WorldWideScience

Sample records for waste llrw projects

  1. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    Science.gov (United States)

    2007-11-02

    mixed in-drum (as shown in Figure 8-13) by inserting a mixer blade into the drum or by physically tumbling the sealed drum. In-drum mixing is...evaporation (Figure 8-16) can also be used, but the waste must be dried before treatment. A steam-heated dryer is used which measures the correct amount of

  2. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, North Carolina Department of Environment and Natural Resources (DENR).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geology, Bedrock dataset current as of 1998. Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site...

  3. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.A. [Heartland Operation to Protect the Environment, Inc., Auburn, NE (United States)

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.

  4. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1993-09-09

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today`s legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ``Indifference`` decision process in assessing the Beneficial Reuse option relative to the Burial option are described.

  5. Operational waste volume projection

    Energy Technology Data Exchange (ETDEWEB)

    Koreski, G.M.

    1996-09-20

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  6. New York State low-level radioactive waste status report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  7. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  8. New York State Low-Level Radioactive Waste Status Report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Attridge, T.; Rapaport, S.; Yang, Qian

    1993-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

  9. New York State low-level radioactive waste status report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Voelk, H.

    1999-06-01

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  10. Radium/Barium Waste Project

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  11. LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach

    Energy Technology Data Exchange (ETDEWEB)

    Forcella, D.; Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States); Holeman, G.R. [Yale Univ., New Haven, CT (United States)

    1994-12-31

    The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer process is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  14. Basalt Waste Isolation Project Reclamation Support Project:

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory's role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site's altitude and north-facing orientation.

  15. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Kossik, R.; Sharp, G. [Golder Associates, Inc., Redmond, WA (United States); Chau, T. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States)

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repository Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.

  16. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  17. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  18. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  19. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  20. Waste management project technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  1. Tank Waste Remediation System Projects Document Control Plan

    Energy Technology Data Exchange (ETDEWEB)

    Slater, G.D.; Halverson, T.G.

    1994-09-30

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project.

  2. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included. (DC)

  3. One project`s waste is another project`s resource

    Energy Technology Data Exchange (ETDEWEB)

    Short, J.

    1997-02-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on this plan. Summaries of examples are presented in tables.

  4. Site identification presentation: Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included. (DMC)

  5. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  6. A new technology for concentrating and solidifying liquid LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Newell, N. [TMC, Inc., Portland, OR (United States); Osborn, M.W.; Carey, C.C. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-12-31

    One of the unsolved problem areas of low level radioactive waste management is the radiolabeled material generated by life sciences research and clinical diagnostics. In hundreds of academic, biotechnology, and pharmaceutical institutions, there exists large amounts of both aqueous and organic solutions containing radioactively labeled nucleic acids, proteins, peptides, and their monomeric components. We have invented a generic slurry capable of binding all these compounds, thus making it possible to concentrate and solidify the radioactive molecules into a very small and lightweight material. The slurry can be contained in both large and small disposal plastic devices designed for the size of any particular operation. The savings in disposal costs and convenience of this procedure is a very attractive alternative to the present methods of long and short term storage. Additionally, the slurry can remove radiolabeled biological compounds from organic solvents, thus solving the major problem of {open_quotes}mixed{close_quotes} waste. We are now proceeding with the field application stage for the testing of these devices and anticipate widespread use of the process. We also are exploring the use of the slurry on other types of liquid low level radioactive waste.

  7. Odor Control in Spacecraft Waste Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  8. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  9. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  10. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-10-28

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

  11. Highly Efficient Fecal Waste Incinerator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  12. Flowsheets and source terms for radioactive waste projections

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W. (comp.)

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  13. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  14. Demonstration Project of Radioactive Solid Waste Retrieval and Conditioning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The construction goal of the project is to construct a set of special equipments for radioactive solid waste retrieval, sorting, pre-compacting and radioactive measurement, to provide a set of engineering

  15. The contributions of construction material waste to project cost ...

    African Journals Online (AJOL)

    Management, Faculty ... management of materials and waste leads to an increase in the total cost of building ... cost, quality and sustainability, as well as on the success of projects. (Nagapan ..... Moving beyond optimism bias and strategic ...

  16. Technical program plan, Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-19

    The Basalt Waste Isolation Program covers all activities necessary to assess the feasibility and provide the technology needed to design and construct a nuclear waste repository in basalt. The program is divided into the following areas: program management; systems integration; scientific technology; near-surface test facility; and repository studies. The program is discussed in detail.

  17. 77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction

    Science.gov (United States)

    2012-05-01

    ... COMMISSION Low-Level Radioactive Waste Management and Volume Reduction AGENCY: Nuclear Regulatory Commission... Commission) is revising its 1981 Policy Statement on Low-Level Radioactive Waste (LLRW) Volume Reduction..., ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No. ML090410531), and referenced the Policy...

  18. Closed Loop Waste Processing Dryer (DRYER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a gravity-independent pasteurization and hot air drying process suitable for stabilization of ALS wet cabin waste,...

  19. Torrefaction Processing of Human Fecal Waste Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New technology is needed to collect, stabilize, safen, recover useful materials, and store human fecal waste for long duration missions. The current SBIR Phase I...

  20. Closed Loop Waste Processing Dryer (DRYER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a gravity-independent pasteurization and hot air drying process suitable for stabilization of ALS wet cabin waste,...

  1. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  2. Technical summary: Nuclear Waste Vitrification Project

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E.J.; Bjorklund, W.J.; Browne, L.M.; Bryan, G.H.; Holton, L.K.; Irish, E.R.; Siemens, D.H.

    1979-05-01

    Six PWR fuel assemblies, containing 2.3 metric tons uranium from Point Beach, have been processed by a conventional Purex-type process. U and other chemicals were added to the dilute HLLW, and the waste was then vitrified to produce two canisters of glass. The on-stream efficiency of the waste preparation facility exceeded 90% for the first 3 weeks; the overall average was 62%. The only processing difficulty in the vitrification facility was a partial failure in the spray calciner nozzle. The Pu byproduct of waste preparation was purified by ion exchange and calcined to oxide; one can of oxide ruptured due to self-heating. 27 figures, 16 tables. (DLC)

  3. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  4. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  5. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  6. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  7. Reducing construction waste: A study of urban infrastructure projects.

    Science.gov (United States)

    de Magalhães, Ruane Fernandes; Danilevicz, Ângela de Moura Ferreira; Saurin, Tarcisio Abreu

    2017-09-01

    The construction industry is well-known for producing waste detrimental to the environment, and its impacts have increased with the development process of cities. Although there are several studies focused on the environmental impact of residential and commercial buildings, less knowledge is available regarding decreasing construction waste (CW) generation in urban infrastructure projects. This study presents best practices to reduce waste in the said projects, stressing the role of decision-making in the design stage and the effective management of construction processes in public sector. The best practices were identified from literature review, document analysis in 14 projects of urban infrastructure, and both qualitative and quantitative survey with 18 experts (architects and engineers) playing different roles on those projects. The contributions of these research are: (i) the identification of the main building techniques related to the urban design typologies analyzed; (ii) the identification of cause-effect relationships between the design choices and the CW generation diagnosis; (iii) the proposal of a checklist to support the decision-making process, that can be used as a control and evaluation instrument when developing urban infrastructure designs, focused on the construction waste minimization (CWM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Machine coolant waste reduction by optimizing coolant life. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  9. Volatile organic compounds in the unsaturated zone from radioactive wastes

    Science.gov (United States)

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  10. Industrial Program of Waste Management - Cigeo Project - 13033

    Energy Technology Data Exchange (ETDEWEB)

    Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l' energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  11. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

  13. Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

  14. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  15. Vegetative cover for low level radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, S. Keith (USDA Soil Conservation Service, Raleigh, NC (United States))

    1994-06-01

    Low level radioactive waste (LLRW), hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the soil cover cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation down into the waste material. Turf type grasses are normally used as the principal vegetative cover for most sites. Consequently, the sites require periodic mowing and other expensive annual maintenance practices. The purpose of this 5 year study was to evaluate alternative plant material for use on LLRW sites that can be quickly and easily established and economically maintained, retards water infiltration, provides maximum year-round evapotranspiration, is ecologically acceptable and does not harm the closure cap.The results of the study suggest that two species of bamboo (Phyllostachys bissetii and Phyllostachys rubromarginata) could be utilized to quickly establish a long lived, low maintenance, final vegetative cover for the waste sites.

  16. Waste Package Project quarterly report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-11-15

    The following tasks are reported: overview and progress of nuclear waste package project and container design; nuclear waste container design considerations; structural investigation of multi purpose nuclear waste package canister; and design requirements of rock tunnel drift for long-term storage of high-level waste (faulted tunnel model study by photoelasticity/finite element analysis).

  17. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  18. Energy from waste. A guide for local authorities and private sector developers of municipal solid waste combustion and related projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This best practice guide has been prepared for Local Authorities and private sector developers of municipal solid waste combustion and related projects in the United Kingdom. It covers the following topics: the waste management planning framework within the context of European, national and local policy; strategy for waste management and the tendering process; site specific development, including planning, land use and environmental aspects; public consultation and involvement. Best practice guidelines for each of these areas are summarised in a final chapter. Competitive tendering of Local Authority waste disposal contracts is dealt with in the first of two Annexes. An energy from waste case study is presented in the second Annexe. (UK)

  19. From waste to traffic fuel -projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasi, S.; Lehtonen, E.; Aro-Heinilae, E. [and others

    2012-11-01

    The main objective of the project was to promote biogas production and its use as traffic fuel. The aims in the four Finnish and two Estonian case regions were to reduce the amount and improve the sustainable use of waste and sludge, to promote biogas production, to start biogas use as traffic fuel and to provide tools for implementing the aims. The results of this study show that achieving the food waste prevention target will decrease greenhouse gas emissions by 415 000 CO{sub 2}-eq tons and result in monetary savings for the waste generators amounting to almost 300 euro/ capita on average in all case regions in 2020. The results show that waste prevention should be the first priority in waste management and the use of waste materials as feedstock for energy production the second priority. In total 3 TWh energy could be produced from available biomass in the studied case regions. This corresponds to the fuel consumption of about 300 000 passenger cars. When a Geographical Information System (GIS) was used to identify suitable biogas plant site locations with particular respect to the spatial distribution of available biomass, it was found that a total of 50 biogas plants with capacity varying from 2.1 to 14.5 MW could be built in the case regions. This corresponds to 2.2 TWh energy and covers from 5 to 40% of the passenger car fuel consumption in these regions. Using all produced biogas (2.2 TWh energy) for vehicle fuel GHG emissions would lead to a 450 000 t CO{sub 2}-eq reduction. The same effect on emissions would be gained if more than 100 000 passenger cars were to be taken off the roads. On average, the energy consumed by biogas plants represents approximately 20% of the produced energy. The results also show that biomethane production from waste materials is profitable. In some cases the biomethane production costs can be covered with the gained gate fees. The cost of biomethane production from agricultural materials is less than 96 euro/MWh{sub th

  20. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  1. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  2. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  3. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  5. Low-level radioactive waste from commercial nuclear reactors. Volume 4. Proceedings of the workshop on research and development needs for treatment of low-level radioactive waste from commercial nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Godbee, H.W.; Frederick, E.J.; Jolley, R.L.; Kibbey, A.H.; Rodgers, B.R. (comps.)

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. As part of this program, a workshop was conducted for determining research and development needs in LLRW treatment. Volume 4, the proceedings of this workshop, includes the formal presentations and both panel and general discussions dealing with such issues as disposal, compaction, and the ''below regulatory concern'' philosophy. Summaries of individual workshops dealing with specific aspects of LLRW treatment are also presented in this volume.

  6. The Influence of Social Analysis on a Solid Waste Management Project : West Bank and Gaza

    OpenAIRE

    Davis, Deborah

    2001-01-01

    The West Bank and Gaza suffer from severe environmental degradation, including deterioration of groundwater and uncontrolled dumping of solid waste. These problems have been addressed in Gaza with the assistance of bilateral donors, but until the design of the Solid Waste and Environment Management Project (SWEMP) in 2000, they were largely neglected in the West Bank. Solid waste managemen...

  7. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  8. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    BUSSELL, J.H.

    1999-08-02

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

  9. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  10. Basalt Waste Isolation Project. Quarterly report, July 1, 1981-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1981-11-01

    This document reports progress made in the Basalt Waste Isolation Project during the fourth quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems, waste package, site, repository, regulatory and institutional, test facilities, and in-situ test facilities.

  11. Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1981-08-01

    This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

  12. Basalt Waste Isolation Project. Quarterly report, July 1, 1980-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1980-11-01

    This report presents the technical progress for the Basalt Waste Isolation Project for the fourth quarter of fiscal year 1980. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration; geosciences; hydrology; engineered barriers; near-surface test facility; engineering testing; and repository studies. Summaries of major accomplishments for each of these areas are reported.

  13. Solid waste information and tracking system server conversion project management plan

    Energy Technology Data Exchange (ETDEWEB)

    MAY, D.L.

    1999-04-12

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  14. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  15. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  16. Microwave Enhanced Freeze Drying of Solid Waste Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of technology for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. The present state of the art for solid waste stabilization using...

  17. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  18. Competitive and sustainable growth - new European research programmes (projects and actions concerning waste processing and recovery)

    Energy Technology Data Exchange (ETDEWEB)

    Adjemian, A. [European Commission, DG-RTD, Brussels (Belgium)

    2001-07-01

    Eco-efficient processes and design, production with zero waste, life cycle optimization and material recycling characterize the Fifth Framework Program of the European Union's Directorate General for Science, Research and Development. Some new projects under this Program, related to waste prevention and recovery are described. Workshops, conferences, international cooperation, networks, and virtual institutes are discussed to illustrate the process of program development. Major achievements in the field of liquid effluent processing, solid waste incineration, recycling, recovery and reuse of materials from waste, projects undertaken as part of the Forth Framework Program, which are now nearing completion, are also reviewed. 4 tabs.

  19. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

  20. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  1. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  2. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  3. Basalt Waste Isolation Project Reclamation Support Project:. 1991--1992 Report

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1992-06-01

    The Basalt Waste Isolation Project (BWIP) Reclamation Support Project began in the spring of 1988 by categorizing sites distributed during operations of the BWIP into those requiring revegetation and those to be abandoned or transferred to other programs. The Pacific Northwest Laboratory`s role in this project was to develop plans for reestablishing native vegetation on the first category of sites, to monitor the implementation of these plans, to evaluate the effectiveness of these efforts, and to identify remediation methods where necessary. The Reclamation Support Project focused on three major areas: geologic hydrologic boreholes, the Exploratory Shaft Facility (ESF), and the Near-Surface Test Facility (NSTF). A number of BWIP reclamation sites seeded between 1989 and 1990 were found to be far below reclamation objectives. These sites were remediated in 1991 using various seedbed treatments designed to rectify problems with water-holding capacity, herbicide activity, surficial crust formation, and nutrient imbalances. Remediation was conducted during November and early December 1991. Sites were examined on a monthly basis thereafter to evaluate plant growth responses to these treatments. At all remediation sites early plant growth responses to these treatments. At all remediation sites, early plant growth far exceeded any previously obtained using other methods and seedbed treatments. Seeded plants did best where amendments consisted of soil-plus-compost or fertilizer-only. Vegetation growth on Gable Mountain was less than that found on other areas nearby, but this difference is attributed primarily to the site`s altitude and north-facing orientation.

  4. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  5. Foaming in Hanford River Protection Project Waste Treatment Plant LAW Evaporation Processes - FY01 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B.

    2002-07-23

    The LAW evaporation processes currently being designed for the Hanford River Protection Project Waste Treatment Plant are subject to foaming. Experimental simulant studies have been conducted in an effort to achieve an effective antifoam agent suitable to mitigate such foaming.

  6. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  7. The S-curve for forecasting waste generation in construction projects.

    Science.gov (United States)

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool.

  8. The effectiveness of construction waste management and its relationship with project performance

    Science.gov (United States)

    Osman, Nur Najihah; Nawi, Mohd Nasrun Mohd; Osman, Wan Nadzri

    2016-08-01

    The construction industry is one of the contributor toward sustainability of a country's economy. However, there are some issues that need to be faced in this industry that are including construction waste management resulting from the development activities. This issue become more serious when the industrial stakeholders especially in developing countries have lack of awareness in construction waste management practices. Some of industry stakeholders do not realize that proper waste management will increase the project performance. Therefore, waste management practices among industry stakeholders need to be improved towards better environmental quality.

  9. The Department of Energy, Office of Environmental Restoration and Waste Management: Project performance study

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Environmental Restoration and Waste Management (EM) of the US Department of Energy commissioned Independent Project Analysis, Inc. (IPA) to perform this Project Performance Study to provide a quantitative analysis determining how well EM develops and executes environmental remediation and waste management projects. The approach consisted of collecting detailed data on a sample of 65 completed and ongoing EM projects conducted since 1984. These data were then compared with key project characteristics and outcomes from 233 environmental remediation projects (excluding EM) in IPA`s Environmental Remediation Database and 951 projects In IPA`s Capital Projects Database. The study establishes the standing of the EM system relative to other organizations, and suggests areas and opportunities for improvement.

  10. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines

  11. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  12. Basalt waste isolation project. Quarterly report, October 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1981-02-01

    In September 1977, the National Waste Terminal Storage Program was restructured to support investigations of two US DOE sites - Hanford and Nevada. The Basalt Waste Isolation Project within Rockwell Hanford Operations has been chartered with the responsibility of conducting these investigations. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration, geosciences, hydrology, engineered barriers, near-surface test facility, engineering testing, and repository studies. Summaries of major accomplishments for each of these areas are reported in this document.

  13. WARRP Decon-13: Subject Matter Expert (SME) Meeting Waste Screening and Waste Minimization Methodologies Project

    Science.gov (United States)

    2012-08-01

    during Liberty RadEx included cleaning agents (e.g., acids , foams, and strippable coatings), which reduce radiation but do not eliminate it. These...incident location and impacted buildings/areas (e.g., radiation-contaminated asbestos -containing material). Radiological Dispersal Device – Case...contaminated debris, waste volume reduction, treatment of cesium-contaminated waste, and waste storage and disposal. Mr. Erickson expected that

  14. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  15. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  16. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  17. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  18. The role of intergenerational influence in waste education programmes: the THAW project.

    Science.gov (United States)

    Maddox, P; Doran, C; Williams, I D; Kus, M

    2011-12-01

    Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity (www.wastewatch.org.uk), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the "reduce, reuse and recycle message" home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools

  19. Flash Cracking Reactor for Waste Plastic Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, model, build, and test a novel flash cracking reactor to convert plastic waste, and potentially other unconventional hydrocarbon feedstocks,...

  20. Microwave Enhanced Freeze Drying of Solid Waste Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of advanced methods for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. Methods for the recovery of relatively pure water as a...

  1. Solid waste sampling and distribution project. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    The United States Department of Energy (DOE) established a Waste Management Program within the Office of Fossil Energy. A key goal of this program is to ensure that waste management issues do not become obstacles to the commercialization of advanced coal utilization technologies. In achieving this goal, the Waste Management Program identifies various emerging coal utilization technologies and performs comprehensive characterizations of the waste streams and products. The characterizations include engineering assessments to define waste streams of interest/potential concern, field studies to collect samples of the waste, and complete chemical analysis of the collected samples. Energy and Environmental Research Corporation (EER) was selected to perform the site selection and the sampling aspects of five (5) of these facilities. The current EER contract consists of two interrelated efforts: site selection and waste sampling. Detailed sample analysis is being conducted under another DOE contract. The primary objectives of the site selection and sampling effort are listed: (1) Survey sites at which advanced fossil energy combustion technologies are being operated, and identify five sites for sampling. Priority should be given to DOE Clean Coal Technology (CCT) Program Sites. (2) Identify candidate solid waste streams in advanced coal utilization processes likely to present disposal problems and prioritized them for sampling at selected sites. (3) Contact site personnel for site access, sample the streams representatively and document them according to established methodology and known process conditions; and (4) Distribute the samples to DOE`s Morgantown Energy Technology Center or their representatives for analysis and report on the site visit.

  2. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  3. Critical management practices influencing on-site waste minimization in construction projects.

    Science.gov (United States)

    Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A

    2017-01-01

    As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities.

  4. Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant.

  5. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  6. Development plan. High activity-long living wastes project. Abstract; Plan de developpement. Projet HAVL. Resume

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  7. Preliminary safety evaluation for 241-C-106 waste retrieval, project W-320

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.C.

    1994-10-18

    This document presents the Preliminary Safety Evaluation for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). The US DOE has been mandated to develop plans for response to safety issues associated with the waste storage tanks at the Hanford Site, and to report the progress of implementing those plans to Congress. The objectives of Project W-230 are to design, fabricate, develop, test, and operate a new retrieval system capable of removing a minimum of about 75% of the high-heat waste contained in C-106. It is anticipated that sluicing operations can remove enough waste to reduce the remaining radiogenic heat load to levels low enough to resolve the high-heat safety issue as well as allow closure of the tank safety issue.

  8. Waste management of Line Item projects at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zill, D.S. [Oak Ridge National Lab., TN (United States). Waste Management and Remedial Action Div.

    1993-12-31

    With the growing number of companies involved with today`s Line Item projects at the Oak Ridge National Laboratory (ORNL), there are ever increasing problems in the handling of Radioactive Solid Low-Level Waste (SLLW). The most important of these problems is who is going to do what with the waste and when are they going to do it. The who brings to mind training; the what, compliance; and the when, cost. At ORNL, the authors have found that the best way to address the challenges of waste handling where several contractors are involved is through communication, compromise and consistency. Without these elements, opportunities bred from waste handling are likely to bring the project to a halt.

  9. Hydrogeologic analyses in support of the conceptual model for the LANL Area G LLRW performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E.L.; Birdsell, K.; Rogers, D.; Springer, E.; Krier, D.; Turin, H.J.

    1996-04-01

    The Los Alamos National Laboratory low level radioactive waste disposal facility at Area G is currently completing a draft of the site Performance Assessment. Results from previous field studies have estimated a range in recharge rate up to 1 cm/yr. Recent estimates of unsaturated hydraulic conductivity for each stratigraphic layer under a unit gradient assumption show a wide range in recharge rate of 10{sup {minus}4} to 1 cm/yr depending upon location. Numerical computations show that a single net infiltration rate at the mesa surface does not match the moisture profile in each stratigraphic layer simultaneously, suggesting local source or sink terms possibly due to surface connected porous regions. The best fit to field data at deeper stratigraphic layers occurs for a net infiltration of about 0.1 cm/yr. A recent detailed analysis evaluated liquid phase vertical moisture flux, based on moisture profiles in several boreholes and van Genuchten fits to the hydraulic properties for each of the stratigraphic units. Results show a near surface infiltration region averages 8m deep, below which is a dry, low moisture content, and low flux region, where liquid phase recharge averages to zero. Analysis shows this low flux region is dominated by vapor movement. Field data from tritium diffusion studies, from pressure fluctuation attenuation studies, and from comparisons of in-situ and core sample permeabilities indicate that the vapor diffusion is enhanced above that expected in the matrix and is presumably due to enhanced flow through the fractures. Below this dry region within the mesa is a moisture spike which analyses show corresponds to a moisture source. The likely physical explanation is seasonal transient infiltration through surface-connected fractures. This anomalous region is being investigated in current field studies, because it is critical in understanding the moisture flux which continues to deeper regions through the unsaturated zone.

  10. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  11. Basalt Waste Isolation Project technical program evaluation process: A criteria-based method

    Science.gov (United States)

    Babad, H.; Evans, G. C.; Wolfe, B. A.

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP will be further formalized and further applied to the review of BWIP technical activities.

  12. Basalt Waste Isolation Project Technical Program Evaluation Process: a criteria-based method

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Evans, G.C.; Wolfe, B.A.

    1982-01-01

    The need to objectively evaluate the progress being made by the Basalt Waste Isolation Project (BWIP) toward establishing the feasibility of siting a nuclear waste repository in basalt (NWRB) mandates a process for evaluating the technical work of the project. To assist BWIP management in the evaluation process, the Systems Department staff has developed a BWIP Technical Program Evaluation Process (TPEP). The basic process relates progress on project technical work to the SWIP Functional and System Performance Criteria as defined in National Waste Terminal Storage (MWTS) Criteria Documents. The benefits of the TPEP to BWIP and future plans for TPEP are discussed. During fiscal year (FY) 1982, TPEP wll be further formalized and further applied to the review of BWIP technical activities.

  13. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  14. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  15. Staff exchange with Chemical Waste Management. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Barak, D.W.

    1993-12-01

    Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

  16. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  17. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  18. Basalt Waste Isolation Project. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This project is aimed at examining the feasibility and providing the technology to design and construct a radwaste repository in basalt formations beneath and within the Hanford Site. The project is divided into seven areas: systems integration, geosciences, hydrologic studies, engineered barriers, near-surface test facility, engineering testing, and repository engineering. This annual report summarizes key investigations in these seven areas. (DLC)

  19. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  20. Project W-320, waste retrieval sluicing system: BIO/SER implementation matrices

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.

    1998-07-25

    This document provides verification that the safety related commitments specified in HNF-SD-WM-810-001, Addendum 1 for the Waste Retrieval Sluicing System, Project W-320 and Project W-320 Safety Evaluation Report (SER), have been implemented in the project hardware, procedures and administrative controls. Four appendices include matrices which show where the 810 commitments are implemented for limiting conditions of operation and surveillance requirements controls, administrative controls, defense-in-depth controls and controls discussed in 810 Addendum 1. A fifth appendix includes the implementation of Project W-320 SER issues and provisions.

  1. ASPEN computer simulations of the mixed waste treatment project baseline flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Dietsche, L.J.; Upadhye, R.S.; Camp, D.W.; Pendergrass, J.A.; Borduin, L.C.; Thompson, T.K.

    1994-07-05

    The treatment and disposal of mixed waste (i.e., waste containing both hazardous and radioactive components) is a challenging waste- management problem of particular concern to Department of Energy (DOE) sites throughout the United States. Traditional technologies used for destroying hazardous wastes must be re- evaluated for their ability to handle mixed wastes, and, in some cases, new technologies must be developed. The Mixed Waste Treatment Project (MWTP), a collaborative effort between Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, and Pacific Northwest Laboratory (PNL), was established by the DOE`s Waste Operations Program (EM-30) to develop and analyze alternative mixed waste treatment approaches. One of the MWTP`s initiatives, and the objective of this study, was to develop flowsheets for prototype, integrated, mixed-waste treatment facilities that can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modeling. The objectives of the flowsheet simulations are to compare process effectiveness and costs of alternative flowsheets and to determine if commercial process-simulation software could be used on the large, complex process of an integrated mixed waste processing facility. Flowsheet modeling is needed to evaluate many aspects of proposed flowsheet designs. A major advantage of modeling the complete flowsheet is the ability to define the internal recycle streams, thereby making it possible to evaluate the impact of one operation on the whole plant. Many effects that can be seen only in this way. Modeling also can be used to evaluate sensitivity and range of operating conditions, radioactive criticality, and relative costs of different flowsheet designs. Further, the modeled flowsheets must be easily modified so that one can examine how alternative technologies and varying feed streams affect the overall integrated process.

  2. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  3. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  4. The Efficacy of Waste Management Plans in Australian Commercial Construction Refurbishment Projects

    Directory of Open Access Journals (Sweden)

    Mary Hardie

    2012-11-01

    Full Text Available Renovation and refurbishment of the existingcommercial building stock is a growing area oftotal construction activity and a significantgenerator of waste sent to landfill in Australia. Awritten waste management plan (WMP is awidespread regulatory requirement forcommercial office redevelopment projects. Thereis little evidence, however, that WMPs actuallyincrease the quantity of waste that is ultimatelydiverted from landfill. Some reports indicate anabsence of any formal verification or monitoringprocess by regulators to assess the efficacy ofthe plans. In order to gauge the extent of theproblem a survey was conducted of twenty fourconsultants and practitioners involved incommercial office building refurbishment projectsto determine the state of current practice withregard to WMPs and to elicit suggestions withregard to ways of making the process moreeffective. Considerable variation in commitmentto recycling policies was encountered indicatinga need to revisit waste minimisation practices ifthe environmental performance of refurbishmentprojects is to be improved.

  5. Factors Contributing to the Waste Generation in Building Projects of Pakistan

    Directory of Open Access Journals (Sweden)

    Nafees Ahmed Memon

    2016-01-01

    Full Text Available Generation of construction waste is a worldwide issue that concerns not only governments but also the building actors involved in construction industry. For developing countries like Pakistan, rising levels of waste generation, due to the rapid growth of towns and cities have become critical issue. Therefore this study is aimed to detect the factors, which are the main causes of construction waste generation. Questionnaire survey has been conducted to achieve this task and RIW (Relative Importance Weight method has been used to analyze the results of this study. The important factors contributing to the generation of construction as identified in this study are: frequent changes/ revision in design during construction process; poor scheduling; unavailability of storage; poor workmanship; poor layout; inefficient planning and scheduling of resources and lack of coordination among supervision staff deployed at site. Based on the identified factors, the study also has presented some suggestions for the reduction of construction waste in building construction projects of Pakistan.

  6. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  7. The HRA/Solarium Project: Processing of Widely Varying High- and Medium-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M.; Luycx, P.; Gilis, R.; Belgoprocess; Renard, Cl.; Reyniers, H.; Cuchet, J. M.

    2003-02-26

    Starting in 2003, Belgoprocess will proceed with the treatment and conditioning of some 200 m{sup 3} of widely varying high- and medium-level waste from earlier research and development work, to meet standard acceptance criteria for later disposal. The gross volume of primary and secondary packages amounts to 2,600 m{sup 3}. The waste has been kept in decay storage for up to 30 years. The project was started in 1997. Operation of the various processing facilities will take 7-8 years. The overall volume of conditioned waste will be of the order of 800 m{sup 3}. All conditioned waste will be stored in appropriate storage facilities onsite. At present (November, 2002), a new processing facility has been constructed, the functional tests of the equipment have been performed and the startup phase has been started. Several cells of the Pamela vitrification facility onsite will be adapted for the treatment of high-level and highly a-contaminated waste; low-level a/a waste will be treated in the existing facility for super compaction and conditioning by embedding into cement (CILVA). The bulk of these waste, of which 95% are solids, the remainder consisting of mainly solidified liquids, have been produced between 1967 and 1988. They originate from various research programs and reactor operation at the Belgian nuclear energy research centre SCK CEN, isotope production, decontamination and dismantling operations.

  8. River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS, M.G.

    2000-09-22

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

  9. River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS, M.G.

    2000-09-22

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

  10. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  11. Hanford Site organic waste tanks: History, waste properties, and scientific issues. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46{degree}C, far below the 250 to 380{degree}C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103.

  12. The declared barriers of the large developing countries waste management projects: The STAR model.

    Science.gov (United States)

    Bufoni, André Luiz; Oliveira, Luciano Basto; Rosa, Luiz Pinguelli

    2016-06-01

    The aim of this study is to investigate and describe the barriers system that precludes the feasibility, or limits the performance of the waste management projects through the analysis of which are the declared barriers at the 432 large waste management projects registered as CDM during the period 2004-2014. The final product is a waste management barriers conceptual model proposal (STAR), supported by literature and corroborated by projects design documents. This paper uses the computer assisted qualitative content analysis (CAQCA) methodology with the qualitative data analysis (QDA) software NVivo®, by 890 fragments, to investigate the motives to support our conclusions. Results suggest the main barriers classification in five types: sociopolitical, technological, regulatory, financial, and human resources constraints. Results also suggest that beyond the waste management industry, projects have disadvantages added related to the same barriers inherent to others renewable energies initiatives. The STAR model sheds some light over the interactivity and dynamics related to the main constraints of the industry, describing the mutual influences and relationships among each one. Future researches are needed to better and comprehensively understand these relationships and ease the development of tools to alleviate or eliminate them.

  13. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    Energy Technology Data Exchange (ETDEWEB)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  14. Basalt Waste Isolation Project. Quarterly report, July 1, 1979-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1979-10-01

    Progress in various areas of the Basalt Waste Isolation Project during the last quarter is reported. Systems integration, licensing, geologic activities, hydrology, borehole studies, geophysical logging, engineered barriers, test facilities, testing of canisters, and selection process for architect-engineer services for repository conceptual design are discussed. (DC)

  15. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy.

    Science.gov (United States)

    De Clercq, Djavan; Wen, Zongguo; Fan, Fei

    2017-03-15

    The objective of this research was to conduct a performance evaluation of three food waste/biowaste-to-biogas pilot projects across 7 scenarios in China based on multi-criteria decision analysis (MCDA) methodology. The projects ranked included a food waste-biogas project in Beijing, a food waste-biogas project in Suzhou and a co-digestion project producing biomethane in Hainan. The projects were ranked from best to worst based on technical, economic and environmental criteria under the MCDA framework. The results demonstrated that some projects are encountering operational problems. Based on these findings, six national policy recommendations were provided: (1) shift away from capital investment subsidies to performance-based subsidies; (2) re-design feed in tariffs; (3) promote bio-methane and project clustering; (4) improve collection efficiency by incentivizing FW producers to direct waste to biogas projects; (5) incentivize biogas projects to produce multiple outputs; (6) incentivize food waste-based projects to co-digest food waste with other substrates for higher gas output. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Y-12 ARRA Project Listed Waste Determination Old Salvage Yard Project

    Energy Technology Data Exchange (ETDEWEB)

    Milloway, J. D.

    2010-01-21

    The Old Salvage Yard received scrap metal from various plant operations, store liquid hazardous wastes, and de-headed and crushed drums from the early 1950s until October 1999. The acceptance of non-containerized scrap metal for outdoor storage was routine until 1995, when scrap metal received at the site was placed in containers. All scrap metal (containerized and non containerized) stored and handled at the OSY is considered non-classified. There are 5 scrap metal waste piles and approximately 1,100 waste containers, many stacked 2-high within the confines of the OSY.

  17. Low-level radioactive waste from commercial nuclear reactors. Volume 1. Recommendations for technology developments with potential to significantly improve low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, B.R.; Jolley, R.L.

    1986-02-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 1 provides an executive summary and a general introduction to the four-volume set, in addition to recommendations for research and development (R and D) for low-level radioactive waste (LLRW) treatment. Generic, long-range, and/or high-risk programs identified and prioritized as needed R and D in the LLRW field include: (1) systems analysis to develop decision methodology; (2) alternative processes for dismantling, decontaminating, and decommissioning; (3) ion exchange; (4) incinerator technology; (5) disposal technology; (6) demonstration of advanced technologies; (7) technical assistance; (8) below regulatory concern materials; (9) mechanical treatment techniques; (10) monitoring and analysis procedures; (11) radical process improvements; (12) physical, chemical, thermal, and biological processes; (13) fundamental chemistry; (14) interim storage; (15) modeling; and (16) information transfer. The several areas are discussed in detail.

  18. Skills Conversion Project, Chapter 13, Solid Waste Management.

    Science.gov (United States)

    National Society of Professional Engineers, Washington, DC.

    The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…

  19. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  20. Project deliverables - a waste of time or a chance for knowledge transfer and dissemination?

    Science.gov (United States)

    Walter, Sylvia

    2016-04-01

    Deliverables are a common tool to measure a distinct output of a project. They should be meaningful in terms of the project's objectives and are normally constituted by e.g. a written report or document, a developed tool or software, an organized training or conference. They can be scientific or technical. The number of deliverables must be reasonable and commensurate to the project and its content. Deliverables as contractual obligations are often time consuming and often seen as a waste of "research" time, as one more administrative task without any use. However, deliverables are needed to verify the progress of a project and to convince the sponsor that the project is going in the right direction and the money well-invested. The presentation will deal with the question on how to use a deliverable in a profitable way for the project and what are the possibilities of use.

  1. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  2. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  3. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  4. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  5. Quality Assurance Project Plan for waste tank vapor characterization

    Energy Technology Data Exchange (ETDEWEB)

    Suydam, C.D. Jr.

    1993-12-01

    This Quality Assurance Project Plan, WHC-SD-WM-QAPP-013, applies to four separate vapor sampling tasks associated with Phases 1 and 2 of the Tank Vapor Issue Resolution Program and support of the Rotary Mode Core Drilling Portable Exhauster Permit. These tasks focus on employee safety concerns and tank ventilation emission control design requirements. Previous characterization efforts and studies are of insufficient accuracy to adequately define the problem. It is believed that the technology and maturity of sampling and analytical methods can be sufficiently developed to allow the characterization of the constituents of the tank vapor space.

  6. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  7. Product acceptance of a certified Class C low-level waste form at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, P.J. [West Valley Nuclear Services Co., Inc., NY (United States); Maestas, E.; Yeazel, J.A. [Dept. of Energy, West Valley, NY (United States). West Valley Project Office; McIntosh, T.W. [Dept. of Energy, Washington, DC (United States). Office of Remedial Action and Waste Technology

    1989-11-01

    The Department of Energy, is charged with the solidification of high-level liquid waste (HLW) remaining from nuclear fuel reprocessing activities, which were conducted at West Valley, New York between 1966 and 1972. One important aspect of the West Valley Demonstration Project`s fully integrated waste program is the treatment and conditioning of low-level wastes which result from processing liquid high-level waste. The treatment takes place in the project`s Integrated Radwaste Treatment System which removes Cesium-137 from the liquid or supernatant phase of the HLW by utilizing an ion exchange technique. The resulting decontaminated and conditioned liquid waste stream is solidified into a Class C low-level cement waste form that meets the waste form criteria specified in NRC 10 CFR 61. The waste matrix is placed in 71-gallon square drums, remotely handled and stored on site until determination of final disposition. This paper discusses the programs in place at West Valley to ensure production of an acceptable cement-based product. Topics include the short and long term test programs to predict product storage and disposal performance, description of the Process Control Plan utilized to control and maintain cement waste form product specifications and finally discuss the operational performance characteristics of the Integrated Radwaste Treatment System. Operational data and product statistics are provided.

  8. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  9. Performance analysis for waste repositories in the nordic countries. Report for project AFA-1.2

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [VTT Energy (Finland); Broden, K. [Studsvik RadWaste AB (Sweden); Carugati, S.; Brodersen, K. [Forskningscenter Risoe (Denmark); Walderhaug, T. [Icelandic Radiation Protection Institute (Iceland); Helgason, J. [Ekra Geological Consulting (Iceland); Sneve, M.; Hornkjoel, S. [Norwegian Radiation Protection (Norway); Backe, S. [IFE (Norway)

    1997-02-01

    The Nordic Nuclear Safety Research (NKS) project (AFA-1) focused on safety in the final disposal of long-lived low and medium level radioactive waste and its sub project (AFA-1.2), where this report has been produced, is dealing with the performance analysis of the engineered barrier system (near-field) of the repositories for low-and medium level wastes. The topic intentionally excludes the discussion of the characteristics of the geological host medium. Therefore a more generic discussion of the features of performance analysis is possible independent of the fact that different host media are considered in the Nordic countries. The different waste management systems existing and planned in the Nordic countries are shortly described in the report. In the report main emphasis is paid on the general repositories. Some of the phenomena and interactions relevant for a generic type of repository are discussed as well. Among the different approaches for the development of scenarios for safety and performance analyses one particular method - the Rock Engineering System (RES) - was chosen to be demonstratively tested in a brainstorming session, where the possible interactions and their safety significance were discussed employing a simplified and generic Nordic repository system as the reference system. As an overall impression, the AFA-project group concludes that the use of the RES approach is very easy to learn even during a short discussion session. The use of different ways to indicate the safety significance of various interactions in a graphical user interface increases the clarity. Within the project a simple software application was developed employing a generally available spread sheet programme. The developed tool allows an easy opportunity to link the cell specific comments readily available for the `reader` of the obtained results. A short review of the performance analyses carried out in the Nordic countries for actual projects concerning repositories for

  10. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  11. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  14. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  15. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  16. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    Science.gov (United States)

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to

  17. Vitrified hillforts as anthropogenic analogues for nuclear waste glasses - project planning and initiation

    Energy Technology Data Exchange (ETDEWEB)

    Sjoblom, Rolf; Weaver, Jamie L.; Peeler, David K.; Mccloy, John S.; Kruger, Albert A.; Ogenhall, E.; Hjarthner-Jolder, E.

    2016-09-27

    Nuclear waste must be deposited in such a manner that it does not cause significant impact on the environment or human health. In some cases, the integrity of the repositories will need to sustain for tens to hundreds of thousands of years. In order to ensure such containment, nuclear waste is frequently converted into a very durable glass. It is fundamentally difficult, however, to assure the validity of such containment based on short-term tests alone. To date, some anthropogenic and natural volcanic glasses have been investigated for this purpose. However, glasses produced by ancient cultures for the purpose of joining rocks in stonewalls have not yet been utilized in spite of the fact that they might offer significant insight into the long-term durability of glasses in natural environments. Therefore, a project is being initiated with the scope of obtaining samples and characterizing their environment, as well as to investigate them using a suite of advanced materials characterization techniques. It will be analysed how the hillfort glasses may have been prepared, and to what extent they have altered under in-situ conditions. The ultimate goals are to obtain a better understanding of the alteration behaviour of nuclear waste glasses and its compositional dependence, and thus to improve and validate models for nuclear waste glass corrosion. The paper deals with project planning and initiation, and also presents some early findings on fusion of amphibolite and on the process for joining the granite stones in the hillfort walls.

  18. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  19. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  20. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  1. [Methods for health impact assessment of policies for municipal solid waste management: the SESPIR Project].

    Science.gov (United States)

    Parmagnani, Federica; Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Chiusolo, Monica; Cadum, Ennio; Lauriola, Paolo; Forastiere, Francesco

    2014-01-01

    The Project Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants (SESPIR) included five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily) and the National Institute of Health in the period 2010-2013. SESPIR was funded by the Ministry of Health as part of the National centre for diseases prevention and control (CCM) programme of 2010 with the general objective to provide methods and operational tools for the implementation of surveillance systems for waste and health, aimed at assessing the impact of the municipal solid waste (MSW) treatment cycle on the health of the population. The specific objective was to assess health impacts resulting from the presence of disposal facilities related to different regional scenarios of waste management. Suitable tools for analysis of integrated assessment of environmental and health impact were developed and applied, using current demographic, environmental and health data. In this article, the methodology used for the quantitative estimation of the impact on the health of populations living nearby incinerators, landfills and mechanical biological treatment plants is showed, as well as the analysis of three different temporal scenarios: the first related to the existing plants in the period 2008-2009 (baseline), the second based on regional plans, the latter referring to MSW virtuous policy management based on reduction of produced waste and an intense recovery policy.

  2. Waste incineration within the Swedish district heating systems - Sub-Project 4; Avfallsfoerbraenning inom Sveriges fjaerrvaermesystem - Delprojekt 4 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Holmstroem; David

    2012-07-01

    Waste incineration within the Swedish district heating systems is one of the five sub-projects within the project Perspectives on sustainable waste treatment. The goal of this project is to evaluate the economic potential for waste incineration in the Swedish district heating systems. With the current expansion of incineration, we may relatively soon reach an upper limit for what is demanded by the Swedish district heating systems. How much more waste incineration that is economically attractive to build is of great importance for the development of the Swedish waste system, not least for the alternatives to incineration as for example biogas production. With continued rising quantities of waste and stagnant demand for waste incineration from the district heating systems, today's surplus of treatment capacity may change the market picture for other waste treatment options. How much more waste incineration requested and how quickly the market reaches this level is studied in this project.

  3. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, Wolfgang; Herold, Philipp [DBE Technology GmbH, Peine (Germany)

    2015-07-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  4. Low-level radioactive waste from commercial nuclear reactors. Volume 3. Bibliographic abstracts of significant source documents. Part 1. Open-literature abstracts for low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, M.K.; Rodgers, B.R.; Jolley, R.L.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 3 of this series is a collection of abstracts of most of the reference documents used for this study. Because of the large volume of literature, the abstracts have been printed in two separate parts. Volume 3, part 1 presents abstracts of the open literature relating to LLRW treatment methodologies. Some of these references pertain to treatment processes for hazardous wastes that may also be applicable to LLRW management. All abstracts have been limited to 21 lines (for brevity), but each abstract contains sufficient information to enable the reader to determine the potential usefulness of the source document and to locate each article. The abstracts are arranged alphabetically by author or organization, and indexed by keyword.

  5. Low-level radioactive waste from commercial nuclear reactors. Volume 3. Bibliographic abstracts of significant source documents. Part 1. Open-literature abstracts for low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, M.K.; Rodgers, B.R.; Jolley, R.L.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 3 of this series is a collection of abstracts of most of the reference documents used for this study. Because of the large volume of literature, the abstracts have been printed in two separate parts. Volume 3, part 1 presents abstracts of the open literature relating to LLRW treatment methodologies. Some of these references pertain to treatment processes for hazardous wastes that may also be applicable to LLRW management. All abstracts have been limited to 21 lines (for brevity), but each abstract contains sufficient information to enable the reader to determine the potential usefulness of the source document and to locate each article. The abstracts are arranged alphabetically by author or organization, and indexed by keyword.

  6. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  7. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    Energy Technology Data Exchange (ETDEWEB)

    Myers, N.K.

    1997-10-21

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  8. Tank waste remediation system year 2000 dedicated file server project HNF-3418 project plan

    Energy Technology Data Exchange (ETDEWEB)

    SPENCER, S.G.

    1999-04-26

    The Server Project is to ensure that all TWRS supporting hardware (fileservers and workstations) will not cause a system failure because of the BIOS or Operating Systems cannot process Year 2000 dates.

  9. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  10. The mixed waste management facility. Project baseline revision 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  11. Solid Waste Projection Model: Database User`s Guide. Version 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established.

  12. Statement of work for the immobilized high-level waste transportation system, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Mouette, P.

    1998-06-24

    The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

  13. Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1998-03-01

    The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.

  14. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  15. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Jantzen, C.

    2012-02-02

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates

  16. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    Energy Technology Data Exchange (ETDEWEB)

    BOEHNKE, W.M.

    2001-10-16

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site).

  17. [Health impact assessment of policies for municipal solid waste management: findings of the SESPIR Project].

    Science.gov (United States)

    Ranzi, Andrea; Ancona, Carla; Angelini, Paola; Badaloni, Chiara; Cernigliaro, Achille; Chiusolo, Monica; Parmagnani, Federica; Pizzuti, Renato; Scondotto, Salvatore; Cadum, Ennio; Forastiere, Francesco; Lauriola, Paolo

    2014-01-01

    The SESPIR Project (Epidemiological Surveillance of Health Status of Resident Population Around the Waste Treatment Plants) assessed the impact on health of residents nearby incinerators, landfills and mechanical biological treatment plants in five Italian regions (Emilia-Romagna, Piedmont, Lazio, Campania, and Sicily). The assessment procedure took into account the available knowledge on health effects of waste disposal facilities. Analyses were related to three different scenarios: a Baseline scenario, referred to plants active in 2008-2009; the regional future scenario, with plants expected in the waste regional plans; a virtuous scenario (Green 2020), based on a policy management of municipal solid waste (MSW) through the reduction of production and an intense recovery policy. Facing with a total population of around 24 million for the 5 regions, the residents nearby the plants were more than 380,000 people at Baseline. Such a population is reduced to approximately 330.000 inhabitants and 170.000 inhabitants in the regional and Green 2020 scenarios, respectively. The health impact was assessed for the period 2008-2040. At Baseline, 1-2 cases per year of cancer attributable to MSW plants were estimated, as well as 26 cases per year of adverse pregnancy outcomes (including low birth weight and birth defects), 102 persons with respiratory symptoms, and about a thousand affected from annoyance caused by odours. These annual estimates are translated into 2,725 years of life with disability (DALYs) estimated for the entire period. The DALYs are reduced by approximately 20% and 80% in the two future scenarios. Even in these cases, health impact is given by the greater effects on pregnancy and the annoyance associated with the odours of plants. In spite of the limitations due to the inevitable assumptions required by the present exercise, the proposed methodology is suitable for a first approach to assess different policies that can be adopted in regional planning in

  18. Updated projections of radioactive wastes to be generated by the U. S. nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Kee, C.W.; Croft, A.G.; Blomeke, J.O.

    1976-12-01

    Eleven types of radioactive wastes to be generated within the fuel cycle operations of the U.S. nuclear power industry are defined, and projections are presented of their annual generation rates, shipping requirements, and accumulated characteristics over the remainder of this century. The power reactor complex is assumed to consist of uranium- and plutonium-fueled LWRs, HTGRs, and LMFBRs, and the installed nuclear electric capacity of the U.S. is taken as 68.1, 252, and 510 GW at the ends of calendar years 1980, 1990, and 2000, respectively. 72 tables.

  19. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  20. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  1. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  2. Case Study on the Deficiencies and Difficulties of Project Management since the Promotion Stage of Integrated Waste Systems

    Directory of Open Access Journals (Sweden)

    Raluca CUCINSCHI

    2011-06-01

    Full Text Available The present case study focuses on the shortcomings and difficulties encountered in the management of projects in the environment protection area, respectively of integrated waste management systems, observed in similar projects, promoted simultaneously in five counties in Romania, counties located in different development regions. Thus, following a European funding, five counties were selected to receive free consultancy services for the elaboration of the county master in the field of environment protection, respectively waste management. One of the requirements that the counties had to fulfil was the expressed unequivocal willingness to implement the project at county level. A Project Implementation Unit (PIU was set up at county council level with the precise purpose of managing and implementing the project. Even though the counties benefited from free technical assistance, major delays in finalizing and approving the application were encountered in all the cases studied, due to reasons that depended mostly on the manner the project management was conducted.

  3. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D&D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project`s {open_quotes}Waste Minimization/Pollution Prevention Strategic Plan.{close_quotes}

  4. An ultrasonic tool for examining the excavation damaged zone around radioactive waste repositories - The OMNIBUS project

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, W.S. [Applied Seismology Consultants LTD, 10 Belmont, Shropshire, UK-S41 ITE Shrewsbury (United Kingdom); Collins, D.S.; Hildyard, M.W.; Young, R.P. [Department of Earth Sciences, Liverpool University, 4 Brownlow street, UK-0 L69 3GP Liverpool (United Kingdom); Balland, C.; Bigarre, P. [Institut National de l' Environnement Industriel et des risques, INERIS, Parc Technologique ALATA, BP 2, 60550 Verneuil-en-Halatte (France)

    2004-07-01

    This paper describes current results from the OMNIBUS project, a study funded by the EC as part of the fifth framework EURATOM programme. The objective of the project is to develop ultrasonic monitoring tools and associated technologies for investigating the rock barrier in both potential and operational underground nuclear waste repositories. A complete data acquisition tool has been developed and has been successfully tested during an in situ experiment aimed at studying an argillaceous rock layer. The tool includes an integrated hardware and software package specifically designed for monitoring an argillaceous rock mass. Numerical models are being used to provide a sensitivity analysis of ultrasonic wave propagation to variations in stress, crack population and fluid content. Through this approach we aim to improve our understanding of how ultrasonic data can be interpreted in terms of useful engineering rock-mass properties. Data from laboratory and in situ experiments will be used to develop and test the strategy. (authors)

  5. LLRW disposal site selection process. Southeast Compact -- State of North Carolina: A combined technical and public information approach

    Energy Technology Data Exchange (ETDEWEB)

    Snider, F.G.; Amick, D.C.; Khoury, S.G. [Ebasco Services Incorporated, Greensboro, NC (United States); Stowe, C.H.; Guichard, P. [NC Low-Level Radioactive Waste Management Authority, Raleigh, NC (United States)

    1989-11-01

    The State of North Carolina has been designated to host the second commercial low level radioactive waste disposal facility for the Southeast Compact. The North Carolina facility is to be operational on January 1, 1993, concurrent with the closing of the present facility in Barnwell, South Carolina. The NC Low Level Radioactive Waste Management Authority and its contractor, Ebasco Services Incorporated, initiated the site selection process in July of 1988. The present schedule calls for the identification of two or more sites for detailed characterization in the latter half of 1989. The site selection process is following two concurrent and parallel paths. The first is the technical site screening process, which is focusing the search for a suitable site by the systematic application of state and federal laws and regulations regarding exclusion and suitability factors. In a parallel effort, the NCLL Radioactive Waste Management Authority has embarked on an extensive public information program. In addition to newsletters, fact sheets, brochures, video tapes, and news releases, a total of six regional meetings and 26 public forums have been held across the state. A total of 4,764 people attended the forums, 1,241 questions were asked, and 243 public statements were made. The combination of a systematic, defensible technical siting process and the concurrent release of information and numerous statewide public meetings and forums is proving to be an effective strategy for the eventual identification of sites that are both technically suitable and publicly acceptable.

  6. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    Energy Technology Data Exchange (ETDEWEB)

    BOUNINI, L.

    1999-06-17

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  7. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    Energy Technology Data Exchange (ETDEWEB)

    BOUNINI, L.

    1999-05-20

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  8. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    Energy Technology Data Exchange (ETDEWEB)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  9. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  10. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  11. A systems study of the waste management system in Gothenburg. Part of the project: Thermal and biological waste treatment in a systems perspective; Systemstudie Avfall i Goeteborg. Delprojekt i Termisk och biologisk avfallsbehandling i ett systemperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Sundberg, Johan; Haraldsson, Maarten; Norrman Eriksson, Ola

    2010-07-01

    The purpose of the project A system study of waste management in Gothenburg is to evaluate new waste treatment options for municipal and industrial waste from a system perspective. The project has been carried out as a part of the project Thermal and biological waste treatment in a systems perspective - WR21. The focus is set to the waste and district heating system in Gothenburg. The project has been running for 2,5 years with an active group consisting of persons from Renova, Kretsloppskontoret, Goeteborg Energi, Gryaab and Profu. The work on development of models and of methods of handling strategic questions within the field has gone back and forth within the group. This report focuses on presenting the final results from the project, which means that the process in which we've excluded several treatment options and scenarios are only briefly described

  12. Management of the solid waste in perforation projects exploratory hydrocarbons; Manejo de los residuos solidos en proyectos de perforacion exploratoria de hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Miranda, J.P.

    2010-07-01

    This paper describes de considerations for solid waste management in hydrocarbons exploration projects, as the serious environmental affectation as a function of soil contamination by leachate form the temporary storage of contaminated industrial waste hydrocarbons, altered by the presence of deposits landscaping waste materials, pollution of water and vegetation and the production of odors.

  13. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    Science.gov (United States)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  14. West Valley Demonstration Project, Waste Management Area #3 -- Closure Alternative I

    Energy Technology Data Exchange (ETDEWEB)

    Marschke, Stephen F. [Environmental Measurements Laboratory (EML), New York, NY (United States)

    2000-06-30

    The Draft Environmental Impact Statement for the completion of the West Valley Demonstration Project and closure and/or long-term management of facilities at the Western New York Nuclear Service Center divided the site into Waste Management Areas (WMAs), and for each WMA, presented the impacts associated with five potential closure alternatives. This report focuses on WMA 3 (the High-Level Waste (HLW) Storage Area (Tanks 8D-1 and 8D-2), the Vitrification Facility and other facilities) and closure Alternative I (the complete removal of all structures, systems and components and the release of the area for unrestricted use), and reestimates the impacts associated with the complete removal of the HLW tanks, and surrounding facilities. A 32-step approach was developed for the complete removal of Tanks 8D-1 and 8D-2, the Supernatant Treatment System Support Building, and the Transfer Trench. First, a shielded Confinement Structure would be constructed to reduce the shine dose rate and to control radioactivity releases. Similarly, the tank heels would be stabilized to reduce potential radiation exposures. Next, the tank removal methodology would include: 1) excavation of the vault cover soil, 2) removal of the vault roof, 3) cutting off the tank’s top, 4) removal of the stabilized heel remaining inside the tank, 5) cutting up the tank’s walls and floor, 6) removal of the vault’s walls, the perlite blocks, and vault floor, and 7) radiation surveying and backfilling the resulting hole. After the tanks are removed, the Confinement Structure would be decontaminated and dismantled, and the site backfilled and landscaped. The impacts (including waste disposal quantities, emissions, work-effort, radiation exposures, injuries and fatalities, consumable materials used, and costs) were estimated based on this 32 step removal methodology, and added to the previously estimated impacts for closure of the other facilities within WMA 3 to obtain the total impacts from

  15. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  16. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Chirstensen

    2015-03-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1C, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  17. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  18. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  19. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  20. Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?

    Science.gov (United States)

    Biglan, Barbara

    Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…

  1. Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?

    Science.gov (United States)

    Biglan, Barbara

    Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…

  2. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  3. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

  4. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  9. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  10. Solid waste information and tracking system client-server conversion project management plan

    Energy Technology Data Exchange (ETDEWEB)

    May, D.L.

    1998-04-15

    This Project Management Plan is the lead planning document governing the proposed conversion of the Solid Waste Information and Tracking System (SWITS) to a client-server architecture. This plan presents the content specified by American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards for software development, with additional information categories deemed to be necessary to describe the conversion fully. This plan is a living document that will be reviewed on a periodic basis and revised when necessary to reflect changes in baseline design concepts and schedules. This PMP describes the background, planning and management of the SWITS conversion. It does not constitute a statement of product requirements. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents.

  11. HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HAMILTON, D.W.

    2006-01-30

    A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

  12. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    Energy Technology Data Exchange (ETDEWEB)

    Baker, T.L.

    1998-02-25

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

  13. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    Energy Technology Data Exchange (ETDEWEB)

    Baker, T.L.

    1998-02-25

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

  14. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter - 12167

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Jim; Kurasch, David [consultant - USA (United States); Sullivan, Dan; Crandall, Thomas [U.S. Department of Energy (United States)

    2012-07-01

    The Department of Energy (DOE) has determined that the vitrification melter used in the West Valley Demonstration Project can be disposed of as low-level waste (LLW) after completion of a waste-incidental-to-reprocessing evaluation performed in accordance with the evaluation process of DOE Manual 435.1-1, Radioactive Waste Management Manual. The vitrification melter - which consists of a ceramic lined, electrically heated box structure - was operated for more than 5 years melting and fusing high-level waste (HLW) slurry and glass formers and pouring the molten glass into 275 stainless steel canisters. Prior to shutdown, the melter was decontaminated by processing low-activity decontamination flush solutions and by extracting molten glass from the melter cavity. Because it could not be completely emptied, residual radioactivity conservatively estimated at approximately 170 TBq (4,600 Ci) remained in the vitrification melter. To establish whether the melter was incidental to reprocessing, DOE prepared an evaluation to demonstrate that the vitrification melter: (1) had been processed to remove key radionuclides to the maximum extent technically and economically practical; (2) would be managed to meet safety requirements comparable to the performance objectives for LLW established by the Nuclear Regulatory Commission (NRC); and (3) would be managed by DOE in accordance with DOE's requirements for LLW after it had been incorporated in a solid physical form with radionuclide concentrations that do not exceed the NRC concentration limits for Class C LLW. DOE consulted with the NRC on the draft evaluation and gave other stakeholders an opportunity to submit comments before the determination was made. The NRC submitted a request for additional information in connection with staff review of the draft evaluation; DOE provided the additional information and made improvements to the evaluation, which was issued in January 2012. DOE considered the NRC Technical Evaluation

  15. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1995-06-07

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

  16. PROBLEMS OF ENVIRONMENTAL AND ECONOMICAL ASSESSMENT OF INVESTMENT PROJECTS ON PROCESSING WASTES INTO CONSTRUCTION PRODUCTS

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2017-03-01

    Full Text Available Social and economical development, investing activities, and ensuring environmental safety are the main strategic components of sustainable development of the Russian Federation. Considering that any economic activities are related to using natural resources, and environmental impact, the economically and ecologically effective investments in modern competitive resources- and energy-saving, environment-safe industrial and other innovative technologies are the integral conditions of ensuring favorable conditions for life activities, achieving balance of the ecological-economic system of the country However, there is a number of environmental and business factors, which prevent full-scale implementation of modern resource-saving and environmental protection technologies in production, ensuring, on the one hand, achievement of pay-back of investments in the shortest times (economic result in the form of profit, and on the other hand, observation of all environmental, sanitary-and-hygienic, technical norms, demands and rules set forth by the legislation. At the stage of business planning, all the possible future environmental costs and environmental and financial damages caused by the manufacturing activities during implementation and post-implementation periods are not taken into account as a practice of assessment of environmental efficiency and practicality of investment projects. This article covers methodical and scientific methodological approaches to the solution of the given problem within the limits of development of recommendations on environmental and economic assessment of investment projects that would ensure environmental safety and economic efficiency of the investments. Results of own researches in the field, including the developed software for environmental and economic assessment of investment projects in the building industry, in the waste processing into secondary raw materials and products, which allows to analyze efficiency of

  17. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  18. Projection of hospital and clinic health care risk waste generation quantities and treatment capacities for the national waste management strategy implementation project

    CSIR Research Space (South Africa)

    Rogers, DEC

    2006-09-01

    Full Text Available This paper addresses the need for quantitative data for planning health care risk waste (HCRW) management from hospitals and clinics in South Africa. Quantitative estimates of HCRW generation and treatment capacity are determined for hospitals...

  19. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  20. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-02-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date.

  1. High Efficiency, High Output Plastic Melt Waste Compactor (HEHO-PMWC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop processes and waste heat recovery techniques to be incorporated into the existing Plastic Melt Waste Compactor (PMWC) to increase...

  2. A Two-Stage Waste Gasification Reactor for Mars In-Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build, and test a two-stage waste processing reactor for space applications. Our proposed technology converts waste from space missions into...

  3. Basalt Waste Isolation Project. Quarterly report, January 1-March 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Deju, R.A.

    1980-04-01

    This report addresses the technical progress for the Basalt Waste Isolation Project for the second quarter of fiscal year 1980. Seismic design values were developed for preliminary repository design purposes; 0.25 g horizontal and 0.125 g vertical maximum accelerations for surface, zero-period conditions. Preliminary seismic data indicate broad, smooth areas exist in the bedrock surface in the western portion of the Cold Creek syncline and a gently undulating bedrock surface in the eastern portion. Test results indicate hydraulic property values fall within the range previously reported for sedimentary and interflow zones in basalt formations at the Hanford Site. Preliminary results of available hydrochemical data obtained from several borehole sites indicate that little, if any, vertical mixing of groundwaters is taking place across this stratigraphic boundary. Multiple barrier studies indicate that the primary candidate canister/overpack alloys are TiCode-12, Inconel 625, Incoloy 825, and Zircaloy 2. Low-carbon steel and cast iron are among the list of secondary candidate canister alloys. Laboratory tests of borehole plug designs have shown that it is feasible to design a composite plug system that will satisfactorily seal a nuclear waste repository in Columbia River basalt. The National Lead Industries, Inc., NLI-1/2 Universal Spent Fuel Shipping Cask was selected for use in Phase II operations. Creep test results of samples of Umtanum basalt from borehole DC-6 were plotted and show the day-to-day variation in deformation versus time. The concept selection phase of repository conceptual design was completed in March 1980. A test plan for the Exploratory Shaft Test Facility was developed and is scheduled for submittal to the US Department of Energy in May 1980.

  4. The future market for biogas from waste - Sub-Project 3; Framtida marknaden foer biogas fraan avfall - Delprojekt 3 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Holmstroem, David; Bisaillon, Mattias; Eriksson, Ola; Hellstroem, Hanna; Nilsson, Karolina

    2013-09-01

    The overall aim of the project was to study the conditions, opportunities and constraints for the development of the market for biogas from waste in Sweden. Seven areas of importance to the development have been identified in previous projects. The areas are: market and competition, supply and demand for waste, environmental benefits of biogas utilization, technology development, economic value of biogas, political instruments and the handling of digestate. The ambition has been to create a fact and market report for these areas for stake holders such as operators, representatives of authorities and decision makers. The project is a sub-project of 'Perspectives on future waste treatment'. The goal achievement of the project is expected to be good. During the project, there has also been considerable interest in the results, which is already used by a number of operators, both within and outside the project. Thereby, the results have a good spread, even before the project is completed.

  5. 76 FR 62062 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-10-06

    .../epahome/dockets.htm . Docket: All documents in the docket are listed in the http://www.regulations.gov... shipment of TRU waste for disposal at WIPP from any site other than Los Alamos National Laboratories (LANL... waste streams and equipment at LANL) prohibit shipment of TRU waste for disposal at WIPP (from LANL...

  6. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2012-02-24

    ...://www.epa.gov/epahome/dockets.htm . Docket: All documents in the docket are listed in the www... shipment of TRU waste for disposal at WIPP from any site other than Los Alamos National Laboratories (LANL... waste streams and equipment at LANL) prohibit shipment of TRU waste for disposal at WIPP (from LANL...

  7. Risk management in the project of implantation of the repository for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Borssatto, Maria de Fatima B.; Tello, Cledola Cassia O. de; Uemura, George, E-mail: tellocc@cdtn.br, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Project RBMN is part of the Brazilian solution for the storage of radioactive waste generated by the activities of nuclear energy in Brazil. The aim of RBMN is to implement the National Repository to dispose the low and intermediate-level radioactive waste. Risk is a characteristic of all projects, and it is originated from uncertainties, assumptions and the environment of execution of the project. Risk management is the way to monitor systematically these uncertainties and a guaranty that the goals of the project will be attained. A specific methodology for the risk management of the Project RBMN is under development, which integrates models and processes for identification and analysis of risks, reactions, monitoring, control and planning of risk management. This methodology is fundamental and will be of primordial importance for future generations who will be responsible for the operation at final stages, closure and institutional control during the post-closure of the repository. It will provide greater safety to executed processes and safeguarding risks and specific solutions for this enterprise, guaranteeing the safety of the repository in its life cycle, which has a foreseen duration of at least three hundred years. The aim of this paper is to present the preliminary analysis of the opportunities, threats, strong points and weak points identified up to now, that will provide support to implement risk management procedures. The methodology will be based on the PMBOK{sup R} - Project Management Board of Knowledge - and will take into consideration the best practices for project management.(author)

  8. CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, K. D.

    2002-02-25

    This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management

  9. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-08-30

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  11. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  12. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  13. Hydrothermal conditions and resaturation times in underground openings for a nuclear waste repository in the Umtanum flow at the Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Bodvarsson, G.

    1982-07-01

    Numerical simulation techniques have been used to study heat flow and pore fluid migration in the near field of storage tunnels and canister storage holes in a proposed high-level nuclear waste repository in the Umtanum Basalt at the Basalt Waste Isolation Project site at Hanford, Washington. Particular emphasis was placed on evaluating boiling conditions in the host rock. Sensitivity studies were performed to determine the influence of variations in critical site-specific parameters which are not presently accurately known. The results indicate that, even when rather extreme values are assumed for key hydrothermal parameters, the volume of rock dried by boiling of pore fluids is negligible compared to the volume of excavated openings. The time required for saturation of backfilling materials is thus controlled by the volume of the mined excavations. When realistic values for the parameters of the natural and man-made systems are used resaturation is predicted to occur within less than two years after backfilling is placed. The approximations used in the analyses, and their limitations, are discussed in the body of the report. Recommendations are made for additional studies of the thermohydrological behavior of a high-level nuclear waste repository. 31 references, 76 figures, 7 tables.

  14. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  15. Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2000-04-01

    This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls.

  16. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  17. Hazardous Material / Waste Site Assessment: US 701 Bridge Replacement Project Over the Great Pee Dee River, Pee Dee River Overflow, and Lake Yauhannah Horry & Georgetown Counties, South Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This record is an unpublished report evaluating the hazardous material / waste management impacts of a future bridge replacement project on highway 701 at Yauhannah...

  18. 2002 Report to Congress: Evaluating the Consensus Best Practices Developed through the Howard Hughes Medical Institute’s Collaborative Hazardous Waste Management Demonstration Project

    Science.gov (United States)

    This report discusses a collaborative project initiated by the Howard Hughes Medical Institute (HHMI) to establish and evaluate a performance-based approach to management of hazardous wastes in the laboratories of academic research institutions.

  19. 75 FR 54631 - Proposed Approval of the Central Characterization Project's Transuranic Waste Characterization...

    Science.gov (United States)

    2010-09-08

    .../epahome/dockets.htm . Docket: All documents in the docket are listed in the http://www.regulations.gov... (LANL) until the EPA determines that the site has established and executed a quality assurance program... specific, limited waste streams and equipment at LANL) prohibit shipment of TRU waste for disposal at...

  20. Anaerobic co-digestion of food waste and septage – A waste to energy project in Nashik city

    Directory of Open Access Journals (Sweden)

    Meghanath Prabhu

    2015-04-01

    Full Text Available The samples for food waste (FW and septage were collected from six localities of Nashik city. Physical and chemical characterizations of the wastes were carried out. A Biomethanation potential (BMP assay was developed to determine the ultimate biodegradability and associated methane yield during the anaerobic methanogenic fermentation of organic substrates. BMP assays of individual substrate, FW and septage were carried out by taking into account the volatile solids/total solids (VS/TS ratio of each while keeping the inoculum’s VS constant. BMP of FW and septage mixture was carried out in different ratios (1:1, 1.5:1, 2:1, 1:1.5 and 1:2 to find the optimum mixing ratio for maximum biogas production. The average methane yield for different locality FW was found to be 503±17.6 ml/g VS and for septage it was 56 ±10.8 ml/g VS. Based on the above results, the total biogas yield and total methane yield for 10 tons of FW would be 2178 m3/d and 1306 m3/d respectively. The total biogas yield and total methane yield for 20 m3 of septage would be 65m3/d and 39m3/d respectively. From our co-digestion studies we also conclude that the mixture of FW to septage at 1:2 ratio gives 2896 m3/day of biogas. The role of septage is to provide essential trace elements that are required for methanogens.

  1. Elk and deer studies related to the Basalt Waste Isolation Project

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L.E.; McCorquodale, S.M.; Sargeant, G.A.

    1989-03-01

    A study of elk (Cervus elaphus) and deer (Odocoileus hemionus) was conducted in the vicinity of planned site characterization activities for the Basalt Waste Isolation Project (BWIP). Both species are known to be sensitive to disturbance and are considered important species because they are recreationally and/or commercially valuable. The principal objectives of the study were to (1) estimate pre-activity (site characterization) recruitment of deer and elk, (2) characterize deer and elk use of limited habitats critical to their survival (e.g., riparian areas), (3) describe preferential habitat use by deer and elk during critical seasons (i.e., winter and summer), and (4) document pre-activity distributions of seasonal home range centers of deer and elk. Early termination of BWIP prevented some of the objectives from being fully addressed. Fifteen adult elk (11 females and 4 males) and 19 female deer equipped with radio transmitters were studied on the Arid Lands Ecology (ALE) Reserve from February through December 1987. More than 1800 relocations of the marked elk and deer were made during aerial and ground tracking sessions. Deer confined their activities to within 2 km of water sources. In contrast, elk used 6-12 times the average area used by deer. As with deer, female elk were closely associated with available water sources during the summer and fall, presumably because of the physiological demands of lactation. However, during the winter, female elk showed no preference for areas near water, as did male elk throughout the study. Riparian areas, which are scarce on the arid Hanford Site, are particularly valuable habitat to both elk and deer because they provide drinking water and succulent forage during the dry summer and early fall months.

  2. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  3. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    Energy Technology Data Exchange (ETDEWEB)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  4. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  5. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    Energy Technology Data Exchange (ETDEWEB)

    Batandjieva, B.; Metcalf, P.

    2003-02-25

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years.

  6. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  7. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  8. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is...

  9. A Detailed Assessment for the Potential use of Waste Hydrogen Gas at Stennis Space Center Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this study was to identify and estimate the cost of one or more approaches of utilizing waste hydrogen for power generation. To simplify the scope...

  10. High Efficiency, High Output Plastic Melt Waste Compactor (HEHO-PMWC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative High Efficiency, High Output Plastic Melt Waste Compactor (HEHO-PMWC) is a trash dewatering and volume reduction system that uses heat melt compaction...

  11. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  12. Conformable Thermoelectric Device for Waste Heat Scavenging in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions stand to benefit from reliable means to conserve energy that is otherwise given off as waste heat. Thermoelectric generators have...

  13. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  14. Catalytic Decomposition of Gaseous Byproducts from Heat Melt Waste Compaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, a Heat Melt Compaction System is under...

  15. Catalytic Decomposition of Gaseous Byproducts from Heat Melt Waste Compaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Several solid waste management systems currently under development result in the production of gas-phase organic contaminants which, due to the periodic and...

  16. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Lee

    2006-02-06

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  17. Projected costs for mined geologic repositories for dispoal of commercial nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, J.D.; Dippold, D.G.; McSweeney, T.I.

    1982-12-01

    This documen reports cost estimates for: (1) the exploration and development activities preceding the final design of terminal isolation facilities for disposal of commercial high-level waste; and (2) the design, construction, operation, and decommissioning of such facilities. Exploration and evelopment costs also include a separate cost category for related programs such as subseabed research, activities of the Transportation Technology Center, and waste disposal impact mitigation activities.

  18. Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, J.J.; Scott, C.B.

    2000-03-01

    A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

  19. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  20. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    Science.gov (United States)

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities. PMID:21573032

  1. Low-impact sampling under an active solid low-level radioactive waste disposal unit using horizontal drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, C.V.; Vold, E.L.

    1995-12-01

    The purpose of this project was to determine the performance of the solid low-level radioactive waste (LLRW) disposal units located on a mesa top at TA-54, Area G, Los Alamos National Laboratory (LANL), Los Alamos, NM, and to provide in-situ (vadose zone) site characterization information to Area G`s Performance Assessment. The vadose zone beneath an active disposal unit (DU 37), was accessed by utilizing low-impact, air-rotary horizontal drilling technology. Core samples were pulled, via wire-line core method, in 3 horizontal holes fanning out below DU 37 at approximately 5 foot intervals depending on recovery percentage. Samples were surveyed and prepared in-field following Environmental Restoration (ER) guidelines. Samples were transferred from the field to the CST-9 Radvan for initial radiological screening. Following screening, samples were delivered to CST-3 analytical lab for analyses including moisture content, 23 inorganics, 60 volatile organic compounds (VOC`s), 68 semivolatile organic compounds (SVOC`s), tritium, lead 210, radium 226 & 228, cesium 137, isotopic plutonium, americium 241, strontium 90, isotopic uranium, and isotopic thorium. Other analyses included matric potential, alpha spectroscopy, gamma spectroscopy, and gross alpha/beta. The overall results of the analysis identified only tritium as having migrated from the DU. Am-241, Eu-152, and Pu-238 were possibly identified above background but the results are not definitive. Of all organics analysed for, only ethyl acetate was tentatively identified slightly above background. All inorganics were found to be well below regulatory limits. Based on the results of the above mentioned analyses, it was determined that Area G`s disposal units are performing well and no significant liquid phase migration of contaminants has occurred.

  2. Schedule Control in the Management of Waste Heat Power Projects%余热电站项目管理中的进度控制

    Institute of Scientific and Technical Information of China (English)

    曹良金

    2016-01-01

    The differences in construction and management of waste heat power projects and conventional thermal power projects are compared. Schedule management and control points in the management of waste heat power projects are mainly analyzed and summarized.%比较了余热电站与常规火力发电项目建设与管理的不同之处,着重就余热电站项目管理中进度管理及控制要点做了分析与总结。

  3. 城市垃圾资源化工程实例分析%Analysis on the Municipal Solid Waste Resource Project

    Institute of Scientific and Technical Information of China (English)

    陈宏伟

    2012-01-01

    目前国内城市垃圾处理大多采用卫生填埋,真正实现城市垃圾资源化的寥寥无几,造成资源的浪费.而且个别城市垃圾资源化处理厂建成后,由于垃圾分选技术关键设备没能解决,导致不能正常运行,造成投资浪费.工程采用分选、厌氧发酵、复合肥制造、沼气发电综合处理系统处理城市垃圾,并较好地解决了垃圾分选技术与设备,实现了垃圾资源化,为城市垃圾实现“减量化、资源化、无害化”以借鉴.%In our country, sanitary landfill was mostly applied in municipal solid waste treatment. However, little municipal solid waste resource project was realized, leading to a great waste of material. What is worse, because the key technical equipments for waste sorting have not been set up, some municipal solid waste resource plants could not run smoothly after being built, resulting in a waste of investment. Sorting system, anaerobic fermentation, compound fertilizer making, and marsh gas power generation were introduced into this project for the treatment of municipal solid waste. This project solved the problem exiting in waste sorting equipment and technique, which made waste resource come true, and provide a good example for quantitative reduction, resource, and harmless disposal of municipal solid waste.

  4. Environmental impact statements: Nuclear industry waste disposal and isotope separation projects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports discuss environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  6. Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.C.

    1994-11-15

    The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

  7. Imports of waste fuels for energy recovery in Sweden - Sub-Project 1; Import av avfall till energiutvinning i Sverige - Delprojekt 1 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Sahlin, Jenny; Holmstroem, David; Bisaillon, Mattias

    2013-09-01

    Swedish imports of waste fuels may increase to 1.5 million tonnes by 2015, when new waste-fuelled combined heat and power plants are in operation; and to 2.5 million tonnes by 2020, if all planned capacity is built. This is the case if national targets for increased material recycling and biological treatment are reached; which means that smaller amounts of mixed waste remains for incineration. When the import of the waste fuel into Sweden has increased, also need of knowledge has increased, as well as the concerns and fears. The aim of the project 'Imports of waste to energy recovery in Sweden', therefore, is to create an improved basis for decisions and communications concerning the import of waste fuel, as well as to study its conditions, opportunities and obstacles. The target group is interested operators, representatives of public authorities and decision-makers. Data includes analysis of future imported quantities, possible import markets, policy instruments and its effects, concerns and fears, economic aspects and effects on climate change while importing the waste fuel. The project is one of five sub-projects in 'Perspectives on the future waste treatment'. The project has been carried out through data collection, computer modelling, interviews as well as discussion and analysis in the working and reference groups. The goal is estimated to having been reached, the results are already used. From media, there is an interest of the results, and the project has already been referred to and presented at conferences. The results are thus already well-spread.

  8. The consequences of disposal of low-level radioactive waste from the Fernald Environmental Management Project: Report of the DOE/Nevada Independent Panel

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Hansen, W.; Waters, R.; Sully, M.; Levitt, D.

    1998-04-01

    The Department of Energy (DOE) convened a panel of independent scientists to assess the performance impact of shallow burial of low-level radioactive waste from the Fernald Environmental Management Project, in light of a transportation incident in December 1997 involving this waste stream. The Fernald waste has been transported to the Nevada Test Site and disposed in the Area 5 Radioactive Waste Management Site (RWMS) since 1993. A separate DOE investigation of the incident established that the waste has been buried in stress-fractured metal boxes, and some of the waste contained excess moisture (high-volumetric water contents). The Independent Panel was charged with determining whether disposition of this waste in the Area 5 RWMS has impacted the conclusions of a previously completed performance assessment in which the site was judged to meet required performance objectives. To assess the performance impact on Area 5, the panel members developed a series of questions. The three areas addressed in these questions were (1) reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) excess moisture in the waste. The panel has concluded that there is no performance impact from reduced container integrity--no performance is allocated to the container in the conservative assumptions used in performance assessment. Similarly, the process controlling post-closure subsidence results primarily from void space within and between containers, and the container is assumed to degrade and collapse within 100 years.

  9. Chemi-microbial processing of waste tire rubber: A project overview

    Energy Technology Data Exchange (ETDEWEB)

    Romine, R.A.; Snowden-Swan, L.

    1993-12-01

    PNL is developing a method to use thiophillic microorganisms to devulcanize (biodesulfurize) the surface of ground rubber particles, which will improve the bonding and adhesion of the ground tire rubber into the virgin tire rubber matrix. The Chemi-microbial processing approach, introduced in this paper, is targeted at alleviating the waste tire problem in an environmentally conscious manner; it may also be applied to improve asphaltic materials and rubber and polymeric wastes to facilite their recycling. This paper outlines the logic and technical methods that will be used.

  10. Interim safety equipment list for 241-C-106 waste retrieval, project W-320

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.C.

    1996-01-25

    The purpose of this supporting document is to provide safety classifications for systems, structures, and components of the Tank 241-C-106 Waste Retrieval Sluicing System (WRSS) and to document the methodology used to develop these safety classifications. The WRSS requires two transfer lines, one to carry sluiced waste slurry to tank 241-AY-102 and the other to return supernatant to tank 241-C-106; pumps in each tank; sluicers to direct the supernatant stream inside tank 241-C-106; a slurry distributor in tank 241-AY-102; heating, ventilation, and air conditioning for tank 241-C-106; and instrumentation and control devices.

  11. Municipal Waste-to-Energy plants in Poland – current projects

    Directory of Open Access Journals (Sweden)

    Cyranka Maciej

    2016-01-01

    Conclusions show why in the current situation development of Polish WtE infrastructure is right, i.e. operation of aforementioned plants that will ensure benefits associated with energy production, reduction of landfilling and informing public opinion regarding modern waste management models. Additionally, the article draws attention on the high responsibility that will be put on WtE plants operators and that experience gained during WtE implementation can be used to improve even further for future Polish Waste Management Systems.

  12. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  13. Requirements Verification Report AN Farm to 200E Waste Transfer System for Project W-314 Tank Farm Restoration and Safe Operations

    Energy Technology Data Exchange (ETDEWEB)

    MCGREW, D.L.

    1999-09-28

    This Requirements Verification Report (RVR) for Project W-314 ''AN Farm to 200E Waste Transfer System'' package provides documented verification of design compliance to all the applicable Project Development Specification (PDS) requirements. Additional PDS requirements verification will be performed during the project's procurement, construction, and testing phases, and the RVR will be updated to reflect this information as appropriate.

  14. Progress on Radioactive Waste Treatment Facilities Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In 2011, five projects were undertaken by radioactive waste projects management department, which are "Cold Commissioning of the Pilot Project on Radioactive Waste Retrieval and Conditioning (abbreviation 'Pilot Project')", "Radioactive Ventilation Project Construction (abbreviation 'Ventilation

  15. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    Science.gov (United States)

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  17. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  18. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  19. DOE Waste Package Project. Quarterly progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1995-05-01

    Research progress is reported on the design of containers for high-level radioactive wastes to be emplaced at the Yucca Mountain underground repository. Tasks included: temperature distribution and heat flow around the containers; failure possibility due to mechanical stresses and pitting corrosion; robotic manipulation of the containers; and design requirements of rock tunnel drift for long term storage.

  20. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-06-08

    ... Center homepage at http://www.epa.gov/epahome/dockets.htm . Docket: All documents in the docket are... site other than the Los Alamos National Laboratories (LANL) until the EPA determines that the site has... CFR Part 194); and (2) (with the exception of specific, limited waste streams and equipment at...

  1. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  2. Urban Waste Conversion Systems. IGT Project 61030 final report, October 1, 1978-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, D.S.; Daniels, E.J.; Novil, M.

    1980-02-01

    The purpose of this study was to assess the market potential of the various systems available, or under development, for converting urban wastes into synthetic gas or liquids. The primary data base for this assessment is a survey which IGT has sent out to experts in this field. The experts were asked to evaluate various conversion systems by assigning point totals to an evaluation matrix. They were also asked to summarize their work in urban waste conversion, to list critical paths which represent obstacles to be surmounted by R and D, and to assess the effect of those obstacles on the market potential of that process. Critical areas for R and D work focus on materials handling and separation techniques, and protection of equipment from abrasive, caustic, or corrosive chemicals in the wastes. Also, prohibitive capital and operating costs in some existing systems must be cited, since investor confidence is eroded by evidence of such experiences. Downtime has been excessive with many systems, stemming from feed problems brought on by the heterogeneous nature of the feedstock. Systems using homogeneous feeds have shown considerably less problems. Perhaps a critical area from a social impact point of view is, can garbage separation be instituted for the home, factory, etc. If so, the chances for waste converison systems to overcome technical problems on the front end are greatly improved, and so is the potential for market penetration.

  3. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  4. A simplified model for biomedical waste management in dental practices - A pilot project at Thane, India

    Directory of Open Access Journals (Sweden)

    Om N Baghele

    2013-01-01

    Full Text Available A lot of biomedical waste (BMW is generated in dental practices, which can be hazardous to the environment as well as to those who come in contact with the materials, if not dealt with appropriately. Most of the rules world-wide are not specific for dental BMW management and hinder easy understanding by dental practitioners. Because of lack of clear-cut guidelines either from Dental Council of India or Government of India or Indian Dental Association (IDA on disposal of dental wastes, this article is designed to explore and review on these issues and formulate a simplified scheme. The guidelines by the Maharashtra Pollution Control Board from the directives of The Ministry of Environment and Forests, Government of India through BMW (Management and Handling Rules, 1998, (BMW-MH-98, similar guidelines being followed elsewhere in the world, the local BMW disposal company′s rules and the IDA′s Clinic Standardization Program guidelines. We developed and implemented a simplified waste segregation protocol for practicing dentists and dental hospitals. A methodological dental waste segregation protocol was required considering its disposal and ill-effects on health and the environment. The simplified scheme provided a good model to be followed in developing countries like India. The scheme improved understanding among dentists because of its self-explanatory nature.

  5. Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project

    Science.gov (United States)

    Caraccio, Anne

    2015-01-01

    As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.

  6. Statement of work for the immobilized low-activity waste transportation system -- Project W-465

    Energy Technology Data Exchange (ETDEWEB)

    Mouette, P.

    1998-06-19

    The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized Low-Activity Waste (ILAW).

  7. Urban Solid Wastes management project in Granada (Spain); Plan director de gestion de residuos solidos urbanos de la provincia de Granada

    Energy Technology Data Exchange (ETDEWEB)

    Beas Torroba, J.; Gallardo Garcia, V.; Alcain Martinez, G.

    1996-12-31

    Granada is characterized by the following features: The urban nucleus are very extended, the town hall has very few economical resources, the orography is steep, the water-bearings are vulnerable to be polluted by the underground water and about 40% of its surface is occupied by soils, that must be protected. The Urban Solid Waste Management has become their main objective and they have created the Urban Solid Waste Management Leading Project, initiative that was confirmed 5th November 1985. (Author)

  8. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  9. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  10. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    Science.gov (United States)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  11. Status of the North Carolina/Southeast Compact low-level radioactive waste disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.K. [North Carolina Low-Level Radioactive Waste Management Authority, NC (United States)

    1993-03-01

    The Southeast Compact is a sited region for low-level radioactive waste because of the current facility at Barnwell, South Carolina. North Carolina has been designated as the next host state for the compact, and the North Carolina Low-Level Radioactive Waste Management Authority is the agency charged with developing the new facility. Chem-Nuclear Systems, Inc., has been selected by the Authority as its primary site development and operations contractor. This paper will describe the progress currently being made toward the successful opening of the facility in January 1996. The areas to be addressed include site characterization, performance assessment, facility design, public outreach, litigation, finances, and the continued operation of the Barnwell facility.

  12. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL`s Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from {approximately}20 dps for {sup 241}Am to approximately 10 times that value for {sup 239}Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies {ge}100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms.

  13. Application of Updated Construction and Demolition Waste Reduction Policy to Army Projects

    Science.gov (United States)

    2015-12-01

    Demolition Waste Management and Reporting Guidance.” Funding was provided by customer order num- ber 10408882, dated 16 September 2013. The Technical...Reduction of Lead in Drinking Water Act SDD Sustainable Design and Development SSPP Strategic Sustainability Performance Plan SRM Sustainment...method. Include a discussion of “ar- chitectural deconstruction” (or “ soft stripping”) as an approach to salvaging materials and components for

  14. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  15. U.S. Army Corps of Engineers Waste Experiences: More Than You May Think

    Energy Technology Data Exchange (ETDEWEB)

    Hays, D. C.; Honerlah, H. B.

    2003-02-24

    U.S. Army Corps of Engineers (USACE) works with other federal, and state agencies through several different programs on numerous Hazardous, Toxic, and Radioactive Waste (HTRW) sites. Formerly Utilized Sites Remediation Program (FUSRAP), Formerly Used Defense Sites (FUDS), EPA Superfund, Installation Restoration, Army Deactivated Nuclear Reactor Program, and many other programs present hazardous, radioactive, and mixed waste issues. While the USACE has a reputation of excellent dirt movers, little is discussed of our other waste management experiences. This paper discusses some of the challenges facing the Health Physics (HP) staff of the USACE. The HP staff is currently organized as one team, the Radiation Safety Support Team (RSST), comprised of 15 individuals at 6 locations across the country. With typical RSST missions including HP consultation to USACE activities world wide, many waste challenges arise. These challenges have involved radioactive wastes of all classifications and stability. Sealed and unsealed sources; instruments and dials; contaminated earth and debris; liquids; lab, reactor, and medical wastes are all successfully managed by the USACE. USACE also develops, evaluates, and utilizes waste treatment Types of radioactive waste at HTRW sites include: Low Level Radioactive Wastes (LLRW) (class A, B, C, and greater than C), 11e.(2), Transuranic (TRU), Mixed, and Naturally Occurring (NORM/TENORM).

  16. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  17. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Deffenbaugh, M.L.

    1998-05-28

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

  18. Solid Waste Information and Tracking System Client Server Conversion Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    GLASSCOCK, J.A.

    2000-02-10

    The Project Management Plan governing the conversion of SWITS to a client-server architecture. The PMP describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion

  19. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    Energy Technology Data Exchange (ETDEWEB)

    Deffenbaugh, M.L.

    1998-05-28

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

  20. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  1. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  2. Reflecting socio-technical combinations in radioactive waste management. Results from the InSOTEC European research project

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach-Herbert, Beate [Oeko-Institut e.V., Darmstadt (Germany); Bergmans, Anne [Antwerp Univ. (Belgium); Martell, Meritxell [Merience Strategic Thinking, Olerdola (Spain); Schroeder, Jantine [Antwerp Univ. (Belgium); SCK - CEN, Mol (Belgium)

    2015-07-01

    InSOTEC is a three-year collaborative social sciences research project funded under the European Atomic Energy Community's 7th Framework Programme FP7. The project aims to generate a better understanding of the complex interplay between the technical and the social in the context of geological disposal of radioactive waste. In doing so, InSOTEC has moved beyond the social and technical division that is frequently being found in this context by - investigating the consideration of social sciences and the recognition of socio-technical combinations in research programs on geological disposal, - analyzing the socio-technical entanglement in selected contexts like siting, reversibility and retrievability, demonstrating safety and technology transfer on the basis of case studies, and - exploring the integration of diverse stakeholders in technology oriented networks. The analyses reveal that activities in the context of geological disposal, whether related to research, planning, siting etc., rather support the divide of social and technical aspects than fostering the consideration of their entanglement. Reasons identified for this are manifold. The wish to reduce complexity by focusing stakeholder involvement on social questions and fixing the technical part ''when acceptance is reached'' is only one of them. However, the analyses also show that over the long timescales of repository planning and implementation, robust management strategies must provide the flexibility to adapt to both technical and social developments and demands. Understanding the socio-technical interplay and creating structures for its consideration provides the basis for dealing with this challenge. This presentation will focus on the main findings of the InSOTEC project with regard to the consideration of socio-technical combinations in practice. These insights are currently under development and will be finalized at the end of the project in June 2014. We will reflect on

  3. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-01-01

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  4. Six month progress report on the Waste Package Project at the University of Nevada, Las Vegas, July 1991--January 1992: Management, quality assurance and overview

    Energy Technology Data Exchange (ETDEWEB)

    Ladkany, S.G.

    1991-12-31

    The progress of the waste package project at the University of Nevada, Las Vegas was the subject of this report. It covered aspects of management and quality assurance, container design, application of ASME Pressure Vessel Codes, structural analysis of containers, design of rock tunnels for storage, and heat transfer phenomena. (MB)

  5. 餐厨垃圾资源化处理CDM项目开发分析%CDM Project Development for Food Waste Recycle Treatment

    Institute of Scientific and Technical Information of China (English)

    闫军才; 刘谨; 钟勇; 郭军洋; 魏成金; 张艳秋

    2012-01-01

    分析了我国餐厨垃圾处理现状,以兰州市餐厨垃圾资源化处理项目为典型案例,通过研究EB批准的适合餐厨垃圾进行CDM项目开发的小项目方法学AMS-Ⅲ.AO.,进行CDM项目开发的可行性分析,得出类似兰州餐厨垃圾资源化处理可用此方法学进行碳减排资金申报.%The present situation of food waste treatment in China was analyzed. Taking the food waste recycle treatment project in Lanzhou for instance, studying the small methodology AMS-M.AO. Approved by EB for clean development mechanism (CDM) project development of food waste treatment, the feasibility analysis of CDM project development was carried out. It obtained that the similar projects of food waste recycle treatment can use this method for fund declaration of carbon emission reduction.

  6. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: D4 Project/Reactor ISS Closure Projects Field Remediation Project Waste Operations Project End State and Final Closure Project Mission/General Support, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Project Integration

    2005-09-26

    The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.

  7. Acquisition Strategy for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This document describes the design-build acquisition strategy that will be applied to the Remote Handled LLW Disposal Project. The design-build delivery method will be tailored, as appropriate, to integrate the requirements of Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' with the DOE budget formulation process and the safety requirements of DOE-STD-1189, 'Integration of Safety into the Design Process.'

  8. Project specific quality assurance plan, W-151, Tank 241-AZ-101 waste retrieval system. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Manthei, M.E.

    1994-11-21

    This project specific quality assurance program plan establishes the responsibility for the implementation of QA requirements, defines and documents the QA requirements associated with design, procurement, and construction, and defines and documents the degree of QA reviews and verifications on the design and construction necessary to assure compliance to project and DOE requirements. Revision 2 updates the QAPP to provide concurrence with approved work scope deletion. In addition, the Quality Assurance Program Index is being updated to reflect the current Quality Assurance Program requirements per DOE Order 5700.6C.

  9. Model based prognosis of contaminant leaching for reuse of demolition waste in construction projects

    Science.gov (United States)

    Beyer, C.; Konrad, W.; C. H., Park; Bauer, S.; Grathwohl, P.; Rügner, H.; Liedl, R.

    2007-06-01

    In this study, groundwater contamination from recycled demolitian waste in road constructions is assessed using predictions of leachate concentrations. Numerical transport simulations are performed for three scenarios (a parking lot, a noise protection barrier, and road), and using a number of characteristic subsoils of Germany, to estimate the breakthrough of different contaminant classes at the groundwater table. Conservative tracer breakthrough times (BTT) primarily depend on subsoil hydraulic properties, for organic pollutants KOC and subsoil OC are the controlling parameters. Significant concentration reductions from dispersion only occur when source concentrations decrease prior to contaminant breakthrough. If source concentrations remain high for long periods relative to peak BTT, concentration breakthrough is undamped. Accounting for biodegradation reduces breakthrough concentrations significantly. For the “noise protection barrier” and “road” scenarios, capillary barrier effects cause the seepage water to partially bypass the recycling material. Accounting for this bypass flow and spatial averaging across the constructions reduces concentrations by about 30-40 %.

  10. GIS-based tools to identify tradeoffs between waste management and remediation strategies from radiological dispersal device incidents

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Wood, J.; Snyder, E. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Boe, T. [Oak Ridge Inst. for Science and Education, Research Triangle Park, NC (United States); Schulthiesz, D.; Peake, T.; Ierardi, M. [U.S. Environmental Protection Agency, Washington, DC (United States); Hayes, C.; Rodgers, M. [Eastern Research Group, Inc., Morrisville, NC (United States)

    2011-07-01

    Management of waste and debris from the detonation of a Radiological Dispersal Device (RDD) will likely comprise a significant portion of the overall remediation effort and possibly contribute to a significant portion of the overall remediation costs. As part of the recent National Level Exercise, Liberty RadEx, that occurred in Philadelphia in April 2010, a methodology was developed by EPA to generate a first-order estimate of a waste inventory for the hypothetical RDD from the exercise scenario. Determination of waste characteristics and whether the generated waste is construction and demolition (C&D) debris, municipal solid waste (MSW), hazardous waste, mixed waste, or low level radioactive waste (LLRW), and characterization of the wastewater that is generated from the incident or subsequent cleanup activities will all influence the cleanup costs and timelines. Decontamination techniques, whether they involve chemical treatment, abrasive removal, or aqueous washing, will also influence the waste generated and associated cleanup costs and timelines. This paper describes the ongoing effort to develop a tool to support RDD planning and response activities by assessing waste quantities and characteristics as a function of potential mitigation strategies and targeted cleanup levels. (author)

  11. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  12. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  13. INEL Operable Unit 7-13 Retrieval/Ex Situ Thermal Treatment configuration options: INEL Buried Waste Integrated Demonstration Systems Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J.G.; Rudin, M.J.; O' Brien, M.C.; Morrison, J.L.; Raivo, B.

    1992-07-01

    The mission of the Buried Waste Integrated Demonstration (BWID) Systems Analysis project is to identify and evaluate cradle-to-grave systems for the remediation of Transuranic (TRU)Contaminated Waste Pits and Trenches within the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The BWID program will use the results of the BWID Systems Analysis in conjunction with identified Department of Energy (DOE) Complex buried waste needs to develop a long-term strategy for improving buried waste remediation capabilities throughout the DOE system. This report presents Buried Waste Retrieval/Ex Situ Thermal Treatment configuration option concepts in the form of block diagrams. These configuration options are: Retrieval/Melter Treatment; Retrieval/Metal Sort/Thermal Treatment; Retrieval/No Sort/Incineration/Melter Treatment; Retrieval/Interim Storage/Melter Treatment; Retrieval/Interim Storage/Metal Sort/Thermal Treatment; and Retrieval/Interim Storage/No Sort/Incineration/Melter Treatment. Each option is presented as a complete end-to-end system.

  14. Data sharing report characterization of the surveillance and maintenance project miscellaneous process inventory waste items Oak Ridge National Laboratory, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  15. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  16. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico; Proyeccion de generacion de desechos radiactivos solidos, liquidos y fuentes radiactivas gastadas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E. [Universidad Politecnica del Valle de Toluca, Km 5.7 Carretera Almoloya de Juarez, Estado de Mexico (Mexico); Monroy G, F.; Lizcano C, D., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  17. 建设项目中危险废物的管理探讨%Approach on Hazardous Waste Management in Construction Projects

    Institute of Scientific and Technical Information of China (English)

    邓华龙; 钟声浩; 孙建

    2000-01-01

    Several pieces of experience in the field of hazardous waste management for construction projects have been introduced. The Pre-participation Management for Hazardous Waste (PPMHW) was proposed according to the regulations concerned. The PPMHW brought into four periods of construction projects management starting from environmental impact assessment (EIA), trial-running, putting into production and regular-running. It introduced a way to extend the scope of hazardous waste management of the EIA and trial-running of construction projects, thus improved the “Cradle-to-Grave”management of hazardous waste and gave it new meaning.%探索了建设项目中危险废物的管理措施,提出了提前介入的管理方法,即从环境影响评价阶段起,就对建设项目将产生的危险废物纳入管理轨道。这使危险废物管理的控制关口前移,完善了危险废物全过程管理的内涵。

  18. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  19. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  20. Application of Franchising Model in Waste Transfer Project%特许经营模式在垃圾转运项目中的应用研究

    Institute of Scientific and Technical Information of China (English)

    贾凡; 陈海滨; 汪洋

    2013-01-01

    Starting with characteristics of franchising and waste transfer system, and using Power SWOT Analysis, the application prospects of franchising model in waste transfer project were evaluated. The result showed that under the premise of facing up to its own shortcomings, focusing on playing advantage of the waste transfer franchising and seizing the external opportunities in good season, learning experience from previous franchising projects, project finance is carried out. At the same time, the operating stability of the overall project is improved through reasonable risk-sharing. It has achieved a win-win between the government and the social investors.%从特许经营与垃圾转运系统特点入手,应用高级SWOT分析法,评价特许经营模式在垃圾转运项目中的应用前景,结果表明:在正视自身不足的前提下,着重发挥垃圾转运特许经营的优势并不失时机地抓住外部机遇,借鉴以往同类特许经营项目的经验进行项目融资;同时通过合理的风险分担来提高项目整体运行的稳定性,使政府与社会投资者之间实现双赢.

  1. Preconceptual design study for solidifying high-level waste: Appendices A, B and C West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hill, O.F. (comp.)

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass.

  2. The refined of waste oil as sustainable solution: Ecoroil project; El re-refinamiento como solucion sostenible para el aceite usado: proyecto Ecoril

    Energy Technology Data Exchange (ETDEWEB)

    Torras, J. M.

    1999-11-01

    Waste oil must be re-refined at all? Or simply burn it all and forget about it? Today`s waste oil is burnt and dumped, thus causing serious and unnecessary pollution of the environment, contamination of the rivers, seas, water sources, soil and atmosphere. Industry and government, both, have fundamental responsibility to use every option to them to reduce pollution and to re-use and recycle before producing more. One of the most effective recycling possibilities is the re-refining. The lubricating oil business is large, profitable and complex. The new technologies in re-refining produce base oils of highest quality which can equal the performance of virgin oil. The ECOROIL Project carried forward by three companies from different sectors, F. L. Iberia - Infineum -Cator, S. A. - has demonstrated it. The paper also provides some light aspects about waste oil and re-refined oils in the last years in Spain. (Author) 4 refs.

  3. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  4. Reconnaissance study of the mining waste from the Gold Quadrilateral of the Apuseni Mountains (Romania) - data from SUSMIN project

    Science.gov (United States)

    Munteanu, Marian; Cioacă, Mihaela Elena; Ion, Daniel; Rusu, Constantin; Floria, Nelu; Maftei, Raluca; Filipciuc, Constantina; Tudor, Elena

    2015-04-01

    The Gold Quadrilateral of the Apuseni Mountains contains numerous epithermal Au-Ag deposits and porphyry Cu-Au deposits. Most mines are now closed. A reconnaissance investigation has been made on samples from the waste rock dumps at Bucium, Stănija, Valea Arsului, Ruda Barza, Larga, Haneş, Radeş-Runcu, Dealul Fetii, Valea Lungă and Caraci, and from the tailing ponds at Ţărăţel and Ribiţa (Brad mining field), Valea Săliştei and Gura Roşiei (Roşia Montană). Mercury shows the most elevated values (close to 0.8 ppm) at Ruda Barza and Haneş. Copper and Zn have contents of tens to hundreds ppm, while Pb can reach thousands ppm. Arsenic has highest values at Ruda, Haneş and Larga (150-280 ppm). Gold and silver contents vary from 0.1 ppm to 0.8 ppm and from 1 ppm to 23 ppm, respectively. For comparison, the rocks in the porphyry Cu-Au deposits at Bolcana, Bucium, Rovina, Roşia Poieni and Valea Arsului showed contents of 0.1-1.3 ppm Au, 0.2-8.5 ppm Ag, 4-278 ppm Pb, 0.2-105 ppm Te and 20-26 ppm As (Cioacă et al., 2014). The samples of sulfide-rich waste from the former processing plant at Bucium showed Te contents of 200-400 ppm. The material in the tailings ponds at Ribiţa and Ţărăţel is dominated by quartz, followed by clay minerals and gypsum ± calcite. At Valea Săliştei and Gura Roşiei, K-feldspar is dominant, followed by quartz and clay minerals. At Valea Săliştei and Gura Roşiei (> 9% K2O), potassium is significantly higher than it is at Ribiţa and Ţărăţel (< 2.5% K2O). Hg, Cu, Zn, As, Te and Bi are one order of magnitude higher at Ribiţa and Ţărăţel than they are at Valea Săliştei and Gura Roşiei. The gold content is ca. 0.3 ppm at Ţărăţel, 0.4 ppm at Valea Săliştei and Gura Roşiei and 0.8 ppm at Ribiţa. The results encourage further investigations for the assessment of the economic potential of the mining waste in the Gold Quadrilateral. This research is part of the SUSMIN project (http://projects

  5. Nye County Nuclear Waste Repository Project Office independent scientific investigations program annual report, May 1997--April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This annual summary report, prepared by the Nye County Nuclear Waste Repository Project Office (NWRPO), summarizes the activities that were performed during the period from May 1, 1997 to April 30, 1998. These activities were conducted in support of the Independent Scientific Investigation Program (ISIP) of Nye County at the Yucca Mountain Site (YMS). The Nye County NWRPO is responsible for protecting the health and safety of the Nye County residents. NWRPO`s on-site representative is responsible for designing and implementing the Independent Scientific Investigation Program (ISIP). Major objectives of the ISIP include: Investigating key issues related to conceptual design and performance of the repository that can have major impact on human health, safety, and the environment; identifying areas not being addressed adequately by the Department of Energy (DOE). Nye County has identified several key scientific issues of concern that may affect repository design and performance which were not being adequately addressed by DOE. Nye County has been conducting its own independent study to evaluate the significance of these issues. This report summarizes the results of monitoring from two boreholes and the Exploratory Studies Facility (ESF) tunnel that have been instrumented by Nye County since March and April of 1995. The preliminary data and interpretations presented in this report do not constitute and should not be considered as the official position of Nye County. The ISIP presently includes borehole and tunnel instrumentation, monitoring, data analysis, and numerical modeling activities to address the concerns of Nye County.

  6. Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden)

    Science.gov (United States)

    Selroos, Jan-Olof; Painter, Scott L.

    2012-12-01

    The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.

  7. Nye County nuclear waste repository project office independent scientific investigations program. Summary annual report, May 1996--April 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual summary report, prepared by Multimedia Environmental Technology, Inc. (MET) on behalf of Nye County Nuclear Waste Project Office, summarizes the activities that were performed during the period from May 1, 1996 to April 30, 1997. These activities were conducted in support of the Independent Scientific Investigation Program (ISIP) of Nye County at the Yucca Mountain Site (YMS). The Nye County NWRPO is responsible for protecting the health and safety of the Nye County residents. NWRPO`s on-site representative is responsible for designing and implementing the Independent Scientific Investigation Program (ISIP). Major objectives of the ISIP include: (1) Investigating key issues related to conceptual design and performance of the repository that can have major impact on human health, safety, and the environment. (2) Identifying areas not being addressed adequately by DOE Nye County has identified several key scientific issues of concern that may affect repository design and performance which were not being adequately addressed by DOE. Nye County has been conducting its own independent study to evaluate the significance of these issues.

  8. A continuous collection system for household pharmaceutical wastes: a pilot project.

    Science.gov (United States)

    Musson, Stephen E; Townsend, Timothy; Seaburg, Kurt; Mousa, John

    2007-07-01

    A 5-month "self-serve" pilot project was implemented to properly dispose of old and unwanted prescription and nonprescription medications. Obstacles encountered during the program included reluctance by major drug store chains to participate, regulatory and legal restrictions on pharmaceutical handling, and collection of detailed data from participants. Despite these difficulties, a total weight of 305 lb of discarded pharmaceuticals was collected during the pilot program period from an estimated 500 participants. A survey of participants indicated that discard of pharmaceuticals to the sanitary sewer, a newly discovered environmental hazard, is commonplace, with approximately 50% of participants using this method previously. The average age of the patients using the disposed medication was approximately 64 yr old, with the large majority being above 50 yr in age. The majority of participants learned of the program through newspaper advertisement. The average age or time after purchase of the medication was approximately 3 yr, and the primary purpose cited for its disposal was that the medication had exceeded its expiration date.

  9. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D. H.; Haffner, D. R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  10. Law project on the radioactive materials and wastes management 2006 recommendations presented by Anne Duthilleul; Projet de loi sur la gestion des matieres et des dechets radioactifs 2006 avis presente par Mme Anne Duthilleul

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document provides recommendations on the law project concerning the radioactive material and wastes management. It precises the law objectives, the french particularities concerning the radioactive wastes and materials management, the public debate in France, the evaluation of the researches, the recommendations of the economic and social council. (A.L.B.)

  11. 天津化工厂废渣综合利用工程%Waste residue utilization projects of Tianjin Chemical Plant

    Institute of Scientific and Technical Information of China (English)

    张炳慧

    2001-01-01

    120 kt/a cement production project and 30 thiu,nd m3/a small hollow load-carrying brick project from waste residue of Tianjin Chemical Plant of Bohai Chemical Industry Group Inc. are introduced, including process, key equipment and process characteristics. Although currently the cement production process with waste residue of calcium carbide as main material and liquid waste residue as acessory material has the advantage of energy conservation,the capacity should be expanded to largescale production. The small hollow load-carrying brick from liquid waste residue,fly-ash containing much calcia,and fine coal fly-ash has high strength up to 14.4 MPa, low water absorption and low rate of water content,and is in accord with GB- 8239-87. Considerable benefit was obtained from the process,and the aim was achieved that waste treated waste,and waste supported waste.%从工艺流程、主要设备、工艺特点等方面介绍了渤海化工(集团)股份有限公司天津化工厂利用废渣生产12万t/a水泥、3万m3/a承重小型空心砌块项目。虽然目前以废电石渣为主要原料、配以液态渣辅料生产水泥已具有节能优势,但宜扩大生产规模以达到经济规模。利用液态渣、增钙飞灰、粉煤灰生产的承重小型空心砌块强度可高达14.4 MPa,吸水率低,含水率低,不仅符合GB8239-87的要求,而且效益可观,由此做到了"以废养废、以废治废"。

  12. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  13. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  14. Report on task assignment No. 3 for the Waste Package Project; Parts A & B, ASME pressure vessel codes review for waste package application; Part C, Library search for reliability/failure rates data on low temperature low pressure piping, containers, and casks with long design lives

    Energy Technology Data Exchange (ETDEWEB)

    Trabia, M.B.; Kiley, M.; Cardle, J.; Joseph, M.

    1991-07-01

    The Waste Package Project Research Team, at UNLV, has four general required tasks. Task one is the management, quality assurance, and overview of the research that is performed under the cooperative agreement. Task two is the structural analysis of spent fuel and high level waste. Task three is an American Society of Mechanical Engineers (ASME) Pressure Vessel Code review for waste package application. Finally, task four is waste package labeling. This report includes preliminary information about task three (ASME Pressure Vessel Code review for Waste package Application). The first objective is to compile a list of the ASME Pressure Vessel Code that can be applied to waste package containers design and manufacturing processes. The second objective is to explore the use of these applicable codes to the preliminary waste package container designs. The final objective is to perform a library search for reliability and/or failure rates data on low pressure, low temperature, containers and casks with long design lives.

  15. Analysis on Operation Model of Hazardous Waste Disposal Project%危险废弃物处置项目运作模式探析

    Institute of Scientific and Technical Information of China (English)

    徐缇; 刘灿嘉; 战玉柱; 苏庆

    2015-01-01

    With the development of the hazardous waste disposal industry and a large number of projects having been built, the operation modes are diversified. In order to explore the suitable mode, this paper selected the chemical hazardous waste disposal project as an example, investigated related projects of Jiangsu province and surrounding areas based on common marketing operation modes of domestic public welfare projects, and also analyzed the advantages and disadvantages. The result showed that, compared with the widely used operation modes of BOT,BOO and so on, PPP model is more suitable for the regional hazardous waste disposal projects. This paper also proposed some suggestions on the supporting measures which needed improvement.%为随着危废处置行业的发展和众多项目的建设,其运作模式也呈现多元化。为了探索适合危废处置项目建设的运作模式,结合国内公益性项目市场化运作常用的模式,以化工危废处置项目为代表,调查研究江苏省及周边地区该类项目,分析不同模式的优点及不足,提出相比于目前常用的BOT,BOO等模式,区域性的危废处置项目采用PPP模式更适合,并给出了需要完善的配套措施建议。

  16. Minutes of the Tank Waste Science Panel meeting July 9--1, 1991. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M. [comp.

    1992-04-01

    The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

  17. An example of treated waste water use for soil irrigation in the SAFIR project.

    Science.gov (United States)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops on soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). In this context, the European FP6 SAFIR project (Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management) investigates the geochemical quality of the root zone soil, knowing it is the main transit and storage compartment for pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases also determine the availability of trace elements for the plant and determine the passage towards crops and products. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. Therefore the soil water quality was directly or indirectly assessed. Direct measurements of soil water were made through porous cups. The experiments were carried out during the growing season of 2006, 2007 and 2008 in a vegetable commercial farm, located at 10 km north of Belgrade. The soil is silty clayey, and developed on alluvial deposits. It was classified as humogley according to USDA Soil Classification. The climate of the field side is a continental type with hot and dry summers and cold and rainy winters. As in the rest of Serbia, farm suffers from water deficits during the main growing season. The initial soil quality was assessed through a sampling campaign before the onset of first year irrigation; the soil quality was then monitored throughout three years. Soil sampling

  18. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    Energy Technology Data Exchange (ETDEWEB)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  19. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project.

    Science.gov (United States)

    Ike, Michihiko; Inoue, Daisuke; Miyano, Tomoki; Liu, Tong Tong; Sei, Kazunari; Soda, Satoshi; Kadoshin, Shiro

    2010-06-01

    The microbial community in a full-scale anaerobic digester (2300m3) treating industrial food waste in the Kyoto Eco-Energy Project was analyzed using terminal restriction fragment length polymorphism for eubacterial and archaeal 16S rRNA genes. Both thermophilic and mesophilic sludge of treated swine waste were seeded to the digestion tank. During the 150-day startup period, coffee grounds as a main food waste, along with potato, kelp and boiled beans, tofu, bean curd lees, and deep-fried bean curd were fed to the digestion process step-by-step (max. 40t/d). Finally, the methane yield reached 360m3/t-feed with 40days' retention time, although temporary accumulation of propionate was observed. Eubacterial communities that formed in the thermophilic digestion tank differed greatly from both thermophilic and mesophilic types of seed sludge. Results suggest that the Actinomyces/Thermomonospora and Ralstonia/Shewanella were contributors for hydrolyzation and degradation of food waste into volatile fatty acids. Acetate-utilizing methanogens, Methanosaeta, were dominant in seed sludges of both types, but they decreased drastically during processing in the digestion tank. Methanosarcina and Methanobrevibacter/Methanobacterium were, respectively, possible main contributors for methane production from acetate and H2 plus CO2. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  1. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C.

    2012-08-29

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  2. A systems study of the future waste management system in Boraas. Part of the project: 'Thermal and biological waste treatment in a systems perspective'; Systemstudie Avfall - Boraas: En systemstudie foer den framtida avfallsbehandlingen i Boraas. Ett delprojekt inom projektet 'Termisk och biologisk avfallsbehandling i ett systemperspektiv'

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Haraldsson, Maarten; Sundberg, Johan; Norrman Eriksson, Ola

    2010-07-01

    The purpose of this project (A systems study of the future waste management system in Boraas) is to evaluate, from a systems perspective, new and improved waste treatment technologies. The study is focused on the waste management system and the district heating system of Boraas. In order to make the analysis complete, the project has also included analyses of surrounding systems that interact with Boraas waste management and district heating systems. The study evaluates the situation in 2015, i.e. a situation only a few years from today. Therefore we have chosen to perform the analysis with one external scenario and 12 development paths (divided into Analyses 1-5). The external scenario describes the development of the surrounding systems through factors that are important for the waste management and district heating systems in Boraas (e.g. electricity price, waste generation, and price of tradable emissions permits for CO{sub 2}). A development path (or local scenario) means changes of the current waste management and/or district heating systems in Boraas and consists of a set of technologies (e.g. anaerobic digestion, central separation and gasification) that are used to fulfil the demand for waste treatment and district heating. The development in the surrounding systems (described by the external scenario) cannot be influenced by the decision-makers in Boraas. The development paths describe possible changes of the waste management and district heating systems that decision-makers in Boraas can choose to implement

  3. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  4. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan.

  5. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  6. Geology, Bedrock, Tabular data involving the location of design specifics for wells related to the Low-level Radioactive Waste (LLRW) Site Characterization., Published in 1998, NC DENR / Div. of Land Resources / Geological Survey Section.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Geology, Bedrock dataset, was produced all or in part from Field Survey/GPS information as of 1998. It is described as 'Tabular data involving the location of...

  7. A review on the Cigeo project, the industrial centre of geological storage of the most radioactive wastes; Le point sur le projet Cigeo, centre industriel de stockage geologique pour les dechets les plus radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    This document briefly presents the Cigeo project which is designed for the underground geological storage of the most radioactive wastes. Requirements comprise safety after closure and without any human intervention, and a reversible operation during at least 100 years. The storage principle is briefly described. A brief history of this research project is reported

  8. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  9. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  11. Evaluation of combustion experiments conducted during the research and development project ``Mechanical-biological waste conditioning in combination with thermal processing of partial waste fractions``; Auswertung der Verbrennungsversuche zum Forschungs- und Entwicklungsvorhaben ``mechanisch-biologische Restmuellbehandlung unter Einbindung thermischer Verfahren fuer Teilfraktionen``

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.; Lohf, A.; Herr, C. [Institut WAR, Darmstadt (Germany)

    1998-12-31

    The technical code on municipal waste makes specific demands on waste to be deposited at landfills which can only be met if mechanical-biological conditioning of waste as well as thermal processing of partial waste fractions are continued also in the future. But waste that has undergone mechanical or mechanical-biological conditioning presents different combustion properties from those of unconditioned waste. In this second stage of the research project, the thermal processability of waste having undergone mechanical or mechanical-biological conditioning was studied. Together with the results from the first project stage, where the throughput represented exclusively mechanically conditioned material, the results of the latter measuring campaigns comprehensively demonstrate possibilities for the thermal processing of partial waste fractions having undergone biological-mechanical conditioning, and inform on changes in plant performance. (orig.) [Deutsch] Um die in der TA-Siedlungsabfall an den abzulagernden Restmuell gestellten Deponieeingangsbedingungen zu erfuellen, muss neben einer mechanisch-biologischen Aufbereitung bei Teilfraktionen auch weiterhin eine thermische Behandlung eingeplant werden. Die Verbrennungseigenschaften von mechanisch oder mechanisch-biologisch vorbehandeltem Restmuell weichen allerdings von denen von unbehandeltem Restmuell ab. In dieser zweiten Projektphase des Forschungsvorhabens wurde eine Untersuchung bezueglich der thermischen Behandelbarkeit von mechanisch und auch biologisch vorbehandeltem Muell durchgefuehrt. Die Ergebnisse der Messkampagnen bilden zusammen mit den Ergebnissen der ersten Projektphase, in der ausschliesslich mechanisch vorbehandeltes Material durchgesetzt wurde, eine umfassende Darstellung ueber Moeglichkeiten und veraenderte Anlagenverhalten bei der thermischen Behandlung von Teilfraktionen aus der biologisch-mechanisch Vorbehandlung. (orig.)

  12. LLWnotes - Volume 11, Number 6 August/September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document is the August/September 1996 issue of LLWnotes. It contains articles and news items on the following topics: California Department of Health Services questions accuracy of waste data; NRC authority over land transfers; Southeast Commission funding of North Carolina project; study of federal siting criteria; court rulings and calendar; wetland classifications; DOE tritium purchase options; control over licensed devices; revised EPA risk assessment model; EPA environmental justice guidance; possible effects of EPA guidance on LLRW disposal; elements of an adequate LLRW program; NRC Information Notice on on-site land burials; and a decommissioning schedule petition.

  13. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Helm, M.; Schoen, H. [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1997-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  14. [Process analysis for levulinic acid generated in waste wood liquefaction by non-development thin-layer chromatography based on oblique projection].

    Science.gov (United States)

    Su, Hui; Ge, Jun; Fang, Feng; Yao, Zhixiang; Song, Guangjun

    2014-01-01

    A rapid and quantitative method is presented for multi-component process analysis, based on multi-wavelength thin-layer chromatography (TLC) scanning but without the routine development. The samples from the waste wood liquefaction process are applied on silica plates, and just the last sample of spot need to be developed for getting separated spectra. These spectra are divided into two parts of production (levulinic acid) and background, respectively, to build an oblique projection operator. The other process samples do not need to be developed repeatedly, and are scanned to collect hybrid spectra immediately. The pure production spectrum can be separated from the process spectrum by the oblique projection algorithms to realize the production quantification. It was showed that the relative errors between the determination results by this method and those by high performance liquid chromatography (HPLC) were less than 3.27%, and so the consistency is perfect.

  15. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  16. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M. [comp.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  17. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  18. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    Energy Technology Data Exchange (ETDEWEB)

    Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

    2012-07-01

    ;Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  20. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  1. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    Science.gov (United States)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA

  2. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.

    1987-09-01

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  3. A textual analysis of the upgrading and reconstruction project of a waste incineration power plant%垃圾焚烧发电项目提标改造措施分析

    Institute of Scientific and Technical Information of China (English)

    张艳艳; 张蕊

    2013-01-01

    以某垃圾焚烧发电厂提标改造项目为例,对垃圾焚烧项目焚烧炉烟气污染物以及废水渗滤液提出较先进的治理方案,为总量减排提供一定的技术支持。%With the upgrading and reconstruction project of a waste incineration power plant as an example , Proposing advanced pollu-tion control scheme for the pollutant -leachate and furnace -gas of waste incineration project , which was provide technical support for the to-tal emission reduction .

  4. Project of an information integrated system to provide support to the regulatory control of the radioactive waste inventory; Projeto de um sistema integrado de informacao para suporte ao controle regulatorio do inventario de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Christovao, Marilia Tavares

    2005-05-15

    Sources and radioactive waste deriving from industry activities, medical practice and other areas are collected, received, and stored as waste on Brazilian Nuclear Energy Commission (CNEN) Institutes, that also generate, treat and store their own radioactive waste. The object of this project is to present an Integrated Information System named SICORR, having as guidelines, the referred processes to the radioactive waste regulatory control, under the responsibility of the Radioactive Waste Division (DIREJ), the General Coordination of Licensing and Control (CGLC), the Directorate of Safety and Radiation Protection (DRS) and the CNEN. The main objective of the work was reached, once the project SICORR modeling considers the radioactive waste control inventory, enclosing the treatment and integration of the radioactive waste and the radionuclides data and processes; the installations that produce, use, transport or store radiation sources data; and, CNEN Institutes responsible for the radioactive waste management data. The SICORR functions or essential modules involve the data treatment, integration, standardization and consistency between the processes. The SICORR specification and the analysis results are registered in documents, Software Specification Proposal (PESw) and Software Requirements Specification (ERSw), and are presented in text, in diagrams and user interfaces. Use cases have been used in the SICORR context diagram. The user interfaces for each use case have been detailed, defining the graphical layout, the relationships description with other interfaces, the interface details properties and the commands and the product entrances and exits. For objects radioactive waste and radionuclides, states diagrams have been drawn. The activities diagram represents the business model process. The class diagram represents the static objects and relationships that exist between them, under the specification point of view. The class diagram have been determined

  5. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

  6. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Schutz, W W [comp.; Consultant, Wellington, Delaware (United States); Strachan, D M [comp.; Pacific Northwest Lab., Richland, WA (United States)

    1992-08-01

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observed in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.

  7. Environmental baseline study of the Los Medanos Waste Isolation Pilot Plant (WIPP) project area of New Mexico: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, H.G. (ed.)

    1977-09-01

    Exploratory drilling operations are being conducted for a Waste Isolation Pilot Program in southeastern New Mexico. Prior to the establishment of such a program, an environmental study was initiated to serve as a baseline for evaluation of the impact of future activities in the Los Medanos area. Much of this area has been influenced by human activities over a long period, and hence the baseline data only reflects the present, relatively disturbed condition of the environment. The study covers air resources, soils, and biotic resources. 23 tables, 6 figs. (DLC)

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-29

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  9. Fire Protection Measures of Waste Incineration Power Generation Project%某垃圾焚烧发电厂消防措施探讨

    Institute of Scientific and Technical Information of China (English)

    万锦超

    2015-01-01

    Waste incineration power generation and ordinary power plant has a very large difference in the process, this means that garbage incineration power plant is not a simple fire design according to the general power plant, and should be combined with the advanced experience at home and abroad to optimize the design of fire protection, so as to achieve the garbage burning without leaving troubles, put things right once and for all effect. According to a Huainan waste incineration power generation projects about power plant nowadays refuse incineration fire protection measures.%焚烧垃圾发电和普通的火力发电在工艺上有很大的区别,这就意味着垃圾焚烧发电厂不能简单按照普通发电厂进行消防设计,而应该结合国内外先进的经验进行优化性消防设计,从而达到垃圾焚烧不留后患,一劳永逸的效果。本文结合淮南某垃圾焚烧发电项目谈谈现今垃圾焚烧发电厂的消防措施。

  10. Needfulness and challenges of internationalisation and involvement of international environmental NGOs in University research and education: The lessons learned from nuclear waste management sector research projects

    Directory of Open Access Journals (Sweden)

    Peter Mihok

    2014-11-01

    Full Text Available Society’s perceptions of desired democratic standards in radioactive waste management sector have changed significantly in the recent two decades. The change, known also as ‘participatory turn’, can be well illustrated on the example of site selection process for a geological repository of spent nuclear fuel in the Czech Republic. Empiric evidence from this process outlines links between the roles of Governmental bodies, NGOs, research institutions and businesses in dealing with the new challenges in decision making procedures concerning spent nuclear fuel. Selected examples from the EURATOM financed research projects ARGONA, COWAM and IPPA illustrate a growing need for internationalisation and involvement of environmental NGOs in related research and education processes in a near future.

  11. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  12. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  13. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  14. THE PROJECT: FROM THE IDEA AND APPLICATION OF THE DESIGNER TO RECEPTION A PRAGMATIC STUDY OF IMAGES ON FOOD WASTE

    Directory of Open Access Journals (Sweden)

    Mona Junger Aghababaie

    2017-02-01

    Full Text Available DOI: 10.12957/periferia.2015.18838Social posters and visual communication regarding concepts such as " public health", " civil responsibility", "responsible action" and practices connected to the reception of non commercial advertising images are the focus point of this article. Designers conceptualize and produce designs hoping that these become integrated into the cultural and social practices of their receivers. In the case of posters on food waste, our questioning is as follows: How does the designer conceptualize and create his final version? How do receivers appropriate these posters? Do these designs have the capacity to influence the receiver to a change of attitude? In an attempt to answer these questions, we met with two French designers, Axelle Roue and Hélène Petit and we questioned them on their designs on food waste, exhibited in July, 2013 in Parisian subway stations. We interviewed them on their design process, on their first versions (rough copies up to their final version. In parallel, we also questioned the receivers (the passers-by in the Parisian subway on how they felt about these posters. The objective was to discover if the meaning of the image sent to the receiver was identical to what the designer had planned in his design.

  15. Strategic Environmental Research and Development Project FY 1994: Assessing national remote sensing technologies for use in US Department of Energy Environmental Restoration Activities, Oak Ridge Solid Waste Storage Area 4 case study

    Energy Technology Data Exchange (ETDEWEB)

    King, A.L.; Smyre, J.L.; Evers, T.K.

    1995-02-01

    During FY 1994, the Oak Ridge Environmental Restoration (ER) Remote Sensing Program teamed with members of the Oak Ridge National Security Program Office (NSPO), the Environmental Research Institute of Michigan (ERIM) under contract to the National Exploitation Laboratory (NEL), the Oak Ridge Waste Area Group 4 (WAG 4) ER Program, and the US Department of Energy (DOE), Offices of Technology Development, Nonproliferation and National Security, and Environmental Restoration, to conduct a test and demonstration of the uses of national remote sensing technologies at DOE hazardous waste sites located in Oak Ridge, Tennessee. Objectives of the Oak Ridge study were to determine if national remote sensing technologies are useful in conducting prescreening, characterization, and/or monitoring activities to expedite the clean-up process at hazardous waste sites and to cut clean-up costs wherever possible. This project was sponsored by the Strategic Environmental Research and Development Project (SERDP).

  16. Design for Relocation Project of Taiyuan Road Solid Waste Transfer Station in Qingdao%青岛市太原路固体废弃物中转站迁建工程设计

    Institute of Scientific and Technical Information of China (English)

    曹伟华

    2012-01-01

    The general situation, characteristics and innovativeness about the relocation project of Taiyuan Road Solid Waste Transfer Station in Qingdao were expounded.%阐述了青岛市太原路固体废弃物中转站迁建工程概况、特点及其创新性.

  17. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  18. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  19. The Waste Heat Power Generation Project of 200 kt/a Coke Oven Gas Methanol Project%20万t/a焦炉煤气甲醇项目的余热发电技改工程

    Institute of Scientific and Technical Information of China (English)

    苏作为

    2012-01-01

    To use waste heat power to generate electricity by analyzing the baIace of steam in methanol production by coke-oven gas and basing the actual situation of the chemical industrial park. After implementation of the project, not only banning all coke-oven gas heating furnaces and variety small low pressure boilers in the park and obtaining high- er economic benefits,but also reducing enviromental pollution.%分析了焦炉煤气制甲醇项目蒸汽平衡情况,结合所在化工园区实际,利用余热进行发电。不仅取缔了园区内所有焦炉气加热炉和各种小型低压锅炉,取得较高的经济效益,而且减少了环境污染。

  20. Assessing social and economic effects of perceived risk: Workshop summary: Draft: BWIP Repository Project. [Basalt Waste Isolation Program

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Liebow, E.B. (eds.)

    1988-03-01

    The US Department of Energy sponsored a one-day workshop to discuss the complex dimensions of risk judgment formation and the assessment of social and economic effects of risk perceptions related to the permanent underground storage of highly radioactive waste from commercial nuclear power plants. Affected parties have publicly expressed concerns about potentially significant risk-related effects of this approach to waste management. A selective review of relevant literature in psychology, decision analysis, economics, sociology, and anthropology was completed, along with an examination of decision analysis techniques that might assist in developing suitable responses to public risk-related concerns. The workshop was organized as a forum in which a set of distinguished experts could exchange ideas and observations about the problems of characterizing the effects of risk judgments. Out of the exchange emerged the issues or themes of problems with probabilistic risk assessment techniques are evident; differences exist in the way experts and laypersons view risk, and this leads to higher levels of public concern than experts feel are justified; experts, risk managers, and decision-makers sometimes err in assessing risk and in dealing with the public; credibility and trust are important contributing factors in the formation of risk judgments; social and economic consequences of perceived risk should be properly anticipated; improvements can be made in informing the public about risk; the role of the public in risk assessment, risk management and decisions about risk should be reconsidered; and mitigation and compensation are central to resolving conflicts arising from divergent risk judgments. 1 tab.

  1. 危险废物焚烧工程实例介绍%Project Case Analysis of Hazardous Waste Incineration

    Institute of Scientific and Technical Information of China (English)

    肖燕; 伍长青; 李军

    2016-01-01

    以江苏省如东县的危险废物焚烧处置工程为例,探讨了危险废物焚烧系统的工程原理和性能特点。结果表明:采用“回转窑+二燃室+余热锅炉+急冷塔+旋风除尘器+干式脱酸塔+布袋除尘器+湿式洗涤塔”工艺,回转窑温度控制在850℃左右,危险废物在回转窑停留的时间约60min;二燃室温度>1100℃,烟气在二燃室内的停留时间>2s;余热锅炉出口烟气温度约为550℃;两级除尘、干法与湿法相结合的工艺,可实现危险废物的无害化、减容、减量处理,为其他工程应用提供了参考。%By taking the incineration disposal engineering of hazardous wastes in Rudong county of Jiangsu province as an example, the article probes into engineering principle and performance characteristics of hazardous waste incineration system, and provides references for the other engineering practice in the future.

  2. Discussion on installation construction technology of incineration furnace in waste incineration power project%垃圾焚烧发电项目焚烧炉安装施工工艺探讨

    Institute of Scientific and Technical Information of China (English)

    吉英俊

    2012-01-01

    总结了垃圾焚烧发电项目焚烧炉安装的施工经验,以实际项目为例,研究探讨了焚烧炉安装的工艺流程,从而合理、安全、有序地安排施工,确保工期质量。%This paper summarized the installation construction experience of incineration furnace in waste incineration power project, taking actu- al project as an example, researched and discussed the process of incineration furnace installation, so as to reasonable, safe, orderly arrange construction, ensured project quality.

  3. CO{sub 2}-emissions from future waste incineration - Sub-Project 5; CO{sub 2}-utslaepp fraan framtida avfallsfoerbraanning - Delprojekt 5 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Mattias; Detterfelt, Lia; Edner, Stig; Maartenssson, Paal

    2013-09-01

    The use of fossil fuels in Swedish district heating systems has fallen sharply. With continued pressure from society to reduce emissions of greenhouse gases, it is likely that the use of these fuels will decrease further. The major remaining source of emissions of fossil carbon dioxide (CO{sub 2}) from district heating systems 2020 is waste incineration with energy recovery in the form of electricity and heat. The aim of this project was, from two perspectives (stack perspective and system perspective), to analyze future emissions of fossil CO{sub 2} from Swedish waste incineration in the Swedish district heating systems. By studying both perspectives at the same time, the results answer whether changes in emissions in one perspective give similar or opposite effects seen from the other perspective. The purpose was also to make cost estimates for emission reduction measures affecting waste, energy and material production system. These costs were related to the price of allowances in the EU ETS and to the Swedish carbon tax. The project was performed in 2012 as a part of the research project 'Perspectives on sustainable waste treatment'.

  4. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...

  5. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  6. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  7. Hazardous Waste

    Science.gov (United States)

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  8. Structure for Transparency in Nuclear Waste Management. Comparative Review of the Structures for Nuclear Waste Management in France, Sweden and the UK. A Report from the RISCOM II Project

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, Raul [Syncho Ltd., Lincoln (United Kingdom)

    2002-11-01

    This report presents a comparison of the structures for nuclear waste management in France, Sweden and the UK. The source materials for this comparison are studies carried out in each of these countries by Syncho Ltd. over the past 5 years. The Swedish structural review was sponsored by SKI and SSI, and carried out as a pilot study during the years 1996 and 1997 as part of the RISCOM Pilot Project. The structural reviews of the British and French nuclear waste management systems have been in progress for the past two years (2001-2002) within the framework of RISCOM II, sponsored by the European Union. This report offers preliminary comparative views of the three systems. As with each of the individual studies more work and information are necessary to confirm and strengthen the findings. To set the context for this report it is important to remind the reader that the study in Sweden was undertaken 5 years ago, that the French case took place at the same time of significant structural changes in the country's nuclear waste management system and that the British case was undertaken at the same time of a far-reaching Government consultation process. In all cases the number of people interviewed was small. In summary, comparing the structures for transparency suggests that once existing channels for transparency are diagnosed, it should be possible to use benchmarks of good practice in one country to design methods to improve participation and communications in others. The framework used in this report allows making comparisons beyond factual reports of similarities or differences. An important conclusion of this report is that the democratic deficits that we experience today as citizens in all societies can be ameliorated if sufficient attention is paid to producing requisite organisations, with adequate communications, capable of bridging the gaps between the silent majorities and those experts and politicians responsible for policy decisions. It is the wisdom

  9. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  10. Mixed wasted integrated program: Logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  11. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  12. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  13. Recommendations on chemicals management policy and legislation in the framework of the Egyptian-German twinning project on hazardous substances and waste management.

    Science.gov (United States)

    Wagner, Burkhard O; Aziz, Elham Refaat Abdel; Schwetje, Anja; Shouk, Fatma Abou; Koch-Jugl, Juliane; Braedt, Michael; Choudhury, Keya; Weber, Roland

    2013-04-01

    The sustainable management of chemicals and their associated wastes-especially legacy stockpiles-is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian-German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt's legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations' recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.

  14. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  15. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D. H.; Miller, R. L.; Scotti, K. S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  16. Mont Terri Project - Engineered barrier emplacement experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Alonso, E. [Centre Internacional de Metodos Numerics en Ingenyeria (CIMNE), Barcelona (Spain); Alheid, H.-J. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Bluemling, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland)

    2007-07-01

    artificial hydration system removes the reality of this as a true demonstration site but without it, the work could not be conducted in a reasonable experimental time period, so that the suggested technical approach seems a good compromise. The combination of the hydro-mechanical data obtained in this project and the knowledge gained from other projects under a variety of conditions (natural/artificial saturation) have brought very useful information for assessing the performance of this barrier system. The backfilling methodology developed in the project is a promising solution, which is certainly worth considering in the future although some improvements could be made in order to increase the dry density of the GBM and to get a more homogeneous buffer. On the other hand, geoelectric and seismic measurements have proven to be a good complement of the hydraulic testing methodology of the Excavation Disturbed Zone (EDZ) evolution during saturation. The investigations on the time dependent evolution of the EDZ strongly support the hypothesis of EDZ self-sealing in Opalinus Clay, and is thus an excellent completion of the work done in the SELFRAC experiment under contract with the European Commission, as well. Mathematical model calculations have been compared with field measurements. A good estimation of the rock EDZ is derived from calculations. Buffer response was compared with measurements at the position of the monitoring points. A reasonably good agreement was found for suction evolution and swelling pressure development. However, field measurements indicate a marked heterogeneous behaviour which cannot be reproduced by the model. The heterogeneous transient response of the buffer is explained by the irregular hydration of the buffer which is a consequence of the emplacement conditions and the nature of the evolving permeability of the GBM. From December 2003 on, the EB experiment is in a latent monitoring phase and close to a full saturation situation, that is the time

  17. Mont Terri Project - Ventilation experiment in Opalinus Clay for the disposal of radioactive waste in underground repositories

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, J. C. [Empresa Nacional de Residuos Radioactivos SA (ENRESA), Madrid (Spain); Garcia-Sineriz, J. [Asociacion para la Investigacion y Desarollo Industrial de los Recursos Naturales (AITEMIN), Madrid (Spain); Velasco, M. [DM Iberia SA, Madrid (Spain); Gomez-Hernandez, J. [Ingenieria Hidraulica y Medio Ambiente, Escuela de Ingenieros de Caminos (UPV), Valencia (Spain); Lloret, A.; Matray, J.-M. [IRSN/DEI/SARG/LETS, Fontenay-aux-Roses (France); Coste, F. [Aradis ESG, Sevres Cedex (France); Giraud, A. [LAEGO-ENSG, Vandoeuvre les Nancy (France); Rothfuchs, T. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany); Marschall, P. [National Cooperative for the Disposal of Radioactive Waste (Nagra), Wettingen (Switzerland); Roesli, U. [Solexperts AG, Moenchaltorf (Switzerland); Mayer, G. [Colenco Power Engineering Ltd, Baden (Switzerland)

    2007-07-01

    The ventilation of the underground drifts during the construction and operation of a radioactive waste repository could produce the partial desaturation of the rock around the drifts, modifying its thermo-hydro-mechanical properties, especially in clayey rocks. This change of rock properties may have an impact on the design of the repositories (drifts spacing and repository size), which depends on the thermal load that the clay barrier and the rock can accept. To evaluate 'in situ' and better understand the desaturation process of a hard clay formation, the Ventilation Experiment (VE) has been carried out at the Mont Terri underground laboratory (Switzerland), generating a flow of dry air during several months along a section of a microtunnel. Specifically, the VE test has been performed, under practically isothermal conditions (T {approx_equal} 15-16 {sup o}C), in a 10 m long section of a non-lined horizontal microtunnel (diameter = 1.3 m), excavated in 1999 in the shaly facies of the Opalinus Clay of Mont Terri. The microtunnel is oriented perpendicular to the bedding strike direction of the rock (mean value of the bedding dip {approx_equal} 25{sup o}). The VE experiment real data and its modelling have shown that the desaturation of clayey rocks of low hydraulic conductivity (K < 10{sup -12} m/s) due to ventilation is very small. Under real repository conditions, the thermal and hydro-mechanical rock characteristics will not be practically affected by the ventilation. Specifically, the monitoring of the VE test (mainly the hygrometer data, confirmed also by the geoelectrical measurements) indicates that, after about 5 months of ventilation with almost dry air, the rock relative humidity (and then the degree of saturation) was less than 95% only in a ring of thickness less than 40 cm. Nevertheless, a suction state (subatmospheric liquid pressures) developed up to a distance of about 2 m, but it should be kept in mind that a clayey rock such as the

  18. FY 1999 report of the project on the waste-fueled power generation in the north area of Malaysia; 1999 nendo Malaysia hokubu chiiki gomi hatsuden project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Penang Island, in the northern part of Malaysia, where the urbanization is well advanced and sites for waste disposal are scarce, was selected as a target area for the research on introduction of solid waste (henceforth called reuse) power generation system. About 500 tons of refuse are generated daily in Penang Island, and are disposed of in a coastal landfill site at Jelutong near the center of George Town, the state capital. Although the landfill site is already beyond its capacity, it is still in use because there are no other disposal sites in the island. For this reason, there is widespread concern about coastal environmental pollution. Therefore, the Municipal Council of Penang Island has studied feasibility of transferring refuse to a new landfill site at the peninsula side of Penang State across the Penang Bridge over the sea channel which separates the island and the peninsula. However, this transfer and landfill method has not been realized yet. In view of improvement of these situations regarding solid waste management is Penang Island, it is proposed in this report, as the result of the research, introduction of power generation system fueled already-accumulated refuse in this disposal site together with refuse to be collected every day. The study was started in September 1999 and was completed in March 2000. Japan Environmental Consultants, Ltd. investigated the present situation of solid waste management in Penang Island, analyzed refuse properties, and studied the refuse fueled power generation technology with the cooperation of SIRIM (Environmental and Energy Technology Centre) and PTM (Pusat Tenaga Malaysia, Malaysia Energy Centre) in Malaysia. In concrete, the research team established a scheme of an integrated system most suitable for the refuse treatment including refuse power generation in Penang Island, the famous resort of northern Malaysia, and studied its feasibility. The proposed system is combination of selective pulverizing classifiers

  19. Radioactive waste storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Daniel E. [Colorado Christian Univ., Lakewood, CO (United States)

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  20. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  1. ZERO WASTE

    OpenAIRE

    Upadhyaya, Luv

    2013-01-01

    The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with innovation. The aim of the research was to find out the types of waste being introduced to environment, their consequence on human beings and surroundings, best policies, principles and practices to minimize the effect of the waste to lowest. The study was based on literature. The thesis includes the introduction of types of waste, clarifi...

  2. 危废焚烧处置项目的单位GDP能耗分析--以某危险废物集中处置工程为例%Energy Consumption per Unit GDP for Hazardous Waste Incineration Disposal Projects:A Project of Hazardous Waste Concentrated Disposal

    Institute of Scientific and Technical Information of China (English)

    李菲菲; 贺业迅; 张颖; 刘斌; 韦艺

    2014-01-01

    The process plan, the characteristics of main energy consumption equipments, and energy-saving measures in a project of hazardous waste incineration were introduced. The total energy consumption of the project was analyzed, as well as the energy consumption per unit GDP.%介绍了某危险废物焚烧处理工程的工艺方案、主要耗能设备特点以及节能措施,分析了项目的用能总量,并对项目的单位GDP能耗进行了分析。

  3. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

  4. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    Energy Technology Data Exchange (ETDEWEB)

    Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  5. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  6. From Solid Waste to Energy.

    Science.gov (United States)

    Wisely, F. E.; And Others

    A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…

  7. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  8. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  9. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  10. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  11. Key points of the e-waste recycling project construction%废弃电器电子产品回收处理项目建设的若干要点

    Institute of Scientific and Technical Information of China (English)

    陈利; 杨敬增; 丁涛

    2012-01-01

    Most of e-waste recycling projects have been constructing in this period. It is important to make intensive research on the treatment scope, capacity and technology. Based on the general situation of industrial development and the characters of e-waste, this paper analyzed some key points on the project construction of ewaste recycling, and gave some constructive opinions for treatment and reuse of specific e-wastes, such as refrigerator's insulating layer, CRT, PCB, etc.%废弃电器电子产品处理与再利用项目大多已经进入产业建设阶段,需要对于建设规模、处置能力和工艺技术等方面进行深入研究。结合对于产业概况和废弃物特点的研究,就项目建设中的若干要点进行分析,并就冰箱保温层、阴极射线管和废弃印制电路板等特异性处置对象的处理与再利用提出建设性意见。

  12. Radioactive waste management status and prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ik Hwan [Nuclear Environment Technology Institite, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    This paper reviews the status of radioactive waste management including management policy and system in the Republic of Korea. Also included are the status and plan of the radioactive waste management projects: construction of a low-level radioactive waste repository, construction of spent fuel interim storage facility, transportation, radioisotope waste management, and public acceptance program. Finally, the status and prospects on radioactive waste management based on the national radioactive waste management program are briefly introduced. (author)

  13. Waste management and enzymatic treatment of Municipal Solid Waste

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner

    The work carried out during the Ph.D. project is part of the Danish Energy Authority funded research project called PSO REnescience and is focussed on studying the enzymatic hydrolysis and liquefaction of waste biomass. The purpose of studying the liquefaction of waste biomass is uniform slurry...... generation for subsequent biogas production. Municipal solid waste (MSW) is produced in large amounts every year in the developed part of the world. The household waste composition varies between geographical areas and between seasons. However the overall content of organic and degradable material is rather...... content), 2) low ash and xenobiotic content, 3) high gas yield, 4) volume (produced), 5) dependable distribution and 6) low competition with other end-user technologies. MSW is a complex substrate comprising both degradable and non-degradable material being metal, plastic, glass, building waste etc...

  14. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  15. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  16. Waste management

    DEFF Research Database (Denmark)

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  17. The final disposal of radioactive wastes as social, political and scientific project - an introduction; Ewigkeitslasten. Die ''Endlagerung'' radioaktiver Abfaelle als soziales, politisches und wissenschaftliches Projekt - eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim

    2015-07-01

    The nuclear power production that was productive for two generations produces radioactive wastes that will be a hazardous and financial burden for many future generations. Science, politics, industry and the society are responsible to find a successful solution for the project of final disposal of radioactive wastes. With the fast development of renewable energies with the perspectives of sustainability and other advantages nuclear power will not have a remarkable future. The search for a final repository site is a tremendous governmental, economic and public challenge but can also be seen as a social chance. Democracy could be enforced by this process, public commitment, transparency, co-determination, confidence in political processes are indispensible premises.

  18. Mega-conflict project and social complexity - Illustrated by the decision-making on locating a radioactive waste repository in Denmark

    DEFF Research Database (Denmark)

    Kørnøv, Lone; Lyhne, Ivar; Larsen, Sanne Vammen

    2018-01-01

    The deposit of radioactive waste is a complex policy problem and a socio-technical challenge with potentially large societal impacts and a very large time horizon. These characteristics are also found in the Danish decision-making process regarding future management of radioactive waste....... The process was formally initiated in 2003 when the Danish Parliament gave consent for the government to start preparing a basis for deciding a final repository for Denmark’s low- and intermediate level radioactive waste. After preliminary studies, proposal for a plan for a final repository – and later also...... a proposal for an interim deposit, strategic environmental assessment and hearings, the process has not led to a final political decision. This paper explores the decision-making process of site identification, site selection process and choice of technology for storing nuclear waste in Denmark. The paper...

  19. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  20. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  1. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  2. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  3. 垃圾焚烧发电BOT项目的关键风险:多案例研究%Key Risks in BOT Projects of Waste Incineration for Power Generation: A Multiple Case Study

    Institute of Scientific and Technical Information of China (English)

    宋金波; 宋丹荣; 孙岩

    2012-01-01

    With BOT mode widely adopted in waste incineration for power generation projects all over the country, many risks in both construction and operation period emerge and rapidly become hot topics of the public. This paper selects representative cases of waste incineration for power generation BOT projects in fifteen cities of the east, middle and west of China to carry out a research. Multiple case studies are adopted, and a total of eight key risks are identified for the projects. Then the inherent laws and the sources of key risks are further analyzed from such three aspects as the relevance of key risks, complex characteristic of the waste in China, and lack of technical and management expertise. At last, risk response strategies are proposed.%随着BOT模式在各地垃圾焚烧发电项目中的广泛应用,此类项目建设和运营中存在的许多风险逐渐凸显,并迅速成为社会公众关注的热点。本文选取了我国东、中、西部15座城市具有代表性的垃圾焚烧发电BOT项目展开研究。采用多案例研究的方法识别、归纳出我国垃圾焚烧发电BOT项目的8项关键风险,进一步从关键风险的关联性、我国生活垃圾的复杂特性、专业技术与管理人才匮乏三个方面分析了关键风险的内在规律和产生原因.并提出风险应对策略。

  4. The HILW-LL (high- and intermediate-level waste, long-lived) disposal project: working toward building the Cigeo Industrial Centre for Geological Disposal; Le projet HA-MAVL: vers la realisation du centre industriel de stockage geologique Cigeo

    Energy Technology Data Exchange (ETDEWEB)

    Labalette, Th. [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA, Dir. des Projets, 92 - Chatenay Malabry (France)

    2011-02-15

    The French Act of 28 June 2006 identifies reversible disposal in deep geological facilities as the benchmark solution for long-term management of high-level waste (HLW) and for intermediate-level long-lived waste (ILW-LL). The Act tasks ANDRA (national agency for the management of radioactive wastes) with the pursuit of studies and research on the choice of a site and the design of the repository, with a view to examining the licence application in 2015 and, provided that the licence is granted, to make the facility operational by 2025. At the end of 2009, ANDRA submitted to the Government its proposals regarding the site and the design of the Industrial Centre for Geological Disposal, known as CIGEO. With the definition of a possible area for the construction of underground disposal facilities, one of the key stages in the project has been achieved. The choice of a surface site will be validated following the public consultation scheduled for the end of 2012. The project is now on the point of entering the definition stage (preliminary design). CIGEO will be a nuclear facility unlike any other. It will be built and operated for a period of over 100 years. For it to be successful, the project must meet certain requirements related to its integration in the local area, industrial planning, safety and reversibility, while also controlling costs. Reversibility is a very important concept that will be defined by law. It is ANDRA's responsibility to ensure that a reasonable balance is found between these different concerns. (author)

  5. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information......Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...

  6. Storage and disposal of radioactive waste as glass in canisters

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

  7. Radioactive waste: show time?

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.V. [COVRA N.V., Spanjeweg 1, 4455 TW Nieuwdorp (Netherlands); McCombie, Charles; Chapman, Neil [Arius Association, Taefernstrasse 1, CH-4050 Baden (Switzerland)

    2010-07-01

    The basic concept within both EC funded SAPIERR I and SAPIERR II projects (FP6) is that of one or more geological repositories developed in collaboration by two or more European countries to accept spent nuclear fuel, vitrified high-level waste and other long-lived radioactive waste from those partner countries. The SAPIERR II project (Strategic Action Plan for Implementation of Regional European Repositories) examines in detail issues that directly influence the practicability and acceptability of such facilities. This paper describes the work in the SAPIERR II project (2006-2008) on the development of a possible practical implementation strategy for shared, regional repositories in Europe and lays out the first steps in implementing that strategy. (authors)

  8. Mine Waste Disposal and Managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young-Wook; Min, Jeong-Sik; Kwon, Kwang-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research project deals with: Analysis and characterization of mine waste piles or tailings impoundment abandoned in mining areas; Survey of mining environmental pollution from mine waste impounds; Modelling of pollutants in groundwater around tailings impoundment; Demonstration of acid rock drainage from coal mine waste rock piles and experiment of seeding on waste rock surface; Development of a liner using tailings. Most of mine wastes are deposited on natural ground without artificial liners and capping for preventing contamination of groundwater around mine waste piles or containments. In case of some mine waste piles or containments, pollutants have been released to the environment, and several constituents in drainage exceed the limit of discharge from landfill site. Metals found in drainage exist in exchangeable fraction in waste rock and tailings. This means that if when it rains to mine waste containments, mine wastes can be pollutant to the environment by release of acidity and metals. As a result of simulation for hydraulic potentials and groundwater flow paths within the tailings, the simulated travel paths correlated well with the observed contaminant distribution. The plum disperse, both longitudinal and transverse dimensions, with time. Therefore liner system is a very important component in tailings containment system. As experimental results of liner development using tailings, tailings mixed with some portion of resin or cement may be used for liner because tailings with some additives have a very low hydraulic conductivity. (author). 39 refs.

  9. Disposal of radioactive waste arising from water treatment: Recommendations for the EC. Final report of the WP 8 of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Jungclas, H.; Rausse, Ch. [Philipps University Marburg, Nuclear Chemistry (Germany)

    2000-04-01

    Ground water, especially bedrock water, may contain high amounts of natural radioactivity. Elevated levels of natural radionuclides in ground water are mainly associated with uranium and thorium rich soil and rocks. Various processes based on different principles can be applied to the removal of radioactivity from water. Aeration and granular activated carbon (GAC) filtration are used to remove radon from household water. Ion exchangers are applied to the removal of uranium and radium. Lead and polonium may sometimes be removed by ion exchange technology as well. Membrane techniques are applied to the removal of uranium, radium, lead and polonium. Radionuclide removal can also be carried out using adsorptive materials. When different kinds of treatment methods are used to remove natural radioactivity from drinking water, wastes containing natural radioactivity will be produced. The wastes are in liquid or solid form. Liquid wastes are produced when materials used to accumulate radioactivity are regenerated or backwashed. Solid wastes are formed in cases where regeneration or backwashing are not used or cannot be used, and when the materials are taken out of service. GAC filters emit gamma radiation when they are in service. To gather information on existing national regulations and guidelines on the treatment and disposal of radioactive wastes produced by various water treatment methods, a questionnaire was sent to all the Member Countries of the European Union. (orig.)

  10. Projection to 2035 for the radioactive wastes of low and intermediate level in Mexico; Proyeccion al 2035 de los desechos radiactivos de nivel bajo e intermedio en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C. [ININ, Km. 36.5 Carr. Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico); Sanchez U, S. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Veracruz (Mexico)]. e-mail: lpg@nuclear.inin.mx

    2004-07-01

    It is necessary to establish in few years a definitive warehouse for the radioactive waste of low and intermediate level, generated in the country and to satisfy the necessities of their confinement in the next ones 50 to 80 years. Therefore, it is required to be considered those volumes produced annually, those stored at the present and those estimated to medium and long term. The results of the simulation of 4 cases are presented, considering the operation from the 2 nuclear power reactors to 40 and 60 years, the use of the technology of current treatment and the use of super compaction of solids, as well as the importance in the taking of decision of the methodology for the dismantlement of each reactor to the finish of their useful life. At the moment the Nuclear Power Plant of Laguna Verde, produces an average of 250 m{sup 3}/year of radioactive waste of low and intermediate level, constituted by solid dry wastes, humid solids and liquids. In the last 3 years, the power plant has reached an effectiveness of re utilization of effluents of 95%. On the other hand, in Mexico the non energetic applications of the radioisotopes, produce annually of the order of 20 m{sup 3}/year of solid wastes, 280 m{sup 3}/year of liquid wastes and 300 worn out radioactive sources. (Author)

  11. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.S.; Diamante, J.M. [Environmental Protection Agency, Washington, DC (United States). Office of International Activities; Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  12. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  13. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain.

  14. The reduction of packaging waste

    Energy Technology Data Exchange (ETDEWEB)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  15. Food Waste Hazard-free Treatment and Its Enlightenments:Taking Example for Changzhou Emergency Project of Food Waste Treatment%餐厨废弃物无害化处理及其启示--以常州市餐厨废弃物应急处理工程为例

    Institute of Scientific and Technical Information of China (English)

    朱笑冰; 史东晓

    2014-01-01

    以常州市餐厨废弃物应急处理工程为例,介绍了餐厨废弃物无害化处理的处理工艺、主要设备、管理模式和运行效果,并提出了几点启示。%Taking Changzhou Emergency Project of Food Waste Treatment as an example, the treatment technology, main equipments, management mode and operating effect were introduced. And some enlightenments were put forward.

  16. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...

  17. Waste management fiscal year 1998 progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  18. Open-cycle heat pumps for industrial waste-heat utilization. Project technical report, May 12, 1980-October 10, 1980. Phase I. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Open-Cycle Industrial Process Heat Pumps (IPHP) are potentially a cost-effective method of utilizing an industrial plant's waste heat. The objective of Phase I of the work was to determine the feasibility of an open-cycle industrial process heat pump. This was accomplished by the evaluation of four potential sites for the installation of open-cycle industrial process heat pump equipment. While it was the original plan to evaluate only three sites, the need for a fourth site became apparent upon completion of studies of the Amstar applications. On the basis of initial screening, it was decided to concentrate on the large waste stream at General Electric's NORYL facility (Selkirk, NY) and a smaller waste stream at the Schoeller Paper Company (Pulaski, NY). These two sites provided opportunities to exploit the features of the open-cyle IPHP without major site constraints. Site studies were conducted to obtain process information such as flow rates, process temperatures, dynamic behavior of the process streams, process control functions, and capacity/time schedules. Information relating to structure and utilities, floor loadings, physical space constraints, electric service, piping runs between equipment location, and waste water tapping points was gathered. These data were analyzed and resulted in the selection of two applications with acceptable thermodynamic performance.

  19. Estimation of the impact of water movement from sewage and settling ponds near a potential high level radioactive waste repository in Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, S.R.; Fewell, M.E.

    1992-02-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and the accompanying ponds used for the storage of sewage water and muck water removed from construction operations. The information in this report pertains to the two-dimensional numerical calculations modelling the movement of sewage and settling pond water, and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document (ESF DR) for the Yucca Mountain Site Characterization Project.

  20. Project SAFE. Microbial features, events and processes in the Swedish final repository for low-and intermediate-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden)

    2001-01-01

    The waste disposed of in the Swedish final repository for low and intermediate radioactive waste (SFR) typically contains large amounts of organic substances. This waste thus constitutes a possible source of energy and nutrients for microorganisms. Microbes can degrade the waste to degradation products, which to a varying degree may create problems if the process is significant. The environment for microbial life in the SFR is, however, unique since it cannot be compared to any environment to which microbes have adapted naturally over millions of years. Most similar to the SFR are waste dumps and landfills. In those, microbes degrade the waste and form degradation products. The experience from such 'analogues' and from research performed under repository-like conditions may provide useful clues about the microbial processes which may occur in the repository. Microbes have the ability to degrade bitumen, used to solidify some wastes, but this degradation is very slow under anaerobic conditions. Bitumen degradation will, therefore, not influence the safety of the SFR. However, some microbes can produce acids that could influence concrete stability, particularly in the presence of oxygen. The future SFR environment is anaerobic, which suggests that acid production is a very unlikely problem. Sulphate-reducing bacteria (SRB) have the ability to produce sulphide, which may act as a corrosive on metals. Under specific conditions, with the local groundwater flow close to a metal surface and with dissolved organic material from the repository, pitting corrosion of metal canisters is a potential threat. This process appears to require conditions fairly atypical of the SFR, however. Large groups of microorganisms can use hydrogen as a source of energy, thereby contributing to the decrease of this gas mainly formed from water during the anaerobic corrosion of metals. Cellulose is an excellent substrate for many microorganisms and it will be the dominating carbon and

  1. Anaerobic composting of pyrethrum waste with and without effective ...

    African Journals Online (AJOL)

    user

    laboratory scale experiment involved composting of the waste as substrate mixed with EM at different .... The arrangement consists of 5 L plastic cane for anaerobic .... and Documentation Project on Recycling of Domestic Solid Waste.

  2. Emergy synthesis for scale breeding waste biomass integrated utilization project%规模养殖废弃物生物质能综合利用工程能值分析

    Institute of Scientific and Technical Information of China (English)

    丁雄

    2013-01-01

    In the case of Jiangxi Yinhe Scale Eucommia Pig Breeding Base,the environmental load and local sustainability of the scale breeding waste biomass integrated utilization project was evaluated by using the emergy theory and method.The results indicated that the integrated project transfered the breeding waste into the efficient bio-energy embedded in biogas,biogas slurry and biogas residue through the process of anaerobic digestion,which in turns feedbacked into the system through the bio-energy utilization engineering.In Yinhe scale pig breeding waste biomass integrated utilization project,more reliance on the local recycling renewable resource input reduced the systematical demand for the non-renewable emergy purchased.The recycling utilization of the breeding waste,such as pig manure,urine,etc.,decreased the negative output of the system contaminants.All these make the breeding waste integrated project system illustrated an obvious advantage in the value of indices of R%,EYR,and ELR.In addition,the project realized both the green pig breeding and the organic planting via the circulating energy between the breeding and planting.The output of Eucommia pig and green vegetables would bring a considerable premium income for the enterprises.%应用能值理论和方法,以江西银河杜仲规模绿色生猪养殖基地为例,对规模养殖废弃物生物质综合利用工程的环境承载力及可持续能力进行分析评价.研究结果表明:综合利用工程通过沼气工程将规模养殖废弃物转化为沼气、沼液、沼渣等高效生物能,而这些生物能又通过“三沼”利用工程反馈回系统.大量废弃物再生能值的反馈投入不仅减少了系统对不可再生辅助能投入的需求,且减少了系统污染物的负产出,从而综合利用工程系统在资源系统的可更新率、能值产出率和环境承载率等方面都有明显的优势.同时,工程通过能量在养殖业和种植业间循环流

  3. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  4. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  5. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  6. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  7. Food waste or wasted food

    OpenAIRE

    van Graas, Maaike Helene

    2014-01-01

    In the industrialized world large amounts of food are daily disposed of. A significant share of this waste could be avoided if different choices were made by individual households. Each day, every household makes decisions to maximize their happiness while balancing restricted amounts of time and money. Thinking of the food waste issue in terms of the consumer choice problem where households can control the amount of wasted food, we can model how households can make the best decisions. I...

  8. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  9. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package

  10. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  11. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  12. Proceedings No. 41. Audition of M. Francois Loos, Delegate Minister of Industry, about the law project relative to the management of radioactive materials and wastes; Compte rendu n. 41. Audition de M. Francois Loos, ministre delegue a l'industrie, sur le projet de loi relatif a la gestion des matieres et dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    The project of law about the management of radioactive materials and wastes is the logical continuation of the law no 91-1381 from December 30, 1991 relative to the researches on radioactive waste management. At the occasion of the presentation of this law project at the board of ministers, F. Loos, the French minister of industry, presented this project the same day also at the house of commons. This document is the proceedings of the audition of F. Loos. It comprises a brief recall of the researches carried out so far and a presentation of the 3 main points of the project of law: reprocessing of spent fuels and recycling in reactors, interim surface storage of non-recyclable wastes, and underground reversible disposal of ultimate wastes. One aspect of the project concerns the scheduling of future research works according to the 3 ways defined in the 1991 law: storage, disposal and transmutation. This presentation is followed by questions from the deputies about some particular points of the project like the safety aspects, the selection of storage sites, the acceptance and information of the public, the financial aspects etc. (J.S.)

  13. Gestão de Resíduos Sólidos em Meios de Hospedagem: Um Etudo de Caso do Projeto Lixo Mínimo do Hotel Bühler em Visconde de Mauá, RJ / Solid Waste Management in Hotels: A Case Study of the Project Minimum Solid Wastes in Bühler Hotel in Visconde de Maua, RJ

    Directory of Open Access Journals (Sweden)

    Suellen Alice Lamas

    2015-04-01

    Full Text Available O presente artigo refere-se a um estudo de caso, a saber, o Projeto Lixo Mínimo do Hotel Bühler, em Visconde de Mauá, RJ. Trata-se de um projeto ambiental desenvolvido pelos administradores do citado hotel, para minimizar os efeitos negativos da atividade turística sobre o meio natural. Buscou-se, através desta pesquisa, analisar as etapas do referido projeto ambiental, verificando a viabilidade de aplicação do mesmo em outros empreendimentos hoteleiros. Os resultados demonstram que ações simples, organizadas e eficientes podem ser desenvolvidas pelos empreendimentos hoteleiros, em especial os similares ao Hotel Bühler, ou seja, situado em área natural e que atende a um número limitado de hóspedes.  Solid Waste Management in Hotels: A Case Study of the Project Minimum Solid Wastes in Bühler Hotel in Visconde de Maua, RJ - This article refers to a case study, known as the Lixo Mínimo Project of the Bühler Hotel in Visconde de Mauá,RJ, an environmental project developed by the administrators to minimize the negative effects of tourist activity on the natural environment. This paper seeks to analyze the stages of the project, verifying the viability of its application to other enterprises. The results show that simple actions, organized and efficient, can be developed by other hotels , especially by hotels similar to the Bühler hotel – situated in a natural area and serving a limited number of guests.

  14. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, J.J.; Scott, C.B.

    1994-02-01

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered.

  15. River Protection Project (RPP) Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    SEEMAN, S.E.

    2000-04-01

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  16. On Integrity Constraints for a Waste Management Information System

    OpenAIRE

    Schreiber, D. (Dominik)

    1994-01-01

    There is a waste problem in nearly every country. A model of a waste generating system and an efficient waste management information system are the first steps to control this problem. Some countries have already enacted laws which force communities and enterprises to report annually the amounts of wastes produced. For example, the German federal state, Lower Saxony, enacted such a law in 1992. This YSSP-Project deals with a case study on the development of a waste management information syst...

  17. Abandoned Mine Waste Working Group report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-10

    The Mine Waste Working Group discussed the nature and possible contributions to the solution of this class of waste problem at length. There was a consensus that the mine waste problem presented some fundamental differences from the other classes of waste addresses by the Develop On-Site Innovative Technologies (DOIT) working groups. Contents of this report are: executive summary; stakeholders address the problems; the mine waste program; current technology development programs; problems and issues that need to be addressed; demonstration projects to test solutions; conclusion-next steps; and appendices.

  18. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  19. Yucca Mountain Waste Package Closure System

    Energy Technology Data Exchange (ETDEWEB)

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  20. Engineering geology of waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, S.P. [ed.] [University of Wales, Cardiff (United Kingdom). School of Engineering

    1996-12-31

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK).

  1. Law project of program relative to the management of radioactive materials and wastes; Projet de Loi, de programme relatif a la gestion des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Villepin, D. de; Breton, T

    2006-03-15

    The law of the 30 December 1991 defined three axis of researches and fixed a the legal aspects of the researches programs management. Based on these researches results a law project has been defined. The first part of the document presents the objectives of the law project and discusses the different articles. The second part is devoted to the text of the law project. (A.L.B.)

  2. Solid Waste Disposal Management in A Residential Complex of A Defence Establishment- A Modern Approach

    Directory of Open Access Journals (Sweden)

    Jagdamba Dixit , Anil Kumar Dixit, Singh Narendra

    2014-01-01

    Conclusion: The AFMRC project “Solid Waste Disposal Management” has been found useful in controlling the problems of environmental sanitation. Similar projects may be undertaken at large scale to reduce, reuse and recycle the generated waste.

  3. Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology

    Directory of Open Access Journals (Sweden)

    Larissa A. R. U. Freitas

    2017-07-01

    Full Text Available The need for effective construction waste management is growing in importance, due to the increasing generation of construction waste and to its adverse impacts on the environment. However, despite the numerous studies on construction waste management, recovery of construction waste through Industrial Symbiosis and the adoption of other inter-firm practices, comprised within Industrial Ecology field of study, have not been fully explored. The present research aims to investigate Industrial Ecology contributions to waste management in industrial construction. The waste management strategies adopted in two industrial construction projects in Brazil are analyzed. The main waste streams generated are identified, recycling and landfilling diversion rates are presented and waste recovery through Industrial Symbiosis is discussed. A SWOT analysis was carried out. Results demonstrate that 9% of the waste produced in one of the projects was recovered through Industrial Symbiosis, while in the other project, waste recovery through Industrial Symbiosis achieved the rate of 30%. These data reveal Industrial Symbiosis’ potential to reduce landfilling of industrial construction wastes, contributing to waste recovery in construction. In addition, results show that industrial construction projects can benefit from the following synergies common in Industrial Ecology place-based approaches: centralized waste management service, shared waste management infrastructure and administrative simplification.

  4. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  5. What are the communication challenges for politicians, experts and stakeholders in order to enhance transparency in nuclear waste management decisions? Report from a Team Syntegrity Meeting. The European Project RISCOM-II. Work Package 3

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Espejo, Raul [Syncho Ltd., Birmingham (United Kingdom); Wene, Clas-Otto [Wenergy, Lund (Sweden)

    2003-09-01

    The Team Syntegrity Meeting is a special part of the project. It aims for increased awareness among key stakeholder groups in Europe about how nuclear waste decision processes should be developed in order to increase transparency and trust. Team Syntegrity is conducted with a special meeting format. The self-organisation of the meeting is a strong positive feature of the format. Instead of having a project leader setting the agenda, the participants formulate their own topics of relevance starting from an opening question. This report documents the meeting that was held in Lanaken, Belgium on 14-17 May 2002. The opening question for the meeting was: What are communication challenges for politicians, experts and stakeholders in order to enhance transparency in nuclear waste management decisions? There are different opinions about how communication on nuclear waste issues should be done. There are differences between stakeholder groups, and there are different approaches taken in various countries. Still it should be possible to reach a deeper understanding of social communications, that is, understanding the requirements to have effective communications between policy makers, experts and stakeholders. The aim was thus not to develop common views on the nuclear waste problem as such, but rather common grounds for developing procedures for effective communication. Hopefully, this meeting made some progress in this direction. The call for the Team Syntegrity (TS) Meeting resulted in 105 Statements of Importance given in Appendix 2. Following the TS format the meeting then formed its own agenda by first producing 30 Aggregated Statements of Importance (Appendix 3), which were grouped into 12 Consolidated Statements of Importance or topics. The group discussions were thus held under the twelve topics of: Consultation, communication and participation; Mutual learning; Roles and arenas; Heritage; Transparency; Wider context; Process; Risk; Institutional cultures

  6. What are the communication challenges for politicians, experts and stakeholders in order to enhance transparency in nuclear waste management decisions? Report from a Team Syntegrity Meeting. The European Project RISCOM-II. Work Package 3

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Espejo, Raul [Syncho Ltd., Birmingham (United Kingdom); Wene, Clas-Otto [Wenergy, Lund (Sweden)

    2003-09-01

    The Team Syntegrity Meeting is a special part of the project. It aims for increased awareness among key stakeholder groups in Europe about how nuclear waste decision processes should be developed in order to increase transparency and trust. Team Syntegrity is conducted with a special meeting format. The self-organisation of the meeting is a strong positive feature of the format. Instead of having a project leader setting the agenda, the participants formulate their own topics of relevance starting from an opening question. This report documents the meeting that was held in Lanaken, Belgium on 14-17 May 2002. The opening question for the meeting was: What are communication challenges for politicians, experts and stakeholders in order to enhance transparency in nuclear waste management decisions? There are different opinions about how communication on nuclear waste issues should be done. There are differences between stakeholder groups, and there are different approaches taken in various countries. Still it should be possible to reach a deeper understanding of social communications, that is, understanding the requirements to have effective communications between policy makers, experts and stakeholders. The aim was thus not to develop common views on the nuclear waste problem as such, but rather common grounds for developing procedures for effective communication. Hopefully, this meeting made some progress in this direction. The call for the Team Syntegrity (TS) Meeting resulted in 105 Statements of Importance given in Appendix 2. Following the TS format the meeting then formed its own agenda by first producing 30 Aggregated Statements of Importance (Appendix 3), which were grouped into 12 Consolidated Statements of Importance or topics. The group discussions were thus held under the twelve topics of: Consultation, communication and participation; Mutual learning; Roles and arenas; Heritage; Transparency; Wider context; Process; Risk; Institutional cultures

  7. The systematic roles of SKI and SSI in the Swedish nuclear waste management system. Syncho`s report for project RISCOM

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, R. [Syncho, Solihull (United Kingdom); Gill, A. [Syncho, Oxon (United Kingdom)

    1998-01-01

    The purpose of this report is to share and summarize our findings about the regulatory roles of SKI/SSI in the context of the Swedish Nuclear System (SNS), with an emphasis on nuclear waste management. The driving force in this review is to make decision processes more transparent. What is reported is based on interviews conducted with employees at SKI/SSI/SKB during early December 1996, the presentation to SKI/SSI in January 1997, discussions during the Shap Wells meeting in Cumbria during March 1997 and RISCOM internal discussions. We offer two hypotheses about the way the Nuclear Waste Management System (NWMS) appears to work. We choose one and derive from it a view about structural issues in SNS and NWMS. The conclusion is a set of systemic roles for the regulators. It is the comparison between these systemic roles and the actual situation that may trigger some adjustments in the system. Our hope is that these findings will make apparent feasible and desirable changes in the system in order to increase the chances for transparent decisions in the Nuclear Waste Management System. In summary, Section 2 includes a general background of the NWMS based on interviews and general information. Section 3 makes a more focused attempt to work out the issues expressed by people in the interviews. Section 4 discusses at a more conceptual level systemic ideas such as the unfolding of complexity. Section 5 is an attempt to organize viewpoints about the NWMS and offers hypotheses to support a preliminary diagnosis of the system in Section 6. We call this section `A problem of identity`. It is only in Section 7 that basic systemic arguments are unfolded with the intention of supporting an appreciation of SKI/SSI`s regulatory roles in the nuclear industry as a whole and nuclear waste management in particular. Section 8 offers a summary of conclusions.

  8. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  9. Expertise on the provision of evidence with respect to Nagra's disposal concept for spent fuel assemblies, vitrified high-level radioactive waste as well as for long-living intermediate-level wastes (Opalinus clay project); Gutachten zum Entsorgungsnachweis der Nagra fuer abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfaelle (Projekt Opalinuston)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-15

    Mankind has been living in a field of natural radiation; in Switzerland, the natural dose is around 3 mSv per year. It can be assumed that an artificial dose smaller than the natural one is harmless and can therefore be tolerated. However, nuclear power plants, medicine, industry and research produce radioactive wastes whose radioactivity is mostly higher than the natural level. These wastes must therefore be concentrated and enclosed until the decay reduces the dose rate to a harmless level. For this, it is foreseen that the radioactive wastes will be disposed of in deep-lying geological strata. The enclosure must be guarantied in such a way that, at any time, the radiation suffered by mankind and environment due to the radioactive wastes stays under the statutory limit of 1 mSv/a. The judgement of the quality of the deep underground repository is divided into 3 chapters: a) based on the geological and hydro-geological properties of the host rock, the proof of safety shows that the chosen repository site is safe for the long term; b) the proof of site guaranties that the repository needed can be built in the chosen host rock; c) the proof of implementation demonstrates that the repository can be built with the actual technical means proposed. The forecast for the development of the safety of the repository in the long term is fairly inaccurate, the most difficult factor being the developments in mankind's way of life. Therefore, conservative assumptions must be taken into account to cover even the most unlikely cases. The former project 'Gewaehr' presented by the National Co-operative for the Disposal of Nuclear Wastes (NAGRA) in 1978 was based on crystalline rock; it was rejected because it was not possible to find a sufficiently large area without geologic faults for the repository. In new investigations, NAGRA found a suitable layer of Opalinus clay in Zurich's Weinland. In the neighbourhood of the layer discovered, there are neither

  10. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock

    Energy Technology Data Exchange (ETDEWEB)

    Alberid, J.; Barcala, J. M.; Campos, R.; Cuevas, A. M.; Fernandez, E. [Ciemat. Madrid (Spain)

    2000-07-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  11. Waste acceptance criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  12. Proposed methodology for completion of scenario analysis for the Basalt Waste Isolation Project. [Assessment of post-closure performance for a proposed repository for high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roberds, W.J.; Plum, R.J.; Visca, P.J.

    1984-11-01

    This report presents the methodology to complete an assessment of postclosure performance, considering all credible scenarios, including the nominal case, for a proposed repository for high-level nuclear waste at the Hanford Site, Washington State. The methodology consists of defensible techniques for identifying and screening scenarios, and for then assessing the risks associated with each. The results of the scenario analysis are used to comprehensively determine system performance and/or risk for evaluation of compliance with postclosure performance criteria (10 CFR 60 and 40 CFR 191). In addition to describing the proposed methodology, this report reviews available methodologies for scenario analysis, discusses pertinent performance assessment and uncertainty concepts, advises how to implement the methodology (including the organizational requirements and a description of tasks) and recommends how to use the methodology in guiding future site characterization, analysis, and engineered subsystem design work. 36 refs., 24 figs., 1 tab.

  13. Virtual environmental applications for buried waste characterization technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  14. The carbonization of biomass waste: an exploration with exciting prospects

    OpenAIRE

    Quesada Kimzey, Jaime

    2012-01-01

    This paper offers a general view of the subject of carbonization of waste biomass. Just as well, it briefly describes two related projects currently under execution at the TEC. Both projects are focused on carbonization of waste biomass from the industrial processing of coffee, in a joint effort with Coopetarrazú.The project initiated in 2011 is dedicated to carbonization of dried wastes and will explore energetic as well as agricultural use of the charcoal. The one initiating in 2012 focuses...

  15. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies.......The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...

  16. Fiscal 1999 technical survey report. Model project implementation feasibility study in Malaysia on effective utilization of waste heat from paper sludge incineration; 1999 nendo Malaysia ni okeru seishi sludge nensho hainetsu yuko riyo model jigyo jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts are under way to popularize practical energy conservation technologies through verification on real machines in target countries. Possibilities were studied that Malaysian paper making plants would adopt technologies of collecting heat from high-temperature exhaust gas from paper sludge incineration and of effectively utilizing the thus-collected heat. The Malaysian paper making industry produced 800-thousand tons or more in 1998, covering 72% of the total national demand. Heat recovery facilities may be installed in 15 plants. On-site surveys were made into their actual states, and then Genting Sanyen Industrial Paper Sdn. Bhd. was selected as the plant for the model project, and detailed model project feasibility studies were conducted. The studies covered the amount of wastes from paper making, their properties, treatment process, amounts of utilities to be used during system operation, land on which to build the facilities, and a plan for collecting invested funds. As the result, it was concluded in view of the magnitude of the expected fruit that the model project be implemented at this plant. (NEDO)

  17. Alternatives for Future Waste Management in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Cimpan, Ciprian; Dall, Ole

    The TOPWASTE project has addressed the challenges of planning robust solutions for future waste management. The purpose was to identify economic and environmentally optimal solutions ‐ taking into account different scenarios for the development of the surrounding systems, such as the energy system....... During the project, four decision support tools were developed:1. Frida ‐ The EPA's tool for forecasting future waste generation 2. OptiWaste ‐ a new tool for economic optimisation of investments and operation of the combined waste and energy system3. KISS ‐ a new lifecycle based model with focus...... on comparison of greenhouse gas emissions associated with different waste management alternatives 4. A new tool for techno‐economic modelling of central sorting plants. The project has furthermore contributed with method development on evaluation of critical resources as well as analyses of economic...

  18. 垃圾渗沥液处理工程水池结构设计问题分析%Design of Pool Structure for Waste Leachate Treatment Project

    Institute of Scientific and Technical Information of China (English)

    刘俊起

    2012-01-01

    结合河北省三河市垃圾卫生填埋场工程,对垃圾渗沥液处理调节池、污水处理池、提升井结构所涉及的地震作用下的抗震荷载计算、内力计算及长水池无缝、抗裂及防腐蚀设计等问题进行了分析,并提出了相关的设计方法建议和施工中需要注意的问题.%Taking the project of Sanhe Waste Sanitary Landfill Site of Hebei as an example, some problems were analyzed, including calculation of aseismatic load, calculation of internal force, and design of seamless, cracking resistance and anti-corrosion for long pool involved in the structures of regulating tank of waste leachate treatment, sewage treatment pool, and drawing shaft under earthquake actions. The correlative designing suggestions and some problems needing paying attention to in the construction were put forward.

  19. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  20. Decision-Making Risks Concerning the Construction of the Goiania Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Paschoa, A.S. [Pontificia Univ. Catolica, Rio de Janeiro (Brazil); Rozental, J.J. [Ministry of Environment (Israel); Tranjan Filho, A. [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2001-07-01

    As it is well known, an accident with a teletherapy source made of {sup 137}CsCl with an initial activity of 59 TBq occurred in Goiania, in September of 1987. This paper will discuss the decision-making process, and the struggle that followed the decision to build the final repository for the remnants of the Goiania accident. The Goiania final repository was built as planned. The two subsurface structures under the grassy artificial hills hold the overall volume of the remnants of the Goiania accident. The near hill holds 5x10{sup 3} m3 of stabilized wastes without radioactivity, or with very low radioactivity. The far hill holds the remaining 6.5x10{sup 3} m{sup 3} of stabilized wastes with low and medium radioactivity. The central part of each subsurface hill has been shielded by wastes with less and less radioactivity. The overall fenced area occupies 1.85x10{sup 5} m{sup 2}. The external radiation levels are similar to the surrounding background, and much lower than those found in the Brazilian areas of high natural radioactivity. The site is permanently monitored by independent institutions, including Brazilian universities, and national and international organizations. As it was mentioned earlier, the final repository was build to last for at least 400 years. Although the initial decision to adopt a too conservative decontamination criterion in the case of the Goiania accident was bound to produce excessive amount of waste; such decision proved, retrospectively, not to be bad because the excess low radioactive waste produced was used as extra shielding material in final repository. The technical decision-maker should not abandon risk estimates, but should be aware that credibility is the main basis to achieve acceptability of a decision by the general public. Risk perception should be regarded as only a first step towards what may be called knowledge, or comprehension of risk estimates, but risk perception by the general public is still an open issue. The

  1. Community Participation in Solid Waste Management, Kathmandu

    OpenAIRE

    Gotame, Manira

    2012-01-01

    Waste management in Nepal is one of the important topics discussed today. Participation of the community is thus,being encouraged to manage solid waste. My study area is Kathmandu (Buddhajyoti, Chamati and Milijuli, Ganesh and Jagriti settlements in Kathmandu). My paper focuses in community participation in solid waste management in these settlements/communities. there are different projects working for this purpose in these settlements. I used household survey...

  2. 太阳能与发电余热复合沼气增温系统设计%Engineering design of solar and power waste energy heating system for biogas project

    Institute of Scientific and Technical Information of China (English)

    寇巍; 郑磊; 曲静霞; 邵丽杰; 张大雷; 裴占江; 刘庆玉

    2013-01-01

    Biogas projects have been rapidly developed in China due to their energy efficiency and environmental benefit. However, the microorganism in fermentor is inactivate and biogas production will be dramatically declined if the temperature in biogas fermentor is unstable or is too low. Sofar many biogas projects only operate stably in Southern China. It is difficult to expend the larger and medium-sized biogas projects in Northern China. Because the thermal insulation in this region cannot support the biogas fermentation. In this study, a set of heating system that composed of solar and power waste energy were tested. This technology was demonstrated for a middle temperature fermentation project in Harbin Shuangcheng city. The design principle is discussed in this paper. Some key parameters including fermentation heat load, generator heat recovery utilization rate, and thermal efficiency of solar collector unit were calculated theoretically to verify whether this heating system can meet the middle temperature condition. The results showed that averaged daily heat loss for this biogas project was 6659.2MJ during the whole year. Solar energy- power waste heating system used in intermediate temperature anaerobic fermentation can store averaged 7017.6 MJ heat per day. Because of larger temperature difference during the year in Northern China, adding heat and losing heat of the biogas project were analyzed for each month through the comparison analysis of heat supplement and loss. The biogas project needs additional 372.2, 369.4 and 208.3 kWh power from the biogas generator in December, January and February to ensure the project stable operation. In remaining months, the heating system was able to meet the middle temperature for the project. Further testing for the temperature raising effects by this heating system was conducted in August. Results showed that the fermentation raw material in primary fermentor can achieve 35℃ after 28 days’ heating,, and satisfy the

  3. Low and intermediate level waste in SFR-1. Reference waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Riggare, P.; Johansson, Claes

    2001-06-01

    The objective with this report is to describe all the waste and the waste package that is expected to be deposited in SFR-1 at the time of closure. This report is a part of the SAFE project (Safety Assessment of Final Repository for Radioactive Operational Waste), i.e. the renewed safety assessment of SFR-1. The accounted waste inventory has been used as input to the release calculation that has been performed in the SAFE project. The waste inventory is based on an estimated operational lifetime of the Swedish nuclear power plants of 40 years and that closure of the SFR repository will happen in 2030. In the report, data about geometries, weights, materials, chemicals and radionuclide are given. No chemo toxic material has been identified in the waste. The inventory is based on so called waste types and the waste types reference waste package. The reference waste package combined with a prognosis of the number of waste packages to the year 2030 gives the final waste inventory for SFR-1. All reference waste packages are thoroughly described in the appendices of this report. The reference waste packages are as far as possible based on actual experiences and measurements. The radionuclide inventory is also based on actual measurements. The inventory is based on measurements of {sup 60}Co and {sup 137} Cs in waste packages and on measurements {sup 239}Pu and {sup 240}Pu in reactor water. Other nuclides in the inventory are calculated with correlation factors. In the SAFE project's prerequisites it was said that one realistic and one conservative (pessimistic) inventory should be produced. The conservative one should then be used for the release calculations. In this report one realistic and one conservative radionuclide inventory is presented. The conservative one adds up to 10{sup 16} Bq. Regarding materials there is only one inventory given since it is not certain what is a conservative assumption.

  4. Work plan, health and safety plan, and quality assurance project plan for hazardous waste removal at the CTF K-1654B underground collection tank

    Energy Technology Data Exchange (ETDEWEB)

    Panter, M.S.; Burman, S.N.; Landguth, D.C.; Uziel, M.S.

    1991-10-01

    The Central Training Facility (CTF), located on Bear Creek Road approximately two miles south of the K-25 Site, is utilized for training security personnel at Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee. At the request of the CTF staff, this plan has been developed for the removal of the waste contents in the facility's 500-gal septic tank and associated distribution box. The septic tank and distribution box were historically located beneath the K-1654B trailer and adjacent to the K-1654A Indoor Firing Range. Recently, however, the K-1654B trailer was removed to accommodate the objectives of this work plan as well as future construction activities planned at CTF. The purpose of this plan is to develop and assign responsibilities, establish personnel protection requirements and mandatory safety procedures, and provide for contingencies that may arise while operations are being conducted by ORNL/MAD at the CTF K-1654B underground collection tank site. This document addresses requirements of 29 CFR 1910.120, Final Rule, with respect to aspects of health and safety applicable to an underground collection tank waste removal.

  5. Work plan, health and safety plan, and quality assurance project plan for hazardous waste removal at the CTF K-1654B underground collection tank

    Energy Technology Data Exchange (ETDEWEB)

    Panter, M.S.; Burman, S.N.; Landguth, D.C.; Uziel, M.S.

    1991-10-01

    The Central Training Facility (CTF), located on Bear Creek Road approximately two miles south of the K-25 Site, is utilized for training security personnel at Martin Marietta Energy Systems, Inc., Oak Ridge, Tennessee. At the request of the CTF staff, this plan has been developed for the removal of the waste contents in the facility`s 500-gal septic tank and associated distribution box. The septic tank and distribution box were historically located beneath the K-1654B trailer and adjacent to the K-1654A Indoor Firing Range. Recently, however, the K-1654B trailer was removed to accommodate the objectives of this work plan as well as future construction activities planned at CTF. The purpose of this plan is to develop and assign responsibilities, establish personnel protection requirements and mandatory safety procedures, and provide for contingencies that may arise while operations are being conducted by ORNL/MAD at the CTF K-1654B underground collection tank site. This document addresses requirements of 29 CFR 1910.120, Final Rule, with respect to aspects of health and safety applicable to an underground collection tank waste removal.

  6. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment

    Directory of Open Access Journals (Sweden)

    Jeff B. Langman

    2014-04-01

    Full Text Available A five-year, humidity-cell experiment was used to study the weathering evolution of a low-sulfide, granitic waste rock at 5 and 22 °C. Only the rock with the highest sulfide content (0.16 wt % released sufficient acid to overcome a limited carbonate acid-neutralization capacity and produce a substantial decline in pH. Leached SO4 and Ca quickly increased then decreased during the first two years of weathering. Sulfide oxidation continued to release acid and SO4 after carbonate depletion, resulting in an increase in acid-soluble elements, including Cu and Zn. With the dissolution of Al-bearing minerals, the pH stabilized above 4, and sulfide oxidation continued to decline until the end of the experiment. The variation in activation energy of sulfide oxidation correlates with changes in sulfide availability, where the lowest activation energies occurred during the largest releases of SO4. A decrease in sulfide availability was attributed to consumption of sulfide and weathered rims on sulfide grains that reduced the oxidation rate. Varying element release rates due to changing carbonate and sulfide availability provide identifiable geochemical conditions that can be viewed as neutralization sequences and may be extrapolated to the field site for examining the evolution of mineral weathering of the waste rock.

  7. Report realized on behalf of the economic affairs, the environment and the territory commission on the law project, after urgency declaration, of the program relative to the sustainable management of materials and radioactive wastes; Rapport fait au nom de la commission des affaires economiques, de l'environnement et du territoire sur le projet de loi, apres declaration d'urgence, de programme relatif a la gestion des matieres et des dechets radioactifs (n. 2977)

    Energy Technology Data Exchange (ETDEWEB)

    Birraux, C

    2006-03-15

    In 1991 the France decided to intensify its researches in the high activity radioactive wastes management domain. The law of the 30 December 1991 relative to the radioactive wastes management, decided that a period of 15 years would be devoted to the research of very long dated solutions. Taking into account these researches, a law project has been composed. After a recall of the today situation of radioactive materials and wastes in France and the knowledge since 1991, this document presents the law project. (A.L.B.)

  8. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  9. FORGEing a safe future for radioactive waste

    OpenAIRE

    Ward, Emma; Cuss, Rob; Kingdon, Andy; Shaw, Richard

    2011-01-01

    Fifty years of nuclear power generation in the UK have produced a significant amount of waste, and storing it is not straightforward. Radiation isn’t the only problem – the waste produces potentially dangerous gases too. Emma Ward, Rob Cuss, Andy Kingdon and Richard Shaw are part of an international project working out what to do about it.

  10. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This paper provides highlights from the summer meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: responsibility for nonfuel component disposal; state experiences in facility licensing; and volume projections.

  11. FRIDA: A model for the generation and handling of solid waste in Denmark

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Møller Andersen, Frits

    2012-01-01

    Since 1994, Danish waste treatment plants have been obliged to report to the Danish EPA the annual amounts of waste treated. Applying these data, we analyse the development, link amounts of waste to economic and demographic variables, and present a model for the generation and treatment of waste...... in Denmark. Using the model and official projections of the economic development, a baseline projection for the generation and treatment of waste is presented. © 2012 Elsevier B.V. All rights reserved....

  12. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Meleshyn, Artur [Gesellschaft fur Anlagen und Reaktorsicherheit, Braunschweig (Germany); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  13. Ecotoxicological screen of Potential Release Site 50-006(d) of Operable Unit 1147 of Mortandad Canyon and relationship to the Radioactive Liquid Waste Treatment Facilities project

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Newell, P.G.

    1996-04-01

    Potential ecological risk associated with soil contaminants in Potential Release Site (PRS) 50-006(d) of Mortandad Canyon at the Los Alamos National Laboratory was assessed by performing an ecotoxicological risk screen. The PRS surrounds Outfall 051, which discharges treated effluent from the Radioactive Liquid Waste Treatment Facility. Discharge at the outfall is permitted under the Clean Water Act National Pollution Discharge Elimination System. Radionuclide discharge is regulated by US Department of Energy (DOE) Order 5400.5. Ecotoxicological Screening Action Levels (ESALSs) were computed for nonradionuclide constituents in the soil, and human risk SALs for radionuclides were used as ESALs. Within the PRS and beginning at Outfall 051, soil was sampled at three points along each of nine linear transects at 100-ft intervals. Soil samples from 3 depths for each sampling point were analyzed for the concentration of a total of 121 constituents. Only the results of the surface sampling are reported in this report.

  14. Agricultural uses of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Pile, R.S.; Behrends, L.L.; Burns, E.R.; Maddox, J.J.; Madewell, C.E.; Mays, D.A.; Meriwether, J.

    1977-11-16

    A major concern of the Tennessee Valley Authority is to ensure efficient use of Tennessee Valley resources in achieving optimum economic development without degrading the environment. As part of this effort, TVA is exploring many uses for waste heat. Activities to develop ways to use waste heat in agricultural production are described. Primary objectives are to: (1) identify potential agricultural uses of waste heat, (2) develop and test technologies and management criteria for more productive uses, (3) demonstrate technologies in commercial-scale production facilities, and (4) provide technical assistance for commercial application. Waste heat research and development projects under investigation or being planned by TVA independently or cooperatively include: (1) controlled environment greenhouses, (2) biological ecycling of nutrients from livestock manures, (3) soil heating and irrigation, and (4) environmental control for livestock housing. (MHR)

  15. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Science.gov (United States)

    2011-05-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY... Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering... waste (LLRW), from Exelon's Limerick Generating Station, Units 1 and 2 (LGS). The LLRW will be stored in...

  16. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  17. The 1981 National Waste Terminal Storage Program Information Meeting

    Science.gov (United States)

    1981-11-01

    Topics covered include: overview of the national waste terminal storage (NWTS) program; site characterization; repository development; regulatory framework; systems; socioeconomic evaluation; site screening/characterization support activities; repository data base development; regulatory implementation; systems performance assessment; sociopolitical initiatives; Earth sciences; international waste management; waste package development; quality assurance; and Overviews of NWTS Projects.

  18. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings.

  19. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  20. Landfills - Municipal Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...