall system. The article presents a reflection on the last hidden costs associated with the consumption of goods and packaging, and how to reduce waste production is the necessary path to be followed in ecological and economic perspectives

  4. OCRWM [Office of Civilian Radioactive Waste Management] System Engineering Management Plant (SEMP)

    International Nuclear Information System (INIS)

    1990-02-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM (1) to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, (2) to develop the waste-management system, can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  5. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  6. DOE Asset Revitalization: Sustainability and Waste Management Aspects - 12120

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    In February 2011 Secretary of Energy Steven Chu established a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy (DOE), communities around DOE sites, non-profits, tribal governments, the private sector, and other stakeholders to identify reuse approaches as environmental cleanup efforts at DOE sites reach completion. The Task Force was charged with exploring opportunities to reuse DOE site assets for beneficial purposes and making recommendations to the Under Secretaries of Energy, Science, and Nuclear Security on the formation of an Asset Revitalization Initiative (ARI). The ARI is a Department-wide effort to advance the beneficial reuse of the DOE's unique and diverse mix of assets including land, facilities, infrastructure, equipment, technologies, natural resources, and a highly skilled workforce. The ARI will encourage collaboration between the public and private sectors in order to achieve energy and environmental goals as well as to stimulate and diversify regional economies. The recommendations of the ARI Task Force are summarized below, focusing on the sustainability and waste management aspects. DOE's ongoing completion of cleanup efforts and modernization efforts is creating opportunities to transition under-used or excess assets to future beneficial use. The FY 2011 DOE ARI Task Force determined that DOE's assets could be reused for beneficial purposes such as clean energy production, industrial manufacturing, recreational and conversation use, and other economic development initiatives. Asset revitalization has the potential to both help achieve DOE's energy and environmental goals and diversify regional economies where the sites are located, including providing the support needed to implement large-scale projects that achieve green sustainability goals. Asset revitalization efforts could be accelerated by effectively incorporating future use plans into environmental management and

  7. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  8. Ethical aspects in connection with the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Boetsch, W.

    2003-01-01

    The progress of modern natural and technological science and their far-reaching consequences affecting the distant future require increasingly practice-oriented ethical concepts. In the discussions about responseable acting, the question of the ethical tenability of nuclear energy nowadays takes a special position. Above all the problem of the disposal of radioactive wastes - the effects of which on the distant future have to be prognosticated - is controversially discussed in society. The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) commissioned Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS) in the context of the project ''Disposal of radioactive wastes in the context of ethical objectives'' to summarise the current national and international status of ethical aspects in connection with the disposal of radioactive wastes. One aim of this report is to derive criteria to form the basis of a comprehensive discussion of the ethical aspects of the disposal of radioactive wastes. These criteria are to describe, as far as possible, all content-related aspects that result from radioactive waste disposal. The issues in this report resulting from the opinions, comments and publications presented are to serve as a basis for an experts' meeting at which the important ethical criteria concerning the responsible management of radioactive waste disposal are to be discussed at an interdisciplinary level with all those involved. The results of this report are based on an investigation which gathered the available national and international statements, principles, and criteria relating to the ethical aspects of the disposal of radioactive wastes and to sustainable development in the context of the technological impact assessment up to beginning of 2000. In the meantime, the debate in Germany has become somewhat more pragmatic, i. a. due to the work of the research group ''Arbeitskreis Auswahlverfahren Endlagerstandorte (AkEnd)'' and

  9. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  10. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  11. Radioactive waste management in an Australian state - IAEA style

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.

    1999-01-01

    The IAEA have produced a series of publications within the RADWASS programme. These publications are comprehensive in their coverage and are applicable to all aspects of radioactive waste management - from the individual user level to State and National level. Adherence to the principles contained in these publications is advocated in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The publications provide a useful check list against which to determine the current status of radioactive management, at various levels (individual level, State, National) and also provide a basis for planning future waste management requirements. In Tasmania, these publications have been utilised to assess the current radioactive waste management system and to determine future management requirements, particularly for storage of radioactive waste. This paper illustrates the application of the publications for auditing individual users' waste management status and for determining future State storage requirements for radioactive waste. A brief outline of the process used and the main issues identified as a result, will be presented. These issues include some requiring a National approach for their resolution. Copyright (1999) Australasian Radiation Protection Society Inc

  12. Developments in the management of radioactive waste from the mining and milling of radioactive ores

    International Nuclear Information System (INIS)

    Crawley, H.

    1990-01-01

    The philosophy of a waste management system is discussed. The origins of the various wastes from the mining and milling processes are outlined and the development of a waste management program described. The technical aspects of a waste management plan, namely water management systems, waste rock and ore stockpile management, tailings impoundment and decommissioning and rehabilitation are discussed in detail. 12 refs., 4 tabs, 15 figs

  13. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    Bond, W.D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  14. Marketing aspects of development of medical waste management in health care institutions in Ukraine

    Directory of Open Access Journals (Sweden)

    Inesa Gurinа

    2015-02-01

    Full Text Available The concept of marketing approach to medical waste management in health care is suggested.The goal of research was to study the state of marketing activities of health care institutions on medical waste management and development trends of   resolution of outstanding issues.Methods. The methods, which were used in the research, are the methods of mathematical statistics, social studies and scientific knowledge.Results. Environmental marketing institutions of healthcare means perfectly safe for the environment provision of health services. The main directions of environmental marketing concept in health care institutions is the acceptance generally binding legal standards of Use Resources, strict control the formation and licensing of medical waste; economic incentives for workers, aimed at minimizing their interest in the volumes of medical waste; financing of R & D relative to the development of new waste and sound technologies; develop a system of taxes and penalties for polluting the environment and so on.Conclusions. As a result of the implementation of marketing strategies for managing medical waste of healthcare institutions are obtained strategic, social, environmental and economic benefits.

  15. INFORMATION FLOW IN SUPPLY CHAIN MANAGEMENT WITH AN EXAMPLE OF WASTE MANAGEMENT COMPANY

    OpenAIRE

    Joanna Nowakowska-Grunt; Janusz Grabara

    2007-01-01

    The paper presents information flow process in management of supply chains. Authors notices information flows as a driving element of the global supply chain. Authors points also on the logistics aspects in supply chain of waste management company

  16. Transforming Argonne's waste management organization - the road to energy quality

    International Nuclear Information System (INIS)

    Torres, T.A.; Sodaro, M.A.; Thuot, J.R.

    1996-01-01

    Argonne National Laboratory's (ANL's) Waste Management Department began its journey to excellence in 1990. The department was organized to provide for waste cleanup, waste handling, decontamination, and other services. The staff was principally workers and foremen with few professional staff. The department has transitioned into a highly effective organization that has competed for the President's Energy Quality Award. The department is currently staffed by 58 people, including professional staff and waste mechanics. The department began by recognizing and addressing the problems that existed: There was no formal waste safety program or waste reduction culture. Formal procedures did not cover all aspects of waste operations, waste handling procedures and acceptance criteria were out of date, and the Waste Management Department did not have a customer-centered culture. The department began a step by step program to improve the waste management organization

  17. Proceedings of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste

    International Nuclear Information System (INIS)

    Zafiropoulos, Demetre; Dilday, Daniel; Siemann, Michael; Ciambrella, Massimo; Lazo, Edward; Sartori, Enrico; ); Dionisi, Mario; Long, Juliet; Nicholson, David; Chambers, Douglas; Garcia Alves, Joao Henrique; McMahon, Ciara; Bruno, Gerard; Fan, Zhiwen; ); Ripani, Marco; Nielsen, Mette; Solente, Nicolas; Templeton, John; Paratore, Angelo; Feinhals, Joerg; Pandolfi, Dana; Sarchiapone, Lucia; Picentino, Bruno; Simms, Helen; Beer, Hans-Frieder; Deryabin, Sergey; Ulrici, Luisa; Bergamaschi, Carlo; Nottestad, Stacy; Anagnostakis, Marios

    2017-05-01

    All NEA member countries, whether or not they have nuclear power plants, are faced with appropriately managing non-nuclear radioactive waste produced through industrial, research and medical activities. Sources of such waste can include national laboratory and university research activities, used and lost industrial gauges and radiography sources, hospital nuclear medicine activities and in some circumstances, naturally occurring radioactive material (NORM) activities. Although many of these wastes are not long-lived, the shear variety of sources makes it difficult to generically assess their physical (e.g. volume, chemical form, mixed waste) or radiological (e.g. activity, half-life, concentration) characteristics. Additionally, the source-specific nature of these wastes poses questions and challenges to their regulatory and practical management at a national level. This had generated interest from both the radiological protection and radioactive waste management communities, and prompted the Committee on Radiological Protection and Public Health (CRPPH) to organise, in collaboration with the Radioactive Waste Management Committee (RWMC), a workshop tackling some of the key issues of this challenging topic. The key objectives of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste were to address the particularities of managing non-nuclear waste in all its sources and forms and to share and exchange national experiences. Presentations and discussions addressed both technical aspects and national frameworks. Technical aspects included: - the range of non-nuclear waste sources, activities, volumes and other relevant characteristics; - waste storage and repository capacities and life cycles; - safety considerations for mixed wastes management; - human resources and knowledge management; - legal, regulatory and financial assurance, and liability issues. Taking into account the entire non-nuclear waste life-cycle, the workshop covered planning and

  18. Solid waste management in the hospitality industry: a review.

    Science.gov (United States)

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  20. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  1. Radioactive waste management and the need for a nuclear law in France

    International Nuclear Information System (INIS)

    Colson, Jean Philippe; Schapira, Jean Paul

    1995-01-01

    France appears today as a country who has no general nuclear law, despite its strong involvement in nuclear energy production. Recently, the search for a deep underground disposal site for radioactive wastes has led to strong local oppositions, and therefore a law was passed in Parliament by the end of 1991. This paper reviews the general aspects of radioactive waste management and proposes a nuclear law as the best way to take into account the various questions raised by long term management implied by final waste disposal. The first part describes the technical issues on short and long term of radioactive waste management ant its socio-ethical aspects. In the second part, we attempt to demonstrate the need of a nuclear law which will include some basic principles both in the field of environment and more specifically of waste management. Special emphasis will be given to long-term constraints such as uncertainty and lack of reversibility of some technical schemes, with regard to sustainable development. (author)

  2. Investigating factors influencing construction waste management efforts in developing countries: an experience from Thailand.

    Science.gov (United States)

    Manowong, Ektewan

    2012-01-01

    Rapid economic growth and urbanization in developing countries lead to extensive construction activities that generate a large amount of waste. A challenge is how to manage construction waste in the most sustainable way. In the developing world, research on construction waste management is scarce and such academic knowledge needs to be responsive to actual practices in the industry in order to be implemented. As construction projects involve a number of participants and stakeholders, their participation and commitment can have a major influence on the goals of green and sustainable construction for urban development. This study provides a significant step in conducting a very first research of this kind in Thailand by aiming to investigate the level of construction stakeholders' commitment as well as the achievement of construction waste management in order to improve short-term practices and to establish a long-term strategic construction waste management plan. In this study, a structural equation model was employed to investigate the influence of factors that are related to environmental aspects, social aspects, and economic aspect of construction waste management. Concern about health and safety was found to be the most significant and dominant influence on the achievement of sustainable construction waste management. Other factors affecting the successful management of construction waste in Thai construction projects were also identified. It is perceived that this study has potential to contribute useful guidelines for practitioners both in Thailand and other developing countries with similar contexts.

  3. Regulatory aspects and activities in the field of radioactive waste management in Bulgaria

    International Nuclear Information System (INIS)

    Kastchiev, G.

    2001-01-01

    Bulgaria uses nuclear power for electricity generation and for a variety of nuclear applications in industry, research and medicine. Six WWER type Nuclear Power Plants (NPPs) went into operation at Kozloduy between 1974 and 1991. Until 1988 spent fuel was transported back to the former Soviet Union, but since then has been stored on site. Operational low level waste is stored on site, but since 1993 a volume reduction strategy using supercompaction has been employed, which has reduced stored waste volumes by a factor of four. Institutional radioactive wastes are disposed at the Novi Han near surface repository, located 35 km from Sofia. It was commissioned in 1964 and is now about half full. Siting studies have begun for a new near surface repository that would accept both institutional and NPP waste. A legislative and regulatory framework, as well as organizational and institutional arrangements, are in place. A national strategy that includes provisions for compiling a national inventory of spent fuel and radioactive waste and provisions for funding spent fuel and radioactive waste management, has been developed. The paper elaborates on the current situation regarding radioactive waste management in Bulgaria. (author)

  4. The comparative analysis of 'Regulations on safety of radioactive waste management' of China and federal law 'On the management of radioactive waste' of Russian

    International Nuclear Information System (INIS)

    Yang Lili; Zhang Qiao'e; Fan Yun; Liu Ting; Gao Siqi

    2012-01-01

    In this article, the 'Regulations on safety of radioactive waste management' of China and Federal Law 'On the management of radioactive waste' of Russian were compared, from three aspects: overall legislative ideas, respective unique place and difference of common parts. Refining summed up should learn the contents of the Federal Law 'On the management of radioactive waste' of Russian, for the learning exchanges. (authors)

  5. Safe Management and disposal of nuclear waste. Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    These proceedings of the international conference Safewaste 93, volume 3 are divided into three poster sessions bearing on: poster session P-1: Radioactive waste management and actinide burning; poster session P-2: Safety aspects of radioactive waste disposal; poster session P-3: Transport and disposal

  6. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste

  7. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  8. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  9. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  10. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  11. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  12. Legal Analysis of the Korea Radioactive Waste Management Act in the aspect of IAEA Principles

    International Nuclear Information System (INIS)

    Lee, D. S.; Chung, W. S.; Yang, M. H.; Yun, S. W.; Lee, J. H.

    2009-01-01

    According to the Principles of Radioactive Waste Management, the IAEA SAFETY SERIES NO-111-F, IAEA declared 9 doctrines. The IAEA advised a country that operates nuclear power plant to adopt the principles. As a member of the IAEA, Korea has also discussed about a unified policy and enacting law for radioactive waste management to follow the doctrines. This study analyzed the recently enacted Korea Radioactive Waste Management Act and verified whether the Act successfully follows the doctrine or not

  13. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  14. Solid Waste Management: Abstracts From the Literature - 1964.

    Science.gov (United States)

    Connolly, John A.; Stainback, Sandra E.

    The Solid Waste Disposal Act of 1965 (Public Law 89-272, Title II) and its amending legislation, the Resource Recovery Act of 1970 (Public Law 91-512, Title I), authorize collection, storage, and retrieval of information relevant to all aspects of solid-waste management. As part of this effort, the U.S. Environmental Protection Agency's…

  15. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  16. Managing nuclear wastes: the international connection

    International Nuclear Information System (INIS)

    Handl, G.

    1981-01-01

    The global health and environmental aspects of nuclear waste management transcend national decision making and must be coordinated with the management policies of other nuclear-power countries. Assuming that reprocessing will continue at limited sites, ocean transport of radioactive materials introduces the need for preventive standards that will eliminate transnational pollution. This requires a level of cooperation beyond local and national management that will have to be initiated by individual countries and then replaced by joint international action

  17. Perspectives on dosimetric uncertainties and radiological assessments of radioactive waste management

    International Nuclear Information System (INIS)

    Smith, G.M.; Pinedo, P.; Cancio, D.

    1997-01-01

    The purpose of this paper is to raise some issues concerning uncertainties in the estimation of doses of ionizing radiation arising from waste management practices and the contribution to those uncertainties arising from dosimetry modelling. The intentions are: (a) to provide perspective on the relative uncertainties in the different aspects of radiological assessments of waste management; (b) to give pointers as to where resources could best be targeted as regards reduction in overall uncertainties; and (c) to provide regulatory insight to decisions on low dose management as related to waste management practices. (author)

  18. Technical aspects regarding the management of radioactive waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Rotarescu, Gh.; Paunica, I.

    2002-01-01

    The proper application of the nuclear techniques and technologies in Romania started in 1957 with the commissioning of the VVR-S Research Reactor at IFIN-HH-Magurele. During the past 40 years, this reactor was used for thousands of nuclear applications with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used radioactive sources in their activity and produced radioactive waste. The Radioactive Waste Treatment Plant (STDR) at IFIN-HH was constructed in collaboration with companies from the United Kingdom and became operational in 1975. It was the only authorized and specialized institution for the management of non-fuel cycle radioactive waste in Romania. Using the concepts existing in the 1980's concerning the final disposal of the low and intermediate level radioactive wastes, and applying internal standards and international recommendations, the National Repository for Low and Intermediate Radioactive Waste (DNDR) was built in 1985 in Baita, Bihor county and placed into operation. Therefore, through the construction and operation of the treatment and final disposal capabilities, Romania has solved the management of the low and intermediate level radioactive waste while providing for the protection of the people and environment. (author)

  19. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  20. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  1. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  2. Risks, regulation responsibilities and costs in nuclear waste management: a preliminary survey in the European Community

    International Nuclear Information System (INIS)

    Orlowski, S.

    1980-01-01

    The use of nuclear energy produces radioactive waste which may present risks of pollution for man and his environment. Their protection must be ensured by technical or institutional controls. The report examines the second, i.e. the administrative, legal and financial measures, dealing with the management of radioactive waste in existence or under consideration within the Member States of the European Community. The following aspects are studied: laws and regulations, authorities concerned, costs and financing of radioactive waste management, civil liability, national policies, international aspects of radioactive waste management

  3. The management and regulation of decommissioning wastes

    International Nuclear Information System (INIS)

    Berkhout, F.

    1990-01-01

    Radioactive waste management is an inevitable consequence of nuclear technology. In the past it was often regarded as a peripheral matter, easily dealt with, and having little impact on the economics of the fuel cycle. Gradually, over the last two decades, waste management has asserted itself as one of nuclear power's most intractable problems. First, it is a problem of trying to understand through science the effects of discharging and disposing of man-made radioactivity to the general environment. Second, technologies for treating and disposing of the wastes, as well as techniques to verify their safety, must be developed. Third, and most problematically, a wide spread of public trust in the techniques of management must be nurtured. Disputes over each of these dimensions of the question exist in nearly all countries with nuclear programmes. Some of them may be near resolution, but many others are far from closure. Decommissioning, because it comes last in the nuclear life-cycle, is also the last important aspect of the technology to be considered seriously. In Britain, wastes arising from decommissioning, whether it is done slowly or quickly, are projected to have an important impact on the scale of radioactive waste management programmes, beginning in the mid-1990s. It follows that decommissioning, contentious in itself, is likely to exacerbate the difficulties of waste management. (author)

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  5. Ethical aspects of long-lived waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.

    1996-01-01

    Independent of the long debate on the use of nuclear power, waste management specialists have a clear, unassailable set of environmental goals aimed at protecting the public and workers from any unjustifiable exposure to radiation. It is recognized that releases to the environment must be minimized, operational doses from waste handling kept low, and storage facilities constructed and operated with very high levels of safety. A philosophy of how to make best use of the available resources is embedded into the established principles of the ICRP, requiring justification of practices, limitation of doses and optimization. The situation is different when we consider the particular case of disposal of long-lived radioactive waste. Properly designed and sited repositories will present only low levels of risk - but these risks are predicted to peak only after many thousands of years. It is obvious, therefore, that this disposal involves the present and immediately following generations investing resources into the protection of far-future individuals. Attention has focused upon this intergeneration issue in recent years, leading to intensified debate on all ethical aspects of waste disposal. In this paper, I will try to provide a short overview of recent relevant work, to indicate the ethical principles agreed upon and to highlight the currently most controversial issues. (author)

  6. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste. Other sites have also benefited from IWTS as it has been deployed at West Valley Nuclear Services Company DOE site as well as Ontario Power Ge

  7. Overcoming mixed waste management obstacles - A company wide approach

    International Nuclear Information System (INIS)

    Buckley, R.N.

    1996-01-01

    The dual regulation of mixed waste by the Nuclear Regulatory Commission and the Environmental Protection Agency has significantly complicated the treatment, storage and disposal of this waste. Because of the limited treatment and disposal options available, facilities generating mixed waste are also being forced to acquire storage permits to meet requirements associated with the Resource Conservation and Recovery Act. Due to the burdens imposed by the regulatory climate, Entergy Operations has undertaken a proactive approach to managing its mixed waste. Their approach is company wide and simplistic in nature. Utilizing the peer groups to develop strategies and a company wide procedure for guidance on mixed waste activities, they have focused on areas where they have the most control and can achieve the greatest benefits from their efforts. A key aspect of the program includes training and employee awareness regarding mixed waste minimization practices. In addition, Entergy Operations is optimizing the implementation of regulatory provisions that facilitate more flexible management practices for mixed waste. This presentation focuses on the team approach to developing mixed waste managements programs and the utilization of innovative thinking and planning to minimize the regulatory burdens. It will also describe management practices and philosophies that have provided more flexibility in implementing a safe and effective company wide mixed waste management program

  8. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  9. International waste management fact book

    International Nuclear Information System (INIS)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs

  10. Low-level waste management program: technical program overview

    International Nuclear Information System (INIS)

    Lowrie, R.S.

    1981-01-01

    The mission of the technical program is to develop the technology component of the Department of Energy's Low-Level Waste Management Program and to manage research and development, demonstration, and documentation of the technical aspects of the program. Some of the major technology objectives are: develop and demonstrate techniques for waste generation reduction; develop and demonstrate waste treatment, handling and packaging techniques; develop and demonstrate the technology for greater confinement; and develop the technology for remedial action at existing sites. In addition there is the technology transfer objective which is to compile and issue a handbook documenting the technology for each of the above technology objectives

  11. 'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.

    Science.gov (United States)

    Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara

    2015-01-01

    This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David C., E-mail: waste@davidcwilson.com [Department of Civil and Environmental Engineering, Imperial College London (United Kingdom); Rodic, Ljiljana [Education and Competence Studies, Wageningen University and Research Centre (Netherlands); Cowing, Michael J. [Independent Consultant (Saint Lucia); Velis, Costas A. [School of Civil Engineering, University of Leeds (United Kingdom); Whiteman, Andrew D. [RWA Group, Sofia (Bulgaria); Scheinberg, Anne [WASTE, Gouda (Netherlands); Vilches, Recaredo; Masterson, Darragh [Department of Civil and Environmental Engineering, Imperial College London (United Kingdom); Stretz, Joachim [Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ), Cairo (Egypt); Oelz, Barbara [GIZ, Eschborn (Germany)

    2015-01-15

    Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators

  13. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities

    International Nuclear Information System (INIS)

    Wilson, David C.; Rodic, Ljiljana; Cowing, Michael J.; Velis, Costas A.; Whiteman, Andrew D.; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara

    2015-01-01

    Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators

  14. Waste management practices in Ontario`s workplaces: An emerging industrial ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Describes a study commissioned to evaluate employee attitudes and behaviours with respect to participation in workplace initiatives in waste diversion/reduction, to examine management initiatives related to waste diversion and reduction/recycling/reuse, and to report on Ontario Ministry of Environment & Energy activities related to industrial, commercial, and institutional (ICI) waste diversion activities. Linkages between management and employees, management and government, and ICI activities and government were also studied. The study methodology included a literature review, a series of interviews with key stakeholders, industry associations, and waste management companies, and a series of 12 case studies spanning major industrial sectors in Ontario. Issues addressed in the study include the factors that trigger waste diversion activities by ICI establishments, barriers to the initiation of waste diversion practices, and the social aspects of waste reduction/recycling/reuse practices.

  15. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Krause, H.

    1984-01-01

    The importance of radioactive wastes from nuclear power plants (NPPs) results primarily from their large amounts. In NPPs more radioactive wastes arise than in all other plants of the nuclear fuel cycle, with the exception of uranium mills. Although the volume is great, NPP wastes are relatively low in activity and radiotoxicity and short in half-life. Several methods for treatment of NPP wastes are available that meet all the relevant requirements and they have attained high technical standards and are highly reliable. Consequently, the discharge of radionuclides with liquid and gaseous effluents and the resulting dose commitment to the general public are far below established limits. The quality of the conditioned wastes conforms to the requirements for ultimate disposal. The final disposal of NPP wastes has already been demonstrated successfully in several places and the feasibility of NPP decommissioning and management of the wastes arising in this process have been proved. The problems associated with the management of radioactive wastes from NPPs have been solved both scientifically and technically; there is no urgent need for improvement. This is why for new developments cost-benefit aspects must be considered, including the dose commitment to the operating staff and general aspects such as public acceptance and socio-ethical questions. Spectacular new developments are not to be expected in the near future. However, by continuous improvement of details and optimization of the whole system useful contributions can still be made to develop nuclear technology further. (author)

  16. The challenge of electronic waste (e-waste) management in developing countries.

    Science.gov (United States)

    Osibanjo, O; Nnorom, I C

    2007-12-01

    Information and telecommunications technology (ICT) and computer Internet networking has penetrated nearly every aspect of modern life, and is positively affecting human life even in the most remote areas of the developing countries. The rapid growth in ICT has led to an improvement in the capacity of computers but simultaneously to a decrease in the products lifetime as a result of which increasingly large quantities of waste electrical and electronic equipment (e-waste) are generated annually. ICT development in most developing countries, particularly in Africa, depends more on secondhand or refurbished EEEs most of which are imported without confirmatory testing for functionality. As a result large quantities of e-waste are presently being managed in these countries. The challenges facing the developing countries in e-waste management include: an absence of infrastructure for appropriate waste management, an absence of legislation dealing specifically with e-waste, an absence of any framework for end-of-life (EoL) product take-back or implementation of extended producer responsibility (EPR). This study examines these issues as they relate to practices in developing countries with emphasis on the prevailing situation in Nigeria. Effective management of e-waste in the developing countries demands the implementation of EPR, the establishment of product reuse through remanufacturing and the introduction of efficient recycling facilities. The implementation of a global system for the standardization and certification/labelling of secondhand appliances intended for export to developing countries will be required to control the export of electronic recyclables (e-scarp) in the name of secondhand appliances.

  17. Proceedings of the tenth annual DOE low-level waste management conference: Session 5: Waste characterization and quality assurance

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains six papers on various aspects of low-level radioactive waste management. Topics include quality assurance programs; source terms; waste characterization programs; and DOE's information network modifications. Individual papers were processed separately for the data base

  18. The disposal of Canada's nuclear fuel waste: public involvement and social aspects

    International Nuclear Information System (INIS)

    Greber, M.A.; Frech, E.R.; Hillier, J.A.R.

    1994-01-01

    This report describes the activities undertaken to provide information to the public about the Canadian Nuclear Fuel Waste Management Program as well as the opportunities for public involvement in the direction and development of the disposal concept through government inquiries and commissions and specific initiatives undertaken by AECL. Public viewpoints and the major issues identified by the public to be of particular concern and importance in evaluating the acceptability of the concept are described. In addition, how the issues have been addressed during the development of the disposal concept or how they could be addressed during implementation of the disposal concept are presented. There is also discussion of public perspectives of risk, the ethical aspects of nuclear fuel waste disposal, and public involvement in siting a nuclear fuel waste disposal facility. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  19. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    International Nuclear Information System (INIS)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.; Gonzalez, N.

    2007-01-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)

  20. Current status of waste management in Botswana: A mini-review.

    Science.gov (United States)

    Mmereki, Daniel

    2018-05-01

    Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.

  1. Radioactive Waste Management - Community Policy and Research Initiatives. The sixth international conference on the management and disposal of radioactive waste - Euradwaste '04

    Energy Technology Data Exchange (ETDEWEB)

    Forsstroem, Hans [Research Directorate Energy, Nuclear Fission and Radiation Protection, European Commission, MO-75 5/37, 200 avenue de la Loi, B-1049 Brussels (Belgium); Ruiz, P Fernandez [DG Research, Energy, Consejo de Seguridad Nuclear, CSN, C/ Justo Dorado, 11, E-28040 Madrid (Spain)

    2004-07-01

    The sixth international conference on the management and disposal of radioactive waste organized be European Commission, held on 29-31 March 2004 in Luxembourg aimed to cover the following objectives: - To present EC policy in waste management, in particular the proposed 'Directive on the Management of Spent Nuclear Fuel and Radioactive Waste' and to discuss relating issues such as the effect on national programmes, site selection, EU added value, the case for EU safety standards, and various socio-political aspects; - To highlight the main results of the Fifth Framework Programme (FP5) of EURATOM for 'Nuclear Energy, Fission Research and Training Activities' in the field of waste in spent fuel management and disposal, and partitioning and transmutation; - To present examples of activities under FP5 and to discuss further research European integration through FP6. The program was divided into two main groups: 1. 'Community Policy and Socio-Political Aspects' which included sessions on community policy initiatives, disposal option, common safety standards and public involvement and acceptance; 2. 'Community Research Activities - FP5' which included sessions on partitioning and transmutation, geological disposal and research networking. There were 29 oral presentations and 36 poster presentations which, for the latter, allowed detailed presentations of the results of the EU-funded research projects. The conference was attended by some 240 participants from 27 countries.

  2. Scientific basis for nuclear waste management

    International Nuclear Information System (INIS)

    Topp, S.V.

    1982-01-01

    This volume contains the proceedings of the fourth International Symposium on the Scientific Basis for Nuclear Waste Management, held in Boston, Massachusetts, on November 16-19, 1981, as part of the Annual Meeting of the Materials Research Society. The purpose of this Symposium was to provide an interdisciplinary forum for the discussion of scientific research dealing with all levels and types of radioactive wastes and their management. These symposia have been held annually since 1978. The proceedings of the first three meetings were published as Volumes 1, 2, and 3 in a series. With this, the fourth meeting, the volume numbering system is changed to coincide with the system used to number Materials Research Society Annual Meeting Proceedings. The reports presented here give the results of research and development activities from a large number of universities, government laboratories and private industry in nine countries. The 92 papers published in these proceedings have been divided into 92 chapters. These encompass various aspects of high-level and non-high-level radioactive waste management ranging from repository characterization and waste form production to product and performance assessment. All of the papers have been abstracted and indexed for the data base

  3. International perspective on regulation and radioactive waste management

    International Nuclear Information System (INIS)

    Brennecke, P.W.

    2001-01-01

    In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, in particular in the areas of minimisation of the production of radioactive waste, conditioning and disposal of short-lived low and intermediate level waste, vitrification of fission product solution on an industrial scale and engineered storage of long-lived high level waste, i.e. vitrified waste and spent fuel. Based on such results near-surface repositories have successfully been operated in many countries. Furthermore, geological repository development programmes are now being pursued, addressing the development and application of appropriate methods for site-specific safety assessments, too. In addition to scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Hence, there is a need for the examination of such issues in more detail and, if appropriate, for introducing respective results in further radioactive waste management and disposal options and/or planning work. Taking differences in national approaches, practices and constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance acceptance and confidence in safety-related planning work as well as proposed radioactive waste management and disposal solutions. In particular, international expertise and peer reviews are to be integrated. (author)

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  5. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  6. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Decamps, F.

    1993-01-01

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heat producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type

  7. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation......The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  8. A purview of waste management evolution: Special emphasis on USA

    International Nuclear Information System (INIS)

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-01-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste

  9. A purview of waste management evolution: special emphasis on USA.

    Science.gov (United States)

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-02-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste.

  10. Assessment of waste characteristics and waste management practices for the Midwest Compact Region: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    This report has described how the Midwest Compact region's low-level radioactive waste characteristics were determined and has provided assessments of several key characteristics of the waste. Sources of the data used and comments on the validity and uncertainty of both the raw information and the region-wide estimates that have been generated are indicated. The contents and organization of the computerized Midwest Data Base are also presented. This data base is a resource for rational development of the Midwest Compact's Regional Management Plan. The value of the level of detail contained in Midwest Data Base is demonstrated in its use to analyze the viability of LLW treatment alternatives in other aspects of the regional management plan (RAE86). 10 refs., 7 figs., 13 tabs

  11. Euro-trash. Searching Europe for a more sustainable approach to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.J. [Centre Entreprise-Environnement, IAG, Catholic University of Louvain, Institut d' Administration et de Gestion, Place des Doyons, 1-B-1348 Louvain-la-Neuve (Belgium); McDougall, F.R. [Corporate Sustainable Development, Procter and Gamble, Technical Centres Ltd., P.O. Box Forest Hall No. 2, Whitley Road, Longbenton, NE 12 9TS Newcastle upon Tyne (United Kingdom); Willmore, J. [Resource Integration Systems Ltd., Pear Tree Cottage, Chalford Hill, Stroud, GL6 8EW Glocs. (United Kingdom)

    2001-04-01

    How an economically affordable, environmentally effective and socially acceptable municipal solid waste management system can be developed is currently unclear. Considerable research has been carried out on the practical aspects of municipal waste management (i.e. transport, treatment and disposal) and how citizens feel about source separation, recycling, incineration and landfill but the perspective of the waste manager within the context of long term planning is often ignored. In this study, waste managers from 11 different leading-edge European municipal solid waste programs in nine different countries were interviewed. The economic, social, political, environmental, legal and technical factors of their specific programs were explored and analyzed. The transition of municipal solid waste management to urban resources management was observed and key 'system drivers' for more sustainable waste management practices were identified. Programs visited were: Brescia (I), Copenhagen (DK), Hampshire (UK), Helsinki (FI), Lahn-Dill-Kreis (D), Malmoe (SE), Pamplona (E), Prato (I), Saarbruecken (D), Vienna (A), and Zuerich (CH)

  12. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  13. LEGISLATIVE ASPECTS CONCERNING THE LEATHER WASTES

    Directory of Open Access Journals (Sweden)

    TIMOFTE Claudia Simona

    2017-05-01

    Full Text Available This paper underlines the current legislation and compliance issues leather waste in different waste groups according to relevant legislation and shows that, although seemingly harmless waste of skin sometimes contain dangerous compounds. As presented risks to human health were some restricted substances in leather. Since 2001 Romania had preoccupation in national legislation on waste management, but some categories, such as leather waste are not framed to this category. Also, another goal is implementing the EU management/storage strategy of industrial waste. Unfortunately, Romania imports huge quantities of used clothing and shoes. Transport, storage and use of them are poor, and many of these are subsequently stored waste by the fact that it is even sometimes improperly discarded. The paper also shows the statistics on waste management in the Bihor County by activity of national economy and by activity of industry at level of CANE REV.2 Section. Analyzing the postings on Internet regarding the sale and purchase of leather wastes in Romania, it was found that there are the following 'categories' of wastes: leather goods, leather from coats, leather from footwear industry, suede, leather, leather resulting from the production of upholstery. It was found that most car buyers use waste leather upholstery. It is recommended that production companies to highlight more transparent their inventory textile and leather waste on types for those interested (including online can access/capitalize them.

  14. Status of Waste Management in Selected Hospitals of Isfahan in 2014

    Directory of Open Access Journals (Sweden)

    Elham Amiri

    2017-01-01

    Full Text Available Background: Hospital wastes are considered as a serious threat for public health. Hospital waste management may help to control disease transmission and have remarkable economic advantages. The purpose of this study was to assess  the hospitals' waste management in Isfahan, Iran in 2014. Methods: Data of this descriptive and cross-sectional study were collected through a check list for surveying hospital waste management. Validity of checklist was confirmed by analysis of face validity and field experts' opinions. Cronbach's alpha of 0.80 was calculated. Data were then analyzed using descriptive statistics in Excell software. Results: In the studied hospitals "Elimination" dimension was inappropriate while the "Human resources involved in waste management" dimension was estimated relatively appropriate. Other dimensions were estimated as appropriate. Infectious wastes consisted of about 10.89 % of the total wastes in hospitals and the average of waste generation for each bed was 3.67 kg per day. There was no environmental unit in the studied hospitals and only one of them did not have waste management unit. Conclusion: Despite the fact that waste management status in hospitals under study was relatively appropriate, but given the importance of the issue, it is essential to improve the current situation especially in some aspects of waste management

  15. Management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Joinville, i.e. in the same area as the Bure underground laboratory of Meuse/Haute-Marne. Therefore, the discussion focuses more on the local impacts of the setting up of a waste disposal facility (environmental aspects, employment, economic development). (J.S.)

  16. Benchmarking on the management of radioactive waste; Benchmarking sobre la gestion de los residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gomez, M. a.; Gonzalez Gandal, R.; Gomez Castano, N.

    2013-09-01

    In this project, an evaluation of the practices carried out in the waste management field at the Spanish nuclear power plants has been done following the Benchmarking methodology. This process has allowed the identification of aspects to improve waste treatment processes; to reduce the volume of waste; to reduce management costs and to establish ways of management for the waste stream which do not have. (Author)

  17. Radioactive waste management: the contribution of expert assessments to the implementation of safe management channels

    International Nuclear Information System (INIS)

    Besnus, F.; Jouve, A.C.

    2011-01-01

    The national Radioactive Materials and Waste Management (PNGMDR) sets objectives and defines waste management channels for all radioactive wastes produced in France. Within this framework, IRSN (Institute for Radioprotection and Nuclear Safety) expertise aims at assessing the consistency and robustness of the technical solutions set in place by the plan. As a result of this assessment, the main safety issues and priorities for upgrading the safety of the various facilities that will receive and treat waste are identified on the one hand, while possible foreseen weaknesses in terms of storage or treatment capacities are put into light on the other hand. To carry out such assessment, IRSN backs on its 'in depth' knowledge of facilities, acquired through the examination of each major step of waste management facility life (creation, commissioning, re-examination of safety...). This knowledge feeds in turn the examination of the waste management strategies implemented by operators. In addition, special attention is given to the achievement of waste packages of favourable properties as well as to the conditions for their safe disposal, since these two aspects are most often key factors for optimizing the safety of the whole management channel. By its capacity to overlook all steps of waste management channels, from production to final disposal, IRSN intends to contribute to the objective of enhancing the global safety of the management of radioactive waste. (authors)

  18. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  19. Key aspects to perform a project on energy management

    International Nuclear Information System (INIS)

    Bachini, R.

    1993-01-01

    A general overview on elements and organisms playing a key role to launch a new industrial project is given, taking as base case an energy management project. Likewise the problematic of training personnel involved in the project is analyzed. Energy management becomes crucial in industries where energy costs represent a big portion of the whole production cost. Main aspects to be analyzed are: - Adequate production procedures to be competitive - Environment protection regarding waste management - Maximization of safety at production installations. (Author)

  20. Legal framework of radioactive waste management in Indonesia

    International Nuclear Information System (INIS)

    Ridwan, M.

    2000-01-01

    The nuclear programme and the related legal framework in Indonesia is outlined. The provisions and principles concerning the management of radioactive waste are described. Furthermore, aspects of liability for nuclear damage and public involvement are addressed. (author)

  1. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  2. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  3. Potential use of feebate systems to foster environmentally sound urban waste management

    International Nuclear Information System (INIS)

    Puig-Ventosa, Ignasi

    2004-01-01

    Waste treatment facilities are often shared among different municipalities as a means of managing wastes more efficiently. Usually, management costs are assigned to each municipality depending on the size of the population or total amount of waste produced, regardless of important environmental aspects such as per capita waste generation or achievements in composting or recycling. This paper presents a feebate (fee+rebate) system aimed to foster urban waste reduction and recovery. The proposal suggests that municipalities achieving better results in their waste management performance (from an ecological viewpoint) be recompensated with a rebate obtained from a fee charged to those municipalities that are less environmentally sound. This is a dynamic and flexible instrument that would positively encourage municipalities to reduce waste whilst increasing the recycling

  4. Radioactive Waste Management - Community Policy and Research Initiatives. The sixth international conference on the management and disposal of radioactive waste - Euradwaste '04

    Energy Technology Data Exchange (ETDEWEB)

    Forsstroem, Hans [Research Directorate Energy, Nuclear Fission and Radiation Protection, European Commission, MO-75 5/37, 200 avenue de la Loi, B-1049 Brussels (Belgium); Ruiz, P. Fernandez (ed.) [DG Research, Energy, Consejo de Seguridad Nuclear, CSN, C/ Justo Dorado, 11, E-28040 Madrid (Spain)

    2004-07-01

    The sixth international conference on the management and disposal of radioactive waste organized be European Commission, held on 29-31 March 2004 in Luxembourg aimed to cover the following objectives: - To present EC policy in waste management, in particular the proposed 'Directive on the Management of Spent Nuclear Fuel and Radioactive Waste' and to discuss relating issues such as the effect on national programmes, site selection, EU added value, the case for EU safety standards, and various socio-political aspects; - To highlight the main results of the Fifth Framework Programme (FP5) of EURATOM for 'Nuclear Energy, Fission Research and Training Activities' in the field of waste in spent fuel management and disposal, and partitioning and transmutation; - To present examples of activities under FP5 and to discuss further research European integration through FP6. The program was divided into two main groups: 1. 'Community Policy and Socio-Political Aspects' which included sessions on community policy initiatives, disposal option, common safety standards and public involvement and acceptance; 2. 'Community Research Activities - FP5' which included sessions on partitioning and transmutation, geological disposal and research networking. There were 29 oral presentations and 36 poster presentations which, for the latter, allowed detailed presentations of the results of the EU-funded research projects. The conference was attended by some 240 participants from 27 countries.

  5. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrácz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  6. Radioactive sodium waste treatment and conditioning. Review of main aspects

    International Nuclear Information System (INIS)

    2007-01-01

    This publication reviews the main aspects relating to the treatment and conditioning of radioactive sodium waste. This waste arises from the operation of liquid metal fast reactors (LMFRs). In this type of reactor, sodium (Na) or sodium-potassium alloys (NaK) are used as a low-effect neutron moderating coolant medium for extracting and transferring thermal energy from the core and they represent a significant technical and safety challenge during operation and decommissioning. This publication provides the reader with technologically oriented information on the present status of sodium waste management approaches and recent achievements related to treatment and conditioning, with the objective of facilitating planning and preparatory work for the decommissioning of LMFRs. This publication provides a comprehensive review of the hazards associated with sodium waste management. Given the large quantities of sodium waste arising during decommissioning or reactor refurbishment, as well as the challenges and varied techniques associated with removal of 100% of all sodium and NaK bulk quantities and residues during decommissioning, a hazards review and analysis is a critical component in planning the dismantling and waste management activities. Roughly half of this publication focuses on sodium waste generating, handling and treatment processes. This includes draining sodium and NaK from plant systems; in situ treatment of residual sodium; cutting techniques for pumps, valves, piping and other components; cleaning of components; potential reuse of sodium; and removal of selected radionuclides from sodium waste with the objective of reducing the waste classification or converting it to exempt waste. The focus is on proven techniques and technologies, and each discussed method includes a review of the associated principle or theory, practical applications, advantages and disadvantages, limitations, industry experience, and final waste products. A review is provided of final

  7. Radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Radu, Maria; Dobos, Ion; Glodeanu, Florin; Popescu, V. Ion; Rotarescu, Gheorghe; Turcanu, Cornel

    1998-01-01

    The paper presents the main aspects of management of radwastes generated within the frame of Nuclear Fuel Cycle (NFC) and out of Nuclear Fuel Cycle in Romania. There are mentioned the Romanian legislative and regulatory framework concerning nuclear activities which include provisions for radwaste management generated in Romania. The paper lists the radwaste producers, mentions waste inventory and gives future estimates for radwaste generation, all determining development of the radwaste management strategy. Choosing selected strategy for radwaste management, the main responsible organizations have been established as well as the planned facilities for treatment conditioning, storage and disposal of radwastes generated within the frame of both NFC and out of NFC fields of peaceful nuclear activity. (authors)

  8. Management of radioactive waste from 99Mo production

    International Nuclear Information System (INIS)

    1998-11-01

    99m Tc used for labelling different pharmaceuticals is the most important radionuclide in nuclear medicine practice, and probably will continue to play this important role for the foreseeable future. 99m Tc is the short lived daughter product of the parent 99 Mo, which is mainly produced by the nuclear fission of 235 U. Recognizing the importance of the waste management issue associated with 99 Mo production the IAEA initiated preparation of this report to provide Member States and existing and potential producers of 99 Mo with practical approaches and the available information on the subject. Waste management in the context of this report encompasses all waste-related aspects, for example, handling, treatment, conditioning, storage, transport, and disposal. The document is organized in several chapters giving the following information: short description of the basic nuclear and physical properties of 99 Mo and 99m Tc; an overview of past, present and possible future production methods; characteristics of the various waste streams produced in the aforementioned processes; description of the necessary waste management practices needed to handle the relevant waste streams in a responsible and internationally-accepted manner; conclusion and recommendations

  9. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    Science.gov (United States)

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p waste generated at government HCFs was more than at private HCFs (p waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  10. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  11. The regulatory aspects linked to wastes management. The fundamental safety rules; Les aspects reglementaires lies a la gestion des dechets. Les regles fondamentales de surete

    Energy Technology Data Exchange (ETDEWEB)

    Viala, M. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    2001-07-01

    The radioactive waste management implies a well-established legislative frame. That is that frame that is discussed here, general principles, official authorities, wastes classification, high level radioactive waste management, regulation relative to storage, to uranium ore processing. (N.C.)

  12. Choosing a sustainable demolition waste management strategy using multicriteria decision analysis

    International Nuclear Information System (INIS)

    Roussat, Nicolas; Dujet, Christiane; Mehu, Jacques

    2009-01-01

    This paper presents an application of the ELECTRE III decision-aid method in the context of choosing a sustainable demolition waste management strategy for a case study in the city of Lyon, France. This choice of waste management strategy takes into consideration the sustainable development objectives, i.e. economic aspects, environmental consequences, and social issues. Nine alternatives for demolition waste management were compared with the aid of eight criteria, taking into account energy consumption, depletion of abiotic resources, global warming, dispersion of dangerous substances in the environment, economic activity, employment, and quality of life of the local population. The case study concerned the demolition of 25 buildings of an old military camp. Each alternative was illustrated with different waste treatments, such as material recovery, recycling, landfilling, and energy recovery. The recommended solution for sustainable demolition waste management for the case study is a selective deconstruction of each building with local material recovery in road engineering of inert wastes, local energy recovery of wood wastes, and specific treatments for hazardous wastes

  13. Scope and approach to management of mixed wastes: introduction to the session

    International Nuclear Information System (INIS)

    Ausmus, B.S.

    1986-01-01

    Mixed wastes are those that are termed both radioactive and chemically hazardous based on regulatory criteria in the United States. Historically, mixed wastes that could be classified as radioactive wastes were treated, stored, and disposed under statutes governing radioactive wastes. In recent years, it has become apparent that: (a) hazardous wastes are generated in nuclear facilities; (b) many wastes are both radioactive and chemically hazardous; and (c) the management of chemically hazardous wastes and mixed wastes requires reexamination of current waste treatment/disposal methods and development/implementation of modified methods. The purpose of this session is to discuss specific aspects of the mixed waste management problems and to provide a forum for discussion of the technical and institutional barriers to problem solutions. The paper addresses several mixed waste problems and current approaches to their solutions, including: (1) mixed waste management in fuel cycle facilities; (2) mixed waste management in a US Dept. of Energy production facility; and (3) mixed wastes impacts on 10CFR61 compliance. Technical and institutional approaches to mixed waste management are explored in three areas: (1) alternatives for treatment prior to shallow land disposal; (2) potential benefits of recovery of strategic/critical materials from mixed wastes; and (3) shallow land disposal system compatibilities/problems

  14. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  15. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  16. Waste management research abstracts no. 13. Information on research in progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    The 222 research abstracts contained in this issue have been collected during recent months ending 15 January 1982. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones.

  17. Waste management research abstracts no. 13. Information on research in progress

    International Nuclear Information System (INIS)

    1982-05-01

    The 222 research abstracts contained in this issue have been collected during recent months ending 15 January 1982. The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. The abstracts have been printed in the language and in the form of submittal and without any changes other than minor editorial ones

  18. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program is in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are described. Program funding, scheduling and associated external review processes are briefly outlined

  19. The Radioactive Waste Management course: 14 High-yield editions

    International Nuclear Information System (INIS)

    Alonso, A.; Gallego, E.; Marco, M. L.; Falcon, S.

    2003-01-01

    The doctorate course on Radioactive Waste Management was initiated in February 1988, by initiative of the Chair of Nuclear Technology, under the sponsoring of the national radioactive waste management company (ENRESA), in a fruitful collaboration between the Institute Artigas of the Technical School of Industrial Engineering and the Institute of Formation on Energy of the research centre CIEMAT. The course is also offered as a post-graduate through both institutes. After completion of fourteen consecutive editions in 2002, the course constituted a landmark in the field of nuclear education in Spain. The last edition offered, along 35 lessons published in two books, the general aspects of generation, treatment and conditioning of radioactive wastes, the basic Safety and Radiological Protection criteria, the detailed technical questions of the management of both low-intermediate.activity and the high-activity level, together with the wastes generated during decommissioning and dismantling of installations, as well as the general and institutional aspects. Experts in each field, belonging either to ENRESA, CIEMAT, the Nuclear Safety Council, the UPM and the industry, present such wide programme. A technical visit to the low and intermediate radioactive waste repository of El Cabril was also offered to the participants as part of the course, as in previous years the visit to the dismantling workers of Vandellos I NPP. More than 500 engineers and graduates in different science branches have participated in the course along 14 years, with both students and professionals belonging to ENRESA, the Nuclear Safety Council, CIEMAT and other research centers, hospitals, civil protection at different levels, service and engineering companies related with the radioactive waste management. Altogether, it is possible to say, as the title is expressed, that the course has given in these 14 years a high-production yield. (Author)

  20. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  1. Radioactive wastes management of NPP

    International Nuclear Information System (INIS)

    Klyuchnikov, A.A.; Pazukhin, Eh.M.; Shigera, Yu. M.; Shigera, V.Yu.

    2005-01-01

    Modern knowledge in the field of radiation waste management on example of the most serious man-made accident at Chernobyl NPP are illuminated. This nuclear power plant that after accident in 1986 became in definite aspect an experimental scientific ground, includes all variety of problems which have to be solved by NPP personnel and specialists from scientific organizations. This book is aimed for large sphere of readers. It will be useful for students, engineers, specialists and those working in the field of nuclear power, ionizing source and radiation technology use for acquiring modern experience in nuclear material management

  2. Legal, administrative and financial aspects of long term management of radioactive waste

    International Nuclear Information System (INIS)

    Strohl, Pierre.

    1978-01-01

    Radioactive waste management raises technical, political and legal problems. The technical question covers mainly choice of the method and the location for waste disposal or storage: seabed, geologic formations or a disposal facility. The political problem is mainly acceptability by the public of decisions taken or planned by the competent authority. Finally, the legal frame is an important factor in the definition of long-term control. The institutional system to be created requires political consensus and an efficient and credible technique so as to be successful. (NEA) [fr

  3. Application of life cycle assessment for hospital solid waste management: A case study.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-10-01

    This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.

  4. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  5. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  6. Too hot to handle. Social and policy issues in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Walker, C.A.; Gould, L.C.; Woodhouse, E.J.

    1983-01-01

    Information about the management of radioactive wastes is provided in this book. Specifically, the book attempts to supply information to further the understanding of the history of radioactive waste management in this country and the role of nuclear energy in the future of the US; the science and technology of the processes that produce radioactive wastes and of the methods proposed for managing them; the biological effects of radiation; the public attitudes about nuclear power; the nature of risks resulting from technological developments and ways of managing them; and the political institutions and processes that govern radioactive waste management. The authors have attempted to present an objective view of nuclear waste management taking a stand neither for nor against nuclear power but placing special emphasis on radioactive waste management rather than nuclear power, because they feel that the latter aspect of the subject has received much more extensive coverage elsewhere. The contents of the book are divided into 7 chapters entitled: The Radioactive Waste Management Problem, Science and Technology of the Sources and Management of Radioactive Wastes, Nuclear Waste Management and Risks to Human Health, Public Attitudes toward Radioactive Wastes, How Safe Is Safe Enough; Determinants of Perceived and Acceptable Risk, The Politics of Nuclear Waste Management, and Value Issues in Radioactive Waste Management

  7. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  8. Nuclear waste management: A review of issues

    International Nuclear Information System (INIS)

    Angino, E.E.

    1985-01-01

    The subject of radioactive waste management and burial is a subject that raises strong emotional and political issues and generates sharp technical differences of opinion. The overall problem can be subdivided into the three major categories of (1) credibility and emotionalism, (2) technology, and (3) nuclear waste isolation and containment. An area of concern desperately in need of attention is that of proper public education on all aspects of the high-level radioactive-waste (rad-waste) burial problem. A major problem related to the rad-waste issue is the apparent lack of an official, all-encompassing U.S. policy for nuclear waste management, burial, isolation, and regulation. It is clear from all past technical reports that disposal of rad wastes in an appropriate geologic horizon is the best ultimate solution to the waste problem. After 25 y of dealing with the high-level radioactive waste problem, the difficulty is that no proposed plan has to date been tested properly. It is this indecision and reaction that has contributed in no small way to the public perception of inability to solve the problem. One major change that has occurred in the last few years was the enactment of the Nuclear Waste Policy Act of 1982. This act mandates deadlines, guidelines, and state involvement. It is time that strong differences of opinions be reconciled. One must get on with the difficult job of selecting the best means of isolating and burying these wastes before the task becomes impossible

  9. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  10. The management of radioactive wastes in China

    International Nuclear Information System (INIS)

    Teng Lijun

    2001-01-01

    Full text: This paper wants to introduce the management of radioactive wastes in China. The Management System. The management system of radioactive waste consists of the institutional system and the regulatory system. During the recent 30 years, more than 50 national standards and trades standards have been issued, will be published, or are being prepared, covering essentially all the process of wastes management. State Environmental Protection Administration (SEPA) is in charge of not only the environmental protection view but also nuclear safety surveillance of radioactive waste management, especially in the aspect of HLW disposal. China Atomic Energy Authority (CAEA) is a centralized management of the government responsible. China National Nuclear Corp. (CNNC) is responsible for the management work of radioactive wastes within its system, implementing national policies on wastes management, and siting, construction and operation of LILW repositories and HLW deep geological repository. The Policies of Radioactive Waste Management. The LILW for temporary storage shall be solidified as early as possible. Regional repository for disposal of low-and intermediate-level wastes shall be built. HLW is Centralized disposal in geological repository. The radioactive wastes and waste radioisotope sources must be collected to the signified place (facilities) for a relatively centralized management in each province, The Accompanying Mineral radioactive wastes can be stored in the tailing dumps or connected to the storage place for a temporal storage, then transported to the nearby tailing dumps of installation or tailing dumps of mineral-accompanying waste for an eventual storage. Activities in the Wastes Management Radioactive wastes treatment and conditioning Since 1970, the study on the HLLW vitrification has been initiated. In 1990, a cold test bench for the vitrification (BVPM), introduced from Germany, was completed in Sichuan Province. As for the LILW, the cementation

  11. Situation on regulatory aspects of underground disposal of radioactivity wastes in Japan

    International Nuclear Information System (INIS)

    Murano, T.; Asano, T.; Matsubara, N.

    1978-01-01

    At present, in Japan, there exists no law specifically regulating the underground disposal of radioactive wastes although various regulations deal with disposal safety measures in a general way. For the moment, apart from the need to gain public acceptance of such disposal, the problem is essentially one of technical feasibility, and a geological study is currently being undertaken by the Science and Technology Agency. This same Agency is also looking at the problem of a long-term waste management system, but it is the Nuclear Safety Commission, created in 1978, which will be primarily responsible for all regulatory aspects of safety. (NEA) [fr

  12. Progress on developing expert systems in waste management and disposal

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.

    1990-01-01

    The concept of artificial intelligence (AI) represents a challenging opportunity in expanding the potential benefits from computer technology in waste management and disposal. The potential of this concept lies in facilitating the development of intelligent computer systems to help analysts, decision makers, and operators in waste and technology problem solving similar to the way that machines support the laborer. Because the knowledge of multiple human experts is an essential input in the many aspects of waste management and disposal, there are numerous opportunities for the development of expert systems using software products from AI. This paper presents systems analysis as an attractive framework for the development of intelligent computer systems of significance to waste management and disposal, and it provides an overview of limited prototype systems and the commercially available software used during prototype development activities

  13. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  14. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  15. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    International Nuclear Information System (INIS)

    Garfi, M.; Tondelli, S.; Bonoli, A.

    2009-01-01

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

  16. Solid wastes integrated management in Rio de Janeiro: input-output analysis

    International Nuclear Information System (INIS)

    Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.; Tolmansquim, M.T.

    2005-01-01

    This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin raw materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases

  17. International Conference on the Safety of Radioactive Waste Management. Book of Papers

    International Nuclear Information System (INIS)

    2016-01-01

    The purpose of the conference was to highlight the importance of an integrated long term approach to the management of radioactive waste and spent fuel. The objectives of the conference were: • To foster information exchange between Member States, • To provide inputs that will promote further harmonization of safety in the fields of predisposal management and disposal of radioactive waste, • To highlight progress made in the safety of all types of radioactive waste. The conference served as a forum for discussing past experiences and future challenges. Furthermore, it seeked to identify Member States’ needs in order to assist them — through specific activities under future IAEA programmes in this area — to develop and implement safe solutions for the management of their entire radioactive waste inventory. The conference addressed all aspects of predisposal management and disposal of radioactive waste and spent fuel, including waste arising from accidental situations. The management of radioactive waste and residues from mining activities, as well as the control of discharges from nuclear facilities and activities, were, however, outside of its scope.

  18. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base

  19. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  1. National system for radioactive waste management in Lithuania and its harmonization with the European Union legislation

    International Nuclear Information System (INIS)

    Adomaitis, J. E.; Poshkas, P.

    1999-01-01

    Radioactive waste management philosophies and technologies are still emerging, and there is therefore a need to reorganize and improve the national system for radioactive waste management in Lithuania. Lithuania's Law on Radioactive Waste Management and the new regulations will be harmonized with the European Union legislation in this field, with the IAEA general principles and with the obligations of the Republic of Lithuania under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Different organizational and financial schemes available in the EU countries for radioactive waste management are described and analyzed. The most important aspects needed to establish the Lithuania's Radioactive Waste Management Agency and Fund are defined and developed. (author)

  2. Regulatory aspects of sludge management

    International Nuclear Information System (INIS)

    Sharples, F.E.

    1992-01-01

    The paper presents an overview of radioactive waste land disposal restrictions by discussing the following topics: highlights of Resource Conservation and Recovery Act history; purposes of land disposal restrictions; regulatory definition of land disposal; US Environmental Protection Agency (EPA) implementation of land disposal restrictions; schedules for implementing land disposal restrictions; solvent and dioxin wastes; classification of liquid hazardous and radioactive wastes; generator and treatment, storage, and disposal responsibilities; variances and extensions; and options for mixed waste management. Land disposal restrictions take into account the long-term uncertainties associated with land disposal, the need to manage waste right the first time they are disposed, and the persistence toxicity, mobility, propensity to bioaccumulate, and volume. In the Department of Energy system land disposal restrictions affect mixed waste management and site remedial action programs

  3. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  4. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  6. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  7. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  8. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  9. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  10. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  11. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  12. Nuclear graphite waste management. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  13. Regulatory aspect of nuclear application and radioactive waste management in Indonesia

    International Nuclear Information System (INIS)

    Mohammad Ridwan

    2002-01-01

    Experience over more than 56 years in the field of nuclear application has shown that such technology is generally safely used. Nevertheless, there have been instances, when safety systems have been circumvented and serious radiological accident have occurred, and have resulted with fatal consequences. During the last 56 years, such radiological accidents, in total, caused 101 person dead, and it is very interesting to note that this figure is more than double the dead caused by nuclear accident as the result of nuclear fuel failure, such as in nuclear power plant, in submarine or in enrichment plant, which has only 47 fatalities. The article 8 of the convention on nuclear safety, stipulates inter alia that the contracting party shall established a regulatory body separated from the promotional or the executing organization of nuclear energy. Indonesia is not operating any nuclear power. At present, it is only operating three research reactors, and some laboratories connected with this reactor, such as one nuclear fuel fabrication plant for research reactors, one experimental fuel fabrication plant for nuclear power, one isotope production facility, radiometalurgy laboratory and some other research facilities. However, in anticipation of the expansion of nuclear programme in Indonesia, and looking into the various accident in the nuclear application, the Indonesian Government has, since April 10, 1997, enacted the new act, Act No. 10/1997 on Nuclear Energy. The new Act addresses several key requirements for the successful conduct of Indonesia nuclear programme, including the establishment of both the Executing Body responsible for nuclear research and development, mining and processing nuclear fuels and materials, production of radio-isotopes and management of radioactive wastes and the independent Nuclear Energy Control Board, which has the power to regulate, to license and to inspect all facets of any activity utilizing nuclear energy. It also sets out the basic

  14. Sustainable solutions for solid waste management in Southeast Asian countries

    International Nuclear Information System (INIS)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-01-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  15. A dynamic model for organic waste management in Quebec (D-MOWIQ) as a tool to review environmental, societal and economic perspectives of a waste management policy.

    Science.gov (United States)

    Hénault-Ethier, Louise; Martin, Jean-Philippe; Housset, Johann

    2017-08-01

    A dynamic systems model of organic waste management for the province of Quebec, Canada, was built. Six distinct modules taking into account social, economical and environmental issues and perspectives were included. Five scenarios were designed and tested to identify the potential consequences of different governmental and demographic combinations of decisions over time. Among these scenarios, one examines Quebec's organic waste management policy (2011-2015), while the other scenarios represent business as usual or emphasize ecology, economy or social benefits in the decision-making process. Model outputs suggest that the current governmental policy should yield favorable environmental benefits, energy production and waste valorization. The projections stemming from the current policy action plan approach the benefits gained by another scenario emphasizing the environmental aspects in the decision-making process. As expected, without the current policy and action plan in place, or business as usual, little improvements are expected in waste management compared to current trends, and strictly emphasizing economic imperatives does not favor sustainable organic waste management. Copyright © 2017. Published by Elsevier Ltd.

  16. Study of scenarios of long term management of low-activity long-life wastes

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the study of scenarios for the management of different low-activity long-life radioactive wastes with reference to different French legal texts. After a presentation of the legal and technical context, the report presents different existing and projected storages (description and safety principles for the Cires and Aube centres and for the Cigeo project of deep geological storage centre). It addresses the various aspects of radiferous and graphite waste management on a long term: inventory, parcel, waste peculiarities, management scenarios, assessment of storage in SCR. It also addresses the case of other wastes such as bituminous coated wastes, those presenting a reinforced natural radioactivity or residues of uranium conversion processing. The last part presents the main orientations for the project

  17. Present trends in radioactive waste management policies in OECD countries, and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years, waste management has received increased attention at the national level and also internationally, to harmonize to some extent the policies and practices to be followed and to continue to achieve a high safety standard. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems, covering not only the treatment and storage aspects for the short-term but also the longer-term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition, a significant effort is also being initiated on research and development. The disposal problem has been given priority, particularly regarding high-level waste and alpha-bearing wastes. Close international co-operation has been initiated in this sector as well as on the conditioning of high-level radioactive waste. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities. (author)

  18. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  19. Generic impact statement for commercial radioactive waste management

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    ERDA is preparing a generic environmental impact statement on the treatment and disposal of waste resulting from commercial reactors and post fission operations in the light water reactor (LWR) fuel cycle. Expert contributions will be provided by many of the ERDA national laboratories and contractors. The waste management aspects of the statement will be based on available technology as presented in the recently issued ''Alternatives for Managing Waste from Reactors and Post Fission Operations in the LWR Fuel Cycle,'' ERDA-76-43 Document. This 1500 page, five volume Technical Alternative Document (TAD) describes the status of technology (to September, 1975) for handling post fission radioactive waste generated by the production of electricity by nuclear power light water reactor-generator systems. The statement will be generic in nature discussing typical or hypothetical facilities in typical or hypothetical environments. It is not intended to replace environmental statements required in support of specific projects nor for Nuclear Regulatory Commission licensing procedures. A major purpose of the generic statement is to inform the public and to solicit comments on the ERDA program for: (1) the final disposition of commercial radioactive waste, (2) waste treatment, (3) waste interim storage, and (4) transportation of waste. The statement will discuss the ERDA contingency program to provide retrievable storage of such waste if they should be transferred to Federal custody prior to the availability of the geologic isolation facilities for terminal disposal. The generic statement will not address radioactive waste resulting from U.S. Defense Programs, the mining or milling of uranium, the management of waste from the breeder reactor program, waste from other nations, nor will it include an evaluation of the impact of waste resulting from power sources other than light water reactors

  20. Institutional options for state management of low level radioactive waste

    International Nuclear Information System (INIS)

    Morris, F.A.

    1981-01-01

    This paper concerns ''institutional'' (legal, organizational, and political) aspects of low-level radioactive waste management. Its point of departure is the Low-Level Radioactive Waste Policy Act of 1980. With federal law and political consensus now behind the policy of state responsibility for low level waste, the question becomes, how is this new policy to be implemented. The questions of policy implementation are essentially institutional: What functions must a regional low level waste management system perform. What entities are capable of performing them. How well might various alternatives or combinations of alternatives work. This paper is a preliminary effort to address these questions. It discusses the basic functions that must be performed, and identifies the entities that could perform them, and discusses the workability of various alternative approaches

  1. Urban solid wastes management in Montnegre-Corredor (Catalonia, Spain); La gestion de residos solidos urbanos en parques naturales. El Montnegre- Corredor

    Energy Technology Data Exchange (ETDEWEB)

    Rieradevall i Pons, J.; Boada i Unca, M.; Fresquet, C. M.

    2004-07-01

    With a aim to gaining some knowledge about urban solid waste management in the Montnegre- Corredor Park (Catalonia), the most significant related aspects were analyzed: the different public administrations involved, waste collector type of transport, treatment and, finally, waste disposal and its production from 1999 to 2002. Economical, environmental and social aspects of solid waste management at the Park were also studied. From this analysis we can establish that there is no specific plant for solid waste management in the Park, and action is limited to basic waste collection services. Moreover, there is a multiplicity of managers. In terms of maintenance it must be pointed out that selective collection is non-existent, and critical points have been identified in the most popular areas. The study also put forward a new solid waste management plan for the Park, recommending the unification of managers and the reduction of about 23% of emissions from waste collection. The plan is designed to improve the solid waste management peculiar to the Montnegre- Corredor Natural Park (Catalonian). (Author)

  2. The community's R and D programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1978-01-01

    The objective of the R and D actions is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha waste; advanced waste management methods as the storage of gaseous waste. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  3. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    Ferrada, J.J.

    1992-01-01

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  4. Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Fruergaard, Thilde; Astrup, Thomas; Ekvall, T.

    2009-01-01

    The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspec...

  5. Radioactive waste management profiles. Compilation from the Waste Management Database. No. 3

    International Nuclear Information System (INIS)

    2000-07-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, archival and dissemination of information about radioactive waste management in Member States. This current report is a summary and compilation of waste management collected from Member States from February 1998 to December 1999 in response to the Agency's 1997/98 WMDB Questionnaire. Member States were asked to report waste accumulations up to the end of 1996 and to predict waste accumulations up to the end of 2014

  6. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 3 contains eight appendices: a reference environment for assessing environmental impacts associated with construction and operation of waste treatment, interim storage and/or final disposition facilities; dose calculations and radiologically related health effects; socioeconomic impact assessments; release/dose factors and dose in 5-year intervals to regional and world wide population from reference integrated systems; resource availability; environmental monitoring; detailed dose results for radionuclide migration groundwater from a waste repository; and annual average dispersion factors for selected release points

  7. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Volume 3 contains eight appendices: a reference environment for assessing environmental impacts associated with construction and operation of waste treatment, interim storage and/or final disposition facilities; dose calculations and radiologically related health effects; socioeconomic impact assessments; release/dose factors and dose in 5-year intervals to regional and world wide population from reference integrated systems; resource availability; environmental monitoring; detailed dose results for radionuclide migration groundwater from a waste repository; and annual average dispersion factors for selected release points. (LK)

  8. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  9. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  10. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  11. Disposal of radioactive waste. Some ethical aspects

    International Nuclear Information System (INIS)

    Streffer, Christian

    2014-01-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  12. The role and the results of the European Community's R and D work on radioactive waste management

    International Nuclear Information System (INIS)

    Orlowski, S.; Girardi, F.

    1986-01-01

    The role and results of the European Community's research and development (R and D) work on radioactive waste management are described. The R and D work includes: radioactive waste conditioning, characterization and storage, materials science studies for the storage, geological media confinement studies, and radionuclide migration investigations. Financial management and the long term, and the socio-political aspects of waste management, are also discussed. (U.K.)

  13. Radioactive waste management. Response by the Town and Country Planning Association to the white paper 'Radioactive Waste Management' - Cmnd 8607

    International Nuclear Information System (INIS)

    1982-12-01

    Technical, ethical, social, political and organizational aspects of the management of low-, intermediate-, and high-level radioactive wastes arising from operations in the United Kingdom are discussed. Recommendations are made to provide scope for public discussion, to consult the appropriate local water and other authorities, and to take other specified actions relevant to town and country planning. (U.K.)

  14. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  15. 6th Workshop on waste management contracts

    International Nuclear Information System (INIS)

    2000-01-01

    The workshop was intended for participants from industry and the service sector and municipalities responsible in particular for the legal aspects involved in the waste management business, namely for concluding the contracts with customers and contractors and for contract management in compliance with the laws and regulations of Germany and the European Union, including the relevant pollution control and monitoring obligations. Participants of the workshop received in-depth information and guidance through discussion of contracts and document types of relevance in this context. (orig./CB) [de

  16. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  18. Status of the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1985-10-01

    The Canadian Nuclear Fuel Waste Management Program is in the fifth year of a ten-year generic research and development phase. The major objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are well established

  19. Defining the multi-dimensional aspects of household waste management: A study of reported behavior in Devon

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Stewart; Gilg, Andrew; Ford, Nicholas [Department of Geography, School of Geography, Archaeology and Earth Resources, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon EX4 4RJ (United Kingdom)

    2005-10-01

    This paper examines the structure of waste reduction, reuse and recycling behavior within the context of wider research on environmental action in and around the home. Using a sample of 1265 households from Devon, England, the research examined a range of environmental behaviors, focusing on energy saving, water conservation, green consumerism and waste management. Using factor analysis, the data were analysed to examine how the different behavioral variables related to each other. The research found that waste management behaviors were evident in two of the three factors identified. These related not only to recycling or reuse behaviors but also to consumption practices, such as purchasing recycled products. However, an analysis of the frequency of each of these factorially-defined behaviors revealed that recycling was still the activity most practised by individuals, with reduction behaviors least popular. This was explored further by the use of cluster analysis, which defined four distinctive behavioral types with different demographic characteristics. Accordingly, the research demonstrates that examining waste management behaviors within the context of wider environmental actions can be of use.

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  1. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  2. Juridical and institutional aspects of radioactive wastes

    International Nuclear Information System (INIS)

    Faria, N.M. de.

    1988-07-01

    The author proposes a discussion of a new branch of the public law - the nuclear law. The main subject is the radioactive waste. Its production is a decisive problem in the utilization of nuclear energy being one of the discussed questions from the technical, economical, political, social and juridical points of view. Countries have been striving to establish their own policies related to radioactive wastes having always in mind the man and the environmental protection. In this scenario the author developed the investigations trying to discuss juridical and institutional aspects of radioactive wastes on the international level as well as in different countries with the aim to establish the juridical basis of a radioactive wastes policy in Brazil [pt

  3. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  4. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  5. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  6. Legal, administrative and financial aspects of the long-term management of radioactive waste

    International Nuclear Information System (INIS)

    Strohl, P.; Reyners, P.

    1984-01-01

    The paper describes the principal features of a study undertaken by the OECD Nuclear Energy Agency on the institutional problems raised by the long-term management of radioactive waste. The purpose of this study is to provide the competent national authorities with a common approach based on experience. All management operations which may extend over periods of more than 50 years are covered by the study, which analyses the control measures or other institutional measures that must be taken with regard to such operations. It distinguishes between ''active'' and ''passive'' control measures and describes their application ''before closure'' and ''after closure'' of the disposal or storage sites. An attempt is made to evaluate the lifetime of such institutional control measures and it is proposed, on this basis, that a period of several centuries, at most 300 years, should be considered reasonable in view of the need to avoid imposing an excessive burden on future generations. The study also provides a description of relations between governments and industry, stressing the increased responsibility of governments in the context of long-term management of radioactive waste. Specific questions of financing and responsibility for civil nuclear activities which relate to long-term management are also analysed. The general conclusion arrived at is that a long-term management strategy must be based on a viable combination of technological methods and institutional measures. (author)

  7. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  8. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Volume 2 consists of nine appendices which contain the Process Team reports and Benchmarking reports.

  9. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 2

    International Nuclear Information System (INIS)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Volume 2 consists of nine appendices which contain the Process Team reports and Benchmarking reports

  10. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  11. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  12. Socioeconomic aspects and public opinion concerning radioactive wastes; Aspectos socieconomicos y de opinion publica en emplazamientos para residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Valentin [Empresa Nacional de Residuos Radiactivos (ENRESA) (Spain)

    1997-12-31

    Nuclear energy aspects in Spain are presented. The role of ENRESA (Empresa Nacional de Residuos Radiactivos, S.A.) a public company, that manages low and intermediate-level radioactive wastes in Spain is discussed. ENRESA activities such as radioactive wastes transportation and processing, radioactive wastes disposal, decommissioning of an uranium plant, environmental recovery procedures, geological studies, information dissemination of nuclear energy, sponsoring of conferences, courses, etc, are briefly reported

  13. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  15. Public acceptance in radioactive waste management

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag, Ilinca

    2008-01-01

    Radioactive waste, unavoidable by-products of economically developed societies, arises from the production of energy by nuclear fission reactors as well as from medical, research and industrial applications of radioactive materials. The main objective of radioactive waste management is the safety as well the protection of public health and the environment. The first approach for the disposal of radioactive waste was based on the traditional 'decide, announce and defend' model, focused almost exclusively on technical content. In spite of the significant technical progress that would ensure long-term safety, the rate of progress towards implementing such solutions has been slower than expected, partly attributable to an earlier technical optimism and to an underestimation of the societal and political dimensions. It is now broadly recognized that radioactive waste management involves both technical and societal dimensions which cannot be dissociated. Because of changes in society's decision-making environment and heightened public sensitivity to all matters connected with environmental protection, nuclear power, radioactivity, and especially radioactive waste, any decision regarding whether, when and how to implement waste management solutions will typically require thorough public examination and the involvement of many relevant stakeholders. The building of a long-term relationship with the local communities and the waste management facility is one of the most important contributors to sustainable radioactive waste management solutions. A new approach in now in place at international level, based on 'engage, interact and co-operate', for which both technical and societal issues are to be reconciled. That means that the involvement of all interested parties in the decision-making process is a condition for a successful and publicly acceptable implementation of such a project. A central role in the public acceptance of nuclear technologies play the management and

  16. A comparison of municipal solid waste management in Berlin and Singapore

    International Nuclear Information System (INIS)

    Zhang Dongqing; Keat, Tan Soon; Gersberg, Richard M.

    2010-01-01

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.

  17. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  18. Nuclear waste management and problems arising from constitutional law

    International Nuclear Information System (INIS)

    Rauschning, D.

    1983-01-01

    The author discusses the problems arising in the field of nuclear waste management on account of the constitutional law. Especially the difficulties emanating from the conflict between the provisions of section 9a of the Atomic Energy Act and the provisions of constitutional law are dealt with in detail, referring to the monography of H. Hofmann, 'legal aspects of nuclear waste management'. The author comes to the conclusion that the reqquirements laid down in section 9a-9c of the Atomic Energy Act are in agreement with the Basic law. There is, he says, no unreasonable risk for future generations, as the provisions of the nuclear law provide for sufficient safety of sites and equipment selected for the final storage of nuclear waste, ensuring that radioactive leakage is excluded over long periods of time. In the second part of his lecture, the author discusses the problem of competency and delegation of authority with regard to the reprocessing of radioactive waste. (BW) [de

  19. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  20. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  1. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  2. From Waste Management to Resource Efficiency—The Need for Policy Mixes

    Directory of Open Access Journals (Sweden)

    Henning Wilts

    2016-07-01

    Full Text Available Treating waste as a resource and the design of a circular economy have been identified as key approaches for resource efficiency. Despite ambitious targets, policies and instruments that would enable a transition from a conventional waste management to an integrated and comprehensive resource management are still missing. Moreover, this will require innovative policy mixes which do not only address different end-of-pipe approaches but integrate various resource efficiency aspects from product design to patterns of production and consumption. Based on the results of a project funded by the Seventh Framework Programme for Research and Technological Development named “POLFREE—Policy Options for a resource efficient economy”, this paper addresses several aspects of the conceptualization of policy mixes with regard to waste as a specific resource efficiency challenge. The guiding research interest of this paper is the combination of policies necessary to create a full circular economy. In a first step, the present waste policy frameworks, institutions and existing incentives at national level are examined in order to disclose regulatory and policy gaps. Based on this, the second part of the paper describes and analyses specific waste-related resource efficiency instruments with regard to their potential impacts under the constraints of various barriers. Based on the assessment of the country analyses and the innovative instruments, the paper draws conclusions on waste policy mixes and political needs.

  3. The Role of the Government and the Public in the Planning of Long Term Management for Nuclear Fuel Wastes in Canada

    International Nuclear Information System (INIS)

    Diah Hidayanti; Yudi Pramono

    2007-01-01

    The generation of electricity from nuclear power has the consequence of producing some wastes that are radioactive, especially in the form of spent fuels which are classified as high level nuclear wastes. Nuclear fuel wastes must be managed properly in order to protect public and environment from its big potential hazard. One type of long term management for nuclear fuel wastes is the final disposal in a permanent storage. Because of the importance of safety aspects for final disposal, it needs the involvement of government and the public to determine the reliability and the acceptance of final disposal concept. Those involvements can be implemented in some aspects such as regulation aspect, review and assessment process, and the public feedback. The evaluation on the plan of long term management for nuclear fuel wastes in Canada provides Indonesia an overview of its long term management plans for all radioactive materials, including nuclear fuel wastes generated from the nuclear power plant which is planned to be in service by 2016. (author)

  4. Decision support models for solid waste management: Review and game-theoretic approaches

    International Nuclear Information System (INIS)

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-01-01

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed

  5. Decision support models for solid waste management: Review and game-theoretic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece); Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence (Greece); Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece)

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  6. The Role of ISO 9000 Certification on Waste Management of Leather Industry

    International Nuclear Information System (INIS)

    Susetyo Hario Putero; Dhani Astuti

    2008-01-01

    State of industry in an area could increase economy of this area. On the other hand, industry may be produce the waste. There are many factor influencing the success of industrial waste management. At present, ISO 14000 is known as an international environmental management standard. Practically, several matter required for ISO 14000 are similar with ISO 9000. So, the role of ISO 9000 certification on supporting waste management program of leather industry has been studied. Study has been pursued by comparing the environmental management systems of 2 leather industries in Sitimulyo, Piyungan, Bantul. Staff working way has been observed to know the suitability with working procedures and implementation of safety aspect on daily working. Observation of waste treatment facility and measurement of Chrome concentration also has been done. Samples were analysed using AAS method in Department of Chemistry, Faculty of Mathematics and Natural Science, Gadjah Mada University. Decontamination Factor (DF) was calculated by comparing the Chrome concentrations on outside plant and in waste treatment facility. Commitment of management and orderliness of system as required on ISO 9000 certification could push the industry to well execute waste management program as a part of environmental management system. ISO 9000 certification is convinced to make awareness of industry grow for continually improving their capability, including their capacity of waste treatment facility. (author)

  7. Waste management, decommissioning and environmental restoration for Canada's nuclear activities. Proceedings

    International Nuclear Information System (INIS)

    2011-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held in Toronto, Ontario, Canada on September 11-14, 2011. The conference provided a forum for discussion of the status and proposed future directions of technical, regularly, environmental, social and economic aspects of radioactive waste management, nuclear facility decommissioning, and environmental restoration activities for Canadian nuclear facilities. The conference included both plenary sessions and sessions devoted to more detailed technical issues. The plenary sessions were focussed on three broad themes: the overall Canadian program; low and intermediate waste; and, international perspectives. Topics of the technical sessions included: OPG's deep geologic repository for low and intermediate level waste; stakeholder interactions; decommissioning projects; uranium mine waste management; used fuel repository - design and safety assessment; federal policies, programs and oversight; regulatory considerations; aboriginal traditional knowledge; geological disposal - CRL site classification; geological disposal - modelling and engineered barriers; Port Hope Area Initiative; waste characterization; LILWM - treatment and processing; decommissioning projects and information management; international experience; environmental remediation; fuel cycles and waste processing.

  8. Predisposal management of high level radioactive waste. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is generated in the generation of electricity in nuclear power plants and in the use of radioactive material in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized. The principles and requirements that govern the safety of the management of radioactive waste are presented in 'The Principles of Radioactive Waste Management', 'Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety' and 'Predisposal Management of Radioactive Waste, Including Decommissioning'. The objective of this Safety Guide is to provide regulatory bodies and the operators that generate and manage radioactive waste with recommendations on how to meet the principles and requirements established in Refs for the predisposal management of HLW. This Safety Guide applies to the predisposal management of HLW. For liquid HLW arising from the reprocessing of spent fuel the recommendations of this Safety Guide apply from when liquid waste from the first extraction process is collected for storage and subsequent processing. Recommendations and guidance on the storage of spent fuel, whether or not declared as waste, subsequent to its removal from the storage facility of a reactor are provided in Refs. For spent fuel declared as waste this Safety Guide applies to all activities subsequent to its removal from the storage facility of a reactor and prior to its disposal. Requirements pertaining to the transport of spent fuel, whether or not declared as waste, and of all forms of HLW are established. This Safety Guide provides recommendations on the safety aspects of managing HLW, including the planning, design, construction, commissioning, operation and decommissioning of equipment or facilities for the predisposal management of HLW. It addresses the following elements: (a) The characterization and processing (i.e. pretreatment

  9. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  10. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  11. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  12. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  13. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  14. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  15. A multi-objective approach to solid waste management

    International Nuclear Information System (INIS)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).

  16. A multi-objective approach to solid waste management.

    Science.gov (United States)

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  17. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  18. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  19. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The article cites and summarizes the papers on the topics: economic and ecological importance of waste management, reprocessing of nuclear fuel and recycling of uranium and plutonium, waste management and final storage, transports and organizational aspects of waste management, presented at this symposium. (HR/AK) [de

  1. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  2. Design of Radioactive Waste Management Systems at Nuclear Power Plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide is addressed to the administrative and technical authorities and specialists dealing with the design, construction and operation of nuclear power plants, and in particular waste management facilities at nuclear power plants. This Guide has been prepared as part of the IAEA Waste Handling, Treatment and Storage programme. It is a follow-up document to the Code of Practice on Management of Radioactive Wastes from Nuclear Power Plants published in 1985 in the IAEA Safety Standards, Safety Series No. 69, in which basic principles for management of radioactive wastes at nuclear power plants are set out. The IAEA has established wide ranging programmes to provide Member States with guidance on different aspects of safety and technology related to thermal neutron power reactors and associated nuclear fuel cycle operations, including those for management of radioactive wastes. There are many IAEA publications related to various technical and safety aspects of different nuclear energy applications. All these publications are issued by the Agency for the use of Member States in connection with their own nuclear technological safety requirements. They are based on national experience contributed by experts from different countries and relate to common features in approaches to the problems discussed. However, the final decision and legal responsibility in any regulatory procedure always rest with the Member State. This particular Guide aims to provide general and detailed principles for the design of waste management facilities at nuclear power plants. It emphasizes what and how specific safety requirements for the management of radioactive wastes from nuclear power plants can be met in the design and construction stage. The safety requirements for operation of such facilities will be considered in the Agency's next Safety Series publication, Safety Guide 50-SG-011, Operational Management for Radioactive Effluents and Wastes Arising in Nuclear Power Plants

  3. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  4. Corrosion aspects of high-level waste disposal in salt domes

    International Nuclear Information System (INIS)

    Roerbo, K.

    1979-12-01

    In the ELSAM/ELKRAT waste management project it is planned that the high-level waste is glassified, encapsuled in canisters and finally deposited in a deep hole drilled in a salt dome. In the present report corrosion aspects of the canisters after deposition are discussed. The chemical environment will probably be a limited amount of brine coming from brine inclusions in the surrounding salt and moving up against the temperature gradient, the temperature at the canister surface being in the range of 100-150degC. The possible types of corrosion and the expected corrosion rates for a number of potential canister materials (mild steel, austenitic and ferritic stainless steels, Ni-base alloys, copper, titanium and a few combinations of materials) are discussed. Mild steel (possibly combined with an inner layer of copper or titanium) might possibly be an appropriate choice of material for the canister. (author)

  5. Third Finnish-German seminar on nuclear waste management 1986

    International Nuclear Information System (INIS)

    Lamberg, L.

    1988-01-01

    The scope of the seminar was to provide an interdisciplinary forum for exchange of information and experiences in the field of nuclear waste management. The highlights of the seminar focused on the following topics: overall reviews, waste products, nearfield phenomena, site investigations, performance assessment and decommissioning. All together 20 papers were presented. Reviews, status reports and experimental studies dealt with general research programs and current research and development activities including regulatory aspects. Extensive discussions provided and opportunity to identify issues and options for further research

  6. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  7. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  8. Radioactive waste management: outline of the research programme of the Commission of the European Communities

    International Nuclear Information System (INIS)

    Bresesti, M.

    1980-01-01

    The lines of activity, the main achievements and the perspectives of the research programme of the Commission of the European Communities on radioactive waste management, are presented. In particular an overall view of the activity on chemical separation and nuclear transmutation of actinides is given, as introduction to the various presentations of the JRC staff on specific aspects of this waste management strategy

  9. Waste management research abstracts no. 22. Information on radioactive waste programmes in progress

    International Nuclear Information System (INIS)

    1995-07-01

    The research abstracts contained in this issue have been collected during recent months and cover the period between January 1992 - February 1994 (through July 1994 for abstracts from the United States). The abstracts reflect research currently in progress in the field of radioactive waste management: environmental impacts, site selection, decontamination and decommissioning, environmental restoration and legal aspects of radioactive waste management. Though the information contained in this publication covers a wide range of programmes in many countries, the WMRA should not be interpreted as providing a complete survey of on-going research and IAEA Member States. For the first time, the abstracts published in document are only in English language. In addition, the abstracts received for this issue have been assigned INIS subject category codes and thesaurus terms to facilitate searches and also to fully utilize established sets of technical categories and terms

  10. Leaching tests as a tool in waste management to evaluate the potential for utilization of waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Sloot, H.A. van der [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kosson, D.S. [Rutgers Univ., Piscataway, NJ (United States)

    1995-12-01

    Several waste materials from large scale industrial processes possess technical properties that would allow their use in certain construction applications, e.g. coal fly ash, slags from large scale industrial melting and ore processing, and incinerator residues. The disposal of such materials requires space and controlled landfills to minimize long term environmental risks. The beneficial use of such bulk materials is an attractive alternative, if it can be shown that such applications are environmentally acceptable. For this management of wastes and the decision to either dispose or use, information on the environmental properties of materials is needed. Leaching tests have been developed to assess such properties. These have been designed typically in relation to regulatory tools, not as instruments to guide the management of wastes and the possibilities to improve material properties. New methods have been designed to address this aspect, in which maximum benefit can be derived from knowledge of the systematic behaviour of materials and the already existing knowledge in other countries producing similar residues. After initial detailed characterization, concise procedures can be used for control purposes focused on the typical aspects of a certain residue stream. Examples of existing knowledge in this field will be presented.

  11. The Community's R and D Programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and storing radwaste. The following aspects are investigated: - processing of solid waste from reactors, reprocessing plants and the plutonium fuel fabrication; - intermediate and terminal storage of high activity and alpha wastes; - advanced waste management methods as the storage of gaseous wastes. This report presents the most important results achieved under the programme. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  12. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  13. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  14. Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base

  15. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  16. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  17. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  18. Guide to the Canadian nuclear fuel waste management program. 2.ed

    International Nuclear Information System (INIS)

    Rosinger, E.L.J.; Lyon, R.B.; Gillespie, P.; Tamm, J.

    1983-02-01

    This document describes the administrative structure and major research and development components of the Canadian Nuclear Fuel Waste Management Program. It outlines the participating organizations, summarizes the program statistics, and describes the international cooperation and external review aspects of the program

  19. A comparison of municipal solid waste management in Berlin and Singapore.

    Science.gov (United States)

    Zhang, Dongqing; Keat, Tan Soon; Gersberg, Richard M

    2010-05-01

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  1. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  2. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  3. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  4. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  5. Experience of the Low-Level Radioactive Waste Management Office with EARP

    International Nuclear Information System (INIS)

    Franklin, B.J.; Pollock, R.W.

    1996-01-01

    The Low-Level Radioactive Waste Management Office (LLRWMO) was established by the federal government in 1982 to carry out the government's responsibilities for low-level radioactive waste (LLRW) management in Canada. The LLRWMO mandate includes the resolution of historic waste problems which are a federal responsibility. Assessment of LLRWMO projects in accordance with the federal Environmental Assessment Review Process (EARP) has been a long-standing requirement, both as a matter of AECL policy and because the work is federally funded. Several projects have required interim storage at, or near, the original waste site. This aspect, interim storage, can be controversial, and is the primary focus of this paper. Specifically, the paper describes LLRWMO experience with environmental assessment, including public consultation as an integral part of the assessment process, for projects from 1983 to present which have involved substantial volumes of contaminated soil. (author)

  6. Records for radioactive waste management up to repository closure: Managing the primary level information (PLI) set

    International Nuclear Information System (INIS)

    2004-07-01

    The objective of this publication is to highlight the importance of the early establishment of a comprehensive records system to manage primary level information (PLI) as an integrated set of information, not merely as a collection of information, throughout all the phases of radioactive waste management. Early establishment of a comprehensive records system to manage Primary Level Information as an integrated set of information throughout all phases of radioactive waste management is important. In addition to the information described in the waste inventory record keeping system (WIRKS), the PLI of a radioactive waste repository consists of the entire universe of information, data and records related to any aspect of the repository's life cycle. It is essential to establish PLI requirements based on integrated set of needs from Regulators and Waste Managers involved in the waste management chain and to update these requirements as needs change over time. Information flow for radioactive waste management should be back-end driven. Identification of an Authority that will oversee the management of PLI throughout all phases of the radioactive waste management life cycle would guarantee the information flow to future generations. The long term protection of information essential to future generations can only be assured by the timely establishment of a comprehensive and effective RMS capable of capturing, indexing and evaluating all PLI. The loss of intellectual control over the PLI will make it very difficult to subsequently identify the ILI and HLI information sets. At all times prior to the closure of a radioactive waste repository, there should be an identifiable entity with a legally enforceable financial and management responsibility for the continued operation of a PLI Records Management System. The information presented in this publication will assist Member States in ensuring that waste and repository records, relevant for retention after repository closure

  7. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  9. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    Science.gov (United States)

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.

  10. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    International Nuclear Information System (INIS)

    Laurent, Alexis; Clavreul, Julie; Bernstad, Anna; Bakas, Ioannis; Niero, Monia; Gentil, Emmanuel; Christensen, Thomas H.; Hauschild, Michael Z.

    2014-01-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs

  11. Review of LCA studies of solid waste management systems – Part II: Methodological guidance for a better practice

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO – Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01

    Highlights: • We perform a critical review of 222 LCA studies of solid waste management systems. • We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. • Malpractices exist in many methodological aspects with large variations among studies. • Many of these aspects are important for the reliability of the results. • We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  12. Alpha-contaminated waste management workshop

    International Nuclear Information System (INIS)

    1982-12-01

    These proceedings are published to provide a record of the oral presentations made at the DOE Alpha-Contaminated Workshop held in Gaithersburg, Maryland, on August 10-13, 1982. The papers are transcriptions of these oral presentations and, as such, do not contain as significant detail as will be found in the reviewed papers to be published in the periodical Nuclear and Chemical Waste Management in the first issue for 1983. These transcriptions have been reviewed by the speakers and some illustrations have been provided, but these contain only the preliminary information that will be provided in the technical papers to be published in the periodical. These papers have been grouped under the following headings: source terms; disposal technology and practices for alpha-contaminated waste; risk analyses and safety assessments. These papers in addition to those dealing with legislative and regulatory aspects have been abstracted and indexed for the Energy Data Base

  13. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Decision in Principle of the Council of State on the organisation of nuclear waste management

    International Nuclear Information System (INIS)

    1978-01-01

    This Decision, which came into force on the date of its publication, contains general guidelines to be followed for nuclear waste management in nuclear facilities until the entry into force of special legislation on the organisational and economic aspects of such management. It provides in particular that radioactive waste 'producers' will bear financial responsibility for the waste they produce and must collect funds for waste management from the time their installation operates, while ensuring that the real value of these funds is maintained. During the period preceding the entry into force of the above-mentioned legislation, the terms of the Decision will be included in all permits for nuclear facilities. (NEA) [fr

  15. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  16. International conference on issues and trends in radioactive waste management. Contributed papers

    International Nuclear Information System (INIS)

    2002-01-01

    This publication contains 78 contributed papers submitted on issues falling within the thematic scope of the Conference which were accepted by the Conference Programme Committee for consideration at the conference. The papers are grouped into the following chapters: control of discharges, environmental aspects; long-term storage; geological disposal; management of radioactive waste, including sealed sources; management of radioactive waste from past eras; regulatory infrastructure, decision making, stakeholders; retention of information, long-term control, standards; specific studies; and international co-operative efforts. Each of the papers was indexed separately

  17. International conference on issues and trends in radioactive waste management. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This publication contains 78 contributed papers submitted on issues falling within the thematic scope of the Conference which were accepted by the Conference Programme Committee for consideration at the conference. The papers are grouped into the following chapters: control of discharges, environmental aspects; long-term storage; geological disposal; management of radioactive waste, including sealed sources; management of radioactive waste from past eras; regulatory infrastructure, decision making, stakeholders; retention of information, long-term control, standards; specific studies; and international co-operative efforts. Each of the papers was indexed separately.

  18. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  20. DIALYSIS SERVICES’ INFECTED WASTE: A DISCUSSION ABOUT ITS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Izilda Simões Vitorino Eliam

    2006-12-01

    Full Text Available ABSTRACT: Professionals of the dialysis services face risky situations since from the accomplishment of the pratical procedures to the management of the different kinds of waste generated in these services. Accidents with needlestick materials represent one of the biggest risks for workers of the health. The objective was to characterize the management of infected waste in the dialysis services in Goiânia - GO. This is a descriptive study, with data collected in 2004, march, by check list elaborated accordancing to RDC 33/ 03/ANVISA, previously validated, with ethical and legal aspects observed and legal allowance of the eleven services. It was clearly shown that the discharging of needlestick materials is done specific by four units of service; seven services improvise the container, using bottles of dialysis solution, in order to deischarge the materials. In eight services milky white bags were used to discharge the dialysers. The segregation of the needlestick material waste does happen next to the generating source in the majority of the units (91%. The majority of the units didn’t have dustbin for infected waste with covers in motion for pedal. The internal transport is made manually in 82% of the services. This study concluded that in the majority of the researched services, the management of the waste does not follow the biosecurity rules, increasing the collective biological risk. KEYWORDS: Medical Waste; Hospital Hemodialysis Units; Enviroment.

  1. Strategy implemented for a safe management of the waste arising from the Goiania accident

    International Nuclear Information System (INIS)

    Miaw, Sophia T.W.; Mezhari, Arnaldo; Shu, Jane; Xavier, Ana Maria

    1997-01-01

    The management of radioactive waste after the accident is discussed. Several aspects such as properties of the waste, the available infrastructure for its collection, the decontamination logistics, the motivation and commitment of works and the politically sensitive definition of handling different waste as well as the administrative procedure to set up reliable records on the collected waste are studied. Four years after the accident, corrosion was detected in some packages. Waste reconditioning, development and implementation of waste data base and development of a national safety evaluation procedure for the final disposal facility are presented

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  3. Resources from waste : integrated resource management phase 1 study report

    International Nuclear Information System (INIS)

    Corps, C.; Salter, S.; Lucey, P.; O'Riordan, J.

    2008-01-01

    Integrated resource management (IRM) of municipal waste streams and water systems requires a structured analysis of options that consider environmental aspects such as greenhouse gases, carbon taxes and credits. Each option's inputs and outputs are assessed to determine the net highest and best use and value. IRM focuses on resource recovery and extracting maximum value. It considers the overall net impact on the taxpayer and requires the integration of liquid and solid waste streams to maximize values for recovering energy in the form of biofuels, heat, minerals, water and reducing electricity demand. IRM is linked to water management through reuse of treated water for groundwater recharge and to offset potable water use for non-potable purposes such as irrigation, including potential commercial use, which contributes to maintaining or improving the health of watersheds. This report presented a conceptual design for the application of IRM in the province of British Columbia (BC) and analyzed its potential contribution to the provincial climate change agenda. The report discussed traditional waste management, the IRM approach, and resource recovery technology and opportunities. The business case for IRM in BC was also outlined. It was concluded that IRM has the potential to be a viable solution to water, solid and liquid waste management that should be less expensive, result in fewer environmental impacts, and provide greater flexibility than traditional approaches to waste management. 63 refs., 17 tabs., 21 figs., 10 appendices

  4. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  5. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  6. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  7. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  8. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  9. Waste management provisions in the political focus again

    International Nuclear Information System (INIS)

    Heller, W.

    2008-01-01

    In early January 2008, before the elections to the state parliament, the Social Democratic Party (SPD) in Hesse surprisingly announced that a state government led by the SPD would launch a legal initiative right away through the Federal Council 'to do away with the indirect subsidizing of nuclear power plant operators in connection with the provisions made for nuclear waste management and in the form of extensive exemptions from adequate nuclear liability'. The practice of making waste management provisions is subjected to a detailed analysis under aspects of law, business economics, the national economy, and fiscal regulations. The outcome shows that the legal provisions, confirmed also by a ruling of the European Court of Justice of December 2007, constitute neither a concession in the sense of a government subsidy nor a competitive advantage or a tax privilege. (orig.)

  10. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base

  11. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  12. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    Science.gov (United States)

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Disposal of toxic waste to Kualiti Alam

    International Nuclear Information System (INIS)

    Wilfred Paulus; Nik Marzukee; Syed Abd Malik

    2005-01-01

    The mandate to manage radioactive waste in this country was given to the Radioactive Waste Management Centre, MINT as the only agency allowed to handle the waste. However, wastes which are produced at MINT also include the non-radioactive toxic waste. The service to dispose off this non-radioactive toxic waste has been given to Kualiti Alam, the only company licensed to carry out such activity. Up to now, MINT's Radioactive Waste Management Centre has delivered 3 consignments of such waste to the company. This paper will detail out several aspects of managing the waste from the aspects of contract, delivering procedure, legislation, cost and austerity steps which should be taken by MINT's staff. (Author)

  14. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  15. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  16. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  17. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  18. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  19. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  20. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  1. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  2. Present trends in radioactive waste management policies in OECD countries and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years waste management has received increased attention not only at the national level but also internationally in order to harmonise to some extent the policies and practices to be followed and to continue to achieve a high safety standard in this field. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems covering not only the treatment and storage aspects for the short term but also the longer term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition to the discussion of policies and practices, a significant effort is also being initiated on research and development. The disposal problem has been given priority particularly as far as high level waste and alpha bearing wastes are concerned. Close international co-operation has been initiated in this sector as well as on the conditioning of high level radioactive waste. As a result of these efforts an international R and D programme is being established at the site of the Eurochemic reprocessing plant on the incorporation of high level waste into metal matrices. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes in detail the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities [fr

  3. Waste management plan for pipeline construction works: basic guideline for its preparation

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Souza, Izabel C.A. de; Araujo, Ronaldo G. de [TELSAN, Rio de Janeiro, RJ (Brazil); Souza, Tania Mara [IMC-SASTE, Sao Paulo,SP (Brazil); Veronez, Fernanda A [Bourscheid, Porto Alegre, RS (Brazil)

    2009-07-01

    During the stage of implementation of the land pipes enterprise, one of the main environmental aspects to be considered was the creation of solid and liquid waste. To mitigate the possible impacts to the environment, the main adopted mitigate measure was the implementation of a Waste Management Plan - WMP. Thus, the management of waste from pipes construction has the challenge of a great variety of stages and phases for the implementation of pipes and the diversity of local situations related to the topographic and hydro-geologic conditions. Considering the peculiarity of the pipes activities, this article proposes the elaboration of a Basic Guide to be used as reference for the creation of WMP's for similar enterprises, using as foundation the data from the three Gas Pipelines: Cabiunas - Vitoria; Vitoria - Cacimbas and Cacimbas - Catu. After the analysis of the three mentioned enterprises, it was verified that the waste management generated on the building and assembling of the land pipes normally occurs in accord with previous planning, but there's no systematization for the waste to be better recycled and reutilized, thus mitigating their creation. (author)

  4. The health services wastes management of a sample of brazilian hospitals

    Directory of Open Access Journals (Sweden)

    Claude Machline

    2006-07-01

    Full Text Available This paper focuses the Health Services wastes management of 70 Brazilian hospitals. As the outcome of a distance course, in 2003, each hospital was required to describe its existing Health Services wastes system and its Plan for improvement.The project was administered by an association of two leading Brazilian educational entities, the Fundação Getulio Vargas and the Universidade Federal de Santa Catarina. Data concerning collection, disposal and final treatment of infectious, hazardous, chemical, radioactive and common wastes were tabulated and analysed. Water supply, liquid effluents and gaseous emissions were also investigated..Their technical and economical aspects were appraised. The research indicates that the sampled hospitals are still in an incipient stage of wastes management. An extensive gap exists between the present situation and the legal and acceptable requirements they should comply with, both on health care and on environmental standpoints.

  5. The Communities R and D Programme: radioactive waste management and storage

    International Nuclear Information System (INIS)

    1977-01-01

    The European Community's programme is the first and to this date the only joint international action dealing with those issues, which might well become decisive for the future of nuclear energy -the management and storage of radioactive waste. The first Annual Progress Report describes the scope and the state of advancement of this indirect action programme. At present 24 research contracts with research institutes in almost every member country of the EC are either signed or in the final stages of negociation. The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and stoping radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha wastes; advanced waste management methods as the storage of gaseous waste and the separation and transmutation of actinides. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  6. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  7. DOE waste management program-current and future

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1993-01-01

    The back end of the nuclear fuel cycle, as well as many operations in the Department of Energy, involves management of radioactive and hazardous waste and spent nuclear fuel. Described herein is the current and anticipated Department's Waste Management Program and general information about the Program for managing and disposing of waste that will illustrate the importance of air cleaning and treatment in assuring protection of the public and our environment. The structure and responsibilities of the Office of Environmental Restoration and Waste Management (EM) are described. The categories of waste managed by the Office of Waste Management (OWM) are defined. The problems of waste management, waste minimization, and waste treatment, storage, and disposal are discussed. 4 figs

  8. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  9. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  10. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  11. Radioactive waste management turning options into solution

    International Nuclear Information System (INIS)

    Neubauer, J.

    2000-10-01

    Most of the statements from representatives of different countries and institutions focused on the status of high level radioactive waste management, including spent fuel repositories. Speakers dealing with such topics were representatives from countries applying nuclear power for electricity production. They all reported about there national programs on technical and safety aspects of radioactive waste management. The panel discussion extended to questions on political sensitivities and public acceptance; in this respect, interesting developments are taking place in Finland and Sweden. It is expected that Finland will operate a final repository for spent fuel in 10 - 15 years from now, followed close by Sweden. Other countries, however, face decisions by policy makers and elected officials to postpone dealing with waste disposal concerns. In this connection there is relevant experience in our country, too - even in the absence of spent fuel or other high level waste to be dealt with. During personal discussions with representatives of other countries not using nuclear power it was confirmed that there are similar or shared experiences. Development of publicly -accepted solutions to radioactive waste management remains an important issue. Independent of the amount or the activity of radioactive waste, the public at large remains skeptical despite the agreement among experts that disposal can be safe, technically feasible and environmentally sound. In countries not using nuclear power there are only small quantities of low and intermediate level radioactive waste. Therefore, international co-operation among such countries should be an option. There was common understanding by representatives from Norway, Italy and Austria that international co-operation should be developed for treatment and disposal of such waste. For the moment however it has to be accepted that, for political reasons, it is not possible. Forced to deal with the lack of near-term solutions, the

  12. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.

  13. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1

    International Nuclear Information System (INIS)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report

  14. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  15. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  16. Radiation Protection and Radioactive Waste Management in the Operation of Nuclear Power Plants. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide recommendations to the regulatory body, focused on the operational aspects of radiation protection and radioactive waste management in nuclear power plants, and on how to ensure the fulfilment of the requirements established in the relevant Safety Requirements publications. It will also be useful for senior managers in licensee or contractor organizations who are responsible for establishing and managing programmes for radiation protection and for the management of radioactive waste. This Safety Guide gives general recommendations for the development of radiation protection programmes at nuclear power plants. The issues are then elaborated by defining the main elements of a radiation protection programme. Particular attention is paid to area classification, workplace monitoring and supervision, application of the principle of optimization of protection (also termed the 'as low as reasonably achievable' (ALARA) principle), and facilities and equipment. This Safety Guide covers all the safety related aspects of a programme for the management of radioactive waste at a nuclear power plant. Emphasis is placed on the minimization of waste in terms of both activity and volume. The various steps in predisposal waste management are covered, namely processing (pretreatment, treatment and conditioning), storage and transport. Releases of effluents, the application of authorized limits and reference levels are discussed, together with the main elements of an environmental monitoring programme

  17. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  18. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  19. Management of waste electrical and electronic equipment in Romania: A mini-review.

    Science.gov (United States)

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  20. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  1. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  2. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  3. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  4. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  5. Nuclear Waste Management Decision-Making Support with MCDA

    Directory of Open Access Journals (Sweden)

    A. Schwenk-Ferrero

    2017-01-01

    Full Text Available The paper proposes a multicriteria decision analysis (MCDA framework for a comparative evaluation of nuclear waste management strategies taking into account different local perspectives (expert and stakeholder opinions. Of note, a novel approach is taken using a multiple-criteria formulation that is methodologically adapted to tackle various conflicting criteria and a large number of expert/stakeholder groups involved in the decision-making process. The purpose is to develop a framework and to show its application to qualitative comparison and ranking of options in a hypothetical case of three waste management alternatives: interim storage at and/or away from the reactor site for the next 100 years, interim decay storage followed in midterm by disposal in a national repository, and disposal in a multinational repository. Additionally, major aspects of a decision-making aid are identified and discussed in separate paper sections dedicated to application context, decision supporting process, in particular problem structuring, objective hierarchy, performance evaluation modeling, sensitivity/robustness analyses, and interpretation of results (practical impact. The aim of the paper is to demonstrate the application of the MCDA framework developed to a generic hypothetical case and indicate how MCDA could support a decision on nuclear waste management policies in a “small” newcomer country embarking on nuclear technology in the future.

  6. Radioactive waste management at the Paul Scherrer Institute, the largest Swiss national research centre

    Directory of Open Access Journals (Sweden)

    Beer Hans-Frieder

    2009-01-01

    Full Text Available This paper presents the current radioactive waste management practices at the Paul Scherrer Institute (PSI. The PSI contributes to waste related problems in two aspects, namely to the scientific basis of waste management and disposal, and to the practical treatment and storage of radioactive waste. In addition to the tasks of treating on-site generated waste, PSI manages the wastes from medicine, industry, and research throughout Switzerland on behalf of the government. Therefore the Dismantling and Waste Management Section is a part of the Logistics Department at PSI. Proved and accepted methods have to be developed for the safe conditioning and storage of radioactive waste. Various waste treatment facilities exist at PSI. The conditioning facility is dedicated to sorting, compaction by a 120 t press, solidification with special cement, and embedding in concrete. Specialized facilities were constructed for waste from the decommissioning of research reactors. Activated aluminum and its alloys were melted in crucibles and embedded in concrete in a concrete container. After dismantling the structural material of the reactors, it was embedded in concrete in the same manner. For the conditioning of activated reactor graphite, a dedicated method was developed. Graphite was crushed to replace sand in the grout, for embedding radioactive waste in concrete containers. For accelerator waste, a walk-in hot cell equipped with an electrically driven manipulator is available where the highly activated large components (targets, beam dump can be cut into pieces and embedded in concrete in containers. To guarantee the fulfillment of the demands of the regulators, the Dismantling and Waste Management Section applies an accredited quality management system for the safe collection, conditioning, and storage of radioactive waste.

  7. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  8. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  9. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  10. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  11. Mining techniques and some aspects of high-level waste disposal

    International Nuclear Information System (INIS)

    Hoefnagels, J.A.R.

    1980-01-01

    The solutions to many problems of underground waste disposal involve mine engineering. This article attempts to highlight chosen issues and thereby create an overall impression, avoiding emphasis on single-aspect calculation. High level waste (H.L.W.) dominates current radioactive waste studies because of its specific characteristics and is therefore dealt with in this paper. However, depending on the method of disposal the other categories of radio active waste might become problems by themselves because of the relatively large quantities involved. (Auth.)

  12. The management of industrial wastes in hydrology; La gestion des dechets industriels en hydrologie

    Energy Technology Data Exchange (ETDEWEB)

    Elbaz-Seboun, V.

    1998-07-08

    The industrial wastes are made of different kind of wastes: the inert wastes, the banal wastes (municipal wastes), the special wastes containing noxious elements with respect to human health and environment, and the radioactive wastes. Each industry generates its own effluents (sludges from water treatment plants and leachates from rubbish dumps). The main water pollutions are due to the fermentescible organic matters, nitrates and heavy metals from the industrial waste waters. The aim of the public water agencies is to better protect the environment and to give help to the industrialists in the management of their wastes: reduction at the source, selective collection, valorization, transportation and processing. Non-valorizable wastes must be processed: physico-chemical and biological processing (bio-filtering, coagulation-flocculation, membranes and industrial gases), incineration (organic wastes), disposal in class 1 technical burial centres after stabilization (ultimate wastes). Since July 2002, only the ultimate wastes will be disposed off and all class 2 and 3 dumps must have been rehabilitated. This work is divided into 2 parts: part 1 gives a presentation of the different types of industrial wastes and of their management (origin of wastes, effluents, heavy metals, environmental impact, legal aspects, wastes management, valorization). The second part describes the different processes for the treatment of industrial wastes (conventional processes, physico-chemical and biological processes, incineration, tipping, processing of radioactive wastes). (J.S.)

  13. Strategy implemented for a safe management of the waste arising from the Goiania accident

    Energy Technology Data Exchange (ETDEWEB)

    Miaw, Sophia T.W. [International Atomic Energy Agency, Vienna (Austria). Safety Co-ordination Section; Mezhari, Arnaldo; Shu, Jane; Xavier, Ana Maria [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Superintendencia de Licenciamento e Controle

    1997-12-31

    The management of radioactive waste after the accident is discussed. Several aspects such as properties of the waste, the available infrastructure for its collection, the decontamination logistics, the motivation and commitment of works and the politically sensitive definition of handling different waste as well as the administrative procedure to set up reliable records on the collected waste are studied. Four years after the accident, corrosion was detected in some packages. Waste reconditioning, development and implementation of waste data base and development of a national safety evaluation procedure for the final disposal facility are presented 11 refs., 5 tabs.

  14. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  15. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  16. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  17. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  18. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  19. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  20. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  1. Electronic waste management approaches: An overview

    International Nuclear Information System (INIS)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems

  2. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  3. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  4. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  5. Radioactive Waste Management in Central Asia - 12034

    Energy Technology Data Exchange (ETDEWEB)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid [Norwegian Radiation Protection Authority (Norway)

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through

  6. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  7. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  8. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  9. Policies to promote the waste management hierarchy : with special attention to the paper cycle in Europe

    NARCIS (Netherlands)

    Beukering, van P.J.H.; Brander, L.M.

    2004-01-01

    The main objective of this study was to review policy instruments available to promote aspects of the waste management hierarchy. The motivation of this review is embedded in two questions: (1) What policy instruments are most effective in promoting the waste hierarchy? and, (2) Should EU policies

  10. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  11. 78 FR 46940 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2013-08-02

    ...The U.S. Environmental Protection Agency (EPA or the Agency) invites comment on additional information obtained in conjunction with the proposed rule: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From Electric Utilities that was published in the Federal Register on June 21, 2010. This information is categorized as: additional data to supplement the Regulatory Impact Analysis and risk assessment, information on large scale fill, and data on the surface impoundment structural integrity assessments. EPA is also seeking comment on two issues associated with the requirements for coal combustion residual management units. The Agency is not reopening any other aspect of the proposal or underlying support documents, and will consider comments on any issues other than those raised in the NODA to be late comments and not part of the rulemaking record.

  12. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  13. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  14. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  15. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  16. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  17. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  18. Experiences in the management of plutonium-containing solid-wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hild, W.; Scheffler, K.

    1974-10-01

    Solid-plutonium-containing wastes from a fuel production plant, a reprocessing plant and several research laboratories are treated at the decontamination department of the Karlsruhe Nuclear Research Center for disposal in the Asse salt mine. Conditioning as well as future aspects in α-waste management are the subject of this Paper. (orig.) [de

  19. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  20. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  1. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  2. Understanding the role of waste prevention in local waste management: A literature review.

    Science.gov (United States)

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  3. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    Danska, V.

    2009-01-01

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  4. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  5. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options

  6. Argentina: Disposal aspects of RA-1 research reactor decommissioning waste

    Energy Technology Data Exchange (ETDEWEB)

    Harriague, S; Barberis, C; Cinat, E; Grizutti, C; Scolari, H [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2007-12-15

    The objective of the project is to analyze disposal aspects of waste from total dismantling of Argentinean research reactors, starting with the oldest one, 48 years old RA-1. In order to estimate decommissioning waste, data was collected from files, area monitoring, measurements, sampling to measure activity and composition, operational history and tracing of operational incidents. Measurements were complemented with neutron activation calculations. Decommissioning waste for RA-1 is estimated to be 71.5 metric tons, most of it concrete (57 tons), the rest being steels, lead and reflector graphite (4.8 tons). Due to their low specific activities, no disposal problems are foreseen in the case of metals and concrete. Disposal of aluminium, steel, lead and concrete is analyzed. On the contrary, as the country has no experience in managing graphite radioactive waste, work was concentrated on that material. Stored (Wigner) energy may exist in RA-1 graphite reflectors irradiated at room temperature. Evaluation of stored energy by calorimetric methods is proposed, and its annealing by inductive heating; HEPA filters should be used to deal with gaseous activity emissions, mainly Cl-36 and C-14. Galvanic corrosion, dust explosion, ignition and oxidation can be addressed and should not become disposal problems. Care must be taken with graphite dust generation and disposal, due to wetting and flotation problems. Lessons learned from the project are presented, and the benefits of sharing international experience are stressed. (author)

  7. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  8. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  9. Environmental management aspects for TBT antifouling wastes from the shipyards.

    Science.gov (United States)

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  10. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  11. A step-by-step development of radioactive waste management strategy

    International Nuclear Information System (INIS)

    Lytsy, Tero; Yla-Mella, Mia

    2013-01-01

    Fennovoima is Finland's third nuclear power company founded in 2007. Fennovoima will build a new nuclear power plant, Hanhikivi 1, in Pyhajoki municipality located in Northern Finland. Currently Fennovoima is evaluating bids from reactor suppliers. Originally two suppliers, AREVA and Toshiba Heavy Industries were invited to bid for the plant but later also a bid from Rosatom were invited. The plant supplier will be selected in 2013. Platom is a Finnish company with extensive experience in radioactive waste management. In the beginning of 2008, Platom was assigned by Fennovoima as radioactive waste management consultant and to develop radioactive waste management strategy and to support Fennovoima in negotiations with plant suppliers in waste management aspects. Since Fennovoima has started, there have been some changes to the regulatory requirements which had to be taken into account while developing the strategy. One important change is due to the Government Degree 27.11.2008/736 which establishes a new waste category of very low-level waste following international development and the 'new' IAEA waste classification. Other important change was introduced by the change 342/2008 to the Nuclear Energy Act allowing some nuclear waste to be delivered to another country for treatment. These and many more requirements had to be considered when developing the strategy. Early work by Platom was mostly done to support development of application for Decision-in-Principle. This was the first important licensing step for Fennovoima. Work started with studies and plans which were used by Fennovoima to gather the know-how required to draw up the application. Descriptions of waste streams and waste management technologies were developed as well as preliminary waste inventories and studies for final disposal, including preliminary dimensioning of the repository facilities. Based on these plans nuclear regulator's preliminary safety assessment was performed. The

  12. The waste management program VUB-AZ: An integrated solution for nuclear biomedical waste management

    International Nuclear Information System (INIS)

    Covens, P.; Sonck, M.; Eggermont, G.; Meert, D.

    2001-01-01

    unit will be compared with the MDA obtained by different handheld monitors. All results will be finally correlated to the different proposed clearance levels. These clearance levels can easily be met through on-site storage for radionuclides with half-life less than 1 year. For a waste stream of 1000 packages or more a year, a management software is indispensable. The software 'WasteMan' was developed on-site. This user-friendly software takes care of the entire storage procedure and allows a complete bookkeeping of the daily nuclear waste streams. Based on the sophisticated waste collection procedure, the WasteMan software allows both a complete inventory of the storage facility and a full traceability of all waste packages from production to either clearance or disposal. At the same time all necessary documents for either clearance or disposal are generated automatically. The data-exchange between several interfaces enables timesaving administration. In addition to these technical aspects a general analysis of the economic impact of such an on- site decay program will be made for a medium sized university with hospital, yielding a serious reduction of waste handling costs. This waste storage program, including the complete measurement set-up and the necessary management software, was recently installed in a second university, proving the general applicability of the whole concept for biomedical nuclear waste. Many hospitals and other biomedical centres however produce small quantities of nuclear waste for which investments, like measurement equipment and decay rooms, are not cost-effective. The installation of a regional centre for nuclear biomedical waste will be presented here as an alternative solution for this problem

  13. System study of alternative waste management techniques: Final report

    International Nuclear Information System (INIS)

    1986-01-01

    This report summarizes the important results achieved in conjunction with the Research and Development Priority ''Alternative Waste Management Techniques'' sponsored by the Federal Ministry of Research and Technology from 1981 to 1984. The subject of these studies was solely ''direct disposal'' of spent fuel elements. For this purpose a reference concept was selected from a variety of possible processes and engineered in detailed form by firms in the nuclear industry. Those who worked on the engineering concepts consider this waste management method technically feasible. Several disposal casks have been fabricated. The basic licensability of direct disposal can be evaluated on the basis of the documentation developed by the companies. The direct disposal method was compared with the ''integrated waste management concept'' using reference fuel cycles with respect to the following criteria: radiological safety and nuclear material safeguards and, in addition, economic and energy-policy aspects. It was found that with respect to radiological safety, including the long-term safety of the final repository, there are no significant differences between the two fuel cycles with and without reprocessing. With respect to the nuclear material safeguards of a final repository containing spent fuel elements, there are still a number of unanswered questions. From an economic standpoint, direct disposal will be more economical in the foreseeable future than integrated waste management. Quantification of the effects of one or the other waste management method on the national economy is not necessarily possible. Reprocessing is supported primarily by technological and energy-policy considerations. On the basis of the results, the conclusion is reached that reprocessing should be pursued further, but that at the same time direct disposal should be developed to the point of practical maturity

  14. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  15. Technical appraisal of the current situation in the field of radioactive waste management

    International Nuclear Information System (INIS)

    1985-01-01

    Industrial activities are regarded as safe even though a small risk always exists. The philosophy of radiation protection accepts this and recognises that some level of risk will also be associated with safe radioactive waste management. Therefore the objective of radioactive waste management is to look for a strategy which, taken as a whole, is considered safe and provides an acceptable balance of all the radiological, technical, social, political and economic considerations. The RWMC's appraisal underlines the need for such a balance while concentrating on radiological and technical factors, particularly on the long term safety aspects of radioactive waste management. The fundamental conclusion is that detailed short and long term safety assessments can now be made which give confidence that radiation protection objectives can be met with currently available technology for most waste types, and at a cost which is only a small fraction of the overall cost of nuclear-generated power

  16. Extended storage for radioactive wastes: relevant aspects related to the safety; Almacenamiento prolongado de residuos radiactivos: algunos aspectos de interes a considerar para su seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Reinaldo G.; Peralta V, José L.P.; Estevez, Gema G. F., E-mail: gesr@cphr.edu.cu, E-mail: peralta@cphr.edu.cu, E-mail: gema@cphr.edu.cu [Centro de Protección e Higiene de las Radiaciones (CPHR), Agencia de Energía Nuclear y Tecnologías de Avanzada (AENTA), La Habana (Cuba)

    2013-07-01

    The safe management of radioactive waste is an issue of great relevance globally linked to the issue of the peaceful use of nuclear energy. Among the steps in the management of this waste, the safe storage is one of the most important. Given the high costs and uncertainties existing among other aspects of the variants of disposal of radioactive waste, the prolonged storage of these wastes for periods exceeding 50 years is an option that different countries more and more value. One of the fundamental problems to take into account is the safety of the stores, so in this work are evaluated different safety components associated with these facilities through a safety analysis methodology. Elements such as human intrusion, the construction site, the design of the facility, among others are identified as some of the key aspects to take into account when evaluating the safety of these types of facilities. Periods of activities planned for a long-term storage of radioactive waste exceed, in general, the useful life of existing storage facilities. This work identified new challenges to overcome in order to meet the requirements for the achievement of a safe management of radioactive waste without negative impacts on the environment and man.

  17. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  18. Management of wastes from the refining and conversion of uranium ore concentrate to uranium hexafluoride

    International Nuclear Information System (INIS)

    1981-01-01

    This report is the outcome of an IAEA Advisory Group Meeting on ''Waste Management Aspects in Relation to the Refining of Uranium Ore Concentrates and their Conversion to Uranium Hexafluoride'', which was held in Vienna from 17 to 21 December 1979. The report summarizes the main topics discussed at the meeting and gives an overview of uranium refining processes, being used in nuclear industry. The meeting was organized by the International Atomic Energy Agency, Radioactive Waste Management Section

  19. Waste management plan for pipeline construction works: basic guideline for its preparation

    Energy Technology Data Exchange (ETDEWEB)

    Serricchio, Claudio; Caldas, Flaviana V. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Souza, Izabel C.A. de; Araujo, Ronaldo G. de [TELSAN, Rio de Janeiro, RJ (Brazil); Souza, Tania Mara [IMC-SASTE, Sao Paulo,SP (Brazil); Veronez, Fernanda A. [Bourscheid, Porto Alegre, RS (Brazil)

    2009-07-01

    During the stage of implementation of the land pipes enterprise, one of the main environmental aspects to be considered was the creation of solid and liquid waste. To mitigate the possible impacts to the environment, the main adopted mitigate measure was the implementation of a Waste Management Plan - WMP. Thus, the management of waste from pipes construction has the challenge of a great variety of stages and phases for the implementation of pipes and the diversity of local situations related to the topographic and hydro-geologic conditions. Considering the peculiarity of the pipes activities, this article proposes the elaboration of a Basic Guide to be used as reference for the creation of WMP's for similar enterprises, using as foundation the data from the three Gas Pipelines: Cabiunas - Vitoria; Vitoria - Cacimbas and Cacimbas - Catu. After the analysis of the three mentioned enterprises, it was verified that the waste management generated on the building and assembling of the land pipes normally occurs in accord with previous planning, but there's no systematization for the waste to be better recycled and reutilized, thus mitigating their creation. (author)

  20. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.