WorldWideScience

Sample records for waste management activities

  1. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  2. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  3. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  4. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  5. Waste Management Policy Framework to Mitigate Terrorist Intrusion Activities

    Energy Technology Data Exchange (ETDEWEB)

    Redus, Kenneth, S.

    2003-02-26

    A policy-directed framework is developed to support US Department of Energy (DOE) counterterrorism efforts, specifically terrorist intrusion activities that affect of Environmental Management (EM) programs. The framework is called the Security Effectiveness and Resource Allocation Definition Forecasting and Control System (SERAD-FACS). Use of SERAD-FACS allows trade-offs between resources, technologies, risk, and Research and Development (R&D) efforts to mitigate such intrusion attempts. Core to SERAD-FACS is (1) the understanding the perspectives and time horizons of key decisionmakers and organizations, (2) a determination of site vulnerabilities and accessibilities, and (3) quantifying the measures that describe the risk associated with a compromise of EM assets. The innovative utility of SERAD-FACS is illustrated for three integrated waste management and security strategies. EM program risks, time delays, and security for effectiveness are examined to demonstrate the significant cost and schedule impact terrorist activities can have on cleanup efforts in the DOE complex.

  6. Environmental Management of Human Waste Disposal for Recreational Boating Activities

    Science.gov (United States)

    Shafer; Yoon

    1998-01-01

    / A methodology to estimate the number of pump-out facilities and dump stations required to service human waste disposal for recreational power boating activities in Pennsylvania during the 1994 boating season is described. Study results suggest that a total of 39 additional pump-out stations and 13 dump stations may be required on seven major waterbodies: The Three Rivers Area, Lake Erie/Presque Isle Bay, Raystown Lake, the Susquehanna River, the Delaware River, Lake Wallenpaupack, and the Kinzua Reservoir. Suggestions for improving the methodology are provided. KEY WORDS: Human waste; Recreation; Power boating; Waste facilities; Waste disposal; Pennsylvania

  7. Biohazardous waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  8. Medical waste management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  9. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter, and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents.

  10. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  11. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  12. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  13. Deployed Force Waste Management

    Science.gov (United States)

    2004-11-01

    Granath J., Baky A., Thhyselius L., (2004). Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming...Municipal Solid Waste Management from a Systems Perspective. Journal of Cleaner Production , forthcoming article In this paper different waste

  14. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  15. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  16. Generation and management of solid waste resulting from tourist activities of the Porto de Galinhas - P

    Directory of Open Access Journals (Sweden)

    Jaqueline Guimarães Santos

    2015-04-01

    Full Text Available The significant solid waste generation, coupled with the lack of proper management of the waste generated, has been one of the issues of concern and conducting research on the part of scholars in the field. Tourism as an activity that positively impacts and negativity a given location, has emerged as an activity that can generate a lot of waste, especially in periods of high season, considering the increase of people moving to the tourist destinations. Accordingly, this study aims to analyze the generation and management of solid waste resulting from tourism in Porto de Galinhas, PE. We performed an exploratory, descriptive, qualitative study, conducted in the form of a case study in Porto de Galinhas, PE. The data collection was done interviews together social actors, as well as non-participant observation during data collection. The results showed that tourism activities in Porto de Galinhas result in a high amount of solid waste, and these are directed to inappropriate places. Although fate presents a combination of recyclable materials, RECYCLE, reuses this not a significant amount, given the proportion of waste generated.

  17. Assessment of national systems for obtaining local acceptance of waste management siting and routing activities

    Energy Technology Data Exchange (ETDEWEB)

    Paige, H.W.; Lipman, D.S.; Owens, J.E.

    1980-07-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties of obtaining local acceptance for siting of waste management facilities and activities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, time did not permit addressing in any detail their relevance to common problems in the US. It would appear the US could benefit from a periodic review of the successes and failures of these efforts, including analysis of their applicability to the US system. Of those countries (Germany, Sweden, Switzerland, Japan, Belgium, and the US) who are working to a time table for the preparation of a high-level waste (HLW) repository, Germany is the only country to have gained local siting acceptance for theirs. With this (the most difficult of siting problems) behind them they appear to be in the best overall condition relative to waste management progress and plans. This has been achieved without a particularly favorable political structure, made up for by determination on the part of the political leadership. Of the remaining three countries studied (France, UK and Canada) France, with its AVM production facility, is clearly the world leader in the HLW immobilization aspect of waste management. France, Belgium and the UK appear to have the least favorable political structures and environments for arriving at waste management decisions. US, Switzerland and Canada appear to have the least favorable political structures and environments for arriving at waste management decisions.

  18. Biomedical Waste Management

    OpenAIRE

    Sikovska, Biljana; Dimova, Cena; Sumanov, Gorgi; Vankovski, Vlado

    2016-01-01

    Medical waste is all waste material generated at health care facilities, such as hospitals, clinics, physician’s offices, dental practices, blood banks, and veterinary hospitals/clinics, as well as medical research facilities and laboratories. Poor management of health care waste potentially exposes health care workers, waste handlers, patients and the community at large to infection, toxic effects and injuries, and risks polluting the environment. It is essential that all medical waste ma...

  19. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  20. ICDF Complex Operations Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  1. Management Strategy for Hazardous Waste

    OpenAIRE

    Vilgerts, J; Timma, L; Blumberga, D.

    2012-01-01

    During the past year authorities, manufactures and scientists have been focused on the management and treatment methods of hazardous wastes, because they realized that “prevention costs” of activities connected to handling of hazardous waste are lower than “restoration costs” after damage is done. Uncontrolled management of hazardous substances may lead to contamination of any ecosystem on Earth: freshwater, ocean and terrestrial. Moreover leakage of toxic gasses creates also air pollution...

  2. E-waste management

    CERN Document Server

    Hieronymi, Klaus; Williams, Eric

    2012-01-01

    The landscape of electronic waste, e-waste, management is changing dramatically. Besides a rapidly increasing world population, globalization is driving the demand for products, resulting in rising prices for many materials. Absolute scarcity looms for some special resources such as indium. Used electronic products and recyclable materials are increasingly crisscrossing the globe. This is creating both - opportunities and challenges for e-waste management. This focuses on the current and future trends, technologies and regulations for reusable and recyclable e-waste worldwide.

  3. Mixed waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C.B.; Kirner, N.P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  4. Formulation and preparation on Hanford Waste Treatment Plan direct feed low activity waste effluent management facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  5. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  6. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  7. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  8. 40 CFR 270.230 - May I perform remediation waste management activities under a RAP at a location removed from the...

    Science.gov (United States)

    2010-07-01

    ... management activities under a RAP at a location removed from the area where the remediation wastes originated... Plans (RAPs) Obtaining A Rap for An Off-Site Location § 270.230 May I perform remediation waste management activities under a RAP at a location removed from the area where the remediation wastes originated...

  9. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  10. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  11. Solid Waste Management Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Solid waste management districts layer is part of a dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. This dataset...

  12. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... in the course of activities, the generation of hazardous and non hazardous waste is a ... Segregation of wastes and pre treatment of infectious wastes were not ...

  13. Potential manure in organic production use: management of municipal organic waste with activators

    Directory of Open Access Journals (Sweden)

    Ruiz Jessica

    2015-05-01

    Full Text Available The Tiquipaya Municipality produces 22 t day-1 of solid, 63% of it is organic and 37% is inorganic. This waste is disposed of in the Municipal Landfill, rendering it into an environmental and health threat. In order to diminish the negative effects of poor management of municipal solid waste in Tiquipaya, we have carried out the present study in the Tiquipaya municipal composting site, the municipal nursery and the facilities of the PROINPA foundation. At the beginning, the waste composting was done using two treatments: one with organic activator and the other without it. Later the same two methods were used in worm composting, this second process in turn yielded other four treatments two of which included organic activator. After 64 days, within the compost, the activator achieved to reduce 60.02% of the initial volume, leaving a remaining 39.99% of thick material. After the compost had been processed by the worms it was evaluated on the 47th day, we found that the organic activator treatment used from the beginning of the composting phase, yielded a 90.67% decrease from the initial volume of fine matter, compared to the other treatments; it left only 9.33% of thick material. Bio-tests were conducted on barley plants to evaluate the phytotoxicity of the worm compost, these studies showed that treatments with a 50% worm compost concentration had lower germination values (40 to 50%. Whereas treatments that contained 100% of worm compost stood out for their higher yield that ranged from 60 to 70% in their germination values.

  14. Sustainable waste management by production of activated carbon from agroforestry residues

    Directory of Open Access Journals (Sweden)

    Victor Ntuli

    2013-01-01

    Full Text Available Agroforestry waste presents a problem for disposal and negatively impacts on the environment if left to rot or burn. The aim of this study was to reduce environmental problems associated with agroforestry waste by promoting the innovative use of such waste in the production of activated carbons (ACs using a low-cost production technique, and ultimately delivering more affordable water and effluent treatment adsorbents. Four varieties of ACs from four different agroforestry materials – pine (Pinus contorta cones (PC, Abies (Abies cilicica seeds (AS, maple (Acer ginnala seeds (MS and peach (Prunus persica stones (PS – were prepared by single-step steam pyrolysis and characterised. The raw materials were evaluated for AC yield while the respective ACs were evaluated on the basis of iodine number, phenol specific area, ash content, pH, moisture content and removal of metal ions, nitrates and sulphates from aqueous solution. The AC yields for PS, PC, AS and MS were found to be 23.0%, 18.0%, 17.8% and 14.6%, respectively. The yield for PS (23% is within the specified commercial limits of 20% to 40%. The phenol specific areas of the ACs ranged between 381 m2/g and 415 m2/g higher than the commercial lower limit (300 m2/g generally specified. The ACs also showed the capacity to remove heavy metal ions from their aqueous solutions. Removal of both nitrates and sulphates in raw water was greater than 50%. Although no quantitative analysis has been performed to date, it is envisaged that the production of AC from agroforestry wastes can contribute to the sustainable management of environmental pollution by these residues and the concomitant delivery of cheaper adsorbents.

  15. Prospective implementation of a software application for pre-disposal L/ILW waste management activities in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Fako, Raluca; Sociu, Florin; Stan, Camelia; Georgescu, Roxana; Barariu, Gheorghe [National Authority for Nuclear Activity - Subsidiary of Technology and Engineering for Nuclear Projects, 409 Atomistilor Str., P.O. Box 5204, Mg4 Magurele, Ilfov (Romania)

    2013-07-01

    Romania is actively engaged to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Considering relevant documents to be further updated, about 122,000 m{sup 3} SL-LILW are to be disposed in a near surface facility that will have room, also, for quantities of VLLW. Planned date for commissioning is under revision. Taking into account that in this moment there are initiated several actions for the improvement of the technical capability for LILW treatment and conditioning, several steps for the possible use of SAFRAN software were considered. In view of specific data for Romanian radioactive waste inventory, authors are trying to highlight the expected limitations and unknown data related with the implementation of SAFRAN software for the foreseen pre-disposal waste management activities. There are challenges that have to be faced in the near future related with clear definition of the properties of each room, area and waste management activity. This work has the aim to address several LILW management issues in accordance with national and international regulatory framework for the assurance of nuclear safety. Also, authors intend to develop their institutional capability for the safety demonstration of the existent and future radioactive waste management facilities and activities. (authors)

  16. Influences of use activities and waste management on environmental releases of engineered nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wigger, Henning, E-mail: hwigger@uni-bremen.de [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); Hackmann, Stephan [UFT Center for Environmental Research and Sustainable Technology, Department of General and Theoretical Ecology, University of Bremen, Leobener Str., 28359 Bremen (Germany); Zimmermann, Till [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany); Köser, Jan [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemistry, University of Bremen, Leobener Str., 28359 Bremen (Germany); Thöming, Jorg [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemical Engineering, University of Bremen, Leobener Str., 28359 Bremen (Germany); Gleich, Arnim von [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany)

    2015-12-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. - Highlights: • Textile use activities and two waste management systems (WMSs) are investigated. • Matrix material and use activities determine the ENM release. • Counter-intuitive shifts of releases to air can happen during usage. • WMS export can increase by 350% in case of short service life and

  17. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  18. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  19. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    Science.gov (United States)

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  20. Solid Waste Management Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  1. Effectiveness of waste management in Mataram City

    Science.gov (United States)

    Widayanti, B. H.; Hirsan, F. P.; Kurniawan, A.

    2017-06-01

    Mataram city as National Activity Center (NAC) led to increased of activity that occurs in this region. This condition impacted the increasing of population and the amount of waste. The amount of waste in Mataram City currently reaches 1,444 m3/day and that has been transported by the Sanitation Department as much as 1,033.82 m3 or 71.59%. This research aims to analyze the effectiveness of community-based waste or waste management. The method that was used is quantitative descriptive analysis of waste heaps and analysis of waste management. The results of the analysis of waste heaps is that in the next 10 years (2026) the amount of waste will reach 2,019 m3/day. By using the analysis of waste management, if there are 25 units machines today and 48 waste management groups are effectively utilized, then 948 m3 amount of waste could be processed in a day or as much as 65.65% of the waste is managed by the community. So that, in order to get over this waste problems, collaboration between government and the community in Mataram City is needed.

  2. PROGRAMMATIC ASSESSMENT OF RADIOACTIVE WASTE MANAGEMENT NUCLEAR FUEL AND WASTE PROGRAMS. Operational Planning and Development (Activity No. AR OS 10 05 K; ONL-WN06)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-30

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: 1) an on-site survey of ORNL radioactive waste management operations; 2) a review of radioactive waste source data, records, and regulatory requirements; 3) an assessment of existing and planned treatment, storage, and control facilities; and 4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The G/C suggestions for improving ORNL waste management operations are summarized. Regulatory requirements governing ORNL waste management operations are discussed. Descriptions and discussions of the radioactive liquid, solid, and gaseous waste systems are presented. The waste operations control complex is discussed.

  3. A comparison of costs associated with utility management options for dry active waste

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, C. [EPRI, Palo Alto, CA (United States)

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.

  4. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  5. International waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  6. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  8. Supplemental Information Source Document Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Halpern, Jonathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mond, Michael du [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shain, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This Supplemental Information Source Document for Waste Management was prepared in support of future analyses including those that may be performed as part of the Sandia National Laboratories, New Mexico (SNL/NM) Site-Wide Environmental Impact Statement. This document presents information about waste management practices at SNL/NM, including definitions, inventory data, and an overview of current activities.

  9. US - Former Soviet Union environmental restoration and waste management activities, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Peaceful Uses of Atomic Energy Agreement was signed between DOE and the Ministry of Atomic Energy for the Russian Federation and provides a mechanism for cooperation in research, development, and safe utilization of nuclear energy. Under the umbrella of this agreement, DOE and the former Ministry of Atomic Power and Industry signed a Memorandum of Cooperation in the areas of environmental restoration and waste management in September 1990. This document discusses the environmental situation, science and technology process, technical projects (separations, contaminant transport, waste treatment, environmental restoration), scientist exchanges, enhanced data transfer, the US-Russia industry partnership (conference, centers), and future actions.

  10. All "Trashed" Out: An Activity Guide to Solid Waste Management for Grades K-6.

    Science.gov (United States)

    Illinois Univ., Springfield. Center for Solid Waste Management and Research, Springfield.

    This activity guide, specifically designed for Illinois classrooms but adaptable for other states, seeks to encourage primary students to make their own personal statement and responses to the environment through increased awareness of reducing, reusing, recycling, and composting of solid waste materials. The activities incorporate environmental…

  11. Regional solid waste management study

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  12. e-Waste Management Scenarios in Malaysia

    Directory of Open Access Journals (Sweden)

    Fatihah Suja

    2014-01-01

    Full Text Available e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malaysia. Management approaches have included law enforcement and regulation and the promotion of e-waste recovery activities. e-Waste of no commercial value must be disposed of at sites/premises licensed by the Department of Environment (DOE, Malaysia. To date, 18 full recovery facilities and 128 partial recovery facilities that use various available technologies have been designated for the segregation, dismantling, and treatment of e-waste. However, there are issues faced by the recovery facilities in achieving the goal of converting e-waste into a source material. The issues include the e-waste supply, the importation of e-waste derived products and coding, and finally the need to develop the criteria for e-waste processing technologies to ensure the safety and the sustainability of the facilities.

  13. Waste Management Program. Technical progress report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  14. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  15. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  16. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  17. Influences of use activities and waste management on environmental releases of engineered nanomaterials.

    Science.gov (United States)

    Wigger, Henning; Hackmann, Stephan; Zimmermann, Till; Köser, Jan; Thöming, Jorg; von Gleich, Arnim

    2015-12-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  19. Waste management in healthcare establishments within Jos ...

    African Journals Online (AJOL)

    EJIRO

    Patient. Primary to tertiary. Health care. 2. State Specialist Hospital, Jos ... For instance a pharmacist who had worked .... Documentation of waste management activities .... National Institute for Occupational Safety and Health (NIOSH) (2004).

  20. Radioactive waste management; Gerencia de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan.

  1. Waste management fiscal year 1998 progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  2. Federal facilities compliance act waste management

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  3. The management challenge for household waste in emerging economies like Brazil: realistic source separation and activation of reverse logistics.

    Science.gov (United States)

    Fehr, M

    2014-09-01

    Business opportunities in the household waste sector in emerging economies still evolve around the activities of bulk collection and tipping with an open material balance. This research, conducted in Brazil, pursued the objective of shifting opportunities from tipping to reverse logistics in order to close the balance. To do this, it illustrated how specific knowledge of sorted waste composition and reverse logistics operations can be used to determine realistic temporal and quantitative landfill diversion targets in an emerging economy context. Experimentation constructed and confirmed the recycling trilogy that consists of source separation, collection infrastructure and reverse logistics. The study on source separation demonstrated the vital difference between raw and sorted waste compositions. Raw waste contained 70% biodegradable and 30% inert matter. Source separation produced 47% biodegradable, 20% inert and 33% mixed material. The study on collection infrastructure developed the necessary receiving facilities. The study on reverse logistics identified private operators capable of collecting and processing all separated inert items. Recycling activities for biodegradable material were scarce and erratic. Only farmers would take the material as animal feed. No composting initiatives existed. The management challenge was identified as stimulating these activities in order to complete the trilogy and divert the 47% source-separated biodegradable discards from the landfills. © The Author(s) 2014.

  4. Guide for Industrial Waste Management

    Science.gov (United States)

    The purpose of the Guide is to provide facility managers, state and tribal regulators, and the interested public with recommendations and tools to better address the management of land-disposed, non-hazardousindustrial wastes.

  5. The very-low activity waste storage facility. A new waste management system; Le centre de stockage des dechets de tres faible activite. Une nouvelle filiere de gestion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  6. Waste prevention for sustainable resource and waste management

    DEFF Research Database (Denmark)

    Sakai, Shin-Ichi; Yano, Junya; Hirai, Yasuhiro

    2017-01-01

    Although the 2Rs (reduce and reuse) are considered high-priority approaches, there has not been enough quantitative research on effective 2R management. The purpose of this paper is to provide information obtained through the International Workshop in Kyoto, Japan, on 11–13 November 2015, which...... a sustainable society. 3R and resource management policies, including waste prevention, will play a crucial role. Approaches using material/substance flow analyses have become sophisticated enough to describe the fate of resources and/or hazardous substances based on human activity and the environment......, including the final sink. Life-cycle assessment has also been developed to evaluate waste prevention activities. Regarding target products for waste prevention, food loss is one of the waste fractions with the highest priority because its countermeasures have significant upstream and downstream effects...

  7. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Waste vs Resource Management

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available Recent global waste statistics show that in the order of 70% of all municipal waste generated worldwide is disposed at landfill, 11% is treated in thermal and Waste-to-Energy (WtE) facilities and the rest (19%) is recycled or treated by mechanical...

  9. Mixed Waste Focus Area program management plan

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  10. Radioactive waste management in the former USSR

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  11. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  12. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department...

  13. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  14. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.......Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  15. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  16. Public concerns and behaviours towards solid waste management in Italy.

    Science.gov (United States)

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  17. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  18. Development drivers for waste management.

    Science.gov (United States)

    Wilson, David C

    2007-06-01

    This paper identifies six broad groups of drivers for development in waste management. Public health led to the emergence of formalized waste collection systems in the nineteenth century, and remains a key driver in developing countries. Environmental protection came to the forefront in the 1970s, with an initial focus on eliminating uncontrolled disposal, followed by the systematic increasing of technical standards. Today, developing countries seem still to be struggling with these first steps; while climate change is also emerging as a key driver. The resource value of waste, which allows people to make a living from discarded materials, was an important driver historically, and remains so in developing countries today. A current trend in developed countries is closing the loop, moving from the concept of 'end-of-pipe' waste management towards a more holistic resource management. Two underpinning groups of drivers are institutional and responsibility issues, and public awareness. There is no, one single driver for development in waste management: the balance between these six groups of drivers has varied over time, and will vary between countries depending on local circumstances, and between stakeholders depending on their perspective. The next appropriate steps towards developing a sustainable, integrated waste management system will also vary in each local situation.

  19. Geotechnics of waste management

    Energy Technology Data Exchange (ETDEWEB)

    Husami, Z.I. (ed.)

    1982-01-01

    Seven lectures are presented on the geological aspects hazardous and nuclear waste disposal are presented. Each lecture has been abstracted and indexed for the Department of Energy's Energy Data Base (EDB).

  20. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available by issues of population growth and urbanisation; increasing quantity and complexity of waste; climate change; carbon economics; resource scarcity; commodity prices; energy security; globalisation; job creation; and tightening regulation (DST, 2014a...

  1. Management of offshore wastes in the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  2. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management. (LK)

  3. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  4. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  5. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  6. Effect of activation cross-section uncertainties in selecting steels for the HYLIFE-II chamber to successful waste management

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, J. [Universidad Nacional Educacion a Distancia, Dep. Ingenieria Energetica, Juan del Rosal 12, 28040 Madrid (Spain) and Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain)]. E-mail: jsanz@ind.uned.es; Cabellos, O. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain); Reyes, S. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2005-11-15

    We perform the waste management assessment of the different types of steels proposed as structural material for the inertial fusion energy (IFE) HYLIFE-II concept. Both recycling options, hands-on (HoR) and remote (RR), are unacceptable. Regarding shallow land burial (SLB), 304SS has a very good performance, and both Cr-W ferritic steels (FS) and oxide-dispersion-strengthened (ODS) FS are very likely to be acceptable. The only two impurity elements that question the possibility of obtaining reduced activation (RA) steels for SLB are niobium and molybdenum. The effect of activation cross-section uncertainties on SLB assessments is proved to be important. The necessary improvement of some tungsten and niobium cross-sections is justified.

  7. WASTE MANAGEMENT AT SRS - MAKING IT HAPPEN

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, T. F.; Kelly, S.

    2002-02-25

    The past five years have witnessed a remarkable transition in the pace and scope of waste management activities at SRS. At the start of the new M&O contract in 1996, little was being done with the waste generated at the site apart from storing it in readiness for future treatment and disposal. Large volumes of legacy waste, particularly TRU and Low Level Waste, had accumulated over many years of operation of the site's nuclear facilities, and the backlog was increasing. WSRC proposed the use of the talents of the ''best in class'' partners for the new contract which, together with a more commercial approach, was expected to deliver more results without a concomitant increase in cost. This paper charts the successes in the Solid Waste arena and analyzes the basis for success.

  8. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  9. Radioactive waste caracterisation by neutron activation

    OpenAIRE

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. An accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. At the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point o...

  10. GREEN MARKETING ROLE IN WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Corina Anamaria IOAN

    2014-12-01

    Full Text Available This study have exploratory character, aiming to conduct an analysis of the terminology used in the ecomarketing, and the way to approach green- marketing and waste collection activities in Romania. Aside from ecological waste management process and we consider the economic component of sustainable development, supported component of the legal aspects related to the subject. In other words, in this paper we intend to analyze in terms of terminology, legal and environmental policies but the most important aspects of waste management in companies in Romania. The importance of the study is on both the analysis corroborated information relating to waste collection in Romania, and the SWOT analysis performed on the present situation in Romania.

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  12. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  13. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  14. e-Waste Management Scenarios in Malaysia

    OpenAIRE

    Fatihah Suja; Rakmi Abdul Rahman; Arij Yusof; Mohd Shahbudin Masdar

    2014-01-01

    e-Waste, or electronic waste, disposal that is uncontrolled can be harmful to human health and the environment because e-waste contains toxic substances and heavy metals. However, if the waste is properly managed, it can become a business opportunity that produces high returns because e-waste also contains valuable materials, such as gold, silver, platinum, and palladium. The government of Malaysia wants to ensure the safe, effective, and economically beneficial management of e-waste in Malay...

  15. Stock flow diagram analysis on solid waste management in Malaysia

    Science.gov (United States)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  16. Direction in charge of the management of wastes. 1998 activity report; Direction chargee de la gestion des dechets. Rapport d'activite 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This document is the 1998 activity report of the direction in charge of the management of radioactive wastes (DGD) of the French atomic energy commission (CEA). The role of the DGD is the elimination of radioactive wastes, the management of spent fuels, the cleansing and dismantling of shut-down and decommissioned installations at the CEA. This report summarizes the highlights of the 1998 year: the cleansing plan of the CEA (current policy, plan scheme, quality assurance, financing, public relation); the radioactive wastes (general considerations, management of liquid and solid effluents, management of sealed sources, modernization of equipments and new projects, relations with the Andra, studies in progress); the spent fuels (general considerations, solutions, long-term storage); the dismantling of shut-down installations (general considerations about decommissioning, dismantling actions at the CEA, main works performed, dismantling actions in progress); the management of wastes at the CEA-direction for military applications (DAM); the cleansing of the CEA-Marcoule site; 1998 status of the management of wastes (appendix). (J.S.)

  17. Towards effective waste management. Knowledge centre Waste Refinery Activity Report 2007-2009; Mot effektivare avfallshantering. Kunskapscentrum Waste Refinery Verksamhetsrapport 2007-2009

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This report aims to provide a comprehensive picture of the areas that have been discussed and developed during the knowledge centre Waste Refinery first three years. Details and depth analyzes of each area are contained in project reports, which can be downloaded free of charge through our website www.wasterefinery.se

  18. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  19. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  20. Stormwater run-off and pollutant transport related to the activities carried out in a modern waste management park.

    Science.gov (United States)

    Marques, M; Hogland, W

    2001-02-01

    Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.

  1. Hospital waste management in developing countries: A mini review.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  2. Indian programme on radioactive waste management

    Indian Academy of Sciences (India)

    P K Wattal

    2013-10-01

    The primary objective of radioactive waste management is protection of human health, environment and future generation. This article describes, briefly, the Indian programme on management of different radioactive wastes arising in the entire nuclear fuel cycle adhering to this objective.

  3. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  4. Online Management of Waste Storage

    Directory of Open Access Journals (Sweden)

    Eugenia IANCU

    2011-01-01

    Full Text Available The paper presents a telematic system designed to monitor the areas affected by the uncontrollable waste storing by using the newest informational and communicational technologies through the elaboration of a GPS/GIS electronic geographical positioning system. Within the system for online management of the affected locations within the built up areas, the following data categories are defined and processed: data regarding the waste management (monitored locations within the built up areas, waste, pollution sources, waste stores, waste processing stations, data describing the environment protection (environmental quality parameters: water, air, soil, spatial data (thematic maps. Using the automatic collection of the data referring to the environment quality, it is aiming at the realization of a monitoring system, equipped with sensors and/or translators capable of measuring and translating (into electrical signals measures with meteorological character (the intensity of the solar radiation, temperature, humidity but also indicators of the ecological system (such as: the concentration of nutrients in water and soil, the pollution in water, air and soil, biomasses. The organization, the description and the processing of the spatial data requires the utilization of a GIS (Geographical Information System type product.

  5. Local waste management constraints and waste administrators in China.

    Science.gov (United States)

    Chung, Shan Shan; Lo, Carlos W H

    2008-01-01

    Local level waste authorities and their officials directly interact and serve the people on behalf of higher governments. Given the influential positions they have on the quality of life of the citizens, these local waste authorities deserve more attention from researchers. This study throws light on the factors related to local waste management and administrators that have caused waste management failures in three mainland Chinese cities. Based on a survey conducted in 2002-2003, it was found that waste administrators in these cities are not professionally competent in their jobs and they are also not confident in using economic instruments to address waste management issues in their cities. These local waste authorities are generally under-funded, and funding politics has to some extent eroded the incentives to carry out the instructions of higher waste authorities. The community at large also does not respect local waste management work. The residents frequently litter, are unobservant of waste collection times and are unwilling to pay for waste collection service. All of these are handicapping environmentally sound waste management.

  6. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  7. Solid waste management. Principles and practice

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution Control Board, Biomedical Waste, Bangalore (India); Bhusan Das, Diganta [Loughborough Univ. of Technology (United Kingdom). Dept. of Chemical Engineering

    2012-11-01

    Solid waste was already a problem long before water and air pollution issues attracted public attention. Historically the problem associated with solid waste can be dated back to prehistoric days. Due to the invention of new products, technologies and services the quantity and quality of the waste have changed over the years. Waste characteristics not only depend on income, culture and geography but also on a society's economy and, situations like disasters that affect that economy. There was tremendous industrial activity in Europe during the industrial revolution. The twentieth century is recognized as the American Century and the twenty-first century is recognized as the Asian Century in which everyone wants to earn 'as much as possible'. After Asia the currently developing Africa could next take the center stage. With transitions in their economies many countries have also witnessed an explosion of waste quantities. Solid waste problems and approaches to tackling them vary from country to country. For example, while efforts are made to collect and dispose hospital waste through separate mechanisms in India it is burnt together with municipal solid waste in Sweden. While trans-boundary movement of waste has been addressed in numerous international agreements, it still reaches developing countries in many forms. While thousands of people depend on waste for their lively hood throughout the world, many others face problems due to poor waste management. In this context solid waste has not remained an issue to be tackled by the local urban bodies alone. It has become a subject of importance for engineers as well as doctors, psychologist, economists, and climate scientists and any others. There are huge changes in waste management in different parts of the world at different times in history. To address these issues, an effort has been made by the authors to combine their experience and bring together a new text book on the theory and practice of the

  8. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  9. ANSTO`s radioactive waste management policy. Preliminary environmental review

    Energy Technology Data Exchange (ETDEWEB)

    Levins, D.M.; Airey, P.; Breadner, B.; Bull, P.; Camilleri, A.; Dimitrovski, L.; Gorman, T.; Harries, J.; Innes, R.; Jarquin, E.; Jay, G.; Ridal, A.; Smith, A.

    1996-05-01

    For over forty years, radioactive wastes have been generated by ANSTO (and its predecessor, the AAEC) from the operation of nuclear facilities, the production of radioisotopes for medical and industrial use, and from various research activities. the quantities and activities of radioactive waste currently at Lucas Heights are very small compared to many other nuclear facilities overseas, especially those in countries with nuclear power program. Nevertheless, in the absence of a repository for nuclear wastes in Australia and guidelines for waste conditioning, the waste inventory has been growing steadily. This report reviews the status of radioactive waste management at ANSTO, including spent fuel management, treatment of effluents and environmental monitoring. It gives details of: relevant legislative, regulatory and related requirements; sources and types of radioactive waste generated at ANSTO; waste quantities and activities (both cumulative and annual arisings); existing practices and procedures for waste management and environmental monitoring; recommended broad strategies for dealing with radioactive waste management issues. Detailed proposals on how the recommendations should be implemented is the subject of a companion internal document, the Radioactive Waste Management Action Plan 1996-2000 which provides details of the tasks to be undertaken, milestones and resource requirements. 44 refs., 2 tabs., 18 figs.

  10. Planning of low-level radioactive waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Teruo; Yoneya, Masayuki; Tanabe, Tsutomu; Koakutsu, Masayuki; Miyamoto, Yasuaki [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    2002-09-01

    In order to treat and dispose of the low-level radioactive waste generated from JNC sites safely and rationally, a comprehensive plan managing the generation, treatment, storage and disposal of waste, was formulated. The plan is called ''Low-Level Radioactive Waste Management Program''. Taking into consideration an institutionalization of disposal and based on an investigation of waste properties (type, amount, activity concentration), the appropriate treatment method for disposal was studied, and a fundamental plan for conducting the Low-Level Radioactive Waste Management Program was presented. To achieve disposal of low-level radioactive waste, concrete measures will be taken according to the Low-Level Radioactive Wastes Management Program. The plan will be improved suitably by the result of technical development, and will be reconsidered flexibly after institutionalization by the government. (author)

  11. Public involvement in radioactive waste management decisions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  12. A legislator`s guide to municipal solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  13. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  14. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  15. An assessment of pharmaceutical waste management in some ...

    African Journals Online (AJOL)

    An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. ... African Journal of Biotechnology ... waste, pharmaceuticals, wastewater, waste management, environment, regulatory authorities, effluent.

  16. Selection of low activation materials for fusion power plants using ACAB system: the effect of computational methods and cross section uncertainties on waste management assessment

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M.; Sanz, J.; Rodriguez, A.; Falquina, R. [Universidad Nacional de Educacion a Distancia (UNED), Dept. of Power Engineering, Madrid (Spain); Cabellos, O.; Sanz, J. [Universidad Politecnica de Madrid, Instituto de Fusion Nuclear (UPM) (Spain)

    2003-07-01

    The feasibility of nuclear fusion as a realistic option for energy generation depends on its radioactive waste management assessment. In this respect, the production of high level waste is to be avoided and the reduction of low level waste volumes is to be enhanced. Three different waste management options are commonly regarded in fusion plants: Hands-on Recycling, Remote Recycling and Shallow Land Burial (SLB). Therefore, important research work has been undertaken to find low activation structural materials. In performing this task, a major issue is to compute the concentration limits (CLs) for all natural elements, which will be used to select the intended constituent elements of a particular Low Activation Material (LAM) and assess how much the impurities can deteriorate the waste management properties. Nevertheless, the reliable computation of CLs depends on the accuracy of nuclear data (mainly activation cross-sections) and the suitability of the computational method both for inertial and magnetic fusion environments. In this paper the importance of nuclear data uncertainties and mathematical algorithms used in different activation calculations for waste management purposes will be studied. Our work is centred on the study of {sup 186}W activation under first structural wall conditions of Hylife-II inertial fusion reactor design. The importance of the dominant transmutation/decay sequence has been documented in several publications. From a practical point of view, W is used in low activation materials for fusion applications: Cr-W ferritic/martensitic steels, and the need to better compute its activation has been assessed, in particular in relation to the cross-section uncertainties for reactions leading to Ir isotopes. {sup 192n}Ir and {sup 192}Ir reach a secular equilibrium, and {sup 192n}Ir is the critical one for waste management, with a half life of 241 years. From a theoretical point of view, this is one of the most complex chains appearing in

  17. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  18. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  19. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

  20. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    and shows that recycling is superior to incineration with energy recovery, which again is better than landfilling. Cleary (2010) reviewed 20 waste management scenarios assessed in 11 studies published in the period 2002–2008 and concluded that, due to lack of transparency regarding boundary conditions...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...... management systems. The study focuses on Europe in terms of waste composition and exchange with the energy system. The waste management systems modeled are described with respect to waste composition, waste management technologies, mass flows and energy exchange in the systems. Results are first presented...

  1. Waste Management in Hunter-Gatherer Communities

    Directory of Open Access Journals (Sweden)

    Havlíček Filip

    2015-11-01

    Full Text Available This article describes examples of material and waste management with a focus on select Upper Paleolithic and Mesolithic sites. It examines the structuring of space and landscape from the perspective of waste management as a certain need of natural human behavior. The article touches on the concept of purity and on defining the creation of waste.

  2. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  3. How Wastes Influence Quality Management

    Directory of Open Access Journals (Sweden)

    Gratiela Dana BOCA

    2011-06-01

    Full Text Available Companies are often surprised to learn that only a fraction of their activities actually add value for their customers. A primary cause of waste is information deficits – employees simply lack the knowledge they need to do their jobs efficiently and effectively. This leads employees to waste valuable time and motion searching, waiting, retrieving, reworking or just plain future action. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times. Eliminating waste along entire value streams, instead of at isolated points, creates processes that need less human effort, less space, less capital, and less time to make products and services at far less costs and with much fewer defects, compared with traditional business systems. Companies are able to respond to changing customer desires with high variety, high quality, low cost, and with very fast throughput times.

  4. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  5. Characteristics and management of infectious industrial waste in Taiwan.

    Science.gov (United States)

    Huang, Mei-Chuan; Lin, Jim Juimin

    2008-11-01

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.

  6. International E-Waste Management Network (IEMN)

    Science.gov (United States)

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  7. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2017-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover......, specific methodological challenges arise when investigating waste systems, such as the allocation of impacts and the consideration of long-term emissions. The complexity of waste LCAs is mainly derived from the variability of the object under study (waste) which is made of different materials that may...

  8. Impacts on waste planning and management

    CSIR Research Space (South Africa)

    Oelofse, Suzan

    2016-11-01

    Full Text Available the skills or experience to manage this waste responsibly. Available waste water infrastructure in the study area is under pressure and requires urgent intervention. The technologies and capacity at these already stressed facilities are not sufficient...

  9. Management of radioactive waste: A review

    Directory of Open Access Journals (Sweden)

    Luis Paulo Sant'ana

    2016-06-01

    Full Text Available The issue of disposal of radioactive waste around the world is not solved by now and the principal reason is the lack of an efficient technologic system. The fact that radioactive waste decays of radioactivity with time are the main reasons for setting nuclear or radioactive waste apart from the other common hazardous wastes management. Radioactive waste can be classified according to the state of matter and level of radioactivity and this classification can be differently interpreted from country to country. Furthermore, microbiological procedures, plasma vitrification process, chemical precipitation, ion exchange, evaporation and reverse osmosis are strategies used for the treatment of radioactive wastes. The major challenge is to manage these radioactive substances after being used and discharged. This report brings data from the literature published worldwide from 2009 to 2014 on radioactive waste management studies and it covers production, classification and management of radioactive solid, liquid and gas waste.

  10. E-Waste Management and Challenges

    Science.gov (United States)

    Narayanan, S.; Kumar, K. Ram

    2010-11-01

    E-Waste is one of the silent degraders of the environment in the fast-growing world. This paper explores briefly the ultra-modern problem of E-Waste. After enumerating the causes and effects of the E-Waste, it focuses on management of the E-waste using modern techniques. The paper also deals with the responsibilities of the governments, industries and citizens in reducing E-waste.

  11. Integrated sustainable waste management in developing countries

    OpenAIRE

    Wilson, D C; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly in the context of technological integration in developed countries. Instead, integrated sustainable waste management examines both the physical components (collection, disposal and recycling) and th...

  12. Radioactive Waste Management in A Hospital

    OpenAIRE

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M.; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance w...

  13. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R.; Lindskog, A.

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  14. Waste Management with Earth Observation Technologies

    Science.gov (United States)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that can be generated and the number of

  15. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  16. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Anić Vučinić

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  17. Assessing waste management systems using reginalt software

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs.

  18. Municipal solid waste management in Tehran: current practices, opportunities and challenges.

    Science.gov (United States)

    Damghani, Abdolmajid Mahdavi; Savarypour, Gholamreza; Zand, Eskandar; Deihimfard, Reza

    2008-01-01

    Tehran, the capital city of Iran and a metropolis with a population of 8.2 million and containing 2.4 million households, generated 2,626,519 tons of solid waste in 2005. The present study is aimed at evaluating the generation, characteristics and management of solid waste in Tehran. Municipal solid waste comprises more than 97% of Tehran's solid waste, while three other types of solid waste comprise less than 3% of it, namely hospital waste (1.0%), industrial waste (0.6%) and construction and demolition waste (0.5%). The contribution of household solid waste to total municipal solid waste is about 62.5%. The municipality of Tehran is responsible for the solid waste management of the city; the waste is mainly landfilled in three centers in Tehran, with a small part of it usually recycled or processed as compost. However, an informal sector is also active in collecting recyclable materials from solid waste. The municipality has recently initiated some activities to mechanize solid waste management and reduce waste generation. There remain important challenges in solid waste management in Tehran which include: the proper collection and management of hospital waste; public education aimed at reducing and separating household waste and educating municipal workers in order to optimize the waste collection system; and the participation of other related organizations and the private sector in solid waste management.

  19. Waste Management Technician Partnership Program. Final Report.

    Science.gov (United States)

    Campbell, Donna

    This final report for Columbia Basin College's waste management technician partnership program outlines 4 objectives: (1) develop at least 4 waste management competency-based curriculum modules; (2) have 50 participants complete at least 1 module; (3) have 100 participants complete a training and/or certification program and 200 managers complete…

  20. Community Participation in Solid Waste Management, Kathmandu

    OpenAIRE

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  1. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  2. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  3. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  4. Life Cycle Assessment of Municipal Waste Management System ...

    African Journals Online (AJOL)

    Life Cycle Assessment of Municipal Waste Management System (Case Study: ... solid waste management systems for determine the optimum municipal solid waste ... include water pollution, air pollution, consumed energy and waste residues.

  5. Sustainable sound waste management startegies in Juja, Kenya ...

    African Journals Online (AJOL)

    Sustainable sound waste management startegies in Juja, Kenya. ... Integrated solid waste management includes source reduction, source separation, recycling ... waste in Juja consisted of 80% food and other organic wastes, 10% plastics, ...

  6. Integrated sustainable waste management in developing countries

    NARCIS (Netherlands)

    Wilson, D.C.; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly

  7. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... waste to the environment. The universal waste pesticides must be contained in one or more of the..., structurally sound, compatible with the pesticide, and that lacks evidence of leakage, spillage, or damage that... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...

  8. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... component of a universal waste to the environment. The universal waste pesticides must be contained in one... the pesticide, and that lacks evidence of leakage, spillage, or damage that could cause leakage under... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...

  9. Solid Waste Management Practices in EBRP Schools.

    Science.gov (United States)

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  10. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  11. Managing Nuclear Waste: Options Considered

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  12. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  13. Technology Roadmapping for Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  14. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  15. The Orbital Workshop Waste Management Compartment

    Science.gov (United States)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  16. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  17. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  18. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    Science.gov (United States)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  19. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  20. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  1. Integral Chemical Waste Management in Laboratories

    OpenAIRE

    Loayza P., Jorge; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos; Silva M., Marina; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos; Galarreta D., Hugo; Facultad de Química e Ingeniería Química - Universidad Nacional Mayor de San Marcos

    2014-01-01

    The suitable management and handling of the chemical wastes origínatíng from laboratories allow the saving of reagents and materíals; as well as the reductíon of costs assocíated wíth their handling and final disposal. lt also prevents detriment to the health of the people who have to conduct an academic activity in the laboratory (professors, assistants and students) ora professíonal activity related to service consulting dealíng with chemical analyses (analysts, assistants and auxiliary per...

  2. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  3. HANFORD SITE SOLID WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT TECHNICAL INFORMATION DOCUMENT [SEC 1 THRU 4

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ, L.L.

    2004-03-25

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement''. Assumptions and waste volumes used to calculate engineering data are also provided in this document. This chapter provides a brief description of: the Solid Waste Management Program (including a description of waste types and known characteristics of waste covered under the program), the Hanford Site (including a general discussion of the operating areas), and the alternatives analyzed. The Hanford Site Solid Waste Management Program and DOE/EIS-0286 address solid radioactive waste types generated by various activities from both onsite and offsite generators. The Environmental Restoration (ER) waste management activities are not within the scope of DOE/EIS-0286 or this TID. Activities for processing and disposal of immobilized low-activity waste (ILAW) are not within the scope of the Solid Waste Management Program and this TID.

  4. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-07-01

    Full Text Available Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the adverse environmental impacts. In the first stage, locating map and dispersion limits were prepared. Then, the types and amounts of industrial waste generated in were evaluated by an inventory and inspection. Wastes were classified according to Environmental Protection Agency and Basel Standards and subsequently hazards of different types were investigated. The waste management of TPC is quite complex because of the different types of waste and their pollution. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. In this study, using different sources and references, generally petrochemical sources, various solid waste management practices were investigated and the best options were selected. Some wastes should be treated before land filling and some of them should be reused or recycled. In the case of solid waste optimization, source reduction ways were recommended as well as prior incineration system was modified.

  5. Role of NGOs and CBOs in Waste Management

    Directory of Open Access Journals (Sweden)

    NN Nik Daud

    2012-05-01

    Full Text Available Background: Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs and community-based organizations (CBOs in municipal solid waste (MSW management.Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS, ultimate disposal site (UDS, composting plants, medical wastes management and NGOs and CBOs MSW management activities.Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs.Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.

  6. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-12-31

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  7. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-01-01

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  8. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

  9. Management of immunization solid wastes in Kano State, Nigeria.

    Science.gov (United States)

    Oke, I A

    2008-12-01

    Inadequate management of waste generated from injection activities can have a negative impact on the community and environment. In this paper, a report on immunization wastes management in Kano State (Nigeria) is presented. Eight local governments were selected randomly and surveyed by the author. Solid wastes generated during the Expanded Programme on Immunization were characterised using two different methods: one by weighing the waste and the other by estimating the volume. Empirical data was obtained on immunization waste generation, segregation, storage, collection, transportation, and disposal; and waste management practices were assessed. The study revealed that immunization offices were accommodated in either in local government buildings, primary health centres or community health care centres. All of the stations demonstrated a high priority for segregation of the infectious wastes. It can be deduced from the data obtained that infectious waste ranged from 67.6% to 76.7% with an average of 70.1% by weight, and 36.0% to 46.1% with an average of 40.1% by volume. Non-infectious waste generated ranged from 23.3% to 32.5% with an average of 29.9% by weight and 53.9% to 64.0% with an average of 59.9% by volume. Out of non-infectious waste (NIFW) and infectious waste (IFW), 66.3% and 62.4% by weight were combustible and 33.7% and 37.6% were non-combustible respectively. An assessment of the treatment revealed that open pit burning and burial and small scale incineration were the common methods of disposal for immunization waste, and some immunization centres employed the services of the state or local government owned solid waste disposal board for final collection and disposal of their immunization waste at government approved sites.

  10. Waste management and quality assurance: Reasonable co-existence?

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  11. Waste management and quality assurance: Reasonable co-existence?

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  12. Radioactive waste management status and prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ik Hwan [Nuclear Environment Technology Institite, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    This paper reviews the status of radioactive waste management including management policy and system in the Republic of Korea. Also included are the status and plan of the radioactive waste management projects: construction of a low-level radioactive waste repository, construction of spent fuel interim storage facility, transportation, radioisotope waste management, and public acceptance program. Finally, the status and prospects on radioactive waste management based on the national radioactive waste management program are briefly introduced. (author)

  13. Sustainable solutions for solid waste management in Southeast Asian countries.

    Science.gov (United States)

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  14. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  15. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  16. Waste management system optimisation for Southern Italy with MARKAL model

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, M.; Cosmi, C. [Istituto di Metodologie Avanzate di Analisi Ambientale, Consiglio Nazionale delle Ricerche, C. da S. Loja, 85050 (PZ) Tito Scalo (Italy); Macchiato, M. [Dipartimento di Scienze Fisiche, Universita Federico II, Via Cintia, 80126 Napoli (Italy); Mangiamele, L. [Dipartimento di Ingegneria e Fisica dell' Ambiente, Universita degli Studi della Basilicata, C. da Macchia Romana, 85100 Potenza (Italy)

    2002-01-01

    The MARKAL models generator was utilised to build up a comprehensive model of the anthropogenic activities system which points out the linkages between productive processes and waste disposal technologies. The aim of such a study is to determine the optimal configuration of the waste management system for the Basilicata region (Southern Italy), in order to support the definition of the regional waste management plan in compliance with the Italian laws. A sensitivity analysis was performed to evaluate the influence of landfilling fees on the choice of waste processing technologies, in order to foster waste management strategies which are environmentally sustainable, economically affordable and highly efficient. The results show the key role of separate collection and mechanical pre-treatments in the achievement of the legislative targets.

  17. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  18. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  19. Radioactive waste management in Austria

    OpenAIRE

    Neubauer Josef

    2004-01-01

    At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste). A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and inte...

  20. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Radioactive waste management in the former USSR. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  2. Management of historical waste from research reactors: the Dutch experience

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, Aliki; Metz, Bert; Janssen, Bas; Groothuis, Ron [NRG, Petten (Netherlands)

    2013-07-01

    Most radioactive waste emerges as well-defined waste streams from operating power reactors. The management of this is an on-going practice, based on comprehensive (IAEA) guidelines. A special waste category however consists of the historical waste from research reactors, mostly originating from various experiments in the early years of the nuclear era. Removal of the waste from the research site, often required by law, raises challenges: the waste packages must fulfill the acceptance criteria from the receiving storage site as well as the criteria for nuclear transports. Often the aged waste containers do not fulfill today's requirements anymore, and their contents are not well documented. Therefore removal of historical waste requires advanced characterization, sorting, sustainable repackaging and sometimes conditioning of the waste. This paper describes the Dutch experience of a historical waste removal campaign from the Petten High Flux research reactor. The reactor is still in operation, but Dutch legislation asks for central storage of all radioactive waste at the COVRA site in Vlissingen since the availability of the high- and intermediate-level waste storage facility HABOG in 2004. In order to comply with COVRA's acceptance criteria, the complex and mixed inventory of intermediate and low level waste must be characterized and conditioned, identifying the relevant nuclides and their activities. Sorting and segregation of the waste in a Hot Cell offers the possibility to reduce the environmental footprint of the historical waste, by repackaging it into different classes of intermediate and low level waste. In this way, most of the waste volume can be separated into lower level categories not needing to be stored in the HABOG, but in the less demanding LOG facility for low-level waste instead. The characterization and sorting is done on the basis of a combination of gamma scanning with high energy resolution of the closed waste canister and low

  3. An environmental analysis for comparing waste management options and strategies.

    Science.gov (United States)

    Marchettini, N; Ridolfi, R; Rustici, M

    2007-01-01

    The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.

  4. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  5. [Health services waste management: a biosafety issue].

    Science.gov (United States)

    Garcia, Leila Posenato; Zanetti-Ramos, Betina Giehl

    2004-01-01

    The subject of "health services waste" is controversial and widely discussed. Biosafety, the principles of which include safeguarding occupational health, community health, and environmental safety, is directly involved in the issue of medical waste management. There are controversies as to the risks posed by medical waste, as evidenced by diverging opinions among authors: some advocate severe approaches on the basis that medical waste is hazardous, while others contend that the potential for infection from medical waste is nonexistent. The Brazilian National Health Surveillance Agency (ANVISA) has published resolution RDC 33/2003 to standardize medical waste management nationwide. There is an evident need to implement biosafety procedures in this area, including heath care workers' training and provision of information to the general population.

  6. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... are generated which include wastewater effluents, solid wastes, and hazardous wastes. ... industries discharge wastes into the environment without any proper treatment.

  7. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Science.gov (United States)

    2011-10-12

    ...: Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes; Disposal of Coal... Hazardous and Solid Waste Management System: Identification and Listing of Special......

  8. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  9. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  10. Management of the radioactive waste of European Spallation Source within the Swedish waste disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Ene, Daniela [European Spallation Source AB, ESS-AB (Sweden); Forsstroem, H. [Svensk Kaernbraenslehantering AB, SKB (Sweden)

    2014-07-01

    The European Spallation Source AB (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beam-lines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The ESS will generate specific types of radioactive waste. This waste should be handled and disposed of within the Swedish radioactive waste management system, which is owned and operated by Svensk Kaernbraenslehantering AB, (SKB). The main objectives of this work are: i) To estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning; ii) To allocate the waste to specific disposal route; iii) To assess the disposal volumes needed and to ensure that the ESS waste may safely be accommodated within the Swedish disposal system, SKB The amounts of ESS waste and classifications were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the pre-conceptual model. Associated waste treatment/conditioning options were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. The potential final disposal routes for high activated components were decided via the comparison of the activity levels of the isotopes inside the

  11. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  12. Environmental aspects of commercial radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Environmental effects (including accidents) associated with facility construction, operation, decommissioning, and transportation in the management of commercially generated radioactive waste were analyzed for plants and systems assuming a light water power reactor scenario that produces about 10,000 GWe-yr through the year 2050. The following alternative fuel cycle modes or cases that generate post-fission wastes requiring management were analyzed: a once-through option, a fuel reprocessing option for uranium and plutonium recycle, and a fuel reprocessing option for uranium-only recycle. Volume 1 comprises five chapters: introduction; summary of findings; approach to assessment of environmental effects from radioactive waste management; environmental effects related to radioactive management in a once-through fuel cycle; and environmental effects of radioactive waste management associated with an LWR fuel reprocessing plant. (LK)

  13. Radioactive waste management in member states

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this part of the report is to present a brief overview of key issues in radioactive waste management on a nation-by-nation basis. Member State representatives were asked to address nine questions in no more than three or four pages. Hence, by design, the presentations are not comprehensive. Even so, the information set out here should provide the reader valuable insights into the nature of problems associated with radioactive waste management. The materials may also be used as a ready reference for specific information about radioactive waste management in individual Member States as well as for comparative purposes. (author).

  14. Radioactive Waste Management in Non-Nuclear Countries - 13070

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, Dragan; Trifunovic, Dejan [SORNS, Frankopanska 11, HR-10000 Zagreb (Croatia)

    2013-07-01

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

  15. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  16. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  17. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  18. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  19. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  20. LCA Modeling of Waste Management Scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2011-01-01

    Lifecycle assessment (LCA) modeling provides a quantitative statement about resource issues and environmental issues in waste management useful in evaluating alternative management systems and in mapping where major loads and savings take place within existing systems. Chapter 3.1 describes...... the concepts behind LCA modeling and Chapter 3.2 gives an overview of existing models and shows examples of their application. A recent comprehensive review of publicly available LCA studies (WRAP, 2006) concluded that, on a material basis, LCA modeling in general confirms the validity of the waste hierarchy...... and exchange with the energy systems, a comparison of results was hampered on a system level. In addition, differences in waste composition may affect the LCA results. This chapter provides results of LCA modeling of 40 waste management scenarios handling the same municipal waste (MSW) and using different...

  1. Low-level waste management alternatives and analysis in DOE`s programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, J.S. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management

    1993-03-01

    The Department of Energy is preparing a Programmatic Environmental Impact Statement (PEIS) for the Environmental Restoration and Waste Management Program. The PEIS has been divided into an Environmental Restoration section and a Waste Management section. Each section has a unique set of alternatives. This paper will focus on the waste management alternatives and analysis. The set of alternatives for waste management has been divided into waste categories. These categories are: high-level waste, transuranic waste, low-level waste, low-level mixed waste, greater-than-class C and low-level waste from commercial sources, hazardous waste, and spent nuclear fuel. This paper will discuss the alternatives and analytical approach that will be used to evaluate these alternatives for the low-level waste section. Although the same alternatives will be considered for all waste types, the analysis will be performed separately for each waste type. In the sections that follow, information will be provided on waste management configurations, the analysis of waste management alternatives, waste types and locations, facility and transportation activities, the facility and transportation impacts assessment, and the compilation of impacts.

  2. A risk-based decision tool for the management of organic waste in agriculture and farming activities (FARMERS).

    Science.gov (United States)

    Río, Miguel; Franco-Uría, Amaya; Abad, Emilio; Roca, Enrique

    2011-01-30

    Currently, specific management guidelines must be implemented for guaranteeing the safe reuse of organic waste in agriculture. With that aim, this work was focused on the development of a decision support tool for a safe and sustainable management of cattle manure as fertiliser in pastureland, to control and limit metal accumulation in soil and to reduce metal biotransfer from soil to other compartments. The system was developed on the basis of an environmental risk assessment multi-compartmental model. In contrast to other management tools, a long-term dynamic modelling approach was selected considering the persistence of metals in the environment. A detailed description of the underlying flow equations which accounts for distribution, human exposure and risk characterisation of metals in the assessed scenario was presented, as well as model parameterization. The tool was implemented in Visual C++ and is structured on a data base, where all required data is stored, the risk assessment model and a GIS module for the visualization of the scenario characteristics and the results obtained (risk indexes). The decision support system allows choosing among three estimation options, depending on the needs of the user, which provide information to both farmers and policy makers. The first option is useful for evaluating the adequacy of the current management practices of the different farms, and the remaining ones provides information on the measures that can be taken to carry out a fertilising plan without exceeding risk to human health. Among other results, maximum values of application rates of manure, maximum permissible metal content of manure and maximum application times in a particular scenario can be estimated by this system. To illustrate tool application, a real case study with data corresponding to different farms of a milk production cooperative was presented.

  3. Managing America`s solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  4. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  5. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  6. Challenges of solid waste management and environmental ...

    African Journals Online (AJOL)

    Challenges of solid waste management and environmental sanitation in Ibadan North Local government, Oyo State, ... Open Access DOWNLOAD FULL TEXT ... Data were collected using In-Depth Interviews and Key Informant Interviews.

  7. Integrated study for automobile wastes management and ...

    African Journals Online (AJOL)

    Administrator

    poor waste management is causing serious ecological and public health concerns. Analytical ... searching for mechanic specialists, to prevent motorists from falling .... long term exposure to toxicity. ...... Plant extracts arsenic from polluted soil;.

  8. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  9. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  10. MANAGEMENT OF RADIOACTIVE WASTES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    潘自强

    1994-01-01

    The policy and principles on management of radioactive wastes are stipulated.Cement solidification and bituminization unit has come into trial run.Solid radioactive waste is stored in tentative storage vault built in each of nuclear facilities.Seventeen storages associated with applications of nuclear technology and radioisotopes have been built for provinces.Disposal of low and intermediate level radioactive wastes pursues the policy of “regional disposal”.Four repositories have been planned to be built in northwest.southwest,south and east China respectively.A program for treatment and disposal of high level radioactive waste has been made.

  11. Sustainable waste management through end-of-waste criteria development.

    Science.gov (United States)

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  12. An Accounting System for Solid Waste Management in Small Communities.

    Science.gov (United States)

    Zausner, Eric R.

    This pamphlet provides a guide to the type and quantity of information to be collected for effective solid waste management in small communities. It is directed at municipal or private personnel involved in the operation and ownership of management facilities. Sample activity reports are included for reference. (CS)

  13. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part C, Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents activities at ORNL including waste management and remedial action at the site; also waste processing and disposal; robotics and automation of the laboratory; and regulatory compliance

  14. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark, e-mail: mark.elam@sociology.gu.se; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-07-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  15. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...... on comparison of greenhouse gas emissions associated with different waste management alternatives 4. A new tool for techno‐economic modelling of central sorting plants. The project has furthermore contributed with method development on evaluation of critical resources as well as analyses of economic...

  16. Trend of the research on construction and demolition waste management.

    Science.gov (United States)

    Yuan, Hongping; Shen, Liyin

    2011-04-01

    Research interests in addressing construction and demolition (C&D) waste management issues have resulted in a large amount of publications during the last decade. This study demonstrates that there is no systematic examination on the research development in literature in the discipline of C&D waste management. This study presents the latest research trend in the discipline through analyzing the publications from 2000 to 2009 in eight major international journals. The analysis is conducted on the number of papers published annually, main authors' contributions, research methods and data analysis methods adopted, and research topics covered. The results exhibit an increasing research interest in C&D waste management in recent years. Researchers from developed economies have contributed significantly to the development of the research in the discipline. Some developing countries such as Malaysia and China have also been making good efforts in promoting C&D waste management research. The findings from this study also indicate that survey and case study are major methods for data collection, and the data are mostly processed through descriptive analysis. It is anticipated that more future studies on C&D waste management will be led by researchers from developing economies, where construction works will remain their major economic activities. On the other hand, more sophisticated modeling and simulating techniques have been used effectively in a number of studies on C&D waste management research, and this is considered a major methodology for future research in the discipline. C&D waste management will continue to be a hot research topic in the future, in particularly, the importance of human factors in C&D waste management has emerged as a new challenging topic.

  17. Participation of the ININ in the activities of radioactive waste management of the Laguna Verde Central; Participacion del ININ en las actividades de gestion de desechos radiactivos de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Medrano L, M.; Rodriguez C, C.; Linares R, D. [ININ, Gerencia Subsede Sureste (Mexico); Ramirez G, R.; Zarate M, N. [Central Laguna Verde, CFE (Mexico)]. e-mail: maam@nuclear.inin.mx

    2006-07-01

    From the beginning of the operation of the Laguna Verde Central (CLV) the National Institute of Nuclear Research (ININ) has come supporting the CLV in the activities of administration of the humid and dry radioactive waste generated by the operation of the two units of the CLV, from the elaboration of procedures to the temporary storage in site, the implementation of a program of minimization and segregation of dry solid wastes, until the classification of the lots of humid waste and bulk dry wastes. In this work the description of the management activities of radioactive wastes carried out by the ININ in the facilities of the CLV to the date is presented, as well as some actions that they are had drifted in the future near, among those that it stands out the determination of the total alpha activity in humid samples by means of scintillation analysis. (Author)

  18. Urban waste management and the mobile challenge.

    Science.gov (United States)

    Mavropoulos, Antonis; Tsakona, Maria; Anthouli, Aida

    2015-04-01

    Digital evolution and mobile developments are carving a new era that affects human behaviour and global governance. Interconnectivity and flow of information through various types of modern means create new opportunities for cooperation and ways to work. Waste management could not stay unaffected by these changes. New potentials are arising for the sector, offering a novel field for innovation, changing the way waste practices are applied. In this framework, mobile products and apps can become valuable tools for authorities, companies, civilians and other stakeholders, integrating these technologies in the battle for environmental protection, recycling, etc. This article examines the unexplored challenges of mobile apps to deliver sustainable waste management with emphasis on recycling and waste prevention performance, especially for emerging developing countries. It presents the opportunities that are involved in using mobile apps to improve both the systemic performance of a specific waste management system and the individual behaviour of the users. Furthermore, the article reviews the most important relevant literature and summarises the key findings of the recent research on mobile apps and human behaviour. Useful conclusions are drawn for both the content and the format of the mobile apps required for recycling and waste prevention. Finally, the article presents the most characteristic mobile apps that are already in place in the waste management sector. © The Author(s) 2015.

  19. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  20. 76 FR 76677 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Science.gov (United States)

    2011-12-08

    ....: EPA-R08-RCRA-2011-0823; FRL-9502-4] Hazardous Waste Management System; Identification and Listing of... industrial solid waste. If finalized, the EPA would conclude that ConocoPhillips' petitioned waste is... subject to Federal RCRA delisting, to manage industrial waste. II. Background A. What is a listed waste...

  1. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  2. Remote waste handling and feed preparation for Mixed Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Couture, S.A.; Merrill, R.D. [Lawrence Livermore National Lab., CA (United States); Densley, P.J. [Science Applications International Corp., (United States)

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation.

  3. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  4. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste

    Directory of Open Access Journals (Sweden)

    Ebo Tawiah Quartey

    2015-08-01

    Full Text Available Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  5. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste

    Science.gov (United States)

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-01-01

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana. PMID:26308016

  6. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste.

    Science.gov (United States)

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-08-20

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  7. Radioactive waste management in Austria

    Directory of Open Access Journals (Sweden)

    Neubauer Josef

    2004-01-01

    Full Text Available At the Austrian Research Centers Seibersdorf, there are several facilities in stalled for treatment of waste of low and intermediate radioactivity level (radwaste. A separate company within Centers, Nuclear Engineering Seibersdorf, has been formed recently, acting as a centralized facility for treatment, conditioning and storing of such waste within the country. The relevant treatment technology is applied depending on the waste category. In total about 6900 m3 of solid waste of low and intermediate radioactivity level originating from Austria was treated in the period between 1976 and 2002. Presently, there exists no final repository for radwaste in Austria. A study is under way to identify the structure for a long term storage facility.

  8. 1993 baseline solid waste management system description

    Energy Technology Data Exchange (ETDEWEB)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  9. Radiation waste management in Poland; Unieszkodliwianie odpadow promieniotworczych w Polsce

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, W. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1995-12-31

    Radioactive waste management especially related to storage of spent fuel from Ewa and Maria research nuclear reactors has been presented. The classification and balance of radioactive wastes coming from different branches of nuclear activities have been shown. The methods of their treatment in respect of physical state and radioactive have been performed as well as their storage in Central Polish Repository have been introduced. 2 figs, 4 tabs.

  10. Nuclear waste management. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  11. Analysis and Measures to Improve Waste Management in Schools

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2016-08-01

    Full Text Available Assessing waste production in schools highlights the contribution of school children and school staff to the total amount of waste generated in a region, as well as any poor practices of recycling (the so-called separate collection of waste in schools by the students, which could be improved through educational activities. Educating young people regarding the importance of environmental issues is essential, since instilling the right behavior in school children is also beneficial to the behavior of their families. The way waste management was carried out in different schools in Trento (northern Italy was analyzed: a primary school, a secondary school, and three high schools were taken as cases of study. The possible influence of the age of the students and of the various activities carried out within the schools on the different behaviors in separating waste was also evaluated. The results showed that the production of waste did not only depend on the size of the institutes and on the number of occupants, but, especially, on the type of activities carried out in addition to the ordinary classes and on the habits of both pupils and staff. In the light of the results obtained, some corrective measures were proposed to schools, aimed at increasing the awareness of the importance of the right behavior in waste management by students and the application of good practices of recycling.

  12. Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust

    Directory of Open Access Journals (Sweden)

    Inés Durán

    2017-06-01

    Full Text Available The selective separation of CO2 from gas mixtures representative of flue gas generated in waste incineration systems is studied on two activated carbons obtained from pine sawdust and compared to a commercial activated carbon. Dynamic adsorption experiments were conducted in a fixed-bed adsorption column using a binary mixture (N2/CO2 with a composition representative of incineration streams at temperatures from 30 to 70 °C. The adsorption behavior of humid mixtures (N2/CO2/H2O was also evaluated in order to assess the influence of water vapor in CO2 adsorption at different relative humidity in the feed gas: 22% and 60%. Moreover, CO2 adsorption was studied in less favorable conditions, i.e., departing from a bed initially saturated with H2O. In addition, the effect of CO2 on H2O adsorption was examined. Experimental results showed that the CO2 adsorption capacity can be reduced significantly by the adsorption of H2O (up to 60% at high relative humidity conditions. On the other hand, the breakthrough tests over the adsorbent initially saturated with water vapor indicated that H2O is little affected by CO2 adsorption. The experimental results pointed out the biomass based carbons as best candidates for CO2 separation under incineration flue gas conditions.

  13. Submission of the national commission of the public debate on the options concerning the long life high and medium activity radioactive wastes management; Saisine de la commission nationale du debat public sur les options generales en matiere de gestion des dechets radioactifs de haute activite et de moyenne activite a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document deals with the presentation of a public debate on the radioactive wastes management and the opportunities of its organization. It presents successively the long life high and medium activity radioactive wastes, the today radioactive wastes management policy and some questions and topics which could be discussed during the debate. (A.L.B.)

  14. Sustainable wood waste management in Nigeria

    Directory of Open Access Journals (Sweden)

    Owoyemi Jacob Mayowa

    2016-09-01

    Full Text Available Wood industries produce large volumes of residues which must be utilized, marketed or properly disposed of. Heaps of wood residues are common features in wood industries throughout the year. In Nigeria, this residue is generally regarded as waste and this has led to open burning practices, dumping in water bodies or dumping in an open area which constitutes environmental pollution. Sawmills in Nigeria generated over 1,000,000 m3 of wood waste in 2010 while about 5000 m3 of waste was generated in plywood mills. Nigeria generates about 1.8 million tons of sawdust annually and 5.2 million tons of wood wastes. The impact of improper disposal of waste wood on the environment affects both the aquatic and terrestrial ecosystems. Also burning of waste wood releases greenhouse gases into the atmosphere causing various health issues. Reuse/recycling of these wood residues in Nigeria will reduce the pressure on our ever decreasing forests, reduce environmental pollution, create wealth and employment. The literature available on this subject was reviewed and this article, therefore, focuses on the various methods of wood waste disposal and its utilization in Nigerian wood industries, the effects of wood waste on the environment as well as on human health and the benefits of proper wood waste management practices.

  15. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  16. The low to intermediate activity and short living waste storage facility. For a controlled management of radioactive wastes; Le centre de stockage des dechets de faible et moyenne activite a vie courte. Pour une gestion controlee des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Sited at about 50 km of Troyes (France), the Aube facility started in 1992 and has taken over the Manche facility for the surface storage of low to intermediate and short living radioactive wastes. The Aube facility (named CSFMA) is the answer to the safe management of these wastes at the industrial scale and for 50 years onward. This brochure presents the facility specifications, the wastes stored at the center, the surface storage concept, the processing and conditioning of waste packages, and the environmental monitoring performed in the vicinity of the site. (J.S.)

  17. WHO collaboration in hazardous waste management in the Western Pacific Region

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hisashi [Western Pacific Regional Environmental Health Centre, Kuala Lumpur (Malaysia)

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  18. Modeling and low-level waste management: an interagency workshop

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.A.; Stratton, L.E. (comps.)

    1980-01-01

    The interagency workshop on Modeling and Low-Level Waste Management was held on December 1-4, 1980 in Denver, Colorado. Twenty papers were presented at this meeting which consisted of three sessions. First, each agency presented its point of view concerning modeling and the need for models in low-level radioactive waste applications. Second, a larger group of more technical papers was presented by persons actively involved in model development or applications. Last of all, four workshops were held to attempt to reach a consensus among participants regarding numerous waste modeling topics. Abstracts are provided for the papers presented at this workshop.

  19. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  20. Public health response to striking solid waste management.

    Science.gov (United States)

    Murti, Michelle; Ayre, Reg; Shapiro, Howard; de Burger, Ron

    2011-10-01

    In 2009, the City of Toronto, Ontario, Canada, experienced a six-week labor disruption involving 24,000 city workers that included solid waste and public health employees. In an attempt to control illegal dumping and to manage garbage storage across the city during this period, 24 temporary garbage storage sites were established by the city (mostly in local parks) for residents to dispose of their household waste. No other municipality in North America has attempted to operate this many temporary sites for this long a period. Management and nonunion staff from Healthy Environments in Toronto Public Health performed daily inspections, responded to community questions, issued public health orders, and worked closely with Solid Waste Management and the Ministry of the Environment to actively manage the public health concerns associated with these sites. This intensive oversight mitigated public health risks to the community and facilitated an effective, safe solution to the temporary garbage storage problem.

  1. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...... with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic...

  2. Electronics waste management: Indian practices and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Amitava [Department of Chemical Engineering. University of Calcutta, 92, A.P.C.Road. Kolkata 700 009 (India)

    2010-07-01

    Electronic waste or e-waste or waste electrical and electronic equipment (WEEE) is a popular, informal name for discarded electrical and electronic equipment (EEE) with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today's world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR). Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  3. Electronics waste management: Indian practices and guidelines

    Directory of Open Access Journals (Sweden)

    Amitava Bandyopadhyay

    2010-09-01

    Full Text Available Electronic waste or e-waste or waste electrical and electronic equipment (WEEE is a popular, informal name for discarded electrical and electronic equipment (EEE with all of their peripherals at their end-of-life. WEEE constitutes 8% of municipal waste and is one of the fastest growing waste streams. The fraction of precious and other metals in e-waste is over 60%, while pollutants comprise a meager 2.70%. Given the volume of WEEE generated containing toxic materials, it emerges as a risk to the society. Considering the high toxicity of these pollutants especially when burned or recycled in uncontrolled environments, the Basel Convention has identified e-waste as hazardous, and developed a framework for controls on transboundary movement of such waste. In contrast, WEEE can offer a tremendous business opportunity if it would treat in proper manner. The management of the WEEE has thus become a global challenge in today’s world. Several nations across the globe have implemented or are about to implement WEEE regulations based on the principle of Extended Producer Responsibility (EPR. Both existing and proposed solutions are implemented with various degrees of centralization. Practical implementations however, can give rise to absurd organizational outcomes. In the light of these findings, the present paper deals with the Indian initiatives on the WEEE management keeping pace with the international scenario. Initially, this paper aims to draw an overview on the basics of WEEE. Next, the international legislative practices followed by Indian initiatives intended to help manage these growing quantities of this waste stream are discussed.

  4. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  5. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  6. Radioactive waste management in a hospital.

    Science.gov (United States)

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  7. ORION - A Global Approach to Waste Management.

    Science.gov (United States)

    Heinzelmann, Elsbeth

    2015-01-01

    In the ORION project supported by the European Commission, 20 partners work together to manage organic waste from agro-food industries. The goal is to develop a small, automatic and user-friendly digestion machine to facilitate the domestic on-site treatment of a wide range of organic waste from around 100 and up to 5000 tonnes per year at low cost and with limited maintenance. Simon Crelier at the HES-SO Valais/Wallis is part of the network.

  8. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  9. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  10. Assessment of Solid Waste Management Strategies in Camarines Norte, Philippines

    Directory of Open Access Journals (Sweden)

    Maria Cristina C. Azuelo

    2016-11-01

    Full Text Available The Ecological Solid Waste Management Act of 2000 or RA 9003 mandates the local government units to take initiatives in managing their daunting problems on ecological solid waste disposal. Consequently, compliance of Camarines Norte, Philippines on this mandate needs assessment to determine the existing solid waste management (SWM strategies, the effectiveness and the possibility of adoption in each municipality. This study utilized the descriptive method using questionnaire as the main tool supplemented by interview. Results showed that the existing SWM strategies with the highest percentages of existence in the twelve (12 municipalities were provision of number of trucks in transporting solid wastes and knowledge on waste segregation conducted at every household/establishment. Varying levels were observed. However, high level of effectiveness is still required for significant impact, seeing that from the six areas assessed only four municipalities were identified to have more and highly effective SWM strategies. Generally, only availability of technology for composting was considered more effective and can be adopted in all municipalities. Better solid waste management may be fully attained through the involvement, political will and commitment of the implementers in the implementation of politically passed resolutions and undertaking of their initiatives that will stimulate active participation of the community. All these measures may bring change in health and environment in the province.

  11. Waste Management Planning System – Factors Influencing Waste Composition in Lithuania

    OpenAIRE

    Davidavičienė, Vida; Janeliūnienė, Rasma; Liberytė, Ginta

    2012-01-01

    Rapid changes in the field of information technologies, growing production and consumption forced by economic growth lead to growth of waste causing the new challenges to waste management. All these fields are widely analyzed by scientists as separate scientific, technological, environmental or economic problems as well as integrated questions. Waste management is analyzed comprehensively and systematically as well as individual questions of waste generation, waste forecasting, waste storage,...

  12. INTEGRATED WASTE MANAGEMENT SYSTEM IN HARGHITA COUNTY

    Directory of Open Access Journals (Sweden)

    Mihai-Constantin AVORNICULUI

    2015-11-01

    Full Text Available Waste management problems in Harghita County (and other places in the country have a major negative impact on society and pose a direct threat to human health, and an adverse effect on quality of life. Considering the current practices, it is clear that the system of waste management in Romania and Harghita county needs to be improved to meet the requirements of new national and European regulations. In Harghita County there are 36 protected areas of national interest, four protected areas of local interest and 18 Natura 2000 sites, including 13 Sites of Community Importance (SCI and 5 Special Protection Areas (SPA. Strengthening a sustainable waste management system involves major changes to current practices. Implementing such changes can be successfully achieved only through the involvement of the whole society: population– as users, entrepreneurs, socio-economic institutions and public authorities.

  13. Integrated Resource Planning for Urban Waste Management

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2015-01-01

    Full Text Available The waste hierarchy currently dominates waste management planning in Australia. It is effective in helping planners consider options from waste avoidance or “reduction” through to providing infrastructure for landfill or other “disposal”. However, it is inadequate for guiding context-specific decisions regarding sustainable waste management and resource recovery, including the ability for stakeholders to compare a range of options on an equal footing whilst considering their various sustainability impacts and trade-offs. This paper outlines the potential use of Integrated Resource Planning (IRP as a decision-making approach for the urban waste sector, illustrated using an Australian case study. IRP is well established in both the water and energy sectors in Australia and internationally. It has been used in long-term planning enabling decision-makers to consider the potential to reduce resource use through efficiency alongside options for new infrastructure. Its use in the waste sector could address a number of the current limitations experienced by providing a broader context-sensitive, adaptive, and stakeholder focused approach to planning not present in the waste hierarchy and commonly used cost benefit analysis. For both efficiency and new infrastructure options IRP could be useful in assisting governments to make decisions that are consistent with agreed objectives while addressing costs of alternative options and uncertainty regarding their environmental and social impacts. This paper highlights various international waste planning approaches, differences between the sectors where IRP has been used and gives a worked example of how IRP could be applied in the Australian urban waste sector.

  14. The food waste hierarchy as a framework for the management of food surplus and food waste

    OpenAIRE

    Papargyropoulou, E; Lozano, R.; Steinberger, JK; Wright, N; Ujang, ZB

    2014-01-01

    The unprecedented scale of food waste in global food supply chains is attracting increasing attention due to its environmental, social and economic impacts. Drawing on interviews with food waste specialists, this study construes the boundaries between food surplus and food waste, avoidable and unavoidable food waste, and between waste prevention and waste management. This study suggests that the first step towards a more sustainable resolution of the food waste issue is to adopt a sustainable...

  15. Alternative approaches for better municipal solid waste management in Mumbai, India.

    Science.gov (United States)

    Rathi, Sarika

    2006-01-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (35 US dollars) with community participation; Rs. 1797 (41 US dollars) with public private partnership (PPP); and Rs. 1908 (44 US dollars) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

  16. Stakeholder analysis for industrial waste management systems.

    Science.gov (United States)

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution.

  17. A short history of waste management at the Hanford Site

    Science.gov (United States)

    Gephart, Roy E.

    The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of southeastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.” ( Gephart, 2003).

  18. A Spanish model for quantification and management of construction waste.

    Science.gov (United States)

    Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio

    2009-09-01

    Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.

  19. Nuclear waste management quarterly progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M. (comp.)

    1977-11-01

    Progress is reported in sections on decontamination and densification of chop-leach cladding residues, monitoring methods for effluents from waste solidification, TRU waste fixation studies, krypton solidification, /sup 14/C and /sup 129/I fixation, waste management system studies, waste isolation assessment, stored waste migration monitoring, properties of fission product organic complexes, and decontamination of metals. (JRD)

  20. Sustainable solid waste management a systems engineering approach

    CERN Document Server

    Chang, N

    2015-01-01

    Interactions between human activities and the environment are complicated and often difficult to quantify. In many occasions, judging where the optimal balance should lie among environmental protection, social well-being, economic growth, and technological progress is complex. The use of a systems engineering approach will fill in the gap contributing to how we understand the intricacy by a holistic way and how we generate better sustainable solid waste management practices. This book aims to advance interdisciplinary understanding of intertwined facets between policy and technology relevant to solid waste management issues interrelated to climate change, land use, economic growth, environmental pollution, industrial ecology, and population dynamics.

  1. Solid Waste Management System: Public-Private Partnership, the Best System for Developing Countries

    Directory of Open Access Journals (Sweden)

    Dr. Nabukeera Madinah

    2016-04-01

    leaders need to alter their mind set, prepare a strategic, integrated SWM plan for the cities, enact strong and adequate legislation at city and national level, evaluate the real impacts of waste management systems, utilizing locally based solutions for SWM service delivery and design, location, management of the waste collection centersand recycling and compositing activities should be encouraged.

  2. Radioactive waste management approaches for developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  3. Radioactive waste management approaches for developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  4. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identifying and Listing Hazardous Waste... permitted, licensed, or registered by a State to manage industrial solid waste. The rule also imposes... per year from the list of hazardous wastes. The Agency has decided to grant the petition based on an...

  5. Safety Aspects in Radioactive Waste Management

    Directory of Open Access Journals (Sweden)

    Peter W. Brennecke

    2007-01-01

    Full Text Available In recent years, within the framework of national as well as international programmes, notable advances and considerable experience have been reached, particularly in minimising of the production of radioactive wastes, conditioning and disposal of short-lived, low and intermediate level waste, vitrification of fission product solutions on an industrial scale and engineered storage of long-lived high level wastes, i.e. vitrified waste and spent nuclear fuel. Based on such results, near-surface repositories have successfully been operated in many countries. In contrast to that, the disposal of high level radioactive waste is still a scientific and technical challenge in many countries using the nuclear power for the electricity generation. Siting, planning and construction of repositories for the high level wastes in geological formations are gradually advancing. The site selection, the evaluation of feasible sites as well as the development of safety cases and performance of site-specific safety assessments are essential in preparing the realization of such a repository. In addition to the scientific-technical areas, issues regarding economical, environmental, ethical and political aspects have been considered increasingly during the last years. Taking differences in the national approaches, practices and the constraints into account, it is to be recognised that future developments and decisions will have to be extended in order to include further important aspects and, finally, to enhance the acceptance and confidence in the safety-related planning work as well as in the proposed radioactive waste management and disposal solutions.

  6. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  7. Analysis of the Institutional Framework For Radioactive Waste Management in Indonesia

    Directory of Open Access Journals (Sweden)

    D.S. Wisnubroto

    2009-07-01

    Full Text Available The analysis of the infrastructure for radioactive waste management in Indonesia has been studied using several parameters, i.e. policy, regulatory authorities and their regulations, implementing organizations and financial system. By considering the international trends and the Indonesian program to utilize nuclear power, the infrastructure of radioactive waste management needs to be improved. The Act No. 10/1997 on Nuclear Energy for the future beneficence will have to be amended to incorporate several missing key points on waste management, such as definition of radioactive waste, disposal of Low and Intermediate Level Waste (LILW, and classification of waste. Full involvement of some important stakeholders, especially the State Ministry of Environment, on the radioactive waste management infrastructure is required since some radioactive waste is generated from non nuclear waste. Assigning full authority to the State Ministry of Environment for regulating radioactive waste generated by non nuclear facilities may be more effective, whereas BAPETEN is still holding onto control over the waste generated from nuclear facilities. In the near future, several regulations on clearance level, classification of waste, NORM/TENORM, and financial system are expected to be set up for urgent need. By considering the high risk for handling of radioactivity, including for transportation and storage, the liability or assurance of the safety for such activities must be accounted for. Finally, establishment of financial system for long term waste management in Indonesia needs to be implemented to ensure that the radioactive waste will not be the burden on future generations.

  8. Sanitary Landfilling – A Key Component of Waste Management

    OpenAIRE

    Johann Fellner

    2013-01-01

    In many affluent countries waste management is experiencing a fast transition from landfilling to sophisticated recycling and waste to energy plants. Thus, landfilling of waste becomes less important in these countries. The present paper discusses whether a similar development will take place in transition economies, or waste management systems will mainly rely on landfilling in the near future. For this purpose, the current waste management practices and associated environmental impacts as w...

  9. Packaging wastes management; Gestion integral de los residuos de envases

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ramos, M.

    1996-12-01

    Packaging, having fulfilled their function, become waste and joint the flow of resure we generate every day. Packaging waste is a usable secondary raw material, provided that a suitable integrated management strategy is devised. This article highlights the Integrated Management Strategic Plan for Packaging Waste, following the priority guidelines established by the Community Directives on waste management: Reduction, re-use, Recycling, Energy Recovery and Final Elimination, and the European Directive 94/62/CE about packaging and packaging waste. (Author)

  10. Waste Management Policy In Tourism Area of Saensuk Municipality, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsathon Kaewmanee

    2014-01-01

    Full Text Available Saensuk Municipality is a famous tourism city in Thailand, especially Bangsaen beach. In supporting the tourism activity, it has waste managing method by using new generation administrator and technologies. However, the waste problem happened in Saensuk Municipality is included the human resource ability, technical facility, and the amount of waste. By using the qualitative descriptive method and doing a series of interview to selected informants, the researcher studied and analyzed the problem, factors, and solutions of the issue. This study found that the nature of the beach and the visitor behavior is among the reason behind the large amount of waste daily in the site. Moreover, the regulation by the local government is sufficient to cover the issue if implemented fully. The study shows that the city had implemented the good governance idea in several instances, and giving the waste management to the private sector is one of the optionsto resolve the problem since the quality of the work could be improved. Keywords:waste management,public policy, tourism area, Thailand

  11. Neutralized current acid waste consolidation management plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired.

  12. Smart Garbage Monitoring System for Waste Management

    Directory of Open Access Journals (Sweden)

    Mohd Yusof Norfadzlia

    2017-01-01

    Full Text Available Piles of rubbish are one of the major problems faced by most people in Malaysia, especially those who live in flats, as the number of bins is limited and shared among all residents. It may cause pollutions, which may lead to sanitary issues and diseases. This project presents the development of a smart garbage monitoring system in order to measure waste level in the garbage bin in real-time and to alert the municipality, in particular cases, via SMS. The proposed system is consisted by the ultrasonic sensor to measure the waste level, the GSM module to send the SMS, and an Arduino Uno which controls the system operation. It supposes to generate and send the warning messages to the municipality via SMS when the waste bin is full or almost full, so the garbage can be collected immediately. Furthermore, it is expected to contribute to improving the efficiency of the solid waste disposal management.

  13. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  14. 40 CFR 60.55c - Waste management plan.

    Science.gov (United States)

    2010-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management plan. 60.55c Section... Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.55c Waste management...

  15. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  16. Integrated solid waste management of Minneapolis, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  17. Tribal Waste Journal: What Is an Integrated Waste Management Plan: Issue 7

    Science.gov (United States)

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  18. Development of cluster structures in the field of waste management

    Directory of Open Access Journals (Sweden)

    Mishenin Yevgen Vasyliovych

    2014-12-01

    Full Text Available The aim of the article. The authors formulate methodological foundations that define organizational and innovative basis for cluster structures formation in the field of waste management. Using the cluster approach in terms of regional ecological-economic problems in the field of waste management solution causes necessity to focus on the definition of “cluster”. It should be mentioned that system of important components in the process of ecological and economic problems in the field of waste management solving, such as specialization of production, the processes of combination, concentration and association of business potentials of enterprises and government agencies, authorities, is necessary organizational and economic condition for cluster approach implementation. The results of the analysis. The basic processes of creating integrated business structures in the field of waste management should include a system of organizational, economic, financial, social and environmental activities at different hierarchical levels of governance: national, sectorial, regional (territorial, as well as on the level of business organizations (enterprises. From these perspectives, integrated businesses focused on cooperation in the field of waste management can have a form of cluster associations. In this context, cluster policy in the field of waste management should be considered as a system of organizational and economic relations between public authorities and individuals regarding environmentally safe disposal of waste as secondary raw materials, improving the competitiveness of enterprises due to formation and development of cluster formations. The theory of creation of the cluster structures allows to determine the fundamental differences between cluster as a business structure in the field of waste management from other territorial and industrial associations. The main tasks and principles concerning the formation, operation and development of

  19. Waste Information Management System-2012 - 12114

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  20. Towards sustainable solid waste management: Investigating household participation in solid waste management

    Science.gov (United States)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  1. Managing Materials and Wastes for Homeland Security Incidents

    Science.gov (United States)

    To provide information on waste management planning and preparedness before a homeland security incident, including preparing for the large amounts of waste that would need to be managed when an incident occurs, such as a large-scale natural disaster.

  2. Animal Waste Management Practices and Perceptions on Public ...

    African Journals Online (AJOL)

    Animal Waste Management Practices and Perceptions on Public and Environmental Health Risks. ... Huria: Journal of the Open University of Tanzania ... and public health risks associated with improper management of animal wastes in 66 ...

  3. Medical waste management at the University of Port Harcourt ...

    African Journals Online (AJOL)

    Medical waste management at the University of Port Harcourt Teaching Hospital. ... medical waste management and training in, and use of personal protective equipment. ... storage, treatment, and final disposal at the UPTH was inadequate.

  4. Waste management project technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  5. International High Level Nuclear Waste Management

    Science.gov (United States)

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  6. Abstracts: NRC Waste Management Program reports

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers.

  7. General survey of solid-waste management

    Science.gov (United States)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  8. Solid Waste Management Planning--A Methodology

    Science.gov (United States)

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  9. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  10. Management of low-level radioactive wastes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

  11. Waste management through life cycle assessment of products

    Science.gov (United States)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  12. Policy Instruments towards a Sustainable Waste Management

    Directory of Open Access Journals (Sweden)

    Tomas Forsfält

    2013-02-01

    Full Text Available The aim of this paper is to suggest and discuss policy instruments that could lead towards a more sustainable waste management. The paper is based on evaluations from a large scale multi-disciplinary Swedish research program. The evaluations focus on environmental and economic impacts as well as social acceptance. The focus is on the Swedish waste management system but the results should be relevant also for other countries. Through the assessments and lessons learned during the research program we conclude that several policy instruments can be effective and possible to implement. Particularly, we put forward the following policy instruments: “Information”; “Compulsory recycling of recyclable materials”; “Weight-based waste fee in combination with information and developed recycling systems”; “Mandatory labeling of products containing hazardous chemicals”, “Advertisements on request only and other waste minimization measures”; and “Differentiated VAT and subsidies for some services”. Compulsory recycling of recyclable materials is the policy instrument that has the largest potential for decreasing the environmental impacts with the configurations studied here. The effects of the other policy instruments studied may be more limited and they typically need to be implemented in combination in order to have more significant impacts. Furthermore, policy makers need to take into account market and international aspects when implementing new instruments. In the more long term perspective, the above set of policy instruments may also need to be complemented with more transformational policy instruments that can significantly decrease the generation of waste.

  13. 75 FR 51434 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-08-20

    ... No. EPA-HQ-RCRA-2009-0640. Mail: Send your comments to the Hazardous and Solid Waste Management... Delivery: Deliver two copies of your comments to the Hazardous and Solid Waste Management System... electronically in http://www.regulations.gov or in hard copy at the Hazardous and Solid Waste Management...

  14. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  15. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  16. 45 CFR 671.13 - Waste management for the USAP.

    Science.gov (United States)

    2010-10-01

    ... otherwise taken into account in existing management plans for ships): (1) Current and planned waste management arrangements, including final disposal; (2) Current and planned arrangement for assessing the environmental effects of waste and waste management; (3) Other efforts to minimize environmental effects of...

  17. E-Waste Supply Chain in Mexico: Challenges and Opportunities for Sustainable Management

    Directory of Open Access Journals (Sweden)

    Samantha E. Cruz-Sotelo

    2017-03-01

    Full Text Available Electronic waste is a widespread environmental problem. From all waste streams, e-waste is registering one of the largest growing rates (between 3% and 5%. In Mexico, the e-waste recovery system comprises a mix of formal and informal sectors not well known to date. The goal of this article was to analyze electronic waste in Mexico through the active actors in the recovery chain. This article presents the evolution of studies on electronic waste in Mexico. The legal regulations and public policies were analyzed, as were the existing practices of electronic waste handling, and some challenges facing this country for waste flow management. A management model is proposed which highlights components that must be considered in the model and the opportunities and challenges to transition from an unbundled handling, which still has practices that lack environmental and technical support, to sustainable management.

  18. Setting priorities for waste management strategies in developing countries.

    Science.gov (United States)

    Brunner, Paul H; Fellner, Johann

    2007-06-01

    This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for evaluation were economic parameters, and indicators as to whether the goals of waste management (protection of human health and the environment, the conservation of resources) were reached. Based on case studies, it was found that for regions spending 1-10 Euro capita(-1) year(-1) for waste management, the 'waste hierarchy' of prevention, recycling and disposal is not an appropriate strategy. In such regions, the improvement of disposal systems (complete collection, upgrading to sanitary landfilling) is the most cost-effective method to reach the objectives of solid waste management. Concepts that are widely applied in developed countries such as incineration and mechanical waste treatment are not suitable methods to reach waste management goals in countries where people cannot spend more than 10 Euro per person for the collection, treatment and disposal of their waste. It is recommended that each region first determines its economic capacity for waste management and then designs its waste management system according to this capacity and the goals of waste management.

  19. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  20. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  1. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  2. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2008-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  3. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  4. On Integrity Constraints for a Waste Management Information System

    OpenAIRE

    Schreiber, D. (Dominik)

    1994-01-01

    There is a waste problem in nearly every country. A model of a waste generating system and an efficient waste management information system are the first steps to control this problem. Some countries have already enacted laws which force communities and enterprises to report annually the amounts of wastes produced. For example, the German federal state, Lower Saxony, enacted such a law in 1992. This YSSP-Project deals with a case study on the development of a waste management information syst...

  5. The effectiveness of construction waste management and its relationship with project performance

    Science.gov (United States)

    Osman, Nur Najihah; Nawi, Mohd Nasrun Mohd; Osman, Wan Nadzri

    2016-08-01

    The construction industry is one of the contributor toward sustainability of a country's economy. However, there are some issues that need to be faced in this industry that are including construction waste management resulting from the development activities. This issue become more serious when the industrial stakeholders especially in developing countries have lack of awareness in construction waste management practices. Some of industry stakeholders do not realize that proper waste management will increase the project performance. Therefore, waste management practices among industry stakeholders need to be improved towards better environmental quality.

  6. Refurbishment implications on long-term waste management strategies at Point Lepreau

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, C. [New Brunswick Power Nuclear, Fredericton, NB (Canada)

    2011-07-01

    This paper discusses Point Lepreau Generating Station's waste management experiences during the Refurbishment outage. In short, Point Lepreau GS has been challenged during the outage due to the amount of low and intermediate level waste that has been generated compared to that which was expected, which has driven the need to develop a new waste management strategy in the middle of the outage. The paper presents an overview of pre-outage waste handling, what process changes and schedule changes occurred during the outage, and provides a discussion of the operational and financial consequences of those changes. Key issues highlighted by the paper include the need for adequate provision of waste management facilities during large outages, the importance of ensuring that contractors have a stake in waste minimization activities, and long term waste management implications that need to be considered for large outages.

  7. Preliminary study on enhancing waste management best practice model in Malaysia construction industry

    Science.gov (United States)

    Jamaludin, Amril Hadri; Karim, Nurulzatushima Abdul; Noor, Raja Nor Husna Raja Mohd; Othman, Nurulhidayah; Malik, Sulaiman Abdul

    2017-08-01

    Construction waste management (CWM) is the practice of minimizing and diverting construction waste, demolition debris, and land-clearing debris from disposal and redirecting recyclable resources back into the construction process. Best practice model means best choice from the collection of other practices that was built for purpose of construction waste management. The practice model can help the contractors in minimizing waste before the construction activities will be started. The importance of minimizing wastage will have direct impact on time, cost and quality of a construction project. This paper is focusing on the preliminary study to determine the factors of waste generation in the construction sites and identify the effectiveness of existing construction waste management practice conducted in Malaysia. The paper will also include the preliminary works of planned research location, data collection method, and analysis to be done by using the Analytical Hierarchy Process (AHP) to help in developing suitable waste management best practice model that can be used in the country.

  8. High-level waste management technology program plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  9. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-11-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  10. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  11. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  12. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  13. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  14. Composting Organic Kitchen Waste with Worms for Sustainable Kitchen Waste Management

    Directory of Open Access Journals (Sweden)

    Mehali J. Mehta

    2014-03-01

    Full Text Available India produces around 3000 million tons of organic waste annually. This huge volume of waste(s comes from agriculture, urban and industrial sources and also from domestic activities. Utilization of this waste material for productivity process is important for both economical and environmental reasons. In the present study an effort has been made to assess the efficacy of E. foetida (red tiger worm in utilizing the kitchen waste material, to analyse the waste decomposition process assessed with earthworm activity.

  15. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    Little research has been done to determine emissions of engineered nanomaterials (ENM) from currently available nano-enabled consumer products. While ENM release is expected to occur throughout the life cycle of the products, this study focuses on the product end-of-life (EOL) phase. We used the ....... The results of this study may be used for the environmental and human health risk assessment of nanowaste, and to assist future regulatory and management decisions.......Little research has been done to determine emissions of engineered nanomaterials (ENM) from currently available nano-enabled consumer products. While ENM release is expected to occur throughout the life cycle of the products, this study focuses on the product end-of-life (EOL) phase. We used...... the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...

  16. Environmental impacts of waste management in the hospitality industry: Creating a waste management plan for Bergvik Kartano

    OpenAIRE

    Adigwe, Christopher

    2014-01-01

    Many hospitality industries find it difficult to control or manage solid wastes, such as food, containers, paper, cardboard and scrap metals, which are waste generated on a daily basis depending on the industry. Most hospitality industries tend to lag behind when it comes to the collection of waste. Only a fraction of the¬¬ waste collected receives proper disposal. When waste is not collected sufficiently and the disposal is inappropriate the waste can accumulate and cause water, land and air...

  17. The Waste Management in Romania. A Case Study: WMS Implementation

    Directory of Open Access Journals (Sweden)

    OROIAN I.

    2009-12-01

    Full Text Available The present study aims to discuss issues related to the degree of implementation of national waste managementstrategy by emphasizing progress in waste management at national level in three years after its development. In 2004,Romania has developed national policy documents as Waste Management Strategy and National Waste ManagementPlan (WMS, WMSP based on the ”waste hierarchy”. In the four years after the initiation of this process resultsdemonstrate the advantages of using this system in ensuring a sustainable solution to eliminate pollution from waste.Also, the amount of waste recovered at the start of the period - 2004, occupies a proportion of 5.08% of total while inthe end of 2007, the degree of recovery reached 7%. Concerning waste disposal, this was achieved by storage. Thereason is the lack of incinerators for thermal treatment of waste. Traditional collection of household and similar waste inthe mixture, is the most common, accounting for a share of about 97%.

  18. Preliminary study for the management of construction and demolition waste.

    Science.gov (United States)

    Kourmpanis, B; Papadopoulos, A; Moustakas, K; Stylianou, M; Haralambous, K J; Loizidou, M

    2008-06-01

    This paper refers to the management of the construction and demolition (C&D) waste since, according to the EU Waste Strategy, C&D waste is considered to be one of the priority waste streams and appropriate actions need to be taken with respect to its effective management. Initially, the paper presents the state-of-the-art of the problem of C&D waste, including the amount and composition of C&D waste in EU countries, differences in the characteristics of this waste stream depending on its origin, as well as collection and management practices that are applied. A methodology is described for the estimation of the quantities of the waste stream under examination, since in most cases quantitative primary data is not available. Next, the fundamentals for the development of an integrated scheme for the management of C&D waste are presented and discussed, such as appropriate demolition procedures and location of waste management (off-site waste management, on-site waste management, direct on-site recovery, centralized on-site recovery). Finally, taking into consideration all relevant parameters, alternative systems that could be applied for the management of the C&D waste are suggested.

  19. Mine Waste Characterization, Management and Remediation

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2015-01-01

    Full Text Available Mining is a vital part of the Global economy, but the extraction of metals, metalloids, and other mineral products generates vast quantities of liquid and solid waste. Currently the volume is estimated at several thousand million tons per annum, but is increasing exponentially as demand and exploitation of lower-grade deposits increases. The high concentrations of potentially toxic elements in these wastes can pose risks to ecosystems and humans, but these risks can be mitigated by implementing appropriate management or remediation schemes. Although there are a large number of such schemes available, there is still a need to research the processes, products, and effectiveness of implementation, as well as the nature of the mine wastes themselves. This Special Issue is aimed at bringing together studies in the areas of mine waste characterization, management, and remediation, to review the current state of knowledge and to develop improvements in current schemes. Fourteen manuscripts are published for this Special Issue, and these are summarized below.[...

  20. Resource Recovery and Reuse in Organic Solid Waste Management

    NARCIS (Netherlands)

    Lens, P.N.L.; Hamelers, H.V.M.; Hoitink, H.; Bidlingmaier, W.

    2004-01-01

    Uncontrolled spreading of waste materials leads to health problems and environmental damage. To prevent these problems a waste management infrastructure has been set to collect and dispose of the waste, based on a hierarchy of three principles: waste prevention, recycling/reuse, and final disposal.

  1. Resource Recovery and Reuse in Organic Solid Waste Management

    NARCIS (Netherlands)

    Lens, P.N.L.; Hamelers, H.V.M.; Hoitink, H.; Bidlingmaier, W.

    2004-01-01

    Uncontrolled spreading of waste materials leads to health problems and environmental damage. To prevent these problems a waste management infrastructure has been set to collect and dispose of the waste, based on a hierarchy of three principles: waste prevention, recycling/reuse, and final disposal.

  2. Best Practice of Construction Waste Management and Minimization

    OpenAIRE

    Khor Jie Cheng; Md Azree Othuman Mydin

    2014-01-01

    Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effectiv...

  3. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    This sixth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal year 1988. An epilogue chapter reports significant events from the end of the fiscal year on September 30, 1988 through March 1989. The Nuclear Waste Policy Amendments Act (NWPA) of 1987 made significant changes to the NWPA relating to repository siting and monitored retrievable storage and added new provisions for the establishment of several institutional entities with which OCRWM will interact. Therefore, a dominant theme throughout this report is the implementation of the policy focus and specific provisions of the Amendments Act. 50 refs., 8 figs., 4 tabs.

  4. Contributions to the Legislative Provisions Governing the Management of Waste Containing Asbestos in Romania and EU

    Directory of Open Access Journals (Sweden)

    Silvian IONESCU

    2011-09-01

    Full Text Available One of the most stringent worldwide environmental problems is represented, in this moment, of the waste management. Generate increasing amounts of waste creates problems, ultimately, to the state authorities, their management and recovery technologies becoming an important area of research. Recovery and recycling, whatever their nature, are one of the priority activities for the global economy.

  5. [DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.

    1995-04-01

    The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

  6. Fifty years of federal radioactive waste management: Policies and practices

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.G.

    1997-04-01

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

  7. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Larissa A. R. U. Freitas

    2017-07-01

    Full Text Available The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ecology contributions to waste management in industrial construction. The waste management strategies adopted in two industrial construction projects in Brazil are analyzed. The main waste streams generated are identified, recycling and landfilling diversion rates are presented and waste recovery through Industrial Symbiosis is discussed. A SWOT analysis was carried out. Results demonstrate that 9% of the waste produced in one of the projects was recovered through Industrial Symbiosis, while in the other project, waste recovery through Industrial Symbiosis achieved the rate of 30%. These data reveal Industrial Symbiosis’ potential to reduce landfilling of industrial construction wastes, contributing to waste recovery in construction. In addition, results show that industrial construction projects can benefit from the following synergies common in Industrial Ecology place-based approaches: centralized waste management service, shared waste management infrastructure and administrative simplification.

  8. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    Science.gov (United States)

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized.

  9. Integrated solid waste management of Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  10. Integrated solid waste management of Sevierville, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  11. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  12. Mixed Waste Management Facility Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  13. Waste management outlook for mountain regions: Sources and solutions.

    Science.gov (United States)

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  14. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  15. Radioactive waste management at the Paul Scherrer Institute, the largest Swiss national research centre

    Directory of Open Access Journals (Sweden)

    Beer Hans-Frieder

    2009-01-01

    Full Text Available This paper presents the current radioactive waste management practices at the Paul Scherrer Institute (PSI. The PSI contributes to waste related problems in two aspects, namely to the scientific basis of waste management and disposal, and to the practical treatment and storage of radioactive waste. In addition to the tasks of treating on-site generated waste, PSI manages the wastes from medicine, industry, and research throughout Switzerland on behalf of the government. Therefore the Dismantling and Waste Management Section is a part of the Logistics Department at PSI. Proved and accepted methods have to be developed for the safe conditioning and storage of radioactive waste. Various waste treatment facilities exist at PSI. The conditioning facility is dedicated to sorting, compaction by a 120 t press, solidification with special cement, and embedding in concrete. Specialized facilities were constructed for waste from the decommissioning of research reactors. Activated aluminum and its alloys were melted in crucibles and embedded in concrete in a concrete container. After dismantling the structural material of the reactors, it was embedded in concrete in the same manner. For the conditioning of activated reactor graphite, a dedicated method was developed. Graphite was crushed to replace sand in the grout, for embedding radioactive waste in concrete containers. For accelerator waste, a walk-in hot cell equipped with an electrically driven manipulator is available where the highly activated large components (targets, beam dump can be cut into pieces and embedded in concrete in containers. To guarantee the fulfillment of the demands of the regulators, the Dismantling and Waste Management Section applies an accredited quality management system for the safe collection, conditioning, and storage of radioactive waste.

  16. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  17. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  18. 77 FR 26991 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-05-08

    ... REGULATORY COMMISSION 10 CFR Part 61 RIN 3150-AI92 Low-Level Radioactive Waste Management Issues AGENCY... to the regulatory framework for the management of commercial low-level radioactive waste (LLW). The... Regulations (10 CFR) Part 61, ``Licensing Requirements for Land Disposal of Radioactive Waste.'' These...

  19. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Science.gov (United States)

    2012-02-22

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 RIN-3150-AI92 Low-Level Radioactive Waste Management Issues... possible revisions to the regulatory framework for the management of commercial low-level radioactive waste... Disposal of Radioactive Waste.'' These regulations were published in the Federal Register on December 27...

  20. Certain hospital waste management practices in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Ferdowsi

    2012-01-01

    Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations.

  1. Comparative analysis of solid waste management in 20 cities

    NARCIS (Netherlands)

    Wilson, D.C.; Rodic-Wiersma, L.; Scheinberg, A.; Velis, C.A.; Alabaster, G.

    2012-01-01

    This paper uses the ‘lens’ of integrated and sustainable waste management (ISWM) to analyse the new data set compiled on 20 cities in six continents for the UN-Habitat flagship publication Solid Waste Management in the World’s Cities. The comparative analysis looks first at waste generation rates

  2. 40 CFR 60.35e - Waste management guidelines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a...

  3. E-waste: Environmental Problems and Current Management

    Directory of Open Access Journals (Sweden)

    D. Aktsoglou

    2010-01-01

    Full Text Available In this paper the environmental problems related with the discarded electronic appliances, known as e-waste, are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste management schemes in Greece and othercountries (Japan, Switzerland are also quoted.

  4. Fish waste management by conversion into heterotrophic bacteria biomass

    NARCIS (Netherlands)

    Schneider, O.

    2006-01-01

    Just as all other types of animal production, aquaculture produces waste. This waste can be managed outside the production system, comparable to terrestrial husbandry systems. However, particularly recirculation aquaculture systems (RAS) are suited to manage waste within the system. In this case, pr

  5. A review and overview of nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimate disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.

  6. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  7. Assessing the management of healthcare waste in Hawassa city, Ethiopia.

    Science.gov (United States)

    Israel Deneke Haylamicheal; Mohamed Aqiel Dalvie; Biruck Desalegn Yirsaw; Hanibale Atsbeha Zegeye

    2011-08-01

    Inadequate management of healthcare waste is a serious concern in many developing countries due to the risks posed to human health and the environment. This study aimed to evaluate healthcare waste management in Hawassa city, Ethiopia. The study was conducted in nine healthcare facilities (HCFs) including hospitals (four), health centres (two) and higher clinics (three) in two phases, first to assess the waste management aspect and second to determine daily waste generation rate. The result showed that the median quantity of waste generated at the facilities was 3.46 kg bed(-1) day(-1) (range: 1.48-8.19 kg bed(-1) day(-1)). The quantity of waste per day generated at a HCF increased as occupancy increased (p waste generated at government HCFs was more than at private HCFs (p waste (20-63.1%) generated at the different HCFs was much higher than the WHO recommendation (10-25%). There was no waste segregation in most HCFs and only one used a complete color coding system. Solid waste and wastewater were stored, transported, treated and disposed inappropriately at all HCFs. Needle-stick injuries were prevalent in 25-100% of waste handlers employed at these HCFs. Additionally, low levels of training and awareness of waste legislation was prevalent amongst staff. The study showed that management of healthcare waste at HCFs to be poor. Waste management practices need to be improved through improved legislation and enforcement, and training of staff in the healthcare facilities in Hawassa.

  8. Office of Civilian Radioactive Waste Management annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-08-01

    This is the fifth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM). The report covers the activities and expenditures of OCRWM during fiscal year 1987, which ended on September 30, 1987. The activities and accomplishments of OCRWM during fiscal year 1987 are discussed in chapters 1 through 9 of this report. The audited financial statements of the Nuclear Waste Fund are provided in chapter 10. Since the close of the fiscal year, a number of significant events have occurred. Foremost among them was the passage of the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act) on December 21, 1987, nearly 3 months after the end of the fiscal year covered by this report. As a result, some of the plans and activities discussed in chapters 1 through 9 are currently undergoing significant change or are being discontinued. Most prominent among the provisions of the Amendments Act is the designation of Yucca Mountain, Nevada, as the only candidate first repository site to be characterized. Therefore, the site characterization plans for Deaf Smith, Texas, and Hanford, Washington, discussed in chapter 3, will not be issued. The refocusing of the waste management program under the Amendments Act is highlighted in the epilogue, chapter 11. 68 refs., 7 figs., 7 tabs.

  9. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management; Radioaktivt avfall fraan icke tillstaandsbunden verksamhet (RAKET) - identifiering av aktuellt avfall, sammanstaellning av relevanta regler och principer, foerslag paa system foer omhaendertagande

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Pers, K. [Kemakta Konsult AB, Stockholm (Sweden)

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation.

  10. Report: integrated industrial waste management systems in China.

    Science.gov (United States)

    Zhang, Wenxin; Roberts, Peter

    2007-06-01

    Various models of urban sustainable development have been introduced in recent years and some of these such as integrated waste management have been proved to be of particular value. Integrated industrial waste management systems include all the administrative, financial, legal, planning and engineering functions involved in solutions to the problems of industrial waste. Even though the pace of the improvement made to China's industrial waste management capacity is impressive, China has been unable to keep up with the increasing demand for waste management. This paper will evaluate the application of integrated industrial waste management systems in promoting urban sustainable development in the context of three case study cities in China (positive case, average case and negative case) by identifying and accessing the factors that affect the success or failure of integrated industrial waste management systems.

  11. Nuclear waste management. Quarterly progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  12. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  13. Integrated solid waste management of Springfield, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  14. Issues for small businesses with waste management.

    Science.gov (United States)

    Redmond, Janice; Walker, Elizabeth; Wang, Calvin

    2008-07-01

    Participation by small and medium enterprise (SME) in corporate social responsibility issues has been found to be lacking. This is a critical issue, as individually SMEs may have little impact on the environment but their collective footprint is significant. The management style and ethical stance of the owner-manager affects business decision making and therefore has a direct impact on the environmental actions of the business. Although adoption of environmental practices to create competitive advantage has been advocated, many businesses see implementation as a cost which cannot be transferred to their customers. After a brief review of pertinent literature this paper reports on an exploratory investigation into the issue. Results show that whereas owner-managers of small enterprises express concern regarding the environment, this does not then translate into better waste management practices.

  15. The Perception of the Langkawi Community on Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Noor Khafazilah Abdullah

    2014-08-01

    Full Text Available The process of disposing solid wastes should be systematic and efficient. Various pollution may occur if solid wastes are not properly disposed. Pollution would not only affect the naturalenvironment but also exposed the community to various diseases. Therefore the community should be given exposure to practice efficient solid waste disposalfor their own benefits.Given the signficance of proper waste disposal issues for tourism locations, this study investigated the management of solid waste disposal at the renown Langkawi Island. The focus was on the understanding and awareness of the community of the locals, business people and tourists on the island.The findings indicated that thecommunity inPulau Langkawi was aware of the importance of efficient solid waste management. Yet, theirpractices differed in terms of propriety or impropriety of the method in the perspectives of solid waste management. These practices were found to be influenced by their level of knowledge on waste management issues and their educational background.

  16. feasibility study on solid waste management in port harcourt ...

    African Journals Online (AJOL)

    user

    system is still being used instead of the integrated solid waste management system (1SWMS) and that about 75% of the ..... passengers from dropping off their waste via the window, which ... application of geographical information system in.

  17. E-waste: Environmental Problems and Current Management

    National Research Council Canada - National Science Library

    D. Aktsoglou; K. Angelakoglou; G. Gaidajis

    2010-01-01

    ..., are reviewed.Moreover, the current and the future production of e-waste, the potential environmental problems associated with theirdisposal and management practices are discussed whereas the existing e-waste...

  18. Sustainable Management of Domestic Solid Wastes in Developing ...

    African Journals Online (AJOL)

    Sustainable Management of Domestic Solid Wastes in Developing Countries: ... of wastes and assess the environmental concerns of the community and their ... The urban community was concerned about health and environmental effects of ...

  19. Arsenic: A Roadblock to Potential Animal Waste Management Solutions

    National Research Council Canada - National Science Library

    Keeve E. Nachman; Jay P. Graham; Lance B. Price; Ellen K. Silbergeld

    2005-01-01

    .... The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  20. Role of Waste Management in Wealth Creation in Nigeria ...

    African Journals Online (AJOL)

    Role of Waste Management in Wealth Creation in Nigeria- Evidences From Lagos ... and how waste recycling affects the creation of small or large business ventures ... in the processes as this would help to create business for entrepreneurs.

  1. BASIS OF RATIONAL MUNICIPAL WASTE MANAGEMENT IN RURAL FARMSTEADS

    Directory of Open Access Journals (Sweden)

    Hanna Bauman-Kaszubska

    2016-06-01

    Full Text Available The paper presents the most important problems of waste management in rural areas against the background of formal and legal requirements. It also includes quantitative and qualitative characteristics of waste generated in rural homesteads. Quantitative characterization was based on literature data and the results of the author’s own research, within which an indicator of the accumulation of waste in selected regions of Mazowieckie and Świętokrzyskie was determined. Accurate knowledge of the characteristics of the waste and its variation is the basis for planning and development of waste management. The collected data show clear evidence of a significant increase in both the rate of volume and weight, which depends on many factors, eg. the type of building, season etc. In addition, the basic principles of proper model of waste management, selective waste collection guidelines and principles of best practice of waste management in rural areas were presented.

  2. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  3. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  4. Civilian radioactive waste management program plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  5. Facilitating the improved management of waste in South Africa through a national waste information system.

    Science.gov (United States)

    Godfrey, Linda

    2008-01-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  6. Municipal solid waste management in Cartago province

    Directory of Open Access Journals (Sweden)

    Silvia M. Soto-Córdoba

    2014-03-01

    Full Text Available This paper resumes the principals results obtained by the grant EUROPEAID/126635/M/ACT/CR”, that was realized by FUNDATEC, and whose bene­ficiary was the “Federación de Municipalidades de Cartago, Costa Rica”, the Project received a funding of 74,920 euros. We work with all the Municipalities of the Cartago Province. In addition, we show the results of the interviews of social actors, visits to the recycle sites, visits of municipalities, during the years 2010, 2011 and 2012, and the review of literature. We describe the actual situation of the management of solid waste in Cartago, determinate the gene­ration rates by person and identified the principal landfill disposes, the recycle companies and deter­minate the main problems associated with the solid waste. It is hope that the information presented here, pro­vides the basis for the future construction of plans of municipal solid waste management, and for the capacitation of community organization in the pro­vince of Cartago.

  7. E-waste management as a global challenge (introductory chapter)

    OpenAIRE

    Mihai, Florin-Constatin; Gnoni, Maria-Grazia

    2016-01-01

    International audience; Waste Electrical and Electronic Equipment management (E-waste or WEEE) is a crucial issue in the solid waste management sector with global interconnections between well-developed, transitional and developing countries. Consumption society and addiction to technology dictate the daily life in high and middle-income countries where population consumes large amounts of EEE products (electrical and electronic equipment) which sooner become e-waste. This fraction is a fast-...

  8. Radioactive waste management and the Rio Conference of 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tourtellotte, James R.

    1995-12-31

    Among other items adopted by the Plenary of the United Nations Conference on Environment and Development, were Agenda 21, Chapter 22, entitled Safe and Environmentally Sound Management of Radioactive Wastes and Agenda 9, The Rio Declaration of Environment and Development. This report presents an overview and relevant text concerning these two Agendas, with the objectives, activities, international and regional cooperation and coordination, implementation and principles.

  9. Waste Management Program. Technical progress report, July-December, 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

  10. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to

  11. Twelfth annual US DOE low-level waste management conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  12. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  13. [Hazardous medical waste management as a public health issue].

    Science.gov (United States)

    Marinković, Natalija; Vitale, Ksenija; Afrić, Ivo; Janev Holcer, Natasa

    2005-03-01

    The amount of waste produced is connected with the degree of a country's economic development; more developed countries produce more waste. This paper reviews the quantities, manipulation and treatment methods of medical waste in Croatia, as well as hazardous potentials of medical waste for human health. Medical waste must be collected and sorted in containers suitable for its characteristics, amount, means of transportation and treatment method in order to prevent contact with environment and to protect people who are working with waste. Hazardous medical waste in Croatia is largely produced by hospitals. Even though only one hospital has a licence to incinerate infectious medical waste, many other hospitals incinerate their hazardous waste in inappropriate facilities. Healthcare institutions also store great amounts of old medical waste, mostly pharmaceutical, anti-infectious, and cytostatic drugs and chemical waste. Data on waste treatment effects on human health are scarce, while environmental problems are covered better. Croatian medical waste legislation is not being implemented. It is very important to establish a medical waste management system that would implement the existing legislation in all waste management cycles from waste production to treatment and final disposal.

  14. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  15. Radioactive Waste Management Complex performance assessment: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  16. Integrated solid waste management of Scottsdale, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  17. Korean Waste Management Law and Waste Disposal Forms.

    Science.gov (United States)

    1991-03-01

    Soil Treatment Tanks) 69 Article 8. (Interim Measures on Report of Recycler or Reuser of Industrial Waste) 69 Article 9. (Interim Measures on Permit...recycling and reuse (hereinafter referred to as a "recycler and reuser of industrial waste"), pursuant to Article 23.2. of the Law, shall submit a "Filing... reuser of industrial waste, pursuant to Article 45.2., shall submit a "Modification of Recycle or Reuse of Industrial Waste" (Form No. 17), to the

  18. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  19. From waste treatment to integrated resource management.

    Science.gov (United States)

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  20. Greenhouse gas emissions of waste management processes and options: A case study.

    Science.gov (United States)

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles.

  1. Municipal Solid Waste Management in Phuntsholing City, Bhutan

    Directory of Open Access Journals (Sweden)

    Norbu

    2010-01-01

    Full Text Available Municipal solid waste problem is a major concern in major cities in Bhutan. Despite the lack of reliable data on both waste composition and quantity, no studies have been conducted to identify problems and alternatives to improve the current system. The study objectives are: 1 to determine solid waste composition and generation rate; and 2 to investigate current solid waste management system. Six waste samples were selected in Phuntsholing city from three designated collection spots and from three collection vehicles and analyzed for their composition. Waste generation rate was computed from waste collected by collection vehicles. The investigation was carried out through interviews with municipal authorities, existing document reviews, and field observations. The organic fraction of solid waste composition comprised about 71 percent. The waste generation rate was estimated to 0.40 kg/capita.day. The current management system is inefficient, and recommendations are given to improve the current situation.

  2. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  3. The management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kil Jeong; An, Sum Jin; Lee, Kang Moo; Lee, Young Hee; Sohn, Jong Sik; Bae, Sang Min; Kang, Kwon Ho; Sohn, Young Jun; Yim, Kil Sung; Kim, Tae Kuk; Jeong, Kyeong Hwan; Wi, Keum San; Park, Young Yoong; Park, Seung Chul; Lee, Chul Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The radioactive wastes generated at Korea Atomic Energy Research Institute (KAERI) in 1994 are about 56 m{sup 3} of liquid waste and 323 drums of solid waste. Liquid waste were treated by the evaporation process, the bituminization process, and the solar evaporation process. The solid wastes were treated in 1994 are about 87 m{sup 3} of liquid waste and 81 drums of solid waste, respectively. 2 tabs., 26 figs., 12 refs. (Author) .new.

  4. Spent Fuel and Waste Management Activities for Cleanout of the 105 F Fuel Storage Basin at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M. R.; Rodovsky, T. J.; Day, R. S.

    2002-02-25

    Clean-out of the F Reactor fuel storage basin (FSB) by the Environmental Restoration Contractor (ERC) is an element of the FSB decontamination and decommissioning and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the F Reactor FSB was reduced to approximately 0.6 m (2 ft) over the floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6 m (20 ft) of local surface material (essentially a fine sand). The reactor FSB backfill cleanout involves the potential removal of spent nuclear fuel (SNF) that may have been left in the basin unintentionally. Based on previous cleanout of four water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980s), it was estimated that up to five SNF elements could be discovered in the F Reactor FSB (1). In reality, a total of 10 SNF elements have been found in the first 25% of the F Reactor FSB excavation. This paper discusses the technical and programmatic challenges of performing this decommissioning effort with some of the controls needed for SNF management. The paper also highlights how many various technologies were married into a complete package to address the issue at hand and show how no one tool could be used to complete the job; but by combining the use of multiple tools, progress is being made.

  5. Households willingness to pay for improved solid waste management

    Directory of Open Access Journals (Sweden)

    S. Akhtar

    2017-04-01

    Full Text Available Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed to increase in the amount and complexity of solid waste produced. The present study was conducted in the residential area of main Boulevard Gulberg, Lahore to determine the present methods and efficiency of current solid waste management facility and to estimate the willingness of the selected households to pay for the improvement of solid waste management through questionnaire survey. It was found that current Solid waste management system in the area is fair but needs more improvement in terms of improved collection efficiency and rates, recycling bins, and segregation of waste at storage. According to the questionnaire survey, majority of the respondents despite belonging to middle class incomes are willing to pay an amount less than USD 4.8 for the improvement of waste management facility in the area. The area lacks frequent collection of waste containers. Therefore, there is a need for upgradation of storage and collection facilities in terms of increase in collection efficiency and rates, introduction of recycling facility and segregation of waste at source. Waste storage and collection sites of the area should be monitored periodically and waste should be disposed of in a scientific manner in sanitary landfills.

  6. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...... simulating Danish household waste in composition and weight, 2) evaluating the performance of best enzyme candidates on original waste with and without additional additives, 3) measuring the biogas potential of liquefied waste and comparing the results with the biogas potential of untreated waste...

  7. Proceedings of the US Department of Energy Office of Environmental Restoration and Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The fifth of a series of waste minimization (WMIN)/reduction workshops (Waste Reduction Workshop V) was held at the Little Tree Inn in Idaho Falls, Idaho, on July 24--26, 1990. The workshops are held under the auspices of the US Department of Energy's (DOE's) Office of Environmental Restoration and Waste Management (EM). The purpose of this workshop was to provide a forum for sharing site activities in WMIN/reduction planning. Topics covered were management commitment, organizational structure, goal setting, reporting requirements, data bases and tracking systems, pollution prevention, awareness and incentives, information exchange, process waste assessment (PWA) implementation, and recycling internal and external. The workshops assist DOE waste-generating sites in implementing WMIN/reduction programs, plans, and activities, thus providing for optimal waste reduction within the DOE complex. All wastes are considered within this discipline: liquid, solid, and airborne, within the categories of high-level waste (HLW), transuranic waste (TRU), low-level waste (LLW), hazardous waste, and mixed waste.

  8. Estimation of construction waste generation and management in Thailand.

    Science.gov (United States)

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  9. Safety assessment driving radioactive waste management solutions (SADRWMS Methodology) implemented in a software tool (SAFRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Kinker, M., E-mail: M.Kinker@iaea.org [International Atomic Energy Agency (IAEA), Vienna (Austria); Avila, R.; Hofman, D., E-mail: rodolfo@facilia.se [FACILIA AB, Stockholm (Sweden); Jova Sed, L., E-mail: jovaluis@gmail.com [Centro Nacional de Seguridad Nuclear (CNSN), La Habana (Cuba); Ledroit, F., E-mail: frederic.ledroit@irsn.fr [IRSN PSN-EXP/SSRD/BTE, (France)

    2013-07-01

    In 2004, the International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of radioactive waste. The initial outcome of the SADRWMS Project was achieved through the development of flowcharts which could be used to improve the mechanisms for applying safety assessment methodologies to predisposal management of radioactive waste. These flowcharts have since been incorporated into DS284 (General Safety Guide on the Safety Case and Safety Assessment for Predisposal Management of Radioactive Waste), and were also considered during the early development stages of the Safety Assessment Framework (SAFRAN) Tool. In 2009 the IAEA presented DS284 to the IAEA Waste Safety Standards Committee, during which it was proposed that the graded approach to safety case and safety assessment be illustrated through the development of Safety Reports for representative predisposal radioactive waste management facilities and activities. To oversee the development of these reports, it was agreed to establish the International Project on Complementary Safety Reports: Development and Application to Waste Management Facilities (CRAFT). The goal of the CRAFT project is to develop complementary reports by 2014, which the IAEA could then publish as IAEA Safety Reports. The present work describes how the DS284 methodology and SAFRAN Tool can be applied in the development and review of the safety case and safety assessment to a range of predisposal waste management facilities or activities within the Region. (author)

  10. The Travel of Global Ideas of Waste Management

    DEFF Research Database (Denmark)

    Zapata Campos, Maria José; Zapata, Patrik

    2014-01-01

    Informal settlements in the global South cities are often neglected by formal solid waste collection services. In the city of Managua, the municipality and international and local NGOs recently implemented several waste management projects to provide waste collection in informal settlements...... by municipal truck to the municipal landfill. New institutionalism theory and the “travel metaphor” illuminate how the “waste transfer station” idea travelled to Managua from various international organizations. New urban infrastructure and waste management models introduced by donors were decoupled from...... existing waste management models and practices. Despite the organizational hypocrisy of the city administration, introducing this new model via pilot projects in three city districts challenges the logic of the existing centralized waste management system, which ignores the city's informal settlements...

  11. Safety and radiation protection in waste management. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Lipponen, M.; Vuori, S. [VTT, Espoo (Finland); Ruokola, E. [STUK, Helsinki (Finland); Palsson, S.E. [Geslavarnir (Iceland); Sekse, T. [NRPA, Oesteraas (Norway); Ramsoey, T. [IFE, Kjeller (Norway)

    2001-12-01

    During 1998-2001, a project on the management of radioactive waste was carried out as part of the NKS programme. The project was called NKS/SOS-3 and was divided into three sub-projects: SOS-3.1 (Environmental Impact Assessment; EIA), SOS-3.2 (Intermediate storage) and SOS-3.3 (Contamination levels in metals). SOS-3.1 included four EIA seminars on the use of EIA in the Nordic countries. The seminars were held in Norway in 1998, Denmark in 1999, Iceland in 2000 and Finland in 2001. (The last seminar was performed in co-operation with the NKS project SOS-1.) The seminars focused on experiences from EIA procedures for the disposal of radioactive waste, and other experiences from EIA processes. SOS-3.2 included a study on intermediate storage of radioactive waste packages in the Nordic countries. An overview of experiences was compiled and recommendations were made regarding different intermediate storage options as well as control and supervision. SOS-3.3 included investigation of contamination levels in steel, aluminium and magnesium samples from smelting facilities and an overview of current practice for clearance in the Nordic countries. Clearance, clearance levels, naturally occurring radioactive materials, radioactive waste, radioactive material, intermediate storage, waste disposal, environmental impact assessment, gamma spectrometric measurements, beta measurements, neutron activation analyses. (au)

  12. Nuclear wastes management; Gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  13. Environmental management 1994. Progress and plans of the environmental restoration and waste management program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

  14. Assessment of Solid Waste Management Strategies in Camarines Norte, Philippines

    OpenAIRE

    Maria Cristina C. Azuelo; Leah N. Barbado; Luz Menda L. Reyes

    2016-01-01

    The Ecological Solid Waste Management Act of 2000 or RA 9003 mandates the local government units to take initiatives in managing their daunting problems on ecological solid waste disposal. Consequently, compliance of Camarines Norte, Philippines on this mandate needs assessment to determine the existing solid waste management (SWM) strategies, the effectiveness and the possibility of adoption in each municipality. This study utilized the descriptive method using questionnaire as t...

  15. Environmental Restoration and Waste Management (EM) program: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This booklet introduces the reader to the mission and functions of a major new unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 1989, implementing a central purpose of DOE's first annual Environmental Restoration and Waste Management Five-Year Plan, which had appeared three months earlier. The contents of this booklet, and their arrangement, reflect the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: focusing DOE's activities on eliminating or reducing known or recognized potential risks to worker and public health and the environment, containing or isolating, removing, or detoxifying onsite and offsite contamination, and developing technology to achieve DOE's environmental goals.

  16. Environmental Management vitrification activities

    Energy Technology Data Exchange (ETDEWEB)

    Krumrine, P.H. [Waste Policy Institute, Gaithersburg, MD (United States)

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity for the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.

  17. Bioorganic Municipal Waste Management to Deploy a Sustainable Solid Waste Disposal Practice in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino-German RRU-BMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population's behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.

  18. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  19. Mine waste management legislation. Gold mining areas in Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National

  20. Role of the South African Waste Information System in improving waste management

    CSIR Research Space (South Africa)

    Godfrey, L

    2010-09-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research, whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  1. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ...; Final Exclusion AGENCY: Environmental Protection Agency. ACTION: Final rule. SUMMARY: Environmental... Software (DRAS), EPA has concluded that the petitioned waste is not hazardous waste. This exclusion applies.... What are the limits of this exclusion? D. How will OxyChem manage the waste if it is delisted? E....

  2. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... than 1. The description of the waste is corrected from ``wastewater treatment plant (WWTP) sludge'' to..., 2010. The Hazardous and Solid Waste Amendments of 1984 amended section 3010 of the Resource... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  3. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste

  4. The weak link in waste management in tropical Asia? Solid waste collection in Bali

    NARCIS (Netherlands)

    MacRae, Graeme; Rodic-Wiersma, Ljiljana

    2015-01-01

    This article builds on earlier work that examined waste processing options on the island of Bali, which can be seen as a useful "laboratory" for the study of solid waste management (SWM) problems and solutions in tropical Asia. The research reported here examines the challenges of waste collectio

  5. Improving waste management through a process of learning: the South African waste information system

    CSIR Research Space (South Africa)

    Godfrey, L

    2011-05-01

    Full Text Available Piloting of the South African Waste Information System (SAWIS) provided an opportunity to research whether the collection of data for a national waste information system could, through a process of learning, change the way that waste is managed...

  6. 75 FR 41121 - Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes...

    Science.gov (United States)

    2010-07-15

    ... AGENCY 40 CFR Parts 257, 261, 264, 265, 268, 271 and 302 RIN 2050-AE81 Hazardous and Solid Waste Management System; Identification and Listing of Special Wastes; Disposal of Coal Combustion Residuals From...), 3001, 3004, 3005, and 4004 of the Solid Waste Disposal Act of 1970, as amended by the...

  7. Torrefaction Processing for Human Solid Waste Management

    Science.gov (United States)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  8. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    Science.gov (United States)

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.

  9. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  10. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  11. Environmental Restoration and Waste Management Site-Specific Plan for the Oak Ridge Reservation. [Appendix contains accromyms list and maps of waste management facilities

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance at its waste sites and facilities, while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities, planned and completed, undertaken to implement these FYP goals at the DOE Field Office-Oak Ridge (DOE/OR) installations and programs; specifically, for the Oak Ridge Reservation (ORR), Oak Ridge Associated Universities (ORAU), and Hazardous Waste Remedial Action Program (HAZWRAP). Activities described in this SSP address hazardous, radioactive, mixed, and sanitary wastes, along with treatment, storage, and disposal of current production waste and legacy waste from past operation. The SSP is presented in sections emphasizing Corrective Activities (A), Environmental Restoration (ER), Waste Management (WM), Technology Development (TD), and Transportation; and includes descriptions of activities, resources, and milestones by installation or program. 87 tabs.

  12. Global warming factor of municipal solid waste management in Europe

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas Højlund

    2009-01-01

    The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007...

  13. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 3 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of carbon-14. The report also discusses waste streams that contain carbon-14, waste forms that contain carbon-14, and carbon-14 behavior in the environment and in the human body.

  14. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Stanton, C.; Patterson, R.G.; Garcia, R.S.

    1992-02-01

    This report, Volume 2 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics of technetium-99. This report also includes discussions about waste streams in which technetium-99 can be found, waste forms that contain technetium-99, and technetium-99's behavior in the environment and in the human body.

  15. National Low-Level Waste Management Program Radionuclide Report Series

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, M.J.; Garcia, R.S.

    1992-02-01

    This report, Volume 4 of the National Low-Level Radioactive Waste Management Program Radionuclide Report Series, discusses radiological and chemical characteristics about iodine-129. This report also includes discussions about waste streams that contain iodine-129, waste forms that contain iodine-129, and iodine-129's behavior in the environment, as well as in the human body.

  16. Using Financial Incentives to Manage the Solid Waste Stream.

    Science.gov (United States)

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  17. Nitty-Gritty Federalism: Managing Solid Waste. Teaching Strategy.

    Science.gov (United States)

    LaRocco, Joseph C.; Gregori, Harry E., Jr.

    1995-01-01

    Outlines the lesson plan that uses the issue of solid waste disposal to examine the relationship between local, state, and federal governments. Handouts include a quiz on solid waste management, an information sheet, and a simulation of a local problem. The simulation involves the location of a hazardous waste site. (MJP)

  18. Municipal solid waste management in Malaysia: practices and challenges.

    Science.gov (United States)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  19. Odor Control in Spacecraft Waste Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  20. agricultural waste concept, generation, utilization and management

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Agricultural wastes are non-product outputs of production and processing of agricultural products that may .... process of livestock wastes; the putrefaction process .... attitudes, and better approaches to agricultural waste.

  1. Waste not Want not’- Sustainable Waste Management in Malta - Comment

    Directory of Open Access Journals (Sweden)

    Tilak A. Ginige

    2010-12-01

    Full Text Available This paper aims to look at the implications of EU’s sustainable waste management policy as applied to the Maltese Islands. It will review the development of waste management in Malta, pre and post EU accession. It will bring the current analysis of the Waste Framework Directive 2008 in order to understand the implications to Malta. When discussing waste management in the context of sustainable development, we are considering a system involving a process of change in which the core components, i.e. society, resource use, investment, technologies, institutions, and consumption patterns, need to operate in harmony with ecosystems. Malta, whose efforts in waste management are reviewed in this paper, whilst serving as the locus for contribution to the waste management debate as early as 2005, has made great efforts in its strive to abide by the ‘Life Cycle Thinking’ approach highlighted in Municipal Waste Management Workshop it hosted together with the EC’s JRC in 2005. The outputs of that workshop showed that the modern aim of waste management plans is to lay the groundwork for sustainable waste management. However, drafting the strategy and implementing it in the field are two different realities, as depicted in this review.

  2. Radioactive waste management in the Chernobyl exclusion zone: 25 years since the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.

  3. Solid Wastes Management of Yasuj Hospitals, Iran 2006

    Directory of Open Access Journals (Sweden)

    AR Raygan Shirazi

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: Unhygienic methods of colleting, storage, transportation and disposal of the hospital wastes results in serious hazards that can endanger the health and environment. These materials are classified as dangerous, and have to be collected and disposed based on special rules. Materials & Methods: In the present study we aimed to evaluate the quality of management of hospital wastes and to estimate the waste constituents in Yasuj hospitals. Density, constituents, methods of collecting, transportation and disposal of hospital wastes were evaluated in 3 consecutive days of every months of the year 2006. Results: Study showed that the daily production of solid wastes was 5.5 Kg per hospital bed and infected solid wastes were estimated to be 1.5 Kg per hospital bed. The total solid waste production was 1350 Kg per day which included 27.2 percent as infected solid wastes. Solid waste density was 160.7 Kg per cubic meter and its constituents were food wastes (19.753%, rubber (47.02%, paper (12.05%, glass (5.211%, metals (3.41% and bandages, gases, clothes, etc (12.556%. Conclusion: The findings suggest that the solid waste management of the studied hospitals is not satisfying and more attention must be paid to the critical issues, such as plans for reducing solid wastes, isolating infected solid wastes at the production site and using safe and updated methods of disposal of solid wastes.

  4. Waste management in Greenland: current situation and challenges

    DEFF Research Database (Denmark)

    Eisted, Rasmus; Christensen, Thomas Højlund

    2011-01-01

    Waste management in Greenland (56 000 inhabitants) is characterized by landfilling, incineration and export to Denmark of small quantities of metals and hazardous waste. The annual amount of waste is estimated to about 50 000 tons but actual data are scarce. Data on the waste composition is basic...... are small and equipped with only moderate flue gas cleaning technology. This report summarizes the current waste management situation in Greenland and identifies important challenges in improving the waste management.......Waste management in Greenland (56 000 inhabitants) is characterized by landfilling, incineration and export to Denmark of small quantities of metals and hazardous waste. The annual amount of waste is estimated to about 50 000 tons but actual data are scarce. Data on the waste composition...... is basically lacking. The scattered small towns and settlements, the climate and the long transport distances between towns and also to recycling industries abroad constitute a complex situation with respect to waste management. The landfills have no collection of gas and leachate and the incinerators...

  5. International nuclear waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  6. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  7. Waste Management in the Circular Economy. The Case of Romania.

    Science.gov (United States)

    Iuga, Anca N.

    2016-11-01

    Applying the principles of sustainable development in Romania involves a new approach to ecological waste using basic concepts of circular economy to weigh accurately the proposed projects in this area taking into account existing environmental resources and zero waste objectives. The paper is focused on: quantitative and qualitative measures of waste prevention in Romania, the changing status of the waste by selling it as product, the mechanisms for paying for treatment and / or disposal which discourage waste generation and the use of financial resources obtained from secondary raw materials for the efficiency of waste management.

  8. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  9. DOE guidelines for management of radioactive waste - historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kluk, A.F. [Dept. of Energy, Germantown, MD (United States); Neal, R.M. [Scientech, Inc., Germantown, MD (United States)

    1996-12-31

    From the beginning of the Manhattan Project in 1942 through the signing of the Atomic Energy Act (AEA) in 1946 and its reenactment in 1954, new policies and techniques began to evolve for managing waste produced in the manufacture of nuclear weapons. Even in the early days of war-time urgency, public health and safety were the major considerations in managing waste from this new technology. The Atomic Energy Commission (AEC), which took over from the Manhattan Engineer District (MED) in 1947, established initial waste category management guidelines (high level waste stored in tanks, solid low level waste disposed of primarily in trenches, and liquid waste released to ponds, cribs, and pits) based on the management concepts developed by the MED. The AEC and its successor agencies managed radioactive waste in a manner consistent with existing industrial health and safety requirements of that era. With the formation of the Department of Energy (DOE) in September 1977, techniques and internal requirements were already in place or being established that, in some cases, were more protective of human health and the environment than existing legislation and environmental standards. With the transition to environmental cleanup of former DOE weapons production facilities, new and revised guidelines were created to address hazardous and radioactive mixed waste, waste minimization, and recycling. This paper reviews the waste management guidelines as they have evolved from the MED through the resent time.

  10. Quality assurance programs developed and implemented by the US Department of Energy`s Analytical Services Program for environmental restoration and waste management activities

    Energy Technology Data Exchange (ETDEWEB)

    Lillian, D.; Bottrell, D. [Dept. of Energy, Germntown, MD (United States)

    1993-12-31

    The U.S. Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) has been tasked with addressing environmental contamination and waste problems facing the Department. A key element of any environmental restoration or waste management program is environmental data. An effective and efficient sampling and analysis program is required to generate credible environmental data. The bases for DOE`s EM Analytical Services Program (ASP) are contained in the charter and commitments in Secretary of Energy Notice SEN-13-89, EM program policies and requirements, and commitments to Congress and the Office of Inspector General (IG). The Congressional commitment by DOE to develop and implement an ASP was in response to concerns raised by the Chairman of the Congressional Environment, Energy, and Natural Resources Subcommittee, and the Chairman of the Congressional Oversight and Investigations Subcommittee of the Committee on Energy and Commerce, regarding the production of analytical data. The development and implementation of an ASP also satisfies the IG`s audit report recommendations on environmental analytical support, including development and implementation of a national strategy for acquisition of quality sampling and analytical services. These recommendations were endorsed in Departmental positions, which further emphasize the importance of the ASP to EM`s programs. In September 1990, EM formed the Laboratory Management Division (LMD) in the Office of Technology Development to provide the programmatic direction needed to establish and operate an EM-wide ASP program. In January 1992, LMD issued the {open_quotes}Analytical Services Program Five-Year Plan.{close_quotes} This document described LMD`s strategy to ensure the production of timely, cost-effective, and credible environmental data. This presentation describes the overall LMD Analytical Services Program and, specifically, the various QA programs.

  11. Investigating factors influencing construction waste management efforts in developing countries: an experience from Thailand.

    Science.gov (United States)

    Manowong, Ektewan

    2012-01-01

    Rapid economic growth and urbanization in developing countries lead to extensive construction activities that generate a large amount of waste. A challenge is how to manage construction waste in the most sustainable way. In the developing world, research on construction waste management is scarce and such academic knowledge needs to be responsive to actual practices in the industry in order to be implemented. As construction projects involve a number of participants and stakeholders, their participation and commitment can have a major influence on the goals of green and sustainable construction for urban development. This study provides a significant step in conducting a very first research of this kind in Thailand by aiming to investigate the level of construction stakeholders' commitment as well as the achievement of construction waste management in order to improve short-term practices and to establish a long-term strategic construction waste management plan. In this study, a structural equation model was employed to investigate the influence of factors that are related to environmental aspects, social aspects, and economic aspect of construction waste management. Concern about health and safety was found to be the most significant and dominant influence on the achievement of sustainable construction waste management. Other factors affecting the successful management of construction waste in Thai construction projects were also identified. It is perceived that this study has potential to contribute useful guidelines for practitioners both in Thailand and other developing countries with similar contexts.

  12. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  13. Nuclear waste management. Quarterly progress report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A.

    1979-11-01

    Research is reported on: decontamination and densification of chop-leach cladding residues, monitoring of effluents from waste solidification, TRU waste mobilization, Kr solidification, /sup 14/C and /sup 129/I fixation, waste management system and safety studies, waste isolation safety assessment, logging systems for shallow land burial, unsaturated zone transport, mobile organic complexes of fission products, electropolishing for surface decontamination of metals, and decontamination and decommissioning of Hanford facilities. (DLC)

  14. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  15. A field research on residential solid waste management in Beijing

    OpenAIRE

    Pei, Lin

    2016-01-01

    As the biggest municipal solid waste generator all over the world, China has been facing unprecedented waste crisis since last decade (WorldBank, 2005). Especially in urban areas, rapid growing waste amount has led to pressing problems in environmental, economical and social aspects to municipal government and residents. Under this circumstance, Bei- jing, as the second biggest city in China, has adopted multiple approaches and allocated enormous resources to improve local waste management sy...

  16. 2016 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Black, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-08-30

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2016 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports, developed by National Security Technologies, LLC Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2016, precipitation at the Area 3 RWMS was 8% below average, and precipitation at the Area 5 RWMS was 8% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. Vadose zone monitoring on Area 5 and Area 3 RWMS cell covers shows no evidence of precipitation percolating through the covers

  17. Challenges in packaging waste management in the fast food industry

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Teija [Digita Oy, P.O. Box 135, FI-00521 Helsinki (Finland); Haemaelaeinen, Anne [Department of Energy and Environmental Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2008-02-15

    The recovery of solid waste is required by waste legislation, and also by the public. In some industries, however, waste is mostly disposed of in landfills despite of its high recoverability. Practical experiences show that the fast food industry is one example of these industries. A majority of the solid waste generated in the fast food industry is packaging waste, which is highly recoverable. The main research problem of this study was to find out the means of promoting the recovery of packaging waste generated in the fast food industry. Additionally, the goal of this article was to widen academic understanding on packaging waste management in the fast food industry, as the subject has not gained large academic interest previously. The study showed that the theoretical recovery rate of packaging waste in the fast food industry is high, 93% of the total annual amount, while the actual recovery rate is only 29% of the total annual amount. The total recovery potential of packaging waste is 64% of the total annual amount. The achievable recovery potential, 33% of the total annual amount, could be recovered, but is not mainly because of non-working waste management practices. The theoretical recovery potential of 31% of the total annual amount of packaging waste cannot be recovered by the existing solid waste infrastructure because of the obscure status of commercial waste, the improper operation of producer organisations, and the municipal autonomy. The research indicated that it is possible to reach the achievable recovery potential in the existing solid waste infrastructure through new waste management practices, which are designed and operated according to waste producers' needs and demands. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action. (author)

  18. Study of research needs and priorities in radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Carson, W.E.; Mitchell, W. III

    1984-02-01

    This report presents the results of an assessment of long-range research needs in nuclear waste management. The purpose is to aid the Director of Energy Research in determining the health of DOE's research programs. The intent of the project reported here was to identify additional, basic research necessary in the 1980s and 1990s to develop an adequate scientific data base for nuclear waste management activities likely to be important around the turn of the century. The recommendations resulted from an overview of the entire area of nuclear waste management, not from focused examinations of narrow topics within that area. The suggested research may be the subject of future studies or more intense work by DOE. The recommendations presented in this report are not accompanied by designations of responsible program offices within DOE. It is anticipated that the contents of the report will be shared with the program offices involved and that those offices will recognize and respond to recommendations within their purviews.

  19. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  20. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Directory of Open Access Journals (Sweden)

    Kunwar Paritosh

    2017-01-01

    Full Text Available Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world’s ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  1. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    Science.gov (United States)

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  2. Best Practice of Construction Waste Management and Minimization

    Directory of Open Access Journals (Sweden)

    Khor Jie Cheng

    2014-07-01

    Full Text Available Material management is an important issue as seen in construction waste management. Best practice of material management is accompanied by various benefits which are acknowledged by several studies. The site layout has particular effects on both materials and their waste through effective waste management practice. Ignoring the benefits of material management could result in a daily reduction in productivity of up to 40% by material wastage. Thus, the benefits of effective material management must be well comprehended for the sake of waste minimization. Another convincing fact about waste is that poor site management accounts for the largest factor of waste generation. Hence the site condition is very crucial in developing effective material management. Factors contributing to the efficiency of material management process are effective logistical management and supply chain management. The logistics system must be performing as schedule so that materials are wisely managed on-site without encountering presence of excessive materials. As materials management is closely related to logistics in construction projects, there will be delay in construction projects when materials are not delivered to site as scheduled. The management must be effective in terms of delivery, off-loading, storage, handling, on-site transportation and on-site utilization of materials.

  3. Solid waste management in the hospitality industry: a review.

    Science.gov (United States)

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Disaster Waste Management in Malaysia: Significant Issues, Policies & Strategies

    Directory of Open Access Journals (Sweden)

    Yusof Nor Syazwani

    2016-01-01

    Full Text Available Disaster Waste Management in Malaysia is still at the early stage of its research. Disaster can create large volumes of debris and waste and mismanagement of disaster waste can affect both the response and long term recovery of disaster affected area. The government of Malaysia is taking serious about this issue. This paper is aim to explore the issues, policies and strategies regarding disaster waste management in Malaysia. The objectives were to investigate the extent of disaster waste effects on the environment and to provide a basis from which the needs of waste management could be evaluated in disaster management guidelines. Qualitative method of data collection has been adopted in this study. The respondent are among the local authority and organization that involved in managing wastes. The finding shows that many of the policies regarding waste management in Malaysia has not been well implemented. The purpose of this paper is expected to improve the method of managing disaster waste in Malaysia.

  5. Waste to Energy: A Green Paradigm in Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Mohamad Danish Anis

    2015-12-01

    Full Text Available The current annual generation of municipal solid waste in India is estimated to be around 42 million tones which will rise rapidly with population growth, urbanization and improving living standards of people. The municipal solid waste (MSW generation ranges from 0.25 to 0.66 kg/person/day with an average of 0.45 kg/person/day. In addition, large quantities of solid and liquid wastes are generated by industries. Most of the wastes generated find their way into land and water bodies. Without proper treatment, these wastes emit gases like Methane (CH4, Carbon Dioxide (CO2 etc, resulting in bad odor, emission of green house gases and increase in air and water pollution. This problem can be significantly mitigated through adoption of environment-friendly waste-to-energy technologies for the treatment and processing of wastes before disposal. It will not only reduce the quantity of wastes but also generate substantial quantity of energy. India at present is the world’s fifth biggest energy consumer and is predicted to surpass Japan and Russia to take the third place by 2030. Indian economy has shown a robust growth of around 8% in recent years and is trying to sustain this growth in order to reach goals of poverty alleviation. To achieve the required level of growth, India will need to at least triple its primary energy supply and quintuple its electrical capacity. This will force India, which already imports a majority of its oil, to look beyond its borders for energy resources. In India waste-to-energy has a potential of generating 1700 MW per person and this is scheduled to increase when more types of waste would be encompassed. At present hardly 50 MW power is being generated through waste-to-energy options. Waste combustion provides integrated solutions to the problems of the modern era by: recovering otherwise lost energy and thereby reducing our use of precious natural resources; by cutting down our emissions of greenhouse gases; and by both

  6. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...... content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...

  7. Implementation of spatial smart waste management system in malaysia

    Science.gov (United States)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  8. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-08-12

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  9. Environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy`s (DOE`s) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas.

  10. Environmental management activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy`s (DOE`s) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas.

  11. hospital waste management as primary healthcare ce ste ...

    African Journals Online (AJOL)

    User

    2014-04-02

    Apr 2, 2014 ... 2CENTRE FOR DISASTER RISK MANAGEMENT. 3DEPARTMENT OF ..... had knowledge of healthcare waste management plan. These 2 parameters .... Environmental Engineering Program, School of environment ...

  12. Hanford long-term high-level waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Wodrich, D.D.

    1976-06-24

    An overview of the Hanford Long-Term High-Level Waste Management Program is presented. Four topics are discussed: first, the kinds and quantities of waste that will exist and are included in this program; second, how the plan is structured to solve this problem; third, the alternative waste management methods being considered; and fourth, the technology program that is in progress to carry out this plan. (LK)

  13. Roman Administration for Waste Management and Habitat Protection

    Directory of Open Access Journals (Sweden)

    José Luis Zamora

    2017-01-01

    Full Text Available From an environmental perspective, problems usually arising in large cities are often related to waste, due to a large group of residencies and business establishments in a small space. Rome is no exception; hence it has historically been concerned about hygiene and the management and disposal of urban waste, which continues to present day, generating numerous problems. This paper will address some of the vicissitudes related with waste management.

  14. Integrated Waste Treatment Unit GFSI Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  15. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, Johannes T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary storage

  16. An Investigation into Waste Management Practices in Nigeria (A ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    West African Journal of Industrial & Academic Research Vol.12 No.1 December 2014 112 ... problem in the environment due to lack Basic facilities:- This paper investigate the waste management problems and the various .... to Waste Management System in Nigeria City centre ..... cleaning fluid (Solvents) or pesticides,.

  17. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, Johannes T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary

  18. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  19. Toolkit - South Africa's good waste management practices: lessons learned

    CSIR Research Space (South Africa)

    Afrika, M

    2010-02-01

    Full Text Available practices are to be found. This paper reports on the development of a Toolkit for municipal waste management service delivery, based on some of the good waste management practices currently implemented in different municipalities across all the categories...

  20. Environmental evaluation of waste management scenarios - significance of the boundaries

    NARCIS (Netherlands)

    Ghinea, C.; Petraru, M.; Bressers, J.T.A.; Gavrilescu, M.

    2012-01-01

    Life cycle concept was applied to analyse and assess some municipal solid waste (MSW) management scenarios in terms of environmental impacts, particularised for Iasi city, Romania, where approximately 380 kg/cap/yr of waste are generated. Currently, the management processes include temporary storage

  1. Biomedical waste in laboratory medicine: audit and management.

    Science.gov (United States)

    Chitnis, V; Vaidya, K; Chitnis, D S

    2005-01-01

    Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW). The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33,000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste per month. Section wise details are described in the text. Needle sharps are collected in puncture proof containers and the needles autoclaved before sending to needle pit. The glass forms the major sharp category and is disinfected with hypochlorite before washing/recycling. All microbiology waste along with containers/plates/tubes are autoclaved before recycling/disposal. The problem of formalin fixed anatomical waste as histology specimens is pointed out. The formalin containing tissues cannot be sent for incineration for the fear of toxic gas release and the guidelines by the Biomedical waste rule makers need to be amended for the issue. The discarded/infected blood units in blood bank need to be autoclaved before disposal since chemical treatments are difficult or inefficient. The liquid waste management needs more attention and effluent treatment facility needs to be viewed seriously for hospital in general. The segregation of waste at source is the key step and reduction, reuse and recycling should be considered in proper perspectives.

  2. Biomedical waste in laboratory medicine: Audit and management

    Directory of Open Access Journals (Sweden)

    Chitnis V

    2005-01-01

    Full Text Available Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW. The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste per month. Section wise details are described in the text. Needle sharps are collected in puncture proof containers and the needles autoclaved before sending to needle pit. The glass forms the major sharp category and is disinfected with hypochlorite before washing/recycling. All microbiology waste along with containers/plates/tubes are autoclaved before recycling/disposal. The problem of formalin fixed anatomical waste as histology specimens is pointed out. The formalin containing tissues cannot be sent for incineration for the fear of toxic gas release and the guidelines by the Biomedical waste rule makers need to be amended for the issue. The discarded/infected blood units in blood bank need to be autoclaved before disposal since chemical treatments are difficult or inefficient. The liquid waste management needs more attention and effluent treatment facility needs to be viewed seriously for hospital in general. The segregation of waste at source is the key step and reduction, reuse and recycling should be considered in proper perspectives.

  3. Investigating the determinants of contractor's construction and demolition waste management behavior in Mainland China.

    Science.gov (United States)

    Wu, Zezhou; Yu, Ann T W; Shen, Liyin

    2016-09-06

    The abundant generation of construction and demolition (C&D) waste presents a significant challenge to the sustainable development of the construction industry in Mainland China. As the implementer of construction activities, the contractor's C&D waste management performance plays an important role in C&D waste minimization. This paper aims to investigate the determinants of the contractor's C&D waste management behavior in Mainland China. The Theory of Planned Behavior (TPB) was selected as the basis of the theoretical model. In addition, three contextual constructs (i.e., economic viability, governmental supervision, and project constraints) were introduced, formulating the initial model. Based on the initial model, eight constructs were identified and seven hypotheses were proposed. A questionnaire survey was conducted to collect data and a Structural Equation Modeling (SEM) analysis was employed to test the proposed hypotheses. Results showed that the C&D waste management intention is not a significant determinant of contractor's C&D waste management behavior. The most important determinant is economic viability, followed by governmental supervision as the second most important determinant. Nevertheless, the construct of project constraints is an insignificant determinant for contractor's adoption of C&D waste management behavior. The research findings imply that, in Mainland China, the government, at this stage, plays an important role in guiding and promoting the contractor to exhibit better C&D waste management behavior.

  4. Critical management practices influencing on-site waste minimization in construction projects.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities.

  5. A Management Framework for Municipal Solid Waste Systems and Its Application to Food Waste Prevention

    Directory of Open Access Journals (Sweden)

    Krista L. Thyberg

    2015-08-01

    Full Text Available Waste management is a complex task involving numerous waste fractions, a range of technological treatment options, and many outputs that are circulated back into society. A systematic, interdisciplinary systems management framework was developed to facilitate the planning, implementation, and maintenance of sustainable waste systems. It aims not to replace existing decision-making approaches, but rather to enable their integration to allow for inclusion of overall sustainability concerns and address the complexity of solid waste management. The framework defines key considerations for system design, steps for performance monitoring, and approaches for facilitating continual system improvements. It was developed by critically examining the literature to determine what aspects of a management framework would be most effective at improving systems management for complex waste systems. The framework was applied to food waste management as a theoretical case study to exemplify how it can serve as a systems management tool for complex waste systems, as well as address obstacles typically faced in the field. Its benefits include the integration of existing waste system assessment models; the inclusion of environmental, economic, and social priorities; efficient performance monitoring; and a structure to continually define, review, and improve systems. This framework may have broader implications for addressing sustainability in other disciplines.

  6. Research challenges in municipal solid waste logistics management.

    Science.gov (United States)

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling.

  7. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  8. Challenges and opportunities associated with waste management in India

    Science.gov (United States)

    Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh

    2017-01-01

    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362

  9. Site investigation on medical waste management practices in northern Jordan.

    Science.gov (United States)

    Abdulla, Fayez; Abu Qdais, Hani; Rabi, Atallah

    2008-01-01

    This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.

  10. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  11. 40 CFR 60.3010 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is...

  12. 40 CFR 60.2620 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  13. Strategic planning for waste management: A case study of Shiraz waste management

    Directory of Open Access Journals (Sweden)

    Ali Zangi Abadi

    2012-08-01

    Full Text Available These days, there are several reports indicating on reduction on renewable resources. On the other hand, there is an increase on the population, which increases production of garbage in the world. With limitation on governmental budget, there is growing concern on having efficient strategic planning for waste management. The proposed study of this paper performs a SWOT analysis to find all strength, weakness, opportunities as well as possible threats associated with waste management organization located in city of Shiraz, located in south west of Iran. Based on the results, appropriated locating strategies for burying garbage, training and increasing awareness regarding production and collection, attracting foreign investment in the field of recycling garbage, reconsidering environmental rules and burying garbage and its separation standards are the most important strategies.

  14. Conceptual and economic foundations of strategic management of solid waste products

    Directory of Open Access Journals (Sweden)

    Leyla Borisovna Leonova

    2015-11-01

    Full Text Available The article reviews existing global concept in the field of waste production and consumption.The purpose of this investigation is the development of a new hierarchy of waste mana-gement and adjustment of the existing waste management strategy, acceptable to Russia. To analyze the current situation of waste production and consumption there was studied foreign experience in waste management and considered the situation of waste in the Russian Federation and Sverdlovsk region. Analytical, statistical and theoretical methods of work were used.The new hierarchy of desirable waste management is based on the following order: selective collection of waste, particularly household, their recycling and thereby minimize them, and then their treatment and further disposal. This new hierarchy will significantly reduce the burden on the environment and land resources.The revised strategy for solid waste management should consist of 6 blocks, ranked in a logical sequence: organizational, legal, science and research, economic, controlling, educational. Each of them includes a list of activities. Term strategy implementation is 5 years, followed by a possible prolongation.To improve the efficiency of work in the field of solid waste management in Russia must be created a new waste recycling industry, which can be provided by necessary infrastructure for the collection, transportation, recycling and disposal of solid waste products. It is also required to monitor environmental pollution waste using geographic information systems and provide educational work among population and the leaders of the industrial and communal enterprises.In the article in addition to the world concept the authors took into account an economic component, which includes analysis of the costs of environmental protection measures and economic damage caused by waste disposal. The paper also provides an industry deformed structure of the Russian economy, which explains the inability to

  15. Status of waste tyres and management practice in Botswana.

    Science.gov (United States)

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting

  16. A system dynamics approach for hospital waste management.

    Science.gov (United States)

    Chaerul, Mochammad; Tanaka, Masaru; Shekdar, Ashok V

    2008-01-01

    Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries.

  17. Waste management in primary healthcare centres of Iran.

    Science.gov (United States)

    Mesdaghinia, Alireza; Naddafi, Kazem; Mahvi, Amir Hossein; Saeedi, Reza

    2009-06-01

    The waste management practices in primary healthcare centres of Iran were investigated in the present study. A total of 120 primary healthcare centres located across the country were selected using the cluster sampling method and the current situation of healthcare waste management was determined through field investigation. The quantities of solid waste and wastewater generation per outpatient were found to be 60 g outpatient(-1) day(-1) and 26 L outpatient(-1) day(-1), respectively. In all of the facilities, sharp objects were separated almost completely, but separation of other types of hazardous healthcare solid waste was only done in 25% of the centres. The separated hazardous solid waste materials were treated by incineration, temporary incineration and open burning methods in 32.5, 8.3 and 42.5% of the healthcare centres, respectively. In 16.7% of the centres the hazardous solid wastes were disposed of without any treatment. These results indicate that the management of waste materials in primary healthcare centres in Iran faced some problems. Staff training and awareness, separation of healthcare solid waste, establishment of the autoclave method for healthcare solid waste treatment and construction of septic tanks and disinfection units in the centres that were without access to a sewer system are the major measures that are suggested for improvement of the waste management practices.

  18. Status of low-level radioactive waste management in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.J. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  19. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  20. MANAGING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    WOJTASEK, R.D.; GADD, R.R.; GREENWELL, R.D.

    2006-01-19

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective role in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.

  1. Solid waste management challenges for cities in developing countries.

    Science.gov (United States)

    Guerrero, Lilliana Abarca; Maas, Ger; Hogland, William

    2013-01-01

    Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.

  2. Application of life cycle assessment for hospital solid waste management: A case study.

    Science.gov (United States)

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-10-01

    This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.

  3. Life cycle assessment of capital goods in waste management systems

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2016-01-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m3 collection truck, a composting plant, an anaerobic digestion...... plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation...... for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming....

  4. Solid Waste Management with Emphasis on Environmental Aspect

    Science.gov (United States)

    Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini

    2011-12-01

    In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).

  5. 8. Muenster waste management meeting. Proceedings; 8. Muensteraner Abfallwirtschaftstage. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gallenkemper, B.; Bidlingmaier, W.; Doedens, H.; Stegmann, R. (eds.)

    2003-07-01

    The papers in this proceedings volume come in the following categories: Boundary conditions of the waste management sector; The field of tension between theory and practice of environmental policy; Power generation from waste; Mechanical-biological waste treatment systems and landfills; BMBF project ''Cost Reduction in Waste Management and Street Cleaning; Industrial safety and health hazards; Utilisation of compost and biomass; Current trends in the management of waste electrical appliances; Practical implementation of the Industrial Waste Ordinance (Gewerbeabfallverordnung); Obligatory refundable deposits on packaging materials. [German] Der Tagungsband enthaelt die Beitraege der Autoren, die unter folgenden Themenpunkten zusammengefasst werden: Abfallwirtschaftliche Rahmenbedingungen, Spannungsfeld umweltpolitische Anforderung und Praxis, zukuenftige Struktur der Entsorgungswirtschaft, energetische Verwertung von Abfaellen, MBA und Deponie, BMBF-Verbundprojekt: Kostenreduzierung in der Entsorgungslogistik und Strassenreinigung, Arbeitsschutz und Arbeitsbelastung, Kompost- und Biomassenutzung, Erfassung von Elektroaltgeraeten, Umsetzung der Gewerbeabfallverordnung, Pfandpflicht, Stadtbildpflege und Anti-Littering. (uke)

  6. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  7. GENERAL REQUIREMENTS FOR SIMULATION MODELS IN WASTE MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Ian; Kossik, Rick; Voss, Charlie

    2003-02-27

    Most waste management activities are decided upon and carried out in a public or semi-public arena, typically involving the waste management organization, one or more regulators, and often other stakeholders and members of the public. In these environments, simulation modeling can be a powerful tool in reaching a consensus on the best path forward, but only if the models that are developed are understood and accepted by all of the parties involved. These requirements for understanding and acceptance of the models constrain the appropriate software and model development procedures that are employed. This paper discusses requirements for both simulation software and for the models that are developed using the software. Requirements for the software include transparency, accessibility, flexibility, extensibility, quality assurance, ability to do discrete and/or continuous simulation, and efficiency. Requirements for the models that are developed include traceability, transparency, credibility/validity, and quality control. The paper discusses these requirements with specific reference to the requirements for performance assessment models that are used for predicting the long-term safety of waste disposal facilities, such as the proposed Yucca Mountain repository.

  8. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    Science.gov (United States)

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment.

  9. Hospital waste management in El-Beheira Governorate, Egypt.

    Science.gov (United States)

    Abd El-Salam, Magda Magdy

    2010-01-01

    This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and

  10. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  11. Management Information System (MIS: Tool for Monitoring the Waste Management Health Service (RSS and Cost of Treatment

    Directory of Open Access Journals (Sweden)

    Vania Elisabete Schneider

    2013-06-01

    Full Text Available One of the major challenges of solid waste management has been improve and deploy systems that perform monitoring and control of management processes of health service’s waste (HSW. This study aims to evaluate the total cost per category of HSW/day and active bed/day with the handling of HSW in a teaching hospital in northeastern area of Brazil`s Rio Grande do Sul state and identify contributions of a management information system (MIS in the management process, especially considering the generation and segregation of waste. Utilized methodology was developed in two stages: data collection about the management of the HSW and proposition, implementation and feed of a MIS for recording and processing of data related to waste characterization. Results show that whether the management system of the hospital in this study were 100% right, the monthly savings for the treatment of infectious waste would be 18.4% of the costs and 5.83% of costs of chemical waste. The implementation of MIS becomes an essential tool in the evaluation of the management process of HSW since it makes possible to raise issues of fundamental importance to the implementation and evaluation of strategies contained in the HSW management plan. The MIS also represents a tool of easy reference and of great importance to evaluate generation of HSW as it helps to promote the surveillance, identification of sectors that have the biggest problems with segregation, as well as ways to minimize costs and impacts.

  12. Life-cycle modelling of waste management in Europe: tools, climate change and waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel

    of these models most importantly depend on the technical assumptions and parameters defining waste management technologies. Some of these technical assumptions have evolved significantly from the early models to the more recent ones. An important purpose of waste LCA models is to perform environmental assessments......Europe has a long history of waste management, where regulation, implementation and enforcement have been the main drivers for the development and diversification of waste management technologies since the late 70s. Despite strong engineering development to minimise impacts to human health...... disposal to resources management, requiring modelling tools, such as life-cycle assessment (LCA) models, for carrying out environmental assessment, because of the complexity of the systems. A review of the key waste LCA models was performed in the present PhD project and showed that the results...

  13. South Dakota State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota.

  14. Florida State Briefing Book for low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-06-01

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  15. Kentucky State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  16. Washington State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  17. Rhode Island State Briefing Book on low-level radioactive-waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  18. Oregon State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  19. North Carolina State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  20. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.