WorldWideScience

Sample records for waste management 1999-2003

  1. The 1999-2003 R and D investigation plan on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    The 1999-2003 R and D Plan document is structured in three major areas. The first (Part A), entitled Reference framework for the R and D associated with radioactive waste management, describes the reasons underlying the R and D needs, the international situation regarding radioactive waste management and the respective R and D plans, along with the technological level attained and the situation and future perspectives for management of this type of wastes in Spain. Also detailed are the objectives, criteria and priorities for the development of R and D during the period 1999-2010, with special emphasis on the period 1999-2003, which is the one covered by this present R and D Plan. The second area (Part B) is entitled Research Programmes and Courses of Action and describes the areas and courses of activity, based on the objectives and priorities mapped out. It also contains a more detailed description of the state of the art and the developments required to meet the objectives of this Plan. (Author)

  2. Plan to research and technological development for radioactive waste management 1999-2003

    International Nuclear Information System (INIS)

    2000-01-01

    This in turn means a change in the orientation of the R and D that ENRESA has been performing to date, the first step in this direction being the current Plan, which will cover the period 1999-2003. On the basis of the above, and closely tracking the progress mode and the situation existing in the other countries of the OECD and EU involved in similar programmes, the new R and D Plan includes a series of areas of research that cover all the internationally considered radioactive waste management options and alternatives. These include R and D activities that range from the exhaustive treatment of irradiated fuels (advanced reprocessing and transmutation) to the direct storage of spent fuel (open cycle). The latter was the only option considered in previous R and D Plans, which proposed the construction of a deep geological disposal facility by around the year 2025. As has been pointed out above, this new R and D approach, which implies a wider view of spent fuel management options, including separation and transmutation, along with modulation in budgeting, in order to adopt to a longer time frame for implementation of the possible solutions, is embodied in the new GRWP. The objective and activities considered in this Plan are to make a decisive contribution of the scientific and technological bases supporting future decision-making on the most adequate way of addressing the definitive management of high level wastes. (Author)

  3. Plan to research and technological development for radioactive waste management 1999-2003; Plan de investigacion y desarrollo tecnologico para la gestion de residuos radiactivos 1999-2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This in turn means a change in the orientation of the R&D that ENRESA has been performing to date, the first step in this direction being the current Plan, which will cover the period 1999-2003. On the basis of the above, and closely tracking the progress mode and the situation existing in the other countries of the OECD and EU involved in similar programmes, the new R&D Plan includes a series of areas of research that cover all the internationally considered radioactive waste management options and alternatives. These include R&D activities that range from the exhaustive treatment of irradiated fuels (advanced reprocessing and transmutation) to the direct storage of spent fuel (open cycle). The latter was the only option considered in previous R&D Plans, which proposed the construction of a deep geological disposal facility by around the year 2025. As has been pointed out above, this new R&D approach, which implies a wider view of spent fuel management options, including separation and transmutation, along with modulation in budgeting, in order to adopt to a longer timeframe for implementation of the possible solutions, is embodied in the new GRWP. The objective and activities considered in this Plan are to make a decisive contribution of the scientific and technological bases supporting future decision-making on the most adequate way of addressing the definitive management of high level wastes. (Author)

  4. Nuclear waste management programme 2003 for the Loviisa and Olkiluoto nuclear power plants

    International Nuclear Information System (INIS)

    2002-09-01

    A joint company Posiva Oy founded by nuclear energy producing Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy coordinates the research work of the companies on nuclear waste management in Finland. In Posiva's Nuclear Waste Management Programme 2003, an account of the nuclear waste management measures of TVO and Fortum is given as required by the sections 74 and 75 of the Finnish Nuclear Energy Degree. At first, nuclear waste management situation and the programme of activities are reported. The nuclear waste management research for the year 2003 and more generally for the years 2003-2007 is presented

  5. Advances in river ice hydrology 1999-2003

    Science.gov (United States)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable

  6. Supervision of waste management and environmental protection at the Swedish nuclear facilities 1999

    International Nuclear Information System (INIS)

    2000-03-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Institute in 1999. A summary of the inspections during 1999 and a description of important issues connected with the supervision of the nuclear facilities are given. The inspections during 1999 have focused on the management of liquid discharges and components containing induced activity at some of the nuclear facilities. Also, routines for filing environmental samples, discharge water samples and documents were inspected at all the different nuclear facilities. The Swedish Radiation Protection Institute finds that the operations are mainly performed according to current regulations

  7. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  8. OCRWM annual report to Congress FY 1999 [USDOE Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    None

    2000-01-01

    During Fiscal Year 1999, the Office of Civilian Radioactive Waste Management (OCRWM) continued to make significant progress in its characterization of the Yucca Mountain, Nevada, candidate geologic repository site. Although OCRWM's appropriation for Fiscal Year 1999 was lower than requested, the Program accomplished all three success measures in the Secretary's Fiscal Year 1999 Performance Agreement with the President and completed important work in many other areas. This Annual Report reviews this work and looks toward future activities

  9. OCRWM annual report to Congress FY 1999 [USDOE Office of Civilian Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    During Fiscal Year 1999, the Office of Civilian Radioactive Waste Management (OCRWM) continued to make significant progress in its characterization of the Yucca Mountain, Nevada, candidate geologic repository site. Although OCRWM's appropriation for Fiscal Year 1999 was lower than requested, the Program accomplished all three success measures in the Secretary's Fiscal Year 1999 Performance Agreement with the President and completed important work in many other areas. This Annual Report reviews this work and looks toward future activities.

  10. Operating document on management division waste management section in Tokai works in the 2003 fiscal year

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Akutu, Shigeru; Sasayama, Yasuo; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi; Mogaki, Isao; Aizawa, Syuichi; Sugawara, Hiroyuki

    2005-07-01

    This document is announced about the task of Waste Management Section of Waste Management Division in 2003. Mainly, our tasks are fractionating, incinerating and storing low active solid waste and storing high active solid waste. In addition, we are performing required correspondence about management program of low level waste. We had treated and stored waste safely according to our plan. As a result, we have achieved following outcomes. (1) We incinerated the combustible low active solid waste that is generated by the operation of Tokai Reprocessing Plant and the recovery operation of incident at Low Active Liquid Waste Asphalt Solidification Facility. Waste of this recovery operation is stored in the 2nd Low Active Liquid Waste Asphalt Solidification Storage Facility. We incinerated 58 ton of wastes. (2) We stored low active solid waste 854 drums that accommodate 200L. According to the time of Low-Level Waste Treatment Facility completion, we will be able to avoid full of storage. (3) We stored high active solid waste of 148 drums that accommodate 200L. For the time being, there is no problem as regards the administration of storage facility. (4) We carried out the management program of low level solid waste according to plan. (author)

  11. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2000-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste

  12. Waste statistics 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 2003 reporting to the ISAG comprises 403 plants owned by 273 enterprises. In 2002, reports covered 407 plants owned by 296 enterprises. Waste generation in 2003 is compared to targets from 2008 in the government's Waste Strategy 2005-2008. The following can be said to summarise waste generation in 2003: 1) In 2003, total reported waste arisings amounted to 12,835,000 tonnes, which is 270,000 tonnes, or 2 per cent, less than in 2002. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2003 were 11,597,000 tonnes, which is a 2 per cent increase from 2002. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2003 amounted to 7,814,000 tonnes, which is 19,000 tonnes, or 1 per cent, less than in 2002. In other words, there has been a fall in total waste arisings, if residues and waste from building and construction are excluded. 4) The overall rate of recycling amounted to 66 per cent, which is one percentage point above the overall recycling target of 65 per cent for 2008. In 2002 the total rate of recycling was 64 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2002. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point below the overall landfill target of a maximum of 9 per cent landfilling in 2008. In 2002, 9 per cent was led to landfill. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being led to landfill. (au)

  13. Report from the UK consensus conference on radioactive waste management, May 1999

    International Nuclear Information System (INIS)

    Hiett, A.

    2000-01-01

    A Consensus Conference took place in the UK in May 1999 to address the issue of Radioactive Waste Management. Sixteen members of the public were invited, at random, to take part in the conference, and initially were unaware of the topic. After two preparation weekends, the citizen's panel held a two day conference at which they cross examined expert 'witnesses' on issues which they felt to be relevant to the topic. The remit of the panel was as follows: ''The Consensus Conference is to focus on the effective and publicly acceptable long term management of nuclear waste in the UK, both civil and military, concentrating particularly on intermediate and high level waste. This will be considered by the citizens' panel in their capacity as members of the public, taking into account what they see as the relevant issues''. Following the conference itself, the panel produced a report on their findings and conclusions. Retrievability was just one of the many areas that the panel covered. In relation to the area of public acceptance for long term management of radioactive waste, the recommendations of the panel were as follows: ''In conclusion the panel was unanimous that in order for a solution to be publicly acceptable, the waste MUST remain accessible and monitorable to give future generations a chance to deal with the problem if/when a solution is found''. (author)

  14. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events

  15. Missouri's forest 1999-2003, part B

    Science.gov (United States)

    Andrew D. Hill; Mark H. Hansen; W. Keith Moser; Gary Brand; Ronald E. McRoberts

    2011-01-01

    This report presents the methods used in the 1999-2003 inventory of the forest resources of Missouri along with tables of important forest attribute estimates and discussion of quality of these estimates. This inventory is part of the Forest Inventory and Analysis (FIA) program conducted by U.S. Forest Service, a national program to continuously inventory and report on...

  16. Radioactive waste management profiles. Compilation from the Waste Management Database. No. 3

    International Nuclear Information System (INIS)

    2000-07-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, archival and dissemination of information about radioactive waste management in Member States. This current report is a summary and compilation of waste management collected from Member States from February 1998 to December 1999 in response to the Agency's 1997/98 WMDB Questionnaire. Member States were asked to report waste accumulations up to the end of 1996 and to predict waste accumulations up to the end of 2014

  17. Decree no. 2003-30 of the 10 january 2003 authorizing the national agency for the radioactive wastes management (ANDRA) to modify, for the survey step, the radioactive wastes storage center of the Manche (base nuclear installation no. 66), located on the Digulleville municipality territory (Manche)

    International Nuclear Information System (INIS)

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the decree no. 2003-30 of the 10 january 2003 authorizing the national agency for the radioactive wastes management (ANDRA) to modify, for the survey step, the radioactive wastes storage center of the Manche (base nuclear installation no. 66), located on the Digulleville municipality territory (Manche). (A.L.B.)

  18. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 1 [SECTION 1 and 2

    International Nuclear Information System (INIS)

    BARCOT, R.A.

    2003-01-01

    The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This SWIFT report is a mid-year update to the SWIFT 2003.0 report that was published in January 2003. The SWIFT Report is published in two volumes. SWIFT Volume II provides detailed analyses of the data, graphical representation, comparison to previous years, and waste generator specific information. The data contained in this report are the official data for solid waste forecasting. In this revision, the volume numbers have been switched to reflect the timing of their release. This particular volume provides the following data reports: Summary volume data by DOE Office, company, and location; Annual volume data by waste generator; Annual waste specification record and physical waste form volume; Radionuclide activities and dose-equivalent curies; and Annual container type data by volume and count

  19. Nuclear power, nuclear fuel cycle and waste management, 1986-1999. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2000-04-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with nuclear power and nuclear fuel cycle and waste management and issued during the period of 1986-1999. Some earlier titles which form part of an established series or are still considered of importance have been included. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain papers in languages other than English, but all of these papers have abstracts in English

  20. Occupational exposure in Portugal in the 1999 - 2003 period

    International Nuclear Information System (INIS)

    Martins, M.B.; Abrantes, J.N.; Alves, J.G.

    2006-01-01

    The annual effective doses evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Department (D.P.R.S.N.) of the Nuclear and Technological Institute (I.T.N.) in Portugal, in the 5-year period from 1999 - 2003, are analysed and presented in this paper. In this period, the I.M.S. at I.T.N.-D.P.R.S.N. monitored nearly 91% of all the monitored population in Portugal. In 2003, approximately 9,000 professionally exposed workers from 970 facilities spread from all over the country were monitored. The workers are organized in four fields of activity, namely conventional industry, research, medicine and mining. In the period from 1999 to 2003, the workers from the medical sector represented 80-85% of the monitored population. In Portugal there are no nuclear power plants but there is a nuclear research reactor at I.T.N. premises. People working at the reactor were included in the research field. In this period, the number of workers involved in the mining field decreased as the exploration of natural Uranium ore was gradually discontinued. During this period there were two monitoring systems operating at the I.M.S. of I.T.N.-D.P.R.S.N., one based on film and the other one based on thermoluminescence detectors (TLD). An effort was made to transfer people monitored by film to TLD and in 2003 nearly 6,500 workers (approx.) were monitored with this methodology. Workers shifted from film to TLD monitoring method were taken into account and considered only once. In this work, the annual whole body doses evaluated in the period 1999 to 2003 were considered. The distribution of workers in each field of activity was determined and the distribution of workers by dose intervals in each field is presented. The annual average doses were computed for the total monitored population and for the exposed workers in each field of activity. The annual collective doses in each field of activity and the total collective doses were also determined and

  1. BigFoot Field Data for North American Sites, 1999-2003

    Data.gov (United States)

    National Aeronautics and Space Administration โ€” The BigFoot project gathered field data for selected EOS Land Validation Sites in North America from 1999 to 2003. Data collected and derived for varying intervals...

  2. BigFoot Field Data for North American Sites, 1999-2003

    Data.gov (United States)

    National Aeronautics and Space Administration โ€” ABSTRACT: The BigFoot project gathered field data for selected EOS Land Validation Sites in North America from 1999 to 2003. Data collected and derived for varying...

  3. 40 CFR 60.2620 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan ยง 60.2620 What is a waste management plan? A waste management...

  4. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report, First and Second Quarters 1999, Volume III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during the first and second quarters 1999

  5. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  6. Annual report of waste generation and pollution prevention progress 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments

  7. Mental health and psychiatry research in Brazil: scientific production from 1999 to 2003.

    Science.gov (United States)

    Razzouk, Denise; Zorzetto, Ricardo; Dubugras, Maria Thereza; Gerolin, Jerรดnimo; Mari, Jair de Jesus

    2006-08-01

    To assess the extent of mental health scientific production in Brazil from 1999 to 2003, and to identify the nature of the publications generated, their sources of finance and the ways of publicly disseminating the research findings. Searches for publications were conducted in the Medline and PsychInfo databases for the period 1999-2003. A semi-structured questionnaire developed by an international team was applied to 626 mental health researchers, covering each interviewee's educational background, research experience, access to funding sources, public impact and research priorities. The sample was composed by 626 mental health researchers identified from 792 publications indexed on Medline and PsychInfo databases for the period above, and from a list of reviewers of Revista Brasileira de Psiquiatria. In Brazil, 792 publications were produced by 525 authors between 1999 and 2003 (441 indexed in Medline and 398 in the ISI database). The main topics were: depression (29.1%), substance misuse (14.6%), psychoses (10%), childhood disorders (7%) and dementia (6.7%). Among the 626 Brazilian mental health researchers, 329 answered the questionnaire. There were steadily increasing numbers of Brazilian articles on mental health published in foreign journals from 1999 to 2003: the number of articles in Medline tripled and it doubled in the ISI database. The content of these articles corresponded to the priorities within mental health, but there is a need for better interlinking between researchers and mental health policymakers.

  8. 40 CFR 62.14580 - What is a waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan ยง 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  9. Occupational exposure in nuclear medicine in Portugal in the 1999-2003 period

    International Nuclear Information System (INIS)

    Martins, M. B.; Alves, J. G.; Abrantes, J. N.; Roda, A. R.

    2007-01-01

    The annual doses received by the staff of nuclear medicine departments from public hospitals and private clinics and evaluated by the Individual Monitoring Service of the Radiological Protection and Nuclear Safety Dept. (DPRSN) of the Nuclear and Technological Inst. (ITN) in Portugal, in the 5 y period from 1999 to 2003, are analysed and presented in this paper. In the 1999-2003 period, ITN-DPRSN monitored on an average 462 workers from nuclear medicine departments, which represents 6% of the 8000 workers of the medical field (approximately). The medical sector represents 80-85% of all the monitored population in Portugal. The professions of the monitored workers at nuclear medicine departments were identified by the respective departments as administrative, auxiliary, medical doctor, nuclear medicine technician, nurse, pharmacist and physicist. This information was collected at the onset of the monitoring and was updated over the last 3 y. The annual whole-body doses evaluated in the period 1999-2003 were used to derive the distribution of workers by dose intervals for every profession. The respective annual average doses and annual collective doses, as well as, the total average and total collective doses for the nuclear medicine sector were also determined and are presented. Internal radiation hasn't been monitored. (authors)

  10. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] ยง10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  11. Waste Isolation Pilot Plant 2003 Site Environmental Report

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  12. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 28

    International Nuclear Information System (INIS)

    2003-11-01

    This issue contains 184 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in the Waste Management Research Abstracts Volume 28 (WMRA 28) were collected between October 1, 2002 and September 30, 2003. The abstracts reflect research in progress, or planned, in the field of radioactive waste management. They present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of cooperation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  13. 40 CFR 62.14585 - When must I submit my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan ยง 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  14. ANDRA. 2003 activity report; ANDRA. Rapport d'activite 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-01

    This document includes both the activity report and the management and financial situation report of the French national agency for the management of radioactive wastes (ANDRA). Content: ANDRA's missions: 1 - the industrial mission (short-lived low- and medium-level wastes, a new disposal facility for the very low level wastes, wastes from diffuse nuclear origins); 2 - the research mission (methodology and approach, knowledge gained in 2003, the 2003 experimental program of the Meuse-Haute Marne underground laboratory, the three approaches applied to research, projects for radium- and graphite-bearing wastes, international relations); 3 - information mission (public expectations and specific answers, inventory mission). (J.S.)

  15. 40 CFR 62.14590 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... Commenced Construction On or Before November 30, 1999 Waste Management Plan ยง 62.14590 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or... use of recyclable materials. The plan must identify any additional waste management measures, and the...

  16. 40 CFR 60.2630 - What should I include in my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... or Before November 30, 1999 Model Rule-Waste Management Plan ยง 60.2630 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation... of recyclable materials. The plan must identify any additional waste management measures, and the...

  17. 40 CFR 60.2625 - When must I submit my waste management plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan ยง 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...

  18. Sunburn prevalence among adults--United States, 1999, 2003, and 2004.

    Science.gov (United States)

    2007-06-01

    Episodic acute overexposure to ultraviolet (UV) radiation (i.e., sunburn) is an important risk factor for two types of skin cancer: basal cell carcinoma and melanoma. Melanoma is the most lethal type of skin cancer. In 2003, a total of 45,625 new cases of melanoma were diagnosed in the United States, and 7,818 persons died from the disease. A meta-analysis of 57 studies indicated that the relative risk for melanoma among persons with sunburn history compared with those without sunburn history was 2.03 (95% confidence interval [CI] = 1.73-2.37). Monitoring sunburn prevalence with population-based surveys allows an estimate of compliance with sun-protection behaviors, assessments of risk for developing skin cancer, and measurement of the success of prevention programs. To evaluate trends in sunburn prevalence among U.S. adults, CDC analyzed cross-sectional data from the 1999, 2003, and 2004 Behavioral Risk Factor Surveillance System (BRFSS) surveys. This report describes the results of that analysis, which indicated that sunburn prevalence among all adults increased from 31.8% in 1999 to 33.7% in 2004. Further research is needed to determine which interventions will best improve sun-protection behaviors among the public.

  19. Order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche

    International Nuclear Information System (INIS)

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche. (A.L.B.)

  20. 2003 annual report; Rapport annuel 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The 2003 issue of the annual report of the French nuclear safety authority (ASR) presents the activities of the ASR in the following domains: 2003 highlights (the project of law relative to the nuclear transparency and safety, the EPR reactor project, the radioprotection priorities, the inspection of radioprotection, the action plan for the monitoring of patients' exposure to ionizing radiations, the 2003 heat wave and the operation of nuclear power plants, the national plan of radioactive wastes management, the behaviour of long living and high level radioactive wastes, and the European 'nuclear package'), nuclear activities, ionizing radiations and health hazards, organisation of nuclear safety control and radioprotection, radioprotection and nuclear facilities regulation, control of nuclear activities, public information and transparency, international relations, radiological emergency situations, radiological and biomedical activities, industrial and research activities, transport of radioactive materials, safety and radioprotection of nuclear power plants, research and other nuclear facilities, fuel cycle centers, safety of the definitive shut-down and dismantling of nuclear facilities, radioactive waste management and cleansing of polluted sites. (J.S.)

  1. 2003 annual report; Rapport annuel 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The 2003 issue of the annual report of the French nuclear safety authority (ASR) presents the activities of the ASR in the following domains: 2003 highlights (the project of law relative to the nuclear transparency and safety, the EPR reactor project, the radioprotection priorities, the inspection of radioprotection, the action plan for the monitoring of patients' exposure to ionizing radiations, the 2003 heat wave and the operation of nuclear power plants, the national plan of radioactive wastes management, the behaviour of long living and high level radioactive wastes, and the European 'nuclear package'), nuclear activities, ionizing radiations and health hazards, organisation of nuclear safety control and radioprotection, radioprotection and nuclear facilities regulation, control of nuclear activities, public information and transparency, international relations, radiological emergency situations, radiological and biomedical activities, industrial and research activities, transport of radioactive materials, safety and radioprotection of nuclear power plants, research and other nuclear facilities, fuel cycle centers, safety of the definitive shut-down and dismantling of nuclear facilities, radioactive waste management and cleansing of polluted sites. (J.S.)

  2. Radioactive waste management profiles. A compilation of data from the Net Enabled Waste Management Database (NEWMDB). No. 5

    International Nuclear Information System (INIS)

    2003-05-01

    The document consists of two parts: Overview and Country Waste Profile Reports for Reporting Year 2000. The first section contains overview reports that provide assessments of the achievements and shortcomings of the Net Enabled Waste Management Database (NEWMDB) during the first two data collection cycles (July 2001 to March 2002 and July 2002 to February 2003). The second part of the report includes a summary and compilation of waste management data submitted by Agency Member States in both the first and second data collection cycles

  3. ANDRA. 2003 activity report

    International Nuclear Information System (INIS)

    2004-05-01

    This document includes both the activity report and the management and financial situation report of the French national agency for the management of radioactive wastes (ANDRA). Content: ANDRA's missions: 1 - the industrial mission (short-lived low- and medium-level wastes, a new disposal facility for the very low level wastes, wastes from diffuse nuclear origins); 2 - the research mission (methodology and approach, knowledge gained in 2003, the 2003 experimental program of the Meuse-Haute Marne underground laboratory, the three approaches applied to research, projects for radium- and graphite-bearing wastes, international relations); 3 - information mission (public expectations and specific answers, inventory mission). (J.S.)

  4. Advances in Canadian forest hydrology, 1999-2003

    Science.gov (United States)

    Buttle, J. M.; Creed, I. F.; Moore, R. D.

    2005-01-01

    Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright

  5. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  6. 77 FR 61326 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-10-09

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... RCRA hazardous waste management program. We granted authorization for changes to their program on... 202. Hazardous Waste Management July 30, 2003; 68 329 IAC 3.1-6-2(16); System; Identification and FR...

  7. Inspections Report 2002 - 2003; Tillsynsrapport 2002 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Viidas, Josefin

    2004-10-01

    The report summarises primarily the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2002 and 2003. A summary of the inspections and a description of important issues connected with the supervision of nuclear facilities are given. The inspections during 2002 focused on the investigation and coverage of the mishap related to the transport of iridium from Studsvik. The Studsvik project was initiated and the remaining supervision was temporarily given lower priority. In 2003 SSI performed two theme inspections. One focused on the handling of waste management and the other on the limitation of the effluent. Extensive supervision efforts concentrated also on Ranstad Mineral inc.

  8. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999

  9. Plan 2003. Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    2003-06-01

    The cost estimates are based on different scenarios and make allowances for uncertainties, variations and disturbances in the various projects. Costs for reactor decommissioning and for research and demonstration throughout the different stages of the waste handling and disposal are included. The total future cost for handling the waste from 40 years operation of the 11 Swedish reactors in operation and Barsebaeck-1 which already is taken out of operation, amounts to 49.6 billion SEK (about 6.2 billion USD). 12.7 billion SEK has already been used for building and operating the existing plants, and for research and development (incl. year 2003 costs)

  10. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTรN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003โ€“2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  11. Trends in marine fish catches at Pattani Fishery Port (1999-2003)

    OpenAIRE

    Wanchamai Karntanut; Premwadee Komontree; Phattrawan Tongkumchum

    2006-01-01

    This study aims to develop statistical models for forecasting the quantity of the various types of marine fish landed at Pattani Fishery Port, allowing for trend and seasonality, using official data during 1999-2003. The data comprise daily and monthly totals by weight for eight types of fish (mackerel, other food fish, squid, scads, trash fish, shrimp, lobster and crab). The statistical methods are one-way analysis of variance, multiple linear regression and time series forecasting using tre...

  12. Characteristics and management of infectious industrial waste in Taiwan

    International Nuclear Information System (INIS)

    Huang, M.-C.; Lin, Jim Juimin

    2008-01-01

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator

  13. Annual radioactive waste tank inspection program - 1999

    International Nuclear Information System (INIS)

    Moore, C.J.

    2000-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  14. Management of small producers waste in Slovenia

    International Nuclear Information System (INIS)

    Fabjan, Marija; Rojc, Joze

    2007-01-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  15. Radioactive waste management in an Australian state - IAEA style

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.

    1999-01-01

    The IAEA have produced a series of publications within the RADWASS programme. These publications are comprehensive in their coverage and are applicable to all aspects of radioactive waste management - from the individual user level to State and National level. Adherence to the principles contained in these publications is advocated in the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The publications provide a useful check list against which to determine the current status of radioactive management, at various levels (individual level, State, National) and also provide a basis for planning future waste management requirements. In Tasmania, these publications have been utilised to assess the current radioactive waste management system and to determine future management requirements, particularly for storage of radioactive waste. This paper illustrates the application of the publications for auditing individual users' waste management status and for determining future State storage requirements for radioactive waste. A brief outline of the process used and the main issues identified as a result, will be presented. These issues include some requiring a National approach for their resolution. Copyright (1999) Australasian Radiation Protection Society Inc

  16. Public service of radioactive waste management for small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2001-01-01

    By Governmental decree of May 1999, the Agency for radwaste management (ARAO) was authorized as a state public service for managing radioactive waste from small producers. By this decree the ARAO also became the operator of the Central Interim Storage intended for radioactive waste from industry, medicine and research, located in Brinje near Ljubljana. In this paper the current situation will be presented, together with plans for improving public service and the necessary refurbishment and modernization of the storage facility. Execution of the proposed measures, modifications and a modernization will ensure proper and safe storing of all radioactive waste from small producers produced in Slovenia, thus fulfilling the requirements for full operation of the public service of radioactive waste management.(author)

  17. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  18. Optimizing transuranic waste management-challenges and opportunities

    International Nuclear Information System (INIS)

    Triay, I.R.; Wu, C.F.; Moody, D.C.; Jennings, S.G.

    2002-01-01

    The opening of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic (TRU) waste in March of 1999, the granting of the Hazardous Waste Facility Permit in November 1999, and over two years of operational experience have demonstrated the Department of Energy's (DOE'S) capability in closing the nuclear energy cycle. While these achievements resolved several scientific, engineering, regulatory and political issues, the DOE has identified a new set of challenges that represent opportunities for improving programmatic efficiency, cost-effectiveness, and operational safety in managing the nation's TRU waste. The DOE has recognized that the complex administrative and regulatory requirements for characterization, transportation and disposal of TRU waste are costly (1). A review by the National Academy of Sciences (NAS) states that these requirements lead to inefficient waste characterization, handling and transportation operations that in turn can lead to unnecessary radiation exposure to workers without a commensurate decrease in risk to the public and the environment (2). This paper provides an overview of the status of the WJPP repository, explains the principles of the proposed commercial business approach, and describes some of the proposed major enhancements of the TRU waste transportation systems. The DOE is developing a remote-handled (RH) waste program to enable emplacement of RH waste at WPP. This program includes appropriate facility modifications and regulatory changes (3).

  19. Waste management and climate protection. Contribution of Bavarian waste management for greenhouse gas minimization; Abfallwirtschaft und Klimaschutz. Beitrag der bayerischen Abfallwirtschaft zur Treibhausgas-Minderung

    Energy Technology Data Exchange (ETDEWEB)

    Peche, R.; Kreibe, S. [bifa Umweltinstitut, Augsburg (Germany)

    2007-08-15

    bifa created a material flow model for approximately 23 million tons of Bavarian municipal and industrial waste that incorporates collection of waste, waste disposal and processing and treatment of residual material. bifa determined the influence of these material flows on emissions of greenhouse gases. The analysis shows that the Bavarian waste management achieved a reduction of greenhouse gases in the municipal and industrial waste sector that amounted to 3.2 million tons of carbon dioxide equivalents (CO{sub 2}E) in 2003, thus reducing environmental impact considerably. To see the overall reduction of greenhouse gases it is however necessary to compare the system of waste collection, waste treatment and waste processing with a fictitious scenario of waste disposal exclusively via landfill. This would cause an environmental load of 9.58 million tons CO{sub 2}E. Together with the amount of reduction attained in 2003, an overall reduction of greenhouse gas emissions of 12.78 millions tons CO{sub 2}E has thus been achieved by the Bavarian waste management. Analysis of possible future waste processing and waste avoidance measures showed two areas with significant additional potential for the reduction of greenhouse gas emissions. One is waste avoidance - e. g. through increased municipal counselling - however, this is difficult to realize. The other possibility is the optimisation of bio-waste processing. (orig.)

  20. The Net Enabled Waste Management Database in the context of an indicator of sustainable development for radioactive waste management

    International Nuclear Information System (INIS)

    Csullog, G.W.; Selling, H.; Holmes, R.; Benitez, J.C.

    2002-01-01

    The IAEA was selected by the UN to be the lead agency for the development and implementation of indicators of sustainable development for radioactive waste management (ISD-RW). Starting in late 1999, the UN initiated a program to consolidate a large number of indicators into a smaller set and advised the IAEA that a single ISD-RW was needed. In September 2001, a single indicator was developed by the IAEA and subsequently revised in February 2002. In parallel with its work on the ISD-RW, the IAEA developed and implemented the Net Enabled Waste Management Database (NEWMDB). The NEWMDB is an international database to collect, compile and disseminate information about nationally-based radioactive waste management programmes and waste inventories. The first data collection cycle with the NEWMDB (July 2001 to March 2002) demonstrated that much of the information needed to calculate the ISD-RW could be collected by the IAEA for its international database. However, the first data collection cycle indicated that capacity building, in the area of identifying waste classification schemes used in countries, is required. (author)

  1. 2003 annual report

    International Nuclear Information System (INIS)

    2004-01-01

    The 2003 issue of the annual report of the French nuclear safety authority (ASR) presents the activities of the ASR in the following domains: 2003 highlights (the project of law relative to the nuclear transparency and safety, the EPR reactor project, the radioprotection priorities, the inspection of radioprotection, the action plan for the monitoring of patients' exposure to ionizing radiations, the 2003 heat wave and the operation of nuclear power plants, the national plan of radioactive wastes management, the behaviour of long living and high level radioactive wastes, and the European 'nuclear package'), nuclear activities, ionizing radiations and health hazards, organisation of nuclear safety control and radioprotection, radioprotection and nuclear facilities regulation, control of nuclear activities, public information and transparency, international relations, radiological emergency situations, radiological and biomedical activities, industrial and research activities, transport of radioactive materials, safety and radioprotection of nuclear power plants, research and other nuclear facilities, fuel cycle centers, safety of the definitive shut-down and dismantling of nuclear facilities, radioactive waste management and cleansing of polluted sites. (J.S.)

  2. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  3. Radioactive waste management status and trends - Issue no. 4, February 2005

    International Nuclear Information System (INIS)

    2005-03-01

    The purpose of this publication is to compile and disseminate information about the status of and trends in radioactive waste management in IAEA Member States in a timely manner. The publication is suitable for radioactive waste managers and regulators, and decision making organizations in both governmental and private sectors. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. It addresses national systems for radioactive waste management, classification of radioactive waste, sources of radioactive waste, decommissioning of nuclear facilities, predisposal management of radioactive waste, managing the consequences of best practices, data collection and reporting and highlights of the work of the IAEA and other international organizations in 2003. It ends with achievements and challenges, acronyms, abbreviations, symbols and expressions. The plan is to have the publication evolve to serve a broader audience using easy-to-understand graphical and tabular data

  4. Radioactive waste management status and trends - Issue no. 4, February 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The purpose of this publication is to compile and disseminate information about the status of and trends in radioactive waste management in IAEA Member States in a timely manner. The publication is suitable for radioactive waste managers and regulators, and decision making organizations in both governmental and private sectors. Currently, the report is targeted at readers with a good knowledge of radioactive waste management. It addresses national systems for radioactive waste management, classification of radioactive waste, sources of radioactive waste, decommissioning of nuclear facilities, predisposal management of radioactive waste, managing the consequences of best practices, data collection and reporting and highlights of the work of the IAEA and other international organizations in 2003. It ends with achievements and challenges, acronyms, abbreviations, symbols and expressions. The plan is to have the publication evolve to serve a broader audience using easy-to-understand graphical and tabular data.

  5. Radioactive waste data base through the net: A tool to improve the development of waste management

    International Nuclear Information System (INIS)

    Sanhueza Mir, Azucena

    2003-01-01

    One of the duties in Chilean Commission for Nuclear Energy (CCHEN) is the timely reply to the International Atomic Energy Agency (IAEA) Net enable waste management data base (NEWMDB) in the waste management field. This duty is carried out by the Radioactive Waste Management Section. CCHEN has complete this data base from about one decade ago. Through the time, the data base has changed according to new available information technologies, to the point that the access using the international net is a need today. The NEWMDB objective is to exchange information and knowledge between member states related to radioactive waste management situation and to conform a world inventory of radioactive waste. The Chilean experience got from the NEWMDB first data collection cycle (1999-2000) is presented here, and recommendations to be considered for incorporation in the domestic waste management system are exposed. In so doing, the data base answer should be easy to do and totally understood by everyone whose job is waste management around the world, in the context of the glossary, criteria and conventions on this data base is supported. The composition of the NEWMDB considers a General Frame which indicates the way in which the waste management is enfaced in the country, regulations, authorities, policies, infrastructure; a Waste Classification matrix which give the equivalence between proper country waste classification and that recommended by IAEA; Waste Data which give the quantities and situation of waste in the different steps of the management such as: conditioned waste, unconditioned stored waste, etc. Finally, the Sustainable Development for radioactive waste management Indicators (SDI) for the safety and environmental radioactive waste management are estimated (Au)

  6. Waste processing practices at waste management department from INR

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The Institute for Nuclear Research Pitesti (INR), subsidiary of the Romanian Authority for Nuclear Activities has its own Radioactive Waste Treatment Plant (STDR). The object of activity of STDR within the INR Pitesti is to treat and condition radioactive waste resulted from the nuclear facility. Also, it will must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from other decommissioning activities. In according with the National Nuclear Program and the Governmental order no. 11/2003, the Institute for Nuclear Research is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by the decommissioning of nuclear facilities. The classes and criteria of classification for radioactive waste generated in operation and decommissioning in Romania are established in compliance with the classification recommended by IAEA and generally valid in EU countries. The general classification takes into consideration the disposal requirements to isolate the radioactive waste from environment. In Romania, waste minimization is considered by Order No. 56/2004 of CNCAN President for approval of Fundamental regulations on the safe management of radioactive waste. According to this regulation, the generation of radioactive waste is to be kept to the minimum practicable level in terms of both its activity and volume through appropriate design measures, facility operation and decommissioning practices. In order to meet this requirement, the operator must ensure: - selection and control of materials; - recycling and reuse of materials, including clearance of materials; - implementing adequate operating procedures, including those referring to the physical, chemical and radiological characterization of the waste and sorting of different type of materials. (orig.)

  7. Annual report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This is the Annual Report of the Atomic Energy of Canada Limited for the year ending March 31, 1999 and summarizes the activities of AECL during the period 1998-1999. The Activities covered in this Report include the CANDU Reactor Business, with excellent progress reported on the construction of two 700 MWe-class CANDU reactors in Qinshan, China. In the Republic of Korea, Wolsong Unit entered into commercial operation and Wolsong Unit 4 achieved sustained nuclear reaction. The Report also covers AECL's R and D and Waste Management programs. In the R and D section, the report outlines the development of the CANFLEX fuel bundle, Fuel Channels, Reactor Safety, Code Validation, Fuels and Fuel Cycles as well as Heavy Water production. Progress in the Waste Management program is also discussed.

  8. Annual report 1998-1999

    International Nuclear Information System (INIS)

    1999-01-01

    This is the Annual Report of the Atomic Energy of Canada Limited for the year ending March 31, 1999 and summarizes the activities of AECL during the period 1998-1999. The Activities covered in this Report include the CANDU Reactor Business, with excellent progress reported on the construction of two 700 MWe-class CANDU reactors in Qinshan, China. In the Republic of Korea, Wolsong Unit entered into commercial operation and Wolsong Unit 4 achieved sustained nuclear reaction. The Report also covers AECL's R and D and Waste Management programs. In the R and D section, the report outlines the development of the CANFLEX fuel bundle, Fuel Channels, Reactor Safety, Code Validation, Fuels and Fuel Cycles as well as Heavy Water production. Progress in the Waste Management program is also discussed

  9. Amorce. Activity report 1999; Amorce. Rapport d'activite 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Amorce is a French association which groups 173 organizations and 95 professionals. Its domain of activity concerns the district heating networks, the energy management by territorial organizations and the management of municipal wastes. This activity report presents the highlights of the 1999 year in the life of the association (growth of the association, personnel, reputation, financial situation, European activity, training, development of a database on wastes), and in each domain of activity: district heating and energy (deregulation of the electricity market, difficulties encountered in the domain of district heating networks, greenhouse effect, energy service schemes, renewable energies), and wastes (technical choices, reduction of government helps, ecological packaging, non-addressed mail, legal problems..). (J.S.)

  10. Annual Site Environmental Report: 2003

    Energy Technology Data Exchange (ETDEWEB)

    Nuckolls, H.; /SLAC

    2006-04-19

    This report provides information about environmental programs during 2003 at the Stanford Linear Accelerator Center (SLAC). Seasonal activities that span calendar years are also included. Production of an annual site environmental report (ASER) is a requirement established by the DOE for all management and operating (M&O) contractors throughout the DOE complex. This summary demonstrates the effective application of SLAC environmental management to meet the site's integrated safety management system (ISMS) goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring proper procedures are followed so that worker safety and health are protected; the environment is protected; and compliance is ensured. Throughout 2003, SLAC focused on these activities through the SLAC management systems (described in Chapter 3). These systems were utilized by SLAC to implement such ''greening of the government'' initiatives like Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. There were no reportable releases to the environment from SLAC operations during 2003. In addition, many improvements were continued during 2003 in waste minimization, recycling, decreasing air emission rates, stormwater drain system, groundwater restoration, and planning for a system to better manage chemical use. Program-specific details discussed are: (1) Air Quality--SLAC operates its air quality management program in compliance with established permit conditions; 2003 was the sixth consecutive year the air quality management program operated without any NOVs issued by regulators. Nevertheless, SLAC has an active program to improve its environmental performance in air quality. (2) Hazardous Waste--The Environmental Health Division of the San Mateo County Health Services Agency is the California certified unified permitting agency (CUPA) responsible

  11. Radioactive wastes and spent fuels management in Argentina

    International Nuclear Information System (INIS)

    Maset, Elvira R.

    2006-01-01

    CNEA was created in 1950 and since then has carried out research and development activities, production of radioisotopes, medical and industrial applications, and those activities related with the nuclear fuel cycle, including the operation of two nuclear power stations. More ever, different public and private institutions use radioactive materials in medical, industrial and research activities. These activities generate different types of radioactive waste, desuse sealed sources and spent fuel. The management of radioactive waste of all types produced in the country, as the spent nuclear fuel of power and research reactors and the used radioactive sources was always and it is at present a CNEA's responsibility. In February 2003, according to the Law No. 25.018, called 'Management of Radioactive Waste Regimen', the 'Radioactive Waste Management National Programme' was created by CNEA to fulfill the institutional functions and responsibilities established in the Law, in order to guarantee the safe management of radioactive waste according to the regulations established by the Argentine Nuclear Regulatory Agency and to the legislation in force. (author) [es

  12. Environment report 1999

    International Nuclear Information System (INIS)

    2000-01-01

    A brief account of activities in environment protection carried out by the Slovenske Elektrarne, a.s. in 1999 is presented. These activities are reported under the headings: (1) Address; (2) Electricity generation and consumption in the Slovak Republic; (3) Air protection; (4) Water management; (5) Waste management; (6) Environmental management system at Slovenske Elektrarne, a.s.; (7) Environmental protection funds; (8) Structure of SE, a.s., power installations

  13. The radioactive waste management programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, Alvaro R.; Vico, Elena

    2002-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Spanish Government. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Economy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The Fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  14. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  15. Pachacamac y el proyecto Ychsma (1999-2003

    Directory of Open Access Journals (Sweden)

    2004-01-01

    Full Text Available PACHACAMAC ET LE PROJET YCHSMA (1999-2003. Le Projet Ychsma (Universitรฉ Libre de Bruxelles, Belgique - Instituto Nacional de Cultura del Perรบ a dรฉbutรฉ en 1999 afin dย’รฉclairer le fonctionnement, le dรฉveloppement et lย’influence du site de Pachacamac durant les pรฉriodes Intermรฉdiaire rรฉcent et Horizon rรฉcent. Lย’architecture monumentale constitue le thรจme principal des recherches de terrain. Une synthรจse des rรฉsultats obtenus jusquย’ร  prรฉsent est prรฉsentรฉe ici, avec un accent particulier mis sur lย’รฉtude des pyramides ร  rampe, leur fonctionnement, leur chronologie et leur rรดle dans lย’expansion du site. Les fouilles รฉtendues et intensives de la pyramide n˚ 3 de Pachacamac ainsi que les explorations ponctuelles des autres pyramides de la zone archรฉologique et ses environs suggรจrent de nouveaux modรจles dย’interprรฉtation du site, fort diffรฉrents de ce qui a รฉtรฉ proposรฉ jusquย’ร  prรฉsent sur la base de sources ethnohistoriques, ou de donnรฉes archรฉologiques interprรฉtรฉes en fonction de celles-ci. Les avancรฉes dans le domaine de la cartographie digitalisรฉe, de la nomenclature des รฉdifices et de la reconstitution en images de synthรจse de lย’ensemble du site de Pachacamac sont รฉgalement รฉvoquรฉes. Il sย’agit dย’une entreprise ร  long terme destinรฉe ร  servir de rรฉfรฉrence aux futures recherches et dรฉbats ร  propos dย’un รฉtablissement qui compte parmi les plus importants des Andes centrales. El Proyecto Ychsma (Universidad Libre de Bruselas, Bรฉlgica - Instituto Nacional de Cultura del Perรบ empezรณ en 1999 con el fin de esclarecer el funcionamiento, desarrollo e influencia del sitio de Pachacamac durante los periodos Intermedio Tardรญo y Horizonte Tardรญo, siendo la arquitectura monumental el enfoque principal de las investigaciones en el campo. Se presenta aquรญ una sรญntesis de los avances logrados hasta el presente, especรญficamente en el estudio de las pirรกmides con rampa, su funcionamiento, cronolog

  16. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  17. Answers to questions on National Report of the Slovak Republic. Compiled according to the terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. October 2003

    International Nuclear Information System (INIS)

    2003-10-01

    Slovakia is pleased to present to the State Parties of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management the Answers to questions received on the National Report of the Slovak Republic compiled according to the terms of the Joint Convention (April 2003). Slovakia is ready to provide additional explanations to these Answers during the 1 st Review Meeting. In the Annexes the 254/1994 Coll. LL. Act of the National Council of the Slovak Republic of 25 August 1994 on State Fund of Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes is included

  18. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  19. The wastes management: possible scenario for 2006

    International Nuclear Information System (INIS)

    Capdevila, J.M.

    2003-03-01

    This document gathers the slides presented by J.M. Capdevila at the Seminar DEN/SAC the 13 mars 2003. They deal with the law of the 30 december 1991 concerning the radioactive wastes management, the research and development programs begun at the Cea and the short dated projects (2006), the forecast of the situation after 2006. (A.L.B.)

  20. PLAN 2003. Costs for management of the radioactive waste products from nuclear power production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    . The latter describes the selection of the sites where SKB wishes to proceed with investigations in conjunction with the site investigation phase. The site selections are also reflected in the calculation in that the reference scenario includes a siting of the deep repository to one of the selected sites. The choice has hereby been made on the basis of what best illustrates various cost aspects and should not be regarded as a prioritization in other respects. SKB proposes that deep disposal be implemented in stages, starting with an initial stage 1 in which approximately 200-400 canisters are deposited. This will be followed by an evaluation before the start of the regular operation. As a basis for determining fees and the need for guarantees, three amounts are to be reported to the authority: basis for fees, basis for basic amount, supplementary amount. The basis for fees is supposed to include all costs for managing and disposing of the spent nuclear fuel and radioactive waste that is calculated to have been produced up to and including the fee year, i.e. 2004, or during at least 25 years of operation of the reactors. The amount must also include costs for decommissioning and dismantling the reactors and for conducting the necessary research and development. The basis for fees also includes a supplementary amount for uncertainties up to a certain level. The basis for basic amount is supposed to include the above costs, but is limited, with regard to spent fuel and radioactive waste, to the waste quantities estimated to exist at the end of the current year, i.e. at 31 December 2003. This amount provides a basis for determining the size of Guarantee I. The supplementary amount comprises the difference between the basis for fees and an upper limit for the amount which the reactor owner must guarantee at the present time. According to the Financing Act, the supplementary amount shall cover 'reasonable costs of additional measures due to unforeseen events'. This

  1. The Radioactive Waste Management Programme in Spain

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    In 1984 the Empresa Nacional de Residuos Radiactivos (ENRESA) was set up in order to be responsible for all radioactive waste management activities in the country. ENRESA is a state-owned company, the shareholders of which are CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, formerly (JEN) and SEPI (Sociedad Estatal de Participaciones Industriales), both institutions dependent on the Ministry of Industry and Energy. ENRESA has a broad scope of responsibilities, including not only the management of L/ILW, HLW and spent fuel but also the decommissioning of nuclear installations, as well as the rehabilitation of uranium mining and milling facilities when required. The policy on radioactive waste management is defined by the Government, and the strategies are developed by ENRESA in accordance with the General Radioactive Waste Management Plan. This Plan is a strategic document which must be submitted yearly by ENRESA to the Government, for its approval when the Ministry of Industry and Energy decided so. The plan, in general terms, contains the main aspects related to waste generation and forecasts, as well as the strategies and technical solutions to be prepared, along with the associated economic and financial aspects. ENRESA's activities are financed by the waste producers. On the one hand the nucleoelectric sector pays a percentage fee on all the electricity sales, while small producers pay tariffs according to the services provided, both are approved by the Government. The fifth General Radioactive Waste Plan, approved by the Government in July 1999, is currently in force and contains the strategies for the management of radioactive wastes and decommissioning of nuclear installations in Spain. (author)

  2. Stored Transuranic Waste Management Program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Clements, T.L.

    1996-01-01

    Since 1970, INEL has provided interim storage capacity for transuranic (TRU)-contaminated wastes generated by activities supporting US national defense needs. About 60% of the nation's current inventory of TRU-contaminated waste is stored at INEL, awaiting opening of the Waste Isolation Pilot Plant (WIPP), the designated federal repository. A number of activities are currently underway for enhancing current management capabilities, conducting projects that support local and national TRU management activities, and preparing for production-level waste retrieval, characterization, examination, certification, and shipment of untreated TRU waste to WIPP in April 1998. Implementation of treatment capability is planned in 2003 to achieve disposal of all stored TRU-contaminated waste by a target date of December 31, 2015, but no later than December 31, 2018

  3. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, โ€œRadioactive Waste Management Manual,โ€ Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  4. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  5. Radioactive waste management in Spain

    International Nuclear Information System (INIS)

    Monroy, C.R.

    1996-01-01

    The review of the Spanish nuclear program is described with the special emphases on the radioactive waste management. The data of availability of a Centralized Temporary Storage facility will depend on the hypothesis considered regarding the service lifetime of nuclear power plants. Thay would be looking at the year 2003 for the 30 years case, and possibly at the year 2013 for the 40 year scenario, the choice between one and the other implying important economic and technical impacts. The aim for final disposal of high level wastes is to finish the preparation work by the year 2016, in order for construction of the disposal facility itself to be initiated and for operation to begin during the decade beginning with the year 2020

  6. Preparation of the National Radioactive Waste and Spent Fuel Management Programme in Slovenia

    International Nuclear Information System (INIS)

    Kralj, M.; Zeleznik, N.; Mele, I.; Veselic, M.

    2006-01-01

    The first separate National Radioactive Waste and Spent Fuel Management Programme (National Programme) was prepared in Slovenia in 2005, as a separate part of the National Environmental Action Programme that was adopted in June 2005. In the previous National Environmental Action Programme from the year 1999, the radioactive waste and spent fuel management was mentioned only briefly in the paragraph on radiation and nuclear safety with two main objectives: to provide an effective management of radioactive waste, and to keep the environmental ionising radiation under control. The new National Programme from 2005 includes all topics being relevant for the management of the radioactive waste and spent fuel, from the legislation and identification of different waste streams in Slovenia, to the management of radioactive waste and spent fuel, the decommissioning of nuclear facilities and management of (TE)NORM. It deals also with the relevant actors in the radioactive waste management, communication and information activities, and the financial aspects of the radioactive waste and spent fuel management. The National Programme was already adopted by the Slovenian Government in October 2005 and will go to Parliament proceedings. The Technical bases for the National Programme was prepared by ARAO and presented to the government in the beginning of 2005. The frames for this document were taken from relevant strategic documents: the Programme of decommissioning the nuclear power plant Krsko and the radioactive waste and spent fuel management, prepared in 2004 by Slovenian and Croatian experts (ARAO and APO), the Proposal of LILW Management Strategy (1999), the Strategy of Spent Fuel Management (1996), and the Resolution on the National Energy Programme (2004). ARAO made a detailed study on the amount and types of radioactive waste produced in Slovenia and future arising with emphasis on the minimization on radioactive waste production. It considered all producers of LILW and

  7. Investigation of health care waste management in Binzhou District, China

    International Nuclear Information System (INIS)

    Ruoyan, Gai; Xu Lingzhong; Li Huijuan; Zhou Chengchao; He Jiangjiang; Yoshihisa, Shirayama; Tang Wei; Chushi, Kuroiwa

    2010-01-01

    In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed. Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that in secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members' knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.

  8. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  9. On the effectiveness in implementing a waste-management-plan method in construction

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.

    2008-01-01

    The increasing awareness of waste management concerns from construction and demolition waste has led to the development of waste management as an important function of construction project management. The Hong Kong government started employing the implementation of a waste-management-plan (WMP) method for all construction projects in 2003. During the trial period, the government received different version of feedback from the industry. It also came out that detailed descriptions of waste management procedures in the WMP method largely affect the productivity of companies. This paper investigates the effectiveness of the existing implementation of the WMP method in the Hong Kong construction industry. A questionnaire survey and structured interviews were conducted. The result showed that 'Propose methods for on-site reuse of materials' and 'Propose methods for reducing waste' are the main benefits gained from the implementation of the WMP method. However, 'Low financial incentive' and 'Increase in overhead cost' are considered as the major difficulties in the implementation. From that, 'Use of prefabricated building components' is considered as the major effective measure to encourage the implementation of the WMP method

  10. Fifth Situation Report - Radioactive Waste Management in the Enlarged European Union

    International Nuclear Information System (INIS)

    Webster, S.

    2003-02-01

    The present report is the fifth in the series of reports on radioactive waste management in the European Union (EU). It presents, in the form of tables, the status in current EU Member States and in Candidate Countries of Central and Eastern Europe at the end of the year 2000. The fourth situation report was published in January 1999 and contained an in-depth evaluation of the situation and prospects for radioactive waste management in the Community, including such topics as waste generation, financing, transport, research and social issues. The report contains a comprehensive set of tables of waste generation, storage, disposal and predicted trends in the various waste categories, based on the status at the end of 1994. In comparison, the present report is an interim re-evaluation only and concentrates on waste quantities at the end of the year 2000, though it also presents a summary of national strategies and other pertinent information. (author)

  11. Bruk av rusmidler blant norske 15-16 รฅringer. Resultater fra den norske delen av de europeiske skoleundersรธkelsene - ESPAD 1995, 1999 og 2003

    OpenAIRE

    Bye, Elin Kristin; Skretting, Astrid

    2003-01-01

    - Tobakk Omkring 60 prosent av 15 - 16 รฅringene oppga i 2003 at de noen gang har rรธykt tobakk, omkring 30 prosent hadde rรธykt i lรธpet av de siste 30 dager. En andel pรฅ 18 prosent hadde rรธykt daglig i lรธpet av siste mรฅned. Det er flere jenter enn gutter som oppgir at de rรธyker. Mens det var en รธkning fra 1995 til 1999 i andelen 15 - 16 รฅringer som rรธyker tobakk, var det en nedgang fra 1999 til 2003. En andel pรฅ fire prosent oppga i 2003 at de hadde rรธykt ...

  12. PLAN 2003. Costs for management of the radioactive waste products from nuclear power production

    International Nuclear Information System (INIS)

    2003-06-01

    latter describes the selection of the sites where SKB wishes to proceed with investigations in conjunction with the site investigation phase. The site selections are also reflected in the calculation in that the reference scenario includes a siting of the deep repository to one of the selected sites. The choice has hereby been made on the basis of what best illustrates various cost aspects and should not be regarded as a prioritization in other respects. SKB proposes that deep disposal be implemented in stages, starting with an initial stage 1 in which approximately 200-400 canisters are deposited. This will be followed by an evaluation before the start of the regular operation. As a basis for determining fees and the need for guarantees, three amounts are to be reported to the authority: basis for fees, basis for basic amount, supplementary amount. The basis for fees is supposed to include all costs for managing and disposing of the spent nuclear fuel and radioactive waste that is calculated to have been produced up to and including the fee year, i.e. 2004, or during at least 25 years of operation of the reactors. The amount must also include costs for decommissioning and dismantling the reactors and for conducting the necessary research and development. The basis for fees also includes a supplementary amount for uncertainties up to a certain level. The basis for basic amount is supposed to include the above costs, but is limited, with regard to spent fuel and radioactive waste, to the waste quantities estimated to exist at the end of the current year, i.e. at 31 December 2003. This amount provides a basis for determining the size of Guarantee I. The supplementary amount comprises the difference between the basis for fees and an upper limit for the amount which the reactor owner must guarantee at the present time. According to the Financing Act, the supplementary amount shall cover 'reasonable costs of additional measures due to unforeseen events'. This amount comprises

  13. Order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche; Arrete du 10 janvier 2003 autorisant l'Agence nationale pour la gestion des dechets radioactifs a poursuivre les rejets d'effluents gazeux et liquides pour l'exploitation du centre de stockage de dechets radioactifs de la Manche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    This document, took out from the Official Journal, is the law text relative to the order of the 10 january 2003 authorizing the national agency for the radioactive wastes management to follow the gaseous and liquid effluents release for the exploitation of the radioactive wastes storage center of the Manche. (A.L.B.)

  14. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The resources of international co-operation, notably through the Nuclear Energy Agency, can substantially help 'keep the nuclear option open' in a sustainable development perspective, for example by helping preserve and develop scientific and technical know-how, maintaining adequate human resources both in quantity and quality, contributing to greater cost-effectiveness of nuclear operations, and improving stakeholder confidence in radioactive waste management solutions. The 1999 Annual Report of the Nuclear Energy Agency illustrates various facets of the international co-operation made available to Member governments which assists them in rising to these challenges: Nuclear Development and the Fuel Cycle, Nuclear Safety and Regulation, Radiation Protection, Radioactive Waste Management, Nuclear Science, Data Banks, Legal Affairs, Joint Projects and Other Co-operative Projects. (author)

  15. Annual report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The resources of international co-operation, notably through the Nuclear Energy Agency, can substantially help 'keep the nuclear option open' in a sustainable development perspective, for example by helping preserve and develop scientific and technical know-how, maintaining adequate human resources both in quantity and quality, contributing to greater cost-effectiveness of nuclear operations, and improving stakeholder confidence in radioactive waste management solutions. The 1999 Annual Report of the Nuclear Energy Agency illustrates various facets of the international co-operation made available to Member governments which assists them in rising to these challenges: Nuclear Development and the Fuel Cycle, Nuclear Safety and Regulation, Radiation Protection, Radioactive Waste Management, Nuclear Science, Data Banks, Legal Affairs, Joint Projects and Other Co-operative Projects. (author)

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  17. Attitudes and behaviour towards waste management in the Dublin, Ireland region.

    Science.gov (United States)

    Purcell, M; Magette, W L

    2010-10-01

    The hypothesis of this research was that attitudes about the management of biodegradable municipal waste (BMW) are spatially variable, even within a city of modest (1.2 million) population. For a select number of representative electoral districts in the Dublin, Ireland region, residents were surveyed regarding attitudes towards waste management in general, and BMW management in particular. A total of 850 survey responses were collected. Door-to-door interviews produced 688 responses in the residential sector; these were supplemented by 162 responses to a web-based survey. The surveys revealed that the majority of households use local authority, rather than private, waste collection services (both are available). The majority of residents, regardless of the local authority in which they live, were satisfied with their waste management service. "Reducing the quantity of waste generated" was regarded the most important future issue for 28% of residential respondents. Statistical analyses of the survey responses showed that the local authority in which respondents resided significantly influenced most responses (including waste collection service used, waste service satisfaction and backyard composting activity). Many responses (including waste service satisfaction, waste management influences) were also significantly related to the respondents' personal characteristics (e.g., education level, type of accommodation, age, etc.). These statistical results proved the hypothesis of the research and demonstrated that waste management initiatives designed for one area of the city (or, indeed, for uniform application to the city as a whole) could ignore the needs of other areas. The survey responses suggest that targeted intervention strategies would lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. (c) 2010 Elsevier Ltd. All rights reserved.

  18. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  19. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  20. Waste generator services implementation plan

    International Nuclear Information System (INIS)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999

  1. National report of the Slovak Republic. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. April 2003

    International Nuclear Information System (INIS)

    Burclova, J.; Ivan, J.; Jurina, V.

    2003-04-01

    A brief national safety report of the Slovak Republic in 2003 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (A) Introduction; (B) Policies and practices; (C) Scope of application; (D) Inventories and lists; (E) Legislation and regulation; (F) Other general safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste management; (I) Transboundary movement; (J) Disused sealed sources; (K) Planned activities to improve safety; (L) Annexes: (I and II) List of SF and RAW management nuclear facilities; (III) List of nuclear facilities subject to decommissioning; (IV) Inventory of stored SF (t HM); (V) Inventory of disposed of and stored RAW; (VI) List of selected national laws, regulations and guidelines; (VII) List of international expert reports and safety analysis reports; (VIII) List of authors

  2. National report of the Slovak Republic. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Burclova, J [Nuclear Regulatory Authority of the Slovak Republic, Bratislava (Slovakia); Ivan, J [Slovenske elektrarne, a.s., Bratislava (Slovakia); Jurina, V [Health Ministry of the Slovak Republic, Bratislava (Slovakia); and others

    2003-04-01

    A brief national safety report of the Slovak Republic in 2003 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (A) Introduction; (B) Policies and practices; (C) Scope of application; (D) Inventories and lists; (E) Legislation and regulation; (F) Other general safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste management; (I) Transboundary movement; (J) Disused sealed sources; (K) Planned activities to improve safety; (L) Annexes: (I and II) List of SF and RAW management nuclear facilities; (III) List of nuclear facilities subject to decommissioning; (IV) Inventory of stored SF (t HM); (V) Inventory of disposed of and stored RAW; (VI) List of selected national laws, regulations and guidelines; (VII) List of international expert reports and safety analysis reports; (VIII) List of authors.

  3. Sweden's fourth national report under the Joint Convention on the safety of spent fuel management and the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2011-01-01

    Sweden signed Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) September 29, 1997. Sweden ratified the Joint Convention about two years later and is a Contracting Party to the Joint Convention since July 29, 1999. The Joint Convention entered into force on June 18, 2001. Each member nation having ratified the Joint Convention (Contracting Party) is obligated to prepare a National Report covering the scope of the Joint Convention and subject it to review by other Contracting Parties at Review Meetings held in Vienna, Austria. Sweden participated in the First Review Meeting in November 2003, the Second Review Meeting in May 2006 and the Third Review Meeting in May 2009. This report is the fourth Swedish National Report under the Joint Convention. This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel and radioactive waste management facilities within Sweden. It constitutes an updated document with basically the same structure as the previous national reports under the terms of the Joint Convention and reflects developments in Sweden through December 2010. It will be subject to review at the Fourth Review Meeting of the Contracting Parties in Vienna, Austria, in May 2012

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  5. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  6. Problems of solid waste management on Mount Kilimanjaro: a challenge to tourism.

    Science.gov (United States)

    Kaseva, Mengiseny E; Moirana, Josia L

    2010-08-01

    We report on the findings of a study on the problems of solid waste management (SWM) on Mountain Kilimanjaro (MK) which is located within Kilimanjaro National Park (KINAPA) in Northern Tanzania. The study was prompted by the fact that flourishing tourism on the mountain over the years has resulted in an increase in the tonnage of solid waste (SW) generated, posing serious challenges in its collection and disposal. The methodology employed in this study included physical observations and questionnaire surveys, as well as waste sorting and weighing to quantify and characterize waste loads collected from each tourist route station covered in this study. On the basis of the established SW generation rate (0.6 kg ca(-1) day(-1)) a total amount of SW generated was estimated to range from about 87 tones (in 2003) to 125 tones (in 2006). An improvement in SW collection from 64% in 2003 to 94% in 2006 was also noted. This improvement can be attributed to the trash-in-trash-out (TITO) system of SW collection which is currently practiced by the management of KINAPA for SWM on MK. The study also highlights potential environmental pollution including air pollution from open burning and pit disposal of SW. Based on average percentage values of waste components and the estimated quantity of waste generated, it was established that the total waste quantum contains about 34% of recyclables. The study recommends that resource recovery and conservation measures through waste recycling and re-use be instituted as one of the options for sustainable SWM on MK.

  7. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  8. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Hรธjlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  9. Scientific Report 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The annual scientific report gives an overview of the R and D activities at the Belgian Nuclear Research Centre SCK-CEN in 2003. The report discusses progress and main achievements in the following areas: reactor safety, radioactive waste and clean-up, radiation protection, the BR2 reactor, nuclear research and society, managing nuclear knowledge, and fusion research

  10. Scientific Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The annual scientific report gives an overview of the R and D activities at the Belgian Nuclear Research Centre SCK-CEN in 2003. The report discusses progress and main achievements in the following areas: reactor safety, radioactive waste and clean-up, radiation protection, the BR2 reactor, nuclear research and society, managing nuclear knowledge, and fusion research.

  11. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  12. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  13. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  14. Chapter 7. Radioactive wastes

    International Nuclear Information System (INIS)

    2000-01-01

    The inspection and assessment activities of Nuclear Regulatory Authority of the Slovak Republic (UJD) focused on minimization of activity and the quantity of produced radioactive waste (RAW), and on increasing safety of waste management. The general scheme of rad-waste management in the Slovak Republic is presented. The radioactive wastes produced during the operation of NPP V-1, NPP V-2 and NPP Mochovce in 1999 are listed.Liquid RAW was treated and conditioned into a solid form at the nuclear facility Technology for treatment and conditioning of RAW. In 1999 combustible solid waste was treated at the nuclear facility Incinerator of VUJE Trnava. Produced liquid and solid RAW are stored at designed equipment at individual nuclear installations (in case of NPP V-1, NPP V-2 Bohunice and NPP Mochovce in compliance with the Regulation No. 67/1987 Coll. law).The status of free capacity of these storages as of 31.121999 is presented. Storage solidified product built the SE-VYZ was fully filled at the end of 1999. In 1999 there was a significant improvement in the process of radioactive waste management by: (A) issuing approval for commissioning the National Repository for RAW, (B) issuing approval for commissioning the Treatment and Conditioning Center for RAW, (C) having the application for approval to transport conditioned RAW to the National repository Mochovce in the final stage of evaluation. At the beginning of 2000 it is realistic to expect that RAW conditioned in the Conditioning center of RAW will start to be disposed at the National repository of RAW in Mochovce

  15. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods.

    Science.gov (United States)

    Doleลพalovรก, Markรฉta; Beneลกovรก, Libuลกe; Zรกvodskรก, Anita

    2013-09-01

    The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories - urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union's solid waste mandates, the results of these studies were employed by the

  16. Trends in marine fish catches at Pattani Fishery Port (1999-2003

    Directory of Open Access Journals (Sweden)

    Wanchamai Karntanut

    2006-07-01

    Full Text Available This study aims to develop statistical models for forecasting the quantity of the various types of marine fish landed at Pattani Fishery Port, allowing for trend and seasonality, using official data during 1999-2003. The data comprise daily and monthly totals by weight for eight types of fish (mackerel, other food fish, squid, scads, trash fish, shrimp, lobster and crab. The statistical methods are one-way analysis of variance, multiple linear regression and time series forecasting using trend and seasonal models. It is found that mackerel, other food fish and squid catches tend to decrease, whereas the catches of scads tend to increase, and trash fish catches have no detectable trend up or down. Shrimp and lobster tend to decrease exponentially, and the trend of crab catch is constant. This study raises questions about the ecological and economic sustainability of the current fisheries policy in Thailand.

  17. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrรกcz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  18. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  19. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  20. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    International Nuclear Information System (INIS)

    Doleลพalovรก, Markรฉta; Beneลกovรก, Libuลกe; Zรกvodskรก, Anita

    2013-01-01

    Highlights: โ€ข The character of household waste in the three different types of households were assesed. โ€ข The quantity, density and composition of household waste were determined. โ€ข The physicochemical characteristics were determined. โ€ข The changing character of household waste during past 10 years was described. โ€ข The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories โ€“ urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in

  1. Main technical topics in 1999; Les elements marquants de 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Safety Authority annual report strives to present current organizational provisions and future trends in nuclear safety supervision in France and to describe the most outstanding occurrences during the past year. A first part presents nine documents concerning the main topics of 1999: aging of nuclear installations, the Offsite Emergency Plans (PPI), the impact of nuclear activities on man and the environment, the criticality hazards, EDF in 1999, the EPR project, the Andra in 1999, the transport incidents, the nuclear safety in eastern Europe. The second part presents the missions and actions of the Nuclear Installations Safety in the domains of the liabilities, the organization of the nuclear safety control, the regulations of the INB, the public information, the international relations, the crisis management, the radioactive materials transportation, the radioactive wastes. The equipment, the radiation protection and the exploitation of the pressurized water reactors are also treated just as the experimental reactors, the fuel cycle installations and the the nuclear installations dismantling. (A.L.B.)

  2. Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the NTS

    Energy Technology Data Exchange (ETDEWEB)

    Vefa Yucel

    2007-01-03

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance.

  3. The health services wastes management of a sample of brazilian hospitals

    Directory of Open Access Journals (Sweden)

    Claude Machline

    2006-07-01

    Full Text Available This paper focuses the Health Services wastes management of 70 Brazilian hospitals. As the outcome of a distance course, in 2003, each hospital was required to describe its existing Health Services wastes system and its Plan for improvement.The project was administered by an association of two leading Brazilian educational entities, the Fundaรงรฃo Getulio Vargas and the Universidade Federal de Santa Catarina. Data concerning collection, disposal and final treatment of infectious, hazardous, chemical, radioactive and common wastes were tabulated and analysed. Water supply, liquid effluents and gaseous emissions were also investigated..Their technical and economical aspects were appraised. The research indicates that the sampled hospitals are still in an incipient stage of wastes management. An extensive gap exists between the present situation and the legal and acceptable requirements they should comply with, both on health care and on environmental standpoints.

  4. An Assessment of Airport Sustainability, Part 1โ€”Waste Management at Copenhagen Airport

    Directory of Open Access Journals (Sweden)

    Glenn Baxter

    2018-03-01

    Full Text Available Airports play a vital role in the air transport industry value chain, acting as the interface point between the air and surface transport modes. However, substantial volumes of waste are produced as a by-product of the actorsโ€™ operations. Waste management is therefore becoming especially important to airports. Using a qualitative and quantitative case study research approach, this paper has examined the waste management strategies and systems at Copenhagen Airport, Scandinaviaโ€™s major air traffic hub, from 1999 to 2016. The two major sources of waste at Copenhagen Airport are the waste generated from aircraft serving the airport and the waste arising from ground activities undertaken in the land and airside precincts. The growth in passengers and aircraft movements has had a concomitant impact on the volume of waste generated. Swept waste and sludge are processed by an external provider. Waste generated in the passenger terminals and the airport operatorโ€™s facilities is handled at a central container station, where it is sorted for incineration, recycling or for landfill. The environmental impact of the waste produced at the airport is mitigated through the recycling of waste wherever possible.

  5. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    extended consultants meeting held in November 1999. Ten experts from eight Member States representing most of the countries operating power plants with WWER reactors attended this meeting. Additional work was performed at the meeting 3-7 April 2000 by the group of consultants. The initial draft of the second report was prepared by four consultants. The draft was updated 14-18 June 2004 by eleven radioactive waste management experts from nine Member States. Due to their very similar nature and subject matter, the two reports were merged into a single TECDOC in April 2005. The resulting report was finalized in the meeting 5-9 September 2005 by four radioactive waste management experts from Finland, Hungary, Slovakia and USA

  6. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, โ€œRadioactive Waste Management Manual,โ€ Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  7. Hazardous waste management in Chilean main industry: An overview

    International Nuclear Information System (INIS)

    Navia, Rodrigo; Bezama, Alberto

    2008-01-01

    The new 'Hazardous Waste Management Regulation' was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a 'Hazardous Waste Management Plan' if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory

  8. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    Science.gov (United States)

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  9. Incidental catches of pelagic megafauna by the Dutch pelagic fleet in the Mauritanian Exclusive Economic Zone during the years 1999 - 2003

    NARCIS (Netherlands)

    Hofstede, ter R.; Zeeberg, J.J.; Haan, de D.; Couperus, A.S.; Mantingh, I.T.

    2004-01-01

    This report presents all registered catches of pelagic megafauna by the Dutch pelagic fleet in the Mauritanian Exclusive Economic Zone during the years 1999-2003. โ€˜By-catchesโ€™ incidentally include large species, notably cetaceans, sea turtles, sharks, rays, and some large pelagic fish such as

  10. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  11. Measures to strengthen international co-operation in nuclear, radiation and transport safety and waste management. Nuclear safety review for the year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Nuclear Safety Review for the Year 2003 presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety during 2003. As in 2002 the overview is supported by more detailed Notes by the Secretariat: Safety Related Events and Issues Worldwide during 2003 (document 2004/Note 6), The Agency's Safety Standards: Activities during 2003 (document 2004/Note 7) and Providing for the Application of the Safety Standards (document 2004/Note 8). In January 2003, the Agency implemented an organization change and developed an integrated approach to reflect a broader assignment of nuclear safety and nuclear security and to better exploit synergy between them. The Office of Physical Protection and Material Security renamed to Office of Nuclear Security was transferred from the Department of Safeguards to the Department of Nuclear Safety, which became the Department of Nuclear Safety and Security to reflect the change. This Review provides information primarily on nuclear safety, and nuclear security will be addressed in a separate report

  12. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  13. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  14. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  15. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  16. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  17. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  18. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  19. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  20. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  1. Maintenance Plan for the Performance Assessments and Composite Analyses of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Vefa Yucel

    2007-01-01

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance

  2. Urban solid wastes management in Montnegre-Corredor (Catalonia, Spain); La gestion de residos solidos urbanos en parques naturales. El Montnegre- Corredor

    Energy Technology Data Exchange (ETDEWEB)

    Rieradevall i Pons, J.; Boada i Unca, M.; Fresquet, C. M.

    2004-07-01

    With a aim to gaining some knowledge about urban solid waste management in the Montnegre- Corredor Park (Catalonia), the most significant related aspects were analyzed: the different public administrations involved, waste collector type of transport, treatment and, finally, waste disposal and its production from 1999 to 2002. Economical, environmental and social aspects of solid waste management at the Park were also studied. From this analysis we can establish that there is no specific plant for solid waste management in the Park, and action is limited to basic waste collection services. Moreover, there is a multiplicity of managers. In terms of maintenance it must be pointed out that selective collection is non-existent, and critical points have been identified in the most popular areas. The study also put forward a new solid waste management plan for the Park, recommending the unification of managers and the reduction of about 23% of emissions from waste collection. The plan is designed to improve the solid waste management peculiar to the Montnegre- Corredor Natural Park (Catalonian). (Author)

  3. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  4. Activity report 1999; Rapport d'activites 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The aim of this report is to outline the main developments of the ''Departement des Reacteurs Experimentaux'', (DRE) during the year 1999. DRE is one of the Department of the ''Direction des Reacteurs Nucleaires'', itself depending of the CEA Institution. After a presentation of the year highlights, this report gathers the main research and development programs. The second part concerns the production of radioisotopes, the silicon doping, the neutron radiography, the Orphee experiments and the activation analysis. The installations management, the closed reactors improvement program and the effluents and wastes processing of Grenoble, are presented in the other parts. Data on staff, budget and safety are also provided. (A.L.B.)

  5. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  6. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  7. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  9. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  10. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  11. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  12. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  13. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  14. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  15. Example of answers to the problems of 31st to 35th examinations for the chief engineer of nuclear fuel. 1999 to 2003

    International Nuclear Information System (INIS)

    Yachi, Shigeyasu; Satoh, Tadashi; Suga, Shin-ichi

    2003-09-01

    This report contains example of answers to the Problems of 31st(1999) to 35th(2003) Examinations for the Chief Engineer of Nuclear Fuel which were conducted as a national qualification examination. Brief explanations or references are given to some answers. (author)

  16. The VAEC - Annual report for 2003

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Le Van Hong; Nguyen Hoang Anh; Trinh Dang Hieu; Nguyen Trong Trang; Dang Thi Hong

    2004-08-01

    The VAEC Annual Report for 2003 has been prepared as an account of works carried out at the Vietnam Atomic Energy Commission (VAEC) for the year 2003. The Report contains mains results from the VAEC's activities of research and development in following fields: nuclear physics, reactor physics and nuclear energy, nuclear methods, nuclear medicine and radioisotope production, radiation protection and radioactive waste management, ecology and environment, biotechnology and agriculture, radiation technology, radiochemistry and materials sciences, computation and other topics. (NHA)

  17. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  18. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  19. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  20. Civilian radioactive waste management program plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  1. Civilian radioactive waste management program plan. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy's site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program's ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program's mission and vision, and summarizes the Program's broad strategic objectives. Chapter 2 describes the Program's approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program's organization chart; the Commission's regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms

  2. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  3. Tribal Waste Management Program

    Science.gov (United States)

    The EPAโ€™s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  4. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  6. L' influenza nella regione Lazio dal 1999 al 2003: casi di sindrome influenzale, ricoveri ospedalieri per malattie respiratorie e coperture vaccinali

    Directory of Open Access Journals (Sweden)

    A. Pasquarella

    2003-05-01

    Full Text Available

    Obiettivi: 1 Descrivere lโ€™andamento dei ricoveri ospedalieri per patologie respiratorie acute e croniche concomitanti alle epidemie stagionali da virus influenzale dal 1999 al 2003, in relazione con la segnalazione dei casi di sindrome influenzale (ILI da parte dei medici sentinella. 2 Misurare lโ€™eccesso dellโ€™ospedalizzazione influenza-correlata nelle diverse fasce di etร  rispetto ai periodi non epidemici. 3 Analizzare le modificazioni del ricorso al ricovero ospedaliero in relazione al tasso di copertura della vaccinazione antinfluenzale nella popolazione anziana, su scala regionale e nelle diverse ASL.

    Metodi: sono stati estratti dal Sistema Informativo
    Ospedaliero i ricoveri per patologie respiratorie
    influenza-correlate (codici ICD9-CM: 480-487; 460-
    466; 490-496 relativi agli anni 1999-2003.
    Lโ€™incidenza di ILI รจ stata stimata sulla base delle
    segnalazioni dei medici sentinella afferenti alla
    rete FLU-ISS dellโ€™Istituto Superiore di Sanitร .

    Per il calcolo dei tassi di copertura รจ stato utilizzato lโ€™archivio
    nominativo dei soggetti vaccinati contro lโ€™influenza,
    attivo nella regione Lazio dal 1999. Nel periodo considerato sono stati messi in relazione i tassi di ospedalizzazione etร -specifici, le incidenze di ILI e le coperture vaccinali. Lโ€™eccesso di ospedalizzazione รจ stato misurato confrontando i tassi relativi ai periodi epidemici e non epidemici.

    Risultati: i tassi di ospedalizzazione per malattie respiratorie sono risultati costantemente superiori nei periodi di maggiore circolazione virale, in particolare negli ultrasessantaquattrenni. Con il progressivo aumento del tasso di copertura vaccinale regionale (da circa il 25% della stagione 1999-2000 a oltre il 60% della stagione 2002-2003 non si รจ registrata una corrispondente diminuzione dei ricoveri ospedalieri per patologie influenza-correlate.
    Lโ

  7. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  9. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  10. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around โ€œ70% of the municipal waste produced...

  11. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  12. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  13. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  14. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  15. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  16. Capacity building in rural Guatemala by implementing a solid waste management program

    International Nuclear Information System (INIS)

    Zarate, M.A.; Slotnick, J.; Ramos, M.

    2008-01-01

    The development and implementation of a solid waste management program served to build local capacity in San Mateo Ixtatan between 2002 and 2003 as part of a public health action plan. The program was developed and implemented in two phases: (1) the identification and education of a working team from the community; and (2) the completion of a solid waste classification and quantification study. Social capital and the water cycle were two public health approaches utilized to build a sustainable program. The activities accomplished gained support from the community and municipal authorities. A description of the tasks completed and findings of the solid waste classification and quantification performed by a local working group are presented in this paper

  17. Waste minimization through process optimization/integration and resource management at eco-friendly Heavy Water Plants

    International Nuclear Information System (INIS)

    Nageshri, Jagdish; Gupta, S.K.

    2004-01-01

    Heavy Water Board has celebrated 2003 as Environmental Conservation Year captivating a range of enviro-friendly measures. This article attempts to give a brief overview of the outcome of systems and adapted procedures for waste minimization through process integration and resource management at Heavy Water Plants

  18. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  19. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  20. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  1. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  2. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  3. IPSN activity report 1999; Rapport d'activite de l'IPSN 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The ''Institut de Protection et de Surete Nucleaire'' (IPSN), carries out researches and expert studies needed to manage nuclear risks and their consequences on people and environment. These activities cover the installation safety, the radioactive matter transport, the public health and environmental control, the nuclear matters safety and control and the crisis situation management. The IPSN have got also a mission of public information and participates to international actions in the domain of scientific researches or expert's report. This annual report presents the highlights of the year 1999, information on staff, budgets and geographical situation. Then technical and scientific papers gathers the activities of the year covered by the IPSN: the ''Free Tribune'', installations and radioactive wastes safety, crisis and nuclear matter management, public health and environment control, international cooperation. (A.L.B.)

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  5. Radon mitigation in private dwellings. Summary of measures under the National Action Plan against Cancer in Norway 1999-2003

    International Nuclear Information System (INIS)

    Aanestad, K.; Strand, T.; Hoegmo, T.; Skjennem, M.; Jensen, C. L.; Hoelsbrekken, S.

    2006-01-01

    The report summarizes the remedial measurements carried out under the National Action Plan against Cancer in Norway in the period 1999-2003.The cost effectiveness of the state subsidized remedial measures against radon is evaluated. Other measurements under the National Action Plan against Cancer have also been evaluated, such as measurements of radon in 38.000 dwellings in 158 municipalities, information measures, and actions to increase radon mitigation competence in the building construction industry and in the municipalities. (Author)

  6. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  7. National facilities for the management of institutional radioactive waste in Romania: 25 years of operation for radioactive waste treatment plant, Bucharest-Magurele, 15 years of operation for national radioactive repository, Baita-Bihor

    International Nuclear Information System (INIS)

    Rotarescu, Gh.; Turcanu, C.; Dragolici, F.; Lungu, L.; Nicu, M.; Cazan, L.; Matei, G.; Guran, V.

    1999-01-01

    The management of the non-fuel cycle radioactive wastes in Romania is centralized at IFIN-HH in the Radioactive Waste Treatment Plant (STDR) Bucharest-Magurele and the National Repository of Radioactive Waste (DNDR) Baita-Bihor. From November 1974 to November 1999 there were treated at STDR nearly 26,000 m 3 LLAW, 2,100 m 3 LLSW and 4,000 spent sources resulting over 5,500 conditioned packages disposed at DNDR. After 25 years of operation for STDR and 15 years of operation for DNDR an updating programme started in 1991. The R and D programme will improve the basic knowledge and waste management practices for the increasing of nuclear safety in the field. (authors)

  8. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  9. Developing of Radioactive Wastes Management Safety at Baldone Repository Radons

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Abramenkova, G.; Klavins, M.

    2008-01-01

    The near surface radioactive wastes repository Radons near the Baldone city was put in operation in 1962. The safety assessment of repository was performed during 2000-2001 under the PHARE project to evaluate the recommended upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. Additional evaluations of radioactive wastes management safety were performed during 2006 year by the experts of ENRESA, Spain. It was shown, that the additional efforts were spent for improving of radioactive wastes cementation in concrete containers. The results of tritium and Cs 137 leaching studies are presented and discussed. It was shown, that additives can significantly reduce the migration of radionuclides in ground water. The leaching coefficients for tritium and Cs 137 were determined to supply with the necessary data the risk assessment calculations for operation of Baldone repository R adons

  10. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste ยง 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  11. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste ยง 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  12. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  13. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  14. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  15. Gulf of Mexico Outer Continental Shelf daily oil and gas production rate projections from 1999 through 2003

    International Nuclear Information System (INIS)

    Melancon, J.M.; Baud, R.D.

    1999-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1999 through 2003. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  16. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. National Report of the Kingdom of the Netherlands

    International Nuclear Information System (INIS)

    2005-10-01

    On 10 March 1999, the Netherlands signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, which was subsequently formally ratified on 26 April 2000 and entered into force on 18 June 2001. The Joint Convention obliges each contracting party to apply widely recognized principles and tools in order to achieve and maintain high standards of safety during management of spent fuel and radioactive waste. The Joint Convention also requires each party to report on the national implementation of these principles to review meetings of the parties to this Convention. This report describes the manner in which the Netherlands is fulfilling its obligations under the Joint Convention

  17. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  18. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  19. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  20. Current situation of management of radioactive wastes in the Instituto de Engenharia Nuclear, Brazil

    International Nuclear Information System (INIS)

    Zidan, Priscila M.; Silva, Joao C.P.; Echternacht, Marcus V.

    2000-01-01

    As its own legal responsibility, Nuclear Engineering Institute - IEN has received radioactive wastes generated in Rio de Janeiro and Espirito Santo states. But, from July 1997 to June 1999, IEN was not able to receive wastes because of the lack of space in the temporary repository. Recent studies show that increasing the treatment facilities could contribute to optimize the disposal of wastes. According to National Commission of Nuclear Energy resolutions, IEN was several times requested for discarding of lightning rods containing Am-241 and Ra-226. This fact motivated IEN to look for options to make possible the receiving of wastes until a new deposit were built. A temporary place was prepared and since last July it has been receiving wastes again. In this paper it is described the current structure of radioactive waste management at IEN, objectives and goals to be reached until December 2000. (author)

  1. Main technical topics in 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Safety Authority annual report strives to present current organizational provisions and future trends in nuclear safety supervision in France and to describe the most outstanding occurrences during the past year. A first part presents nine documents concerning the main topics of 1999: aging of nuclear installations, the Offsite Emergency Plans (PPI), the impact of nuclear activities on man and the environment, the criticality hazards, EDF in 1999, the EPR project, the Andra in 1999, the transport incidents, the nuclear safety in eastern Europe. The second part presents the missions and actions of the Nuclear Installations Safety in the domains of the liabilities, the organization of the nuclear safety control, the regulations of the INB, the public information, the international relations, the crisis management, the radioactive materials transportation, the radioactive wastes. The equipment, the radiation protection and the exploitation of the pressurized water reactors are also treated just as the experimental reactors, the fuel cycle installations and the the nuclear installations dismantling. (A.L.B.)

  2. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  3. Activity report 1999; Rapport d'activites 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The aim of this report is to outline the main developments of the ''Departement des Reacteurs Experimentaux'', (DRE) during the year 1999. DRE is one of the Department of the ''Direction des Reacteurs Nucleaires'', itself depending of the CEA Institution. After a presentation of the year highlights, this report gathers the main research and development programs. The second part concerns the production of radioisotopes, the silicon doping, the neutron radiography, the Orphee experiments and the activation analysis. The installations management, the closed reactors improvement program and the effluents and wastes processing of Grenoble, are presented in the other parts. Data on staff, budget and safety are also provided. (A.L.B.)

  4. EDF at a glance 2003; Groupe EDF - organisation et chiffres cles 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document presents the organization and key data of Electricite de France (EdF) group for 2003: business, priorities, values, different branches of the group (continental Europe, western Europe, Mediterranean branch, Africa, Asia-Pacific, Americas, Dalkia energy services, development branch), management, board of directors, market opening in France, human resource strategy, R and D, customers (residential, commercial, business and industrial, local authorities), industrial tool (fossil-fired generation, network management, renewable energy sources), reliability, financial flexibility, sustainable development (role of renewables in generation, CO{sub 2} emissions, radiation protection, nuclear waste, environment, handling fuel poverty, landscape conservation), contacts and affiliates outside France. (J.S.)

  5. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  6. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  7. Eco-efficiency of solid waste management in Welsh SMEs

    Science.gov (United States)

    Sarkis, Joseph; Dijkshoorn, Jeroen

    2005-11-01

    This paper provides an efficiency analysis of practices in Solid Waste Management of manufacturing companies in Wales. We apply data envelopment analysis (DEA) to a data set compiled during the National Waste Survey Wales 2003. We explore the relative performance of small and medium sized manufacturing enterprises (SME; 10-250 employees) in Wales. We determine the technical and scale environmental and economic efficiencies of these organizations. Our evaluation focuses on empirical data collected from companies in a wide diversity of manufacturing industries throughout Wales. We find significant differences in industry and size efficiencies. We also find correlations that exist among environmental and economic efficiencies. These variations show that improvements can be made using benchmarks from similar and different size industries. Further pursuit of an investigation of possible reasons for these differences is recommended.

  8. 1999 Annual Report; 1999 Informe Anual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This annual report presents information on the main activities carried out by the Nuclear Regulatory Authority (ARN) of Argentina during 1999, on radiation protection and nuclear safety. The work is developed in 9 chapters, 1 summary and 2 appendixes, where a description of the following activities and the bases of the Argentina Regulatory Systems are given: 1. Evolution of the nuclear regulatory activities in Argentina. Organic structures, tasks and budget. 2. Regulatory system, laws, transport of radioactive materials, safety at the management of radioactive wastes, regulatory documents issued. 3. Institutional relations with national and international organizations. 4. Inspection and evaluations of nuclear installations. Safeguards and physical protection. 5. Occupational and environmental surveillance. 6. Radiological emergencies. 7. Scientific and technological activities. Nuclear Regulatory Authority's laboratories. 8. Training, technical information and software development. 9. Radioactive facilities inspections.

  9. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  10. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  11. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCKยทCEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCKยทCEN has played in radioactive waste management.

  12. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  13. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  14. Development of a Comprehensive Radioactive Waste Management Program in the Kingdom of Morocco

    International Nuclear Information System (INIS)

    Abderrahim, Bouhi; Bouchta, Moussaif; El Maati, Mouldoura; Touria, Lambarki; Touria, El Ghailassai; Fischer, R.

    2009-01-01

    The Kingdom of Morocco has been a signatory of the International Atomic Energy Agency (IAEA) Joint Convention on the Management of Spent Fuel and Radioactive Waste since 1999. In fact Morocco was the first African country to ratify the joint convention. The Centre National de Energie des Sciences et des Techniques Nucleaires (CNESTEN) has been designated as the lead entity within the country for radioactive waste management. Morocco is in the process of receiving authorization to begin operating a new 2 MW MARK-II TRIGA research reactor at its Nuclear Energy Research Center (CENM) in Maamora. With the commissioning of the research reactor imminent, the waste management program has been preparing to disposition waste streams from the reactor, associated research operations, production of radioisotopes and anticipated future needs. The center is also the designated collection and storage facility for radioactive waste generated in the country, primarily spent sealed sources. This paper focuses on developing a radioactive waste management program that meets international standards in a class C country as described in Selection of Efficient Options for Processing and Storage of Radioactive Waste in Countries with Small Amounts of Waste Generation (class C countries are countries with research reactors but without nuclear power plants). In building their radioactive waste management program Morocco has made good use of experts from the IAEA and under a Sister Laboratory Agreement has worked with waste management personnel from the United States. This cooperative approach has provided assistance to Morocco in developing a safe and compliant program. Developing waste stream disposition pathways for all possible waste types can be especially challenging given the lack of commercial waste management infrastructure within the country. This paper will detail how waste management decisions are made, the waste management technology that was selected and how waste conditioning

  15. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maรงi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  16. The Spanish general radioactive waste plan

    International Nuclear Information System (INIS)

    Redondo, J.M.

    2007-01-01

    The author summarized the current status of Spain's general radioactive waste management plan. This plan forms the basis for a national radioactive waste management policy and decommissioning strategy. It is updated periodically, the current 5. plan was approved in 1999. The most important element of the current strategy is the development of a centralized interim HLW storage facility by 2010. (A.L.B.)

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  18. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  19. Radioactive waste management plan during the TRIGA Mark II and III decommissioning

    International Nuclear Information System (INIS)

    Jung, K.J.; Park, S.K.; Geong, G.H.; Lee, K.W.; Chung, U.S.; Paik, S.T.

    2001-01-01

    The decontamination and decommissioning (D and D) project of TRIGA Mark-I and Mark-II (KRR 1 and 2) was started in January 1997 and will be completed by December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of the Korea Institute of Nuclear Safety (KINS). In the second year, Hyundai Engineering Company (HEC) with British Nuclear Fuels pie (BNFL) as technical assisting partner was designated as the contractor to do design and licensing documentation for the D and D of both reactors. After pre-design, a hazard and operability (HAZOP) study checked each step of the work. At the end of 1998, the decommissioning plan documentation including environmental impact assessment report was finished and submitted to the Ministry of Science and Technology (MOST) for licensing. It is expected to be issued by the end of September 1999. Practical work will then be started around the end of 1999. The safe treatment and management of the radioactive waste arising from the D and D activities is of utmost importance for successful completion of the practical dismantling work. This paper summarizes general aspects of radioactive waste treatment and management plan for the TRIGA Mark-I and II decommissioning work. (author)

  20. Application of the principles of radioactive waste management to a historical problem

    International Nuclear Information System (INIS)

    Shields, B.; Newbery, S.M.; Finch, A.I.

    1999-01-01

    Faced with a historical radioactive waste situation, the operator has to make several decisions, including: 1. the likely fate of the material, both in the immediate future and long term; 2. the optimum containment for the material so that requirements at all future stages in the material's life can be satisfied; 3. the radiation protection requirements to be met during stages when handling of the waste were required. Americium-24 1, in the form of foils from lightning conductors, had been stored for some 10 years in a vault in Tasmania and required repackaging. This paper discusses: the historical situation, resulting in the need for repackaging; the options available to the operators; the criteria against which options were assessed (including the IAEA principles of radioactive waste management); and the final, practical solution. Copyright (1999) Australasian Radiation Protection Society Inc

  1. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  3. Financial guarantee for decommissioning and nuclear waste management activities at OPG

    International Nuclear Information System (INIS)

    Van den Hengel, J.

    2006-01-01

    This paper provides an overview on the establishment and maintenance of a financial guarantee for decommissioning and nuclear waste management activities at Ontario Power Generation (OPG) in accordance with CNSC requirements. The process and timelines are documented leading to the establishment of the guarantee effective July 31, 2003. Reference plans, cost estimates, funding mechanisms and reporting mechanisms are summarized. The renewal process projected at the end of the 5-year initial financial guarantee period is also included. (author)

  4. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright ยฉ 2011 Elsevier Ltd. All rights reserved.

  5. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  6. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters ยง 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  8. IPSN activity report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The ''Institut de Protection et de Surete Nucleaire'' (IPSN), carries out researches and expert studies needed to manage nuclear risks and their consequences on people and environment. These activities cover the installation safety, the radioactive matter transport, the public health and environmental control, the nuclear matters safety and control and the crisis situation management. The IPSN have got also a mission of public information and participates to international actions in the domain of scientific researches or expert's report. This annual report presents the highlights of the year 1999, information on staff, budgets and geographical situation. Then technical and scientific papers gathers the activities of the year covered by the IPSN: the ''Free Tribune'', installations and radioactive wastes safety, crisis and nuclear matter management, public health and environment control, international cooperation. (A.L.B.)

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  10. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  11. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  12. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting andย ...

  13. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  14. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commissionโ€™s inquiry report into โ€˜Waste Managementโ€™ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  15. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  16. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  17. Nuclear Safety Review for the Year 2003

    International Nuclear Information System (INIS)

    2004-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. In line with the suggestions made by the Board of Governors in March 2002, the first part is more analytical and less descriptive. This short analytical overview is supported by a second part, which describes significant safety related events and issues worldwide during 2003. A Draft Nuclear Safety Review for the Year 2003 was submitted to the March 2004 session of the Board of Governors in document GOV/2004/3. The final version of the Nuclear Safety Review for the Year 2003 was prepared in the light of the discussion by the Board.

  18. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  19. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  20. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  1. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  2. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  3. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  4. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  5. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  6. The nuclear safety and the radiation protection in France in 2003; La surete nucleaire et la radioprotection en France en 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-15

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  7. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering bothโ€ฆ

  8. Waste management concept during dismantling of KKS NPP in Germany

    International Nuclear Information System (INIS)

    Bacmeister, Georg U.

    2008-01-01

    Full text: This paper gives an overview on the waste management of NPP Stade during dismantling. The general idea is to reduce the radioactive waste to about three percentage of the complete dismantling mass. The NPP Stade in Germany was shut down in November 2003. After a transient phase the license for dismantling was given in 2005. In the following 8 years about 20.000 tones of steel and 120.000 tones of concrete will be put out by the dismantling. The yearly output of steel will by about 100 times higher than during the running time of the NNP. For this a new processes for waste management had to be installed. The waste management during dismantling focus on free release (about 97%). Beside some minor exception, the rest is deemed to be radioactive waste. This will be collected in 1000 packages, which are ready to be sent to a final storage. As until now in Germany no final storage is open (and sending of radioactive waste to another country is forbidden), the NNP Stade build an intermediate storage, where the packages may by saved for longest 40 years. The clearance procedure in Germany is regulated in the radiation protection ordinances. It is based on a nuclide specific set of clearance levels. To fulfil these demands the NNP Stade chose a semi automated system for characterization and documentation, which we develop in accordance to our release license. It guaranties a most accurate determination of the relevant nuclides for a set of dismantling material (some 10 to 100 tones). After the characterization only the gamma-activity of the material is measured in boxes of about 500 kg. A short comparison of the chosen procedure with other options, possible in Germany will be given and the decision from the collaboration with the NPP in Barsebaeck, Sweden, will be withdrawn. Beside the free release different options are used for waste management, like incineration, sending to landfill or reuse in nuclear industry. The waste management of the NNP Stade take

  9. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  10. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  11. DOE waste management program-current and future

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1993-01-01

    The back end of the nuclear fuel cycle, as well as many operations in the Department of Energy, involves management of radioactive and hazardous waste and spent nuclear fuel. Described herein is the current and anticipated Department's Waste Management Program and general information about the Program for managing and disposing of waste that will illustrate the importance of air cleaning and treatment in assuring protection of the public and our environment. The structure and responsibilities of the Office of Environmental Restoration and Waste Management (EM) are described. The categories of waste managed by the Office of Waste Management (OWM) are defined. The problems of waste management, waste minimization, and waste treatment, storage, and disposal are discussed. 4 figs

  12. EPIDEMIOLOGICAL - DEMOGRAPHIC CHARACTERISTIC OF SUICIDE ATTEMPTS IN ADOLESCENS TREATED AT THE INSTITUTE FOR MENTAL HEALTH IN NIS IN PERIOD OF 1999-2003

    Directory of Open Access Journals (Sweden)

    Ljubomir Milosavljevic

    2004-07-01

    Full Text Available The topic of this work is an epidemiological research of the suicide attempts of adolescents treated at the Institute for Mental Health Nis. The investigation comprises the period from 1999 up to 2003 year. The number of adolescents suicide attempts is increasing, and it is the highest one in 2003 year. Suicide attempt is most frequent with elderly female adolescents aged 17. A suicide attempt is preceded with manifestation in a form of mood disturbance in the scope of reactive situations. A dysfunctional family is the suicidal adolescentโ€™s framework within which he moves while as, a means for the attempt, benzodiazepinโ€™s group of medicaments is chosen by him.

  13. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  14. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  15. Activity report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The aim of this report is to outline the main developments of the ''Departement des Reacteurs Experimentaux'', (DRE) during the year 1999. DRE is one of the Department of the ''Direction des Reacteurs Nucleaires'', itself depending of the CEA Institution. After a presentation of the year highlights, this report gathers the main research and development programs. The second part concerns the production of radioisotopes, the silicon doping, the neutron radiography, the Orphee experiments and the activation analysis. The installations management, the closed reactors improvement program and the effluents and wastes processing of Grenoble, are presented in the other parts. Data on staff, budget and safety are also provided. (A.L.B.)

  16. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  17. Safety and radiation protection in waste management. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Lipponen, M.; Vuori, S.; Ruokola, E.; Palsson, S.E.; Sekse, T.; Ramsoey, T.

    2001-12-01

    During 1998-2001, a project on the management of radioactive waste was carried out as part of the NKS programme. The project was called NKS/SOS-3 and was divided into three sub-projects: SOS-3.1 (Environmental Impact Assessment; EIA), SOS-3.2 (Intermediate storage) and SOS-3.3 (Contamination levels in metals). SOS-3.1 included four EIA seminars on the use of EIA in the Nordic countries. The seminars were held in Norway in 1998, Denmark in 1999, Iceland in 2000 and Finland in 2001. (The last seminar was performed in co-operation with the NKS project SOS-1.) The seminars focused on experiences from EIA procedures for the disposal of radioactive waste, and other experiences from EIA processes. SOS-3.2 included a study on intermediate storage of radioactive waste packages in the Nordic countries. An overview of experiences was compiled and recommendations were made regarding different intermediate storage options as well as control and supervision. SOS-3.3 included investigation of contamination levels in steel, aluminium and magnesium samples from smelting facilities and an overview of current practice for clearance in the Nordic countries. Clearance, clearance levels, naturally occurring radioactive materials, radioactive waste, radioactive material, intermediate storage, waste disposal, environmental impact assessment, gamma spectrometric measurements, beta measurements, neutron activation analyses. (au)

  18. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  19. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  20. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  1. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  2. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  3. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  4. IPSN activity report 1999; Rapport d'activite de l'IPSN 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The IPSN (Institut de Protection et de Surete Nucleaire) carries out for the Government, studies and inspections on nuclear installations at many life steps (design, realisation, exploitation, shutdown and dismantling). To obtain quality researches, the Institut performs studies in all domains concerned by the safety and its improvement. The main projects of the year 1999, in the following topics are presented: the nuclear installations and the radioactive wastes safety, the crisis and nuclear materials management, the human and the environment protection, the international activities and cooperation, the quality insurance. It provides also information on the cooperation, the budget, the human resource policy and the communication activities. (A.L.B.)

  5. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  6. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  7. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  8. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  9. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than โ€˜exempt quantitiesโ€™ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  10. What did the public think of health services reform in Bangladesh? Three national community-based surveys 1999โ€“2003

    Directory of Open Access Journals (Sweden)

    Hossain Md Zakir

    2007-02-01

    Full Text Available Abstract Background Supported by development partners, the Government of Bangladesh carried out a comprehensive reform of health services in Bangladesh between 1998 and 2003, intended to make services more responsive to public needs: the Health and Population Sector Programme (HPSP. They commissioned a series of surveys of the public, as part of evaluation of the HPSP. This article uses the survey findings to examine the changes in public opinions, use and experience of health services in the period of the HPSP. Methods We carried out three household surveys (1999, 2000 and 2003 of a stratified random sample of 217 rural sites and 30 urban sites. Each site comprised 100โ€“120 contiguous households. Each survey included interviews with 25,000 household respondents and managers of health facilities serving the sites, and gender-stratified focus groups in each site. We measured: household ratings of government health services; reported use of services in the preceding month; unmet need for health care; user reports of waiting times, payments, explanations of condition, availability of prescribed medicines, and satisfaction with service providers. Results Public rating of government health services as "good" fell from 37% to 10% and the proportion using government treatment services fell from 13% to 10%. Unmet need increased from 3% to 9% of households. The proportion of visits to government facilities fell from 17% to 13%, while the proportion to unqualified practitioners rose from 52% to 60%. Satisfaction with service providers' behaviour dropped from 66% to 56%. Users were more satisfied when waiting time was shorter, prescribed medicines were available, and they received explanations of their condition. Conclusion Services have retracted despite increased investment and the public now prefer unqualified practitioners over government services. Public opinion of government health services has deteriorated and the reforms have not specifically

  11. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  12. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  13. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  14. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  15. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  16. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  17. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  18. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  19. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  20. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  1. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called โ€œwaste LCAโ€, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  2. 2003 Long-Term Surveillance and Maintenance Program Report

    International Nuclear Information System (INIS)

    2004-01-01

    are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE's responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation's nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE's legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM-50), as well as management of remedies involving ground water and surface water contaminated by former processing activities

  3. 2003 Long-Term Surveillance and Maintenance Program Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOEโ€™s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nationโ€™s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOEโ€™s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LMโ€“50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

  4. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  5. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: โ–บ Human toxicity of hazardous substances in e-waste. โ–บ Environmental impacts of e-waste from disposal processes. โ–บ Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. โ–บ Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  6. Electronic waste management approaches: An overview

    International Nuclear Information System (INIS)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    Highlights: โ–บ Human toxicity of hazardous substances in e-waste. โ–บ Environmental impacts of e-waste from disposal processes. โ–บ Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. โ–บ Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems

  7. National evaluation commission relative to the researches on the radioactive wastes management

    International Nuclear Information System (INIS)

    2004-01-01

    Implemented in april 1994, the National Evaluation Commission (CNE) continues in this tenth report, its study on the radioactive wastes management following the three axis defined by the 1991 law: separation and transmutation, underground disposal, conditioning and log time storage. This report takes stock on the CNE activity in 2003 as on the researches advances around these three axis. In the framework of the international cooperation, the commission details also the researches and realizations abroad. (A.L.B.)

  8. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  9. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  10. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  11. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  12. IPSN activity report 1999; Rapport d'activite de l'IPSN 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The ''Institut de Protection et de Surete Nucleaire'' (IPSN), carries out researches and expert studies needed to manage nuclear risks and their consequences on people and environment. These activities cover the installation safety, the radioactive matter transport, the public health and environmental control, the nuclear matters safety and control and the crisis situation management. The IPSN have got also a mission of public information and participates to international actions in the domain of scientific researches or expert's report. This annual report presents the highlights of the year 1999, information on staff, budgets and geographical situation. Then technical and scientific papers gathers the activities of the year covered by the IPSN: the ''Free Tribune'', installations and radioactive wastes safety, crisis and nuclear matter management, public health and environment control, international cooperation. (A.L.B.)

  13. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  14. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  15. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  16. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  17. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  18. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000

  19. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  20. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  1. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  2. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  3. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  4. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  5. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  6. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  7. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  8. Understanding the role of waste prevention in local waste management: A literature review.

    Science.gov (United States)

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. ยฉ The Author(s) 2016.

  9. EDF at a glance 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This document presents the organization and key data of Electricite de France (EdF) group for 2003: business, priorities, values, different branches of the group (continental Europe, western Europe, Mediterranean branch, Africa, Asia-Pacific, Americas, Dalkia energy services, development branch), management, board of directors, market opening in France, human resource strategy, R and D, customers (residential, commercial, business and industrial, local authorities), industrial tool (fossil-fired generation, network management, renewable energy sources), reliability, financial flexibility, sustainable development (role of renewables in generation, CO 2 emissions, radiation protection, nuclear waste, environment, handling fuel poverty, landscape conservation), contacts and affiliates outside France. (J.S.)

  10. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  11. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  12. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  13. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  14. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  15. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  16. Safety aspects of radioactive waste transportation and storage in the Republic of Moldova

    International Nuclear Information System (INIS)

    Gasca, Iu.

    2009-01-01

    A special attention continues to be given to the management of radioactive wastes. The National Department of Radioactive Waste Management is a unique institute in Moldova that deals with reception, transportation and storage of radioactive wastes. It collaborates with International Atomic Energy Agency. The management of low- and intermediate-level waste has remained permanently focused at the IAEA work. In 2003 IAEA supported the construction and technique of low-level and intermediate-level radioactive waste repository in Moldova. During 2003-2005 the US Department of Energy supported financing of planning and building of the underground storage for keeping the installations with high-level radioactive sources with all safety systems (signalization, video-monitoring). In 2008 the construction of radioactive wastes conditioning station was initiated with support of the US Embassy's Bureau for military cooperation

  17. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  18. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  19. From waste management into resource management; Von der Entsorgungswirtschaft zur Ressourcenwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R.; Vogtmann, H. (eds.)

    2005-07-01

    The main topic of the meeting was the development of waste management away from deposition management into resource management. The volume contains 63 contributions, which are compiled in several sections: legal and political development; status quo, concepts and prospects of thermal and mechanical waste treatment; sanitary landfills; outage associations; wastes and resources management; international waste management. (uke)

  20. Educators' Experience of Managing Sexually Abused Learners ...

    African Journals Online (AJOL)

    Using availability-sampling methods, four educators from a local primary school were interviewed and the data systematically analysed in accordance with Morrisette's (1999) sevenโ€“step procedural model. The present study confirmed the finding of Skinner (1999) and Mzamo (2003) that managing cases of sexually abusedย ...

  1. Influence of assumptions about household waste composition in waste management LCAs

    International Nuclear Information System (INIS)

    Slagstad, Helene; Brattebรธ, Helge

    2013-01-01

    Highlights: โ–บ Uncertainty in waste composition of household waste. โ–บ Systematically changed waste composition in a constructed waste management system. โ–บ Waste composition important for the results of accounting LCA. โ–บ Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  2. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  3. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  4. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  5. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  6. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  7. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  8. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  9. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  10. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  11. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  12. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  13. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  14. Rehabilitation at Nabarlek: erosion assessment 1999

    International Nuclear Information System (INIS)

    Evans, K.G.; Saynor, M.J.; Hancock, G.R.

    2001-01-01

    Decommissioning work and the rehabilitation at the Nabarlek minesite were completed at the end of 1995. Site description, mining history, environmental management and rehabilitation have been summarised elsewhere (Prendergast et al 1999, Martin 2000, Waggitt 2001). Tailings were buried in the mined-out pit and capped with waste rock. An erosion assessment of the cap design, using a combination of modelling and analogue estimates, indicated that denudation rates on the cap would be -1 (Riley 1995). Riley (1995) suggested minor design modifications to reduce slope length on the pit cap to improve stability and provide structural integrity for several thousand years. Riley (1995) observed that roads were areas of most severe rill development in the Alligator Rivers Region (ARR) and suggested that rill development (0.2-0.3 m depth) on the pit cap would occur in the early stages of adjustment toward equilibrium but not persist in the long term. Consequently, as part of the process of assessing rehabilitation success, erosion at the former minesite was examined by ERISS in August and October 1999. A ground assessment of the perimeter of the evaporation ponds, pit and waste rock dump (WRD), unsealed roads to the north and east of the site and infrastructure area was conducted in August 1999. This survey described, quantified (using a tape and rule) and photographed erosion features. No transects were undertaken. In October 1999, a qualitative (descriptive and photographic) survey of the airstrip, constructed drains, unsealed roads to the west of the site, the pit and WRD was conducted. On this occasion, transects of the WRD and pit were taken but the locations of the transects were not surveyed

  15. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  16. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  17. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  18. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  20. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  1. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  2. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of Sรฃo Joรฃo, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  3. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  4. Oak Ridge Reservation Waste Management Plan

    International Nuclear Information System (INIS)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year

  5. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  6. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  7. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  8. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  9. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  10. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  11. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  12. Nuclear knowledge management in radioactive waste management programmes

    International Nuclear Information System (INIS)

    Vetere, Claudia L.; Gomiz, Pablo R.; Lavalle, Myriam; Masset, Elvira

    2015-01-01

    In late 2007, the Nuclear Knowledge Management (NKM) group of the Argentine Atomic Energy Commission (CNEA), understanding the need to preserve knowledge related with radioactive waste, formulated the CONRRaD Project with the aim of developing and implementing a sustainable knowledge management system. The CONRRaD Project was highly focused on minimising the loss of radioactive waste management knowledge related to processes and facilities as a consequence of staff ageing and retiring, promoting transfer and preservation so as to ensure that future generations interpret and improve the management of waste, protecting the environment and people's health. The National Programme for Radioactive Waste Management (NPRWM) has the responsibility of maintaining a documented record system to preserve the knowledge that is available and relates to the facilities for radioactive wastes treatment, conditioning, packaging, storing and disposal of low-level radioactive wastes. The STOReR system has been designed with the aim of ensuring traceability through all the steps of radioactive waste management from generation to storage or disposal. Apart from upgrading an application in use since 2001, the new software includes improvements in the inventory calculations according to the current regulations. Basically, the system consists of two applications. One application called PAGE is on the Net and it is available for the producers. These producers are the facilities that generate radioactive waste as a consequence of their normal operation. PAGE enables the producers to access all the services provided by AGE more easily. Not only are producers the users of PAGE, but there are also authorised owners of radioactive sources and devices because AGE provides transitory or permanent storage of these elements. The other application called STOReR is the main one which provides the capabilities needed to support the whole system, such as the databases storage and management. STORe

  13. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  14. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  15. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  16. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  17. Radioactive waste management in the Czech Republic

    International Nuclear Information System (INIS)

    Duda, Vitezslav

    2008-01-01

    Radioactive waste and spent nuclear fuel are generated in the Czech Republic as a consequence of the peaceful use of nuclear energy and ionising radiation in many industries, particularly in the generation of nuclear energy, health care (therapy, diagnostics), research, and agriculture. The current extent of utilisation of nuclear energy and ionising radiation in the Czech Republic is comparable with that of other developed countries. The Concept of Radioactive Waste and Spent Nuclear Fuel Management is a fundamental document formulating government and state authority strategy for the period up to approximately 2025 (affecting policy up to the end of the 21st century), concerning the organizations which generate radioactive waste and spent nuclear fuel. The Concept puts forward solutions to provide for the disposal of waste in compliance with requirements for the protection of human health and the environment without excessively transferring any of the current impacts of nuclear energy and ionising radiation utilisation to future generations. The Concept was approved by the government of the Czech Republic in 2002. According to the Concept high level waste and spent nuclear fuel generated at the Dukovany and Temelin nuclear power plants will eventually be disposed of in a deep geological repository. Such a repository should commence operation in 2065. Work aimed at selecting potentially suitable sites began in 1992, but the final site has not yet been determined. In compliance with the aforementioned Concept, the Radioactive Waste Repository Authority (RAWRA) is responsible for finding two suitable sites before 2015. The current stage of evaluation covers the whole of the Czech Republic and includes detailed criteria and requirements. Based on the latest findings RAWRA suggested six potential sites for further investigation at the beginning of 2003. (author)

  18. IPSN activity report 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The IPSN (Institut de Protection et de Surete Nucleaire) carries out for the Government, studies and inspections on nuclear installations at many life steps (design, realisation, exploitation, shutdown and dismantling). To obtain quality researches, the Institut performs studies in all domains concerned by the safety and its improvement. The main projects of the year 1999, in the following topics are presented: the nuclear installations and the radioactive wastes safety, the crisis and nuclear materials management, the human and the environment protection, the international activities and cooperation, the quality insurance. It provides also information on the cooperation, the budget, the human resource policy and the communication activities. (A.L.B.)

  19. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  20. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  1. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  2. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  3. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  4. Nuclear risk management on stage: a decision analysis perspective on the UK's Committee on Radioactive Waste Management.

    Science.gov (United States)

    Morton, Alec; Airoldi, Mara; Phillips, Lawrence D

    2009-05-01

    In 2003, the UK government set up a broad-based Committee on radioactive waste management (CoRWM) to look at the UK's policy on radioactive waste management with a view to jumpstarting a stalled policy process. The committee's brief was to come up with a set of recommendations that would protect the public and the environment, and be capable of inspiring public confidence. After consulting widely with the public and stakeholders, and drawing on advice from scientists and other experts, CoRWM arrived at a remarkably well-received set of recommendations. On the basis of our experiences of working on CoRWM's multi-criteria decision analysis of different management options, study of CoRWM documentation, and interviews with committee members, we describe the explicit and implicit principles that guided CoRWM. We also give an account of the process by which CoRWM arrived at its conclusions, covering four phases: framing, shortlisting, option assessment, and integration; and four cross-cutting activities: public and stakeholder engagement (PSE), science and engineering input, ethics and social science input, and learning from overseas practice. We finish by outlining some of the key developments in the UK's radioactive waste management process, which followed on from the publication of CoRWM's report, and present our reflections for the benefit of the risk and decision analysts of future committees that, like CoRWM, are charged with recommending to government on the management of technically complex and risky technologies, drawing on extensive public and stakeholder consultation.

  5. Waste management research abstracts no. 21

    International Nuclear Information System (INIS)

    1992-12-01

    The 21th issue of this publication contains over 700 abstracts from 35 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  6. Waste management research abstracts. No. 20

    International Nuclear Information System (INIS)

    1990-10-01

    The 20th issue of this publication contains over 700 abstracts from 32 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  7. An international approach to radioactive waste management

    International Nuclear Information System (INIS)

    Barlett, J.W.

    1994-01-01

    Needs and opportunities for an international approach to management and disposal of radioactive wastes are discussed. Deficiencies in current national radioactive waste management programs are described, and the impacts of management of fissile materials from nuclear weapons on waste management are addressed. Value-added services that can be provided by an international organization for waste management are identified, and candidate organizations that could provide these services are also identified

  8. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  9. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  10. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  11. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  12. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  13. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright ยฉ 2014 Elsevier Ltd. All rights reserved.

  14. IPSN activity report 1999; Rapport d'activite de l'IPSN 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The IPSN (Institut de Protection et de Surete Nucleaire) carries out for the Government, studies and inspections on nuclear installations at many life steps (design, realisation, exploitation, shutdown and dismantling). To obtain quality researches, the Institut performs studies in all domains concerned by the safety and its improvement. The main projects of the year 1999, in the following topics are presented: the nuclear installations and the radioactive wastes safety, the crisis and nuclear materials management, the human and the environment protection, the international activities and cooperation, the quality insurance. It provides also information on the cooperation, the budget, the human resource policy and the communication activities. (A.L.B.)

  15. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management

    International Nuclear Information System (INIS)

    Ho, Wai Shin; Hashim, Haslenda; Lim, Jeng Shiun; Lee, Chew Tin; Sam, Kah Chiin; Tan, Sie Ting

    2017-01-01

    Highlights: โ€ข A novel method known as Waste Management Pinch Analysis (WAMPA) is presented. โ€ข WAMPA aims to identify waste management strategies based on specific target. โ€ข WAMPA is capable to examine the capacity of waste management strategies through graphical representation. - Abstract: Improper waste management happened in most of the developing country where inadequate disposal of waste in landfill is commonly practiced. Apart from disposal, MSW can turn into valuable product through recycling, energy recovery, and biological recovery action as suggested in the hierarchy of waste management. This study presents a method known as Waste Management Pinch Analysis (WAMPA) to examine the implication of a dual-objective โ€“ landfill and GHG emission reduction target in sustainable waste management. WAMPA is capable to identify the capacity of each waste processing strategy through graphical representation. A general methodology of WAMPA is presented through a demonstration of a SWM case followed by a detailed representation of WAMPA for five waste types. Application of the WAMPA is then applied on a case study for sustainable waste management planning from year 2015 to 2035. Three waste management strategies are incorporated into the case study โ€“ landfill, Waste-to-Energy (WtE), and reduce, reuse, and recycle (3R). The results show a 13.5% of total GHG emission reduction and 54.6% of total reduction of landfill are achieved. The major contributor of GHG emission which are from food waste (landfill emission) and plastic (WtE emission) is reduced.

  16. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  17. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  18. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  19. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  20. Waste management - textbook for secondary schools

    International Nuclear Information System (INIS)

    Chmielewska, E.; Kuruc, J.

    2010-09-01

    This text-book consist of five parts: (I) Waste management; (II) Solid waste management; (III) Recovery and recycling of secondary raw materials; (IV) Radioactive waste management; Examples of verification knowledge and testing of the secondary students through the worksheet. (V) Suggestions for leisure time activities. This text-book is assigned for high school students.

  1. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  2. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.

    1978-05-01

    A special, seven member, interdisciplinary task group of consultants was established in January 1976 to propose goals for the national waste management program. This is the report of that group. The proposed goals are intended as a basis for the NRC to establish a policy by which to guide and coordinate the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations and analysis by the authors who examined selected primary literature and interviewed many individuals concerned with waste management. The authors extended the scope of their inquiry and proposed goals to cover 'all technical and societal aspects necessary to an operating waste management system, rather than dealing with the regulatory process alone.' The waste management goals as developed are simple statements of principles which appear to the authors to be important conditions to insure the proper establishment and operation of a system to manage radioactive wastes.' In brief, the goals are designed to protect people and things of value in an equitable manner

  3. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  4. 2003 Canadian Asthma Consensus Guidelines Executive Summary

    Directory of Open Access Journals (Sweden)

    Becker Allan

    2006-03-01

    Full Text Available Abstract Background Guidelines for the diagnosis and management of asthma have been published over the last 15 years; however, there has been little focus on issues relating to asthma in childhood. Since the last revision of the 1999 Canadian Asthma Consensus Report, important new studies, particularly in children, have highlighted the need to incorporate new information into the asthma guidelines. The objectives of this article are to review the literature on asthma published between January 2000 and June 2003 and to evaluate the influence of new evidence on the recommendations made in the 1999 Canadian Asthma Consensus Report and its 2001 update, with a major focus on pediatric issues. Methods The diagnosis of asthma in young children and prevention strategies, pharmacotherapy, inhalation devices, immunotherapy, and asthma education were selected for review by small expert resource groups. The reviews were discussed in June 2003 at a meeting under the auspices of the Canadian Network For Asthma Care and the Canadian Thoracic Society. Data published through December 2004 were subsequently reviewed by the individual expert resource groups. Results This report evaluates early-life prevention strategies and focuses on treatment of asthma in children, emphasizing the importance of early diagnosis and preventive therapy, the benefits of additional therapy, and the essential role of asthma education. Conclusion We generally support previous recommendations and focus on new issues, particularly those relevant to children and their families. This document is a guide for asthma management based on the best available published data and the opinion of health care professionals, including asthma experts and educators.

  5. Management report 2003 CNEN - Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    2004-03-01

    This document reports the general activity management of the Comissao Nacional de Energia Nuclear - CNEN - Brazil during the year of 2003, involving the government programs in the areas of nuclear safety, medicine application, technological development, administration and miscellaneous

  6. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  7. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  8. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  9. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    International Nuclear Information System (INIS)

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-01-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions

  10. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  11. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  12. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  13. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  14. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  15. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  16. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  17. Recent Developments in Nuclear Waste Management in Canada

    International Nuclear Information System (INIS)

    King, F.

    2002-01-01

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management

  18. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  19. Waste management assessment and technical review programme. WATRP. An international peer review service for radioactive waste management activities

    International Nuclear Information System (INIS)

    1994-09-01

    International Atomic Energy Agency provides international peer review services in radioactive waste management to those Member States that have established radioactive waste management programmes. Such services are provided within Waste Management Assessment and Technical Review Programme (WATRP). The main objective of WATRP is to provide international expertise and information on a requested subject in the field of radioactive waste management and to validate that programmes and activities are sound and performing well. Refs, figs and tabs

  20. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  1. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  2. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  3. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...... waste fractions with waste treatment statistics for Europe, and 4. illustrating the general distribution of ENM into incineration, recycling and landfilling. Our results indicate that รขโ€ขห›plastic from used product containersรขโ€ขห‡ is the most abundant and diverse waste fraction, comprising a variety of both...... nanoproducts and materials. While differences are seen between individual EU countries/regions according to the local waste management system, results show that all waste treatment options are significantly involved in nanowaste handling, suggesting that research activities should cover different areas...

  4. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  5. The effect of food waste disposers on municipal waste and wastewater management.

    Science.gov (United States)

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  6. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright ยฉ 2013. Published by Elsevier Ltd. All rights reserved.

  7. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  8. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.โ€ฆ

  9. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  10. Solid waste management in faisalabad using GIS

    International Nuclear Information System (INIS)

    Nasir, A.; Ali, S.; Khan, F.H.

    2011-01-01

    Waste management is a global environmental issue which concerns about a very significant problem in today's world. There is a considerable amount of disposal of waste without proper segregation which has lead to both economic and environment sufferings. It is still practiced in many cities. There is a tremendous amount of loss in terms of environmental degradation, health hazards and economic descend due to direct disposal of waste. It is better to segregate the waste at the initial stages where it is generated, rather than going for a later option which is inconvenient and expensive. There has to be appropriate planning for proper waste management by means of analysis of the waste situation of the area. This paper would deal with, how Geographical Information System can be used as a decision support tool for planning waste management. A model is designed for the case study area in Pakistan city for the purpose of planning waste management. The suggestions for amendments in the system through GIS based model would reduce the waste management workload to some extent and exhibit remedies for some of the SWM problems in the case study area. The waste management issues are considered to solve some of the present situation problems like proper allocation and relocation of waste bins, check for unsuitability and proximity convenience due to waste bin to the users, proposal of recyclable waste bins for the required areas and future suggestions. The model will be implemented on the Faisalabad city's case study area data for the analysis and results will suggest some modification in the existing system which is expected to reduce the waste management workload to a certain extent. (author)

  11. Long-term management plan INEL transuranic waste

    International Nuclear Information System (INIS)

    McKinney, J.D.

    1978-12-01

    The Idaho National Engineering Laboratory stores large quantities of transuranic-contaminated waste at its Radioactive Waste Management Complex. This report presents a 10-year plan for management of this transuranic waste and includes descriptions of projects involving nuclear waste storage, retrieval, processing, systems analysis, and environmental science. Detailed project schedules and work breakdown charts are provided to give the reader a clear view of transuranic waste management objectives

  12. Medical Waste Management in Community Health Centers.

    Science.gov (United States)

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  13. Waste management research abstracts No. 18

    International Nuclear Information System (INIS)

    1987-12-01

    The eighteenth issue of this publication contains over 750 abstracts from 33 IAEA member countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed

  14. Strategy plan for management of Hanford tank wastes

    International Nuclear Information System (INIS)

    Humphreys, L.L.; Morgan, S.R.

    1993-01-01

    The Secretary of Energy in 1992 directed Hanford to plan for the retrieval and processing of all stored high level waste at Hanford for disposal at an offsite repository. This substantial change in the tank disposal program's assignment has resulted in a reevaluation of the entire Tank Waste Remediation System (TWRS) strategy. This strategic plan covers that portion of the TWRS strategy related to management of stored tank waste until it is retrieved, processed, and disposed by the disposal program and covers the responsibilities assigned to the ''manage tank waste'' function. The ''manage tank waste'' function is one of the level 2 functions as set forth in the Tank Waste Remediation System Mission Analysis Report (Baynes et al. 1993) and depicted in Figure 1. The following level 3 functions have been developed below the level 2, ''manage tank waste'' function: (1) Store waste; (2) Transfer waste; (3) Characterize, surveil and monitor waste; (4) Restore and upgrade systems; (5) Manage tank waste management system

  15. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. MANAGEMENT BOARD MEETING OF 21 JUNE 1999

    CERN Multimedia

    1999-01-01

    For informationIn closed session the Management Board discussed the1999 advancement exercise. In open session the Director-General reported on the following highlights of the June meetings of the Scientific Policy Committee, Finance Committee, Committee of Council and Council:Member and Non-Member State MattersFollowing Bulgaria's accession to CERN as its twentieth Member State on 11 June 1999, a Bulgarian delegation headed by the deputy Prime Minister and Minister of Education and Science, Mr Vesselin Metodiev, had attended the Council for the first time. Welcoming the new members, the President of Council had expressed the hope that the new co-operation between CERN and Bulgaria would constitute a firmer basis for the Organisation's long-standing scientific collaboration with Bulgarian physicists and play a valuable role in widening its European network of partners.The Council had also approved a resolution providing for a redefinition of Greece's annual contributions to the CERN Budget for the period 1998-...

  18. Managing nuclear waste: a better idea

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the findings and recommendations of the Advisory Panel with regard to alternative approaches to financing and managing the construction and operation of civilian radioactive waste management facilities. Ten organizational alternatives are considered and four of them are focussed on. These four are: present DOE waste management structure; alternative governmental approach; public/private entity; and private corporation. Advantages and disadvantages of each alternative are covered. The preferred alternative is the Federal Corporation for Waste Management (FEDCORP)

  19. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  20. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  1. Biomedical waste management operating plan. Revision C

    Energy Technology Data Exchange (ETDEWEB)

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  2. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Risoluti, P.

    2004-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the only legally binding international treaty in the area of radioactive waste management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (September 04) has been signed by 42 States, of which 34 have formally ratified, thus becoming Contracting Parties. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfillment of obligations through control and sanction, but by a peer pressure. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is intended for all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in medicine, conventional industry and research is currently used. Obligations of Contracting Parties include attending periodic Review Meetings and prepare National Reports for review by the other Contracting Parties. The National Reports should describe how the country is complying with the requirements of the Articles of the Convention. The first such meeting was held at the IAEA headquarters in November 2003. This paper will describe the origin of the Convention, present its content, the expected outcome for the worldwide safety, and the benefits for a country to be part of it

  3. Radioactive waste management: a utility view

    International Nuclear Information System (INIS)

    Draper, E.L.

    1982-01-01

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  4. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  5. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  6. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  7. PLAN 98 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1998-06-01

    The nuclear utilities in Sweden are responsible for managing and disposing of spent nuclear fuel and radioactive waste from the nuclear power reactors in a safe manner. The most important measures are to plan, build and operate the facilities and systems needed, and to conduct related R and D. This report presents a calculation of the costs for implementing all of these measures. The following facilities and systems are in operation: Transportation system for radioactive waste products. Central interim storage facility for spent nuclear fuel, CLAB. Final repository for radioactive operational waste, SFR I. Plans also exist for: Encapsulation plant for spent nuclear fuel. Deep repository for spent fuel and other long-lived waste. Final repository for decommissioning waste. The cost calculations also include costs for research, development and demonstration, as well as for decommissioning and dismantling the reactor plants etc. At the end of 1995, certain amendments were made in the Financing Act which influence the calculations presented in this report. The most important amendment is that the reactor owners, besides paying a fee or charge on nuclear energy production, must also give guarantees as security for remaining costs. In this way the fee can be based on a probable cost for waste management. This cost includes uncertainties and variations that are normal for this type of project. Cost increases as a consequence of major changes, disruptions etc. can instead be covered via the given guarantees. The total future costs, in January 1998 prices, for the Swedish waste management system from 1999 onward has been calculated to be SEK 45.8 billion. The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. They will fall due over a total period of approximately 50 years up to the middle of the 2l st century, but the greater part will fall due during the next 20 years. It is estimated that SEK 12.1 billion in current money terms

  8. Radioactive waste management of urban area

    International Nuclear Information System (INIS)

    Huang, Z.; Gu, S.X.

    1993-01-01

    The several years experience of radioactive waste management in Shanghai of China shows that the centralized management is quite successful and effective. Rad waste generated in urban area would be treated with further concern in the respect of radiation and environmental protection. In this respect, there is a need for a professional organisation to undertake the necessary regulation, and demonstrate that high standards of design, planning, management and operation could be met. The experience in China is suitable to manage and dispose rad waste generated from the civil applications in urban area, and valuable to the developing country and area in particular. It is concluded that the centralized management of intermediate level and low level radioactive waste is an optimum choice for urban area

  9. Waste to energy โ€“ key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: โ€ข First paper on the importance of incineration from a urban metabolism point of view. โ€ข Proves that incineration is necessary for sustainable waste management. โ€ข Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of โ€œprotection of men and environmentโ€ and โ€œresource conservationโ€. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  10. Waste to energy โ€“ key element for sustainable waste management

    International Nuclear Information System (INIS)

    Brunner, Paul H.; Rechberger, Helmut

    2015-01-01

    Highlights: โ€ข First paper on the importance of incineration from a urban metabolism point of view. โ€ข Proves that incineration is necessary for sustainable waste management. โ€ข Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of โ€œprotection of men and environmentโ€ and โ€œresource conservationโ€. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas

  11. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  12. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  13. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  14. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  15. Waste management facilities cost information for transuranic waste

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report's information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  16. Managing Waste Throughout Lean-Green Perspective

    Directory of Open Access Journals (Sweden)

    Lamyaa Mohammed Dawood

    2017-11-01

    Full Text Available Managing waste has been known as a crucial need as it may reduce resource consumption, rigid regulations regarded to the environment and occupational health and safety. Lean and green management are two approaches of management that validate waste. Since performance measures are crucial to improve waste management as itsย  goals ofย  to promote the performance of organizations .In this research four primary KPIs have been employed that are significant to lean-green management; operational, environmental, economic and social performance factors, subdivided further into sixteen as (Value stream mapping, life cycle assessment,---etc. Also in this researchย  ย determination and ranking of these performance measures and their influence on waste minimization is conducted. Interpretive Structural Modeling (ISM methodology is applied to the classification of Key Performance Indicators (KPIs according to the priority of their importance and the correlation between them and their impact to waste minimization. Cronbachโ€™s Alpha coefficient is employed ย to assess the reliability of performance measures to minimize waste, and increase customer ย satisfaction. ย Results showed that Al-Kufa Cement plant has bad overall performance toward lean green waste management perspective. The highest individual score is for operational performance (6.6 rated as medium. Butย  the lowest individual score is for economic performance [very bad (2.0].ย ย ย 

  17. Management of radioactive wastes from non-power applications. The Cuban experience

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Jova, L.

    2001-01-01

    ; Safety analysis for Cuban long term Storage Facility; Decommissioning of small nuclear facilities; Conditioning of disused sealed sources; Management of disused high activity radioactive sources; Management of disused long-lived radioactive sources. Expert Missions in Latin-America Region. CPHR specialists have participated in some IAEA expert missions in Latin America countries, such as: Radioactive Decontamination of brachytherapy areas at Oncology Institute 'Dr. Heriberto Pieter' in Dominican Republic (1996); Radiological Characterization and Relocation of Radioactive Wastes at the INEA - Colombia (1996); Conditioning of Spent Radium Sources for Safe Long Term Storage in Colombia (1997); Review draft regulation on Waste Safety in Panama (1998); Organizers and Lecturers in the Regional Training Course on 'Management of Radioactive Waste from Nuclear Applications' (1999); Assessment of current situation on Waste Safety in Dominican Republic and to review draft regulation on Waste Safety (2000); Lecturer in Regional Training Course on Control of Discharges of Radioactive Materials related with medical and industrial applications (2000). The Cuban Radioactive Waste Management program includes all elements of an integrated system, that means laws and regulations, operating and regulating organization, systems for processing and long term storage of radioactive wastes. In parallel with the operation of these facilities, an R and D program is in progress, covering different aspects of radioactive waste management. The gained practical experience in radioactive decontamination and decommissioning of small facilities is one of the most important achievements of the nuclear programme in Cuba. (author)

  18. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  19. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modiยฌfied in 40 CFR Part 265, Subpart F and Washington Stateโ€™s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  20. Assessment Strategies for Municipal Selective Waste Collection โ€“ Regional Waste Management

    Directory of Open Access Journals (Sweden)

    Agnieszka Boas Berg

    2018-01-01

    Full Text Available Waste disposal in landfill sites causes a potentialhazard for the human health, as they release substantial amounts of gas, odours and pollutants to the environment. There have been vast reductions in the volume of waste being landfilledin many European countries and a reduction in the number of illegal landfills The European Parliamentโ€™s laws obliged the Member States to amend the national waste law; the main objectives of the implemented directives are to create the conditions for the prevention of excessive waste. Directive 2008/98/EC establishes, as a goal for 2020, that waste reuse and recycling reach 50% of the total waste produced. Poland, having joined the European Union, committed itself to implementing many changes related to waste management. The amendment of the law on the maintenance of cleanliness and order in the municipalities imposed new obligations regarding the waste management (WM on the local government and residents. By adopting a municipal waste management system, the selected municipality made all its residents responsible for their waste. However, the fact of introducing changes does not solve the waste problem. The implementation of EU directives and the development of strategic documents such as the National Waste Management Plan (NWMP have made a clear change in the WM approach. One of the changes was the establishment of selective collection of municipal selective waste (MSW, with the issue of collecting the waste by the residents being a priority. This work describes the legal context of selective collection of MSW as one of the most effective means of reducing the amount of waste being landfilled.

  1. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  2. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  3. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  4. Influence of assumptions about household waste composition in waste management LCAs.

    Science.gov (United States)

    Slagstad, Helene; Brattebรธ, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories. Copyright ยฉ 2012 Elsevier Ltd. All rights reserved.

  5. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  7. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  8. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  9. Establishment of database system for management of KAERI wastes

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-07-01

    Radioactive wastes generated by KAERI has various types, nuclides and characteristics. To manage and control these kinds of radioactive wastes, it comes to need systematic management of their records, efficient research and quick statistics. Getting information about radioactive waste generated and stored by KAERI is the basic factor to construct the rapid information system for national cooperation management of radioactive waste. In this study, Radioactive Waste Management Integration System (RAWMIS) was developed. It is is aimed at management of record of radioactive wastes, uplifting the efficiency of management and support WACID(Waste Comprehensive Integration Database System) which is a national radioactive waste integrated safety management system of Korea. The major information of RAWMIS supported by user's requirements is generation, gathering, transfer, treatment, and storage information for solid waste, liquid waste, gas waste and waste related to spent fuel. RAWMIS is composed of database, software (interface between user and database), and software for a manager and it was designed with Client/Server structure. RAWMIS will be a useful tool to analyze radioactive waste management and radiation safety management. Also, this system is developed to share information with associated companies. Moreover, it can be expected to support the technology of research and development for radioactive waste treatment

  10. Waste management regroups units into Rust International

    International Nuclear Information System (INIS)

    Kirschner, E.

    1992-01-01

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees

  11. Optimised management of orphan wastes in the UK

    International Nuclear Information System (INIS)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen; Thied, Rob; Woodcock, Richard; Turner, Tom; Hamblin, Clive; Buckley, Matthew; Walsh, Ciara

    2013-01-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the information gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)

  12. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  13. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  14. Computer-aided waste management strategic planning and analysis

    International Nuclear Information System (INIS)

    Avci, H.I.; Kotek, T.J.; Koebnick, B.L.

    1995-01-01

    A computational model called WASTE-MGMT has been developed to assist in the evaluation of alternative waste management approaches in a complex setting involving multiple sites, waste streams, and processing options. The model provides the quantities and characteristics of wastes processed at any facility or shipped between any two sites as well as environmental emissions at any facility within the waste management system. The model input is defined by three types of fundamental waste management data: (1) waste inventories and characteristics at the point of generation; (2) treatment, storage, and disposal facility characteristics; and (3) definitions of alternative management approaches. The model has been successfully used in the preparation of the US Department of Energy (DOE) Environmental Management Programmatic.Environmental Impact Statement (EM PEIS). Certain improvements are either being implemented or planned that would extend the usefulness and applicability of the WASTE-MGMT model beyond the EM PEIS and info the. strategic planning for management of wastes under the responsibility of DOE or other agencies

  15. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  16. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  17. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  18. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  19. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  20. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  1. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  2. Annual report 1999; Rapport annuel 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report presents the activities of the Cogema group, its reports on management and its financial situation for the year 1999: boards of directors, executive committee and steering committee, main consolidated data, year 1999 highlights, group activities (mining-chemistry, enrichment, reprocessing-recycling and associated transport operations, engineering, services to industry), organization chart of the consolidated Cogema group, financial statements, directory. (J.S.)

  3. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  4. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  5. TMI-2: Unique waste management technology

    International Nuclear Information System (INIS)

    Bixby, W.W.; Young, W.R.; Grant, P.J.

    1987-01-01

    The 1979 accident at TMI-2 severely damaged the reactor core and contaminated more than a million gallons of water. Subsequent activities created another million gallons of water. The damaged reactor core represented a new waste form and cleanup of the contaminated water and system components created other new waste forms requiring creative approaches to waste management. This paper focuses on technologies that were developed specific to fuel waste management, core debris shipping, processing accident generated water, and disposal of the resultant waste forms

  6. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  7. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  8. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    Science.gov (United States)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  9. Solid waste management in Macao: Practices and challenges

    International Nuclear Information System (INIS)

    Jin Jianjun; Wang Zhishi; Ran Shenghong

    2006-01-01

    The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future

  10. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  11. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  12. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  13. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  14. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  15. Waste management '05; Entsorgung '05

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The pocket book comprises two sections. The first part discusses waste management issues in Germany: Refuse-derived fuels, emission trading, domestic waste management market, separate collecting of the biogenic waste fraction, waste management in Canada, the Belgian system Recupel for electric and electronic scrap, contracting and energy efficiency, treatment of organic waste in the EU, industrial safety, Deutsche Bundesstiftung Umwelt (DBU), funding of environmental projects, recycling and utilisation, renewables in new products, quality assurance. Part 2 contains data and figures of the waste management industry: Waste market, data of waste management organisations, waste volumes of the federal states, disposal and recycling, waste wood, water management, members of the BDE and its regional associations, press departments, European associations, authorities, environmental consulting, research institutions, energy agencies, journals. (uke) [German] Das Taschenbuch gliedert sich in 2 Teile. Der 1. Teile eroertert Themen der Entsorgungswirtschaft in Deutschland: Einsatz von Sekundaerbrennstoffen, Emissionshandel, Abfallwirtschaft im Binnenmarkt, Anspruch auf Beibehaltung der getrennten Bioabfall-Erfassung, Abfallwirtschaft und Abfallentsorgung in Kanade, das belgische System Recupelzur Sammlung und Entsorgungvon Elektro- und Electronik-Altgeraeten, Contracting und Energieeffizienz, Behandlung organische Abfaelle in der EU, Arbeitssicherheit, Deutsche Bundesstiftung Umwelt (DBU) Umweltfoerderung, Kreislaufwirtschaft, Recycling von Stoffstroemen und Einsatz nachwachsender Rohstoffe in neuen Produkten, Qualitaetsicherung. Im 2. Teil werden Daten und Zahlen der Entsorgungswirtschaft zusammengetragen: Abfallmarkt, Wirtschaftsdaten der Unternehmen, Abfallmengen in den Bundeslaendern, Entsorgung und Verwertung, Altholz, Wasserwirtschaft, Mitglieder des BDE und seiner Regionalverbaende, Pressestellen, europaeische Fachverbaende, Behoerden

  16. E-waste management in India: A mini-review.

    Science.gov (United States)

    Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui

    2018-05-01

    Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.

  17. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data

  18. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  19. Radiation-protection standards and waste management

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1976-01-01

    This paper reviews some of the difficult questions to be addressed in the development of fundamental environmental criteria and standards for radioactive waste management. A short discussion is included of the need to develop more precise definitions of terminology, better conceptualization of long-term problems, and new concepts to express risks from waste management and to evaluate the ability of proposed technical alternatives to control such risks. EPA's plans to develop fundamental environmental criteria and generally applicable environmental radiation-protection standards for waste disposal are summarized. Finally, the principal projects in EPA's planned near-future programs are reviewed in the areas of high-level waste, transuranic solid waste, low-level waste, residual decommissioning waste, ocean disposal, and wastes containing natural radioactivity

  20. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  1. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  2. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  3. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel

  4. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    Science.gov (United States)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  5. Radioactive wastes. Their industrial management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1982-01-01

    This paper introduces a series that will review the present situation in the field of long-term management of radioactive wastes. Both the meaning and the purposes of an industrial management of radioactive wastes are specified. This short introduction is complemented by outline of data on the French problem [fr

  6. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  7. OCRWM [Office of Civilian Radioactive Waste Management] System Engineering Management Plant (SEMP)

    International Nuclear Information System (INIS)

    1990-02-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM (1) to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, (2) to develop the waste-management system, can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  8. Strategy for management of investigation-derived waste

    International Nuclear Information System (INIS)

    Russell, Laura E.; Hopkins, Gregory G.; Smith, Edward H.; Innis, Pamela S.; Stewart, Robert K.

    1992-01-01

    Large quantities of wastes containing hazardous and/or radiological constituents are being generated as part of the field investigations at the U.S. Department of Energy's Hanford Site in Richland, Washington. A problem exists with the integration of regulations under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, the Resource Conservation and Recovery Act of 1976, the Washington Hazardous Waste Management Act of 1976, and the Washington Administrative Code Waste management criteria under these regulations need to be consolidated into a single, acceptable management approach that can reasonably be applied to the Hanford Site cleanup effort. In response to this need, a Technical Task Team of representatives from the Washington Department of Ecology, U.S. Environmental Protection Agency, U.S. Department of Energy, and Westinghouse Hanford Company was organized. As a result of nearly two years of negotiations the Technical Task Team produced a specific waste management plan which is presented in the paper as the Strategy for Management of Investigation-Derived Waste. The paper outlines the strategy for handling and storing investigation-derived waste within a given operable unit until a waste unit-specific Record of Decision can be issued. To date, the Strategy for Management of Investigation-Derived Waste has not been finalized. However, formal approval by the U.S. Environmental Protection Agency is expected soon and will result in implementation of the management strategy at waste sites in which they have been identified as the lead regulatory agency. Negotiations with the Washington State Department of Ecology are ongoing. At the time of this writing, it is uncertain what the Washington State Department of Ecology's position will be regarding investigation-derived waste. Both the U.S. Environmental Protection Agency and the U.S. Department of Energy believe the Strategy for Management of Investigation-Derived Waste to be

  9. Project Management Unit for decommissioning of NPP Bohunice VI (2003-2014)

    International Nuclear Information System (INIS)

    Gonzalez Fernandez-conde, A.; Brochet, I.; Ferreira, A.

    2015-01-01

    From October 2003 until december 2014 the Consortium consisting of Iberdrola Engineering and Construction (leader). Empresarios Agrupados Internacional, and Indra Sistemas has carried out the project Project Management Unit ((PMU) for the decommissioning of Bohunice V1 NPP (units 1 and 2), type VVER-440/V-230 in Slovakia. during the first phase (2003-2007) EdF was also part of the Consortium. The project is funded by the Bohunice International Decommissioning Support Fund (BIDSF) administered by the RBRD. The main objective of the project is to provide the necessary engineering and resources of project management for planning, execution, management, coordination and monitoring of all tasks in support of the decommissioning. (Author)

  10. Low-level radioactive waste management. Background paper

    International Nuclear Information System (INIS)

    Fawcett, R.

    1993-11-01

    The management of radioactive waste is one of the most serious environmental problems facing Canadians. From the early industrial uses of radioactive material in the 1930s to the development of nuclear power reactors and the medical and experimental use of radioisotopes today, there has been a steady accumulation of waste products. Although the difficulties involved in radioactive waste management are considerable, responsible solutions are possible. This paper will discuss low-level radioactive waste, including its production, the amounts in storage, the rate of waste accumulation and possible strategies for its management. (author). 2 figs

  11. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  12. 1999 Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    This annual report presents information on the main activities carried out by the Nuclear Regulatory Authority (ARN) of Argentina during 1999, on radiation protection and nuclear safety. The work is developed in 9 chapters, 1 summary and 2 appendixes, where a description of the following activities and the bases of the Argentina Regulatory Systems are given: 1. Evolution of the nuclear regulatory activities in Argentina. Organic structures, tasks and budget. 2. Regulatory system, laws, transport of radioactive materials, safety at the management of radioactive wastes, regulatory documents issued. 3. Institutional relations with national and international organizations. 4. Inspection and evaluations of nuclear installations. Safeguards and physical protection. 5. Occupational and environmental surveillance. 6. Radiological emergencies. 7. Scientific and technological activities. Nuclear Regulatory Authority's laboratories. 8. Training, technical information and software development. 9. Radioactive facilities inspections

  13. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  14. 33 CFR 151.57 - Waste management plans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Waste management plans. 151.57... Treaty as it Pertains to Pollution from Ships Garbage Pollution and Sewage ยง 151.57 Waste management... follows the plan. (c) Each waste management plan under paragraph (b) of this section must be in writing...

  15. Guide to radioactive waste management literature

    International Nuclear Information System (INIS)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals

  16. Guide to radioactive waste management literature

    Energy Technology Data Exchange (ETDEWEB)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    1977-10-01

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principally at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.

  17. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE's waste management capabilities

  18. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1993-01-01

    One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  19. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  20. Iowa's forest resources in 2003

    Science.gov (United States)

    Earl C. Leatherberry; Gary J. Brand; Steve Pennington

    2005-01-01

    Reports the initial results of all five annual panels (1999-2003) of the fourth inventory of Iowa`s forest resources, the first annual inventory of the State. Includes information on forest area; volume; biomass; growth, mortality, and removals; and health.