WorldWideScience

Sample records for waste incineration residues

  1. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...

  2. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...... of the ashes. Leaching test, however, must be selected carefully to provide information relevant for the actual disposal scenario and for evaluating the benefits of pre-treating the residues prior to landfilling. This paper describes research at the Technical University of Denmark addressing some...... of these issues focusing on pH-development in landfilled residues, effects of leaching test conditions on Cr leaching and effects of pre-treatment with FeSO4....

  3. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  4. Residues from waste incineration. Final report. Rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2010-04-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (Author)

  5. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  6. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  7. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-01-01

    and residue composition at a full-scale incinerator were affected by known additions of specific waste materials to the normal municipal solid waste (MSW) input. Six individual experiments were carried out (% ww of total waste input): NaCl (0.5%), shoes (1.6%), automobile shredder waste (14%), batteries (0...

  8. Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2002-01-01

    A stabilization method for air pollution control (APC) residues from municipal solid waste incineration (MSWI) involving mixing of the residue with water and FeSO4 has been demonstrated on a semi-industrial scale on three types of APC residues: a semidy (SD) APC residue, a fly ash (FA), and an FA...

  9. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  10. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  11. Evaluation of resource recovery from waste incineration residues--the case of zinc.

    Science.gov (United States)

    Fellner, J; Lederer, J; Purgar, A; Winterstetter, A; Rechberger, H; Winter, F; Laner, D

    2015-03-01

    Solid residues generated at European Waste to Energy plants contain altogether about 69,000 t/a of Zn, of which more than 50% accumulates in air pollution control residues, mainly boiler and filter ashes. Intensive research activities aiming at Zn recovery from such residues recently resulted in a technical scale Zn recovery plant at a Swiss waste incinerator. By acidic leaching and subsequent electrolysis this technology (FLUREC) allows generating metallic Zn of purity>99.9%. In the present paper the economic viability of the FLUREC technology with respect to Zn recovery from different solid residues of waste incineration has been investigated and subsequently been categorised according to the mineral resource classification scheme of McKelvey. The results of the analysis demonstrate that recovery costs for Zn are highly dependent on the costs for current fly ash disposal (e.g. cost for subsurface landfilling). Assuming current disposal practice costs of 220€/ton fly ash, resulting recovery costs for Zn are generally higher than its current market price of 1.6€/kg Zn. With respect to the resource classification this outcome indicates that none of the identified Zn resources present in incineration residues can be economically extracted and thus cannot be classified as a reserve. Only for about 4800 t/a of Zn an extraction would be marginally economic, meaning that recovery costs are only slightly (less than 20%) higher than the current market price for Zn. For the remaining Zn resources production costs are between 1.5 and 4 times (7900 t/a Zn) and 10-80 times (55,300 t/a Zn) higher than the current market value. The economic potential for Zn recovery from waste incineration residues is highest for filter ashes generated at grate incinerators equipped with wet air pollution control.

  12. A review of municipal solid waste environmental standards with a focus on incinerator residues

    Directory of Open Access Journals (Sweden)

    Alec Liu

    2015-12-01

    Full Text Available Environmental issues are often neglected until a lapse in the care for environment, which leads to serious human health problem, would then put regulation gaps in the spotlight. Environmental regulations and standards are important as they maintain balance among competing resources and help protect human health and the environment. One important environmental standard is related to municipal solid waste (MSW. Proper MSW management is crucial for urban public health. Meanwhile, the sustainability of landfills is also of concern as increasing volumes of MSW consume finite landfill space. The incineration of MSW and the reuse of incinerated residues help alleviate the burden on landfill space. However, the reuse of MSW incinerator residues must be regulated because they may expose the environment to toxic heavy metal elements. The study of environmental standards from different countries applicable to MSW is not widely published, much less those for incinerated MSW residue reuse. This paper compares extant waste classification and reuse standards pertinent to MSW, and explores the unique recent history and policy evolution in some countries exhibiting high environmental regard and rapid changes, so that policy makers can propose new or revise current MSW standards in other countries.

  13. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.

  14. Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2002-01-01

    A stabilization method for air pollution control (APC) residues from municipal solid waste incineration (MSWI) involving mixing of the residue with water and FeSO4 has been demonstrated on a semi-industrial scale on three types of APC residues: a semidy (SD) APC residue, a fly ash (FA), and an FA...... mixed with sludge (FAS) from a wet flue gas cleaning system. The process was performed in batches of 165-175 kg residue. It generates a wastewater that is highly saline but has a low content of heavy metals such as Cd, Cr, and Pb. The stabilized and raw residues have been subject to a range of leaching...... tests: the batch leacing test, the pH-static leaching test, the availability test, and the column test. These tests showed that the stabilized residues have remarkably improved leaching properties, especially with respect to Pb but also with respect to Cd, Cu, and Zn. The release of Pb was reduced...

  15. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    Science.gov (United States)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  16. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng, E-mail: shends@zju.edu.cn

    2013-10-15

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T{sub Cd} = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  17. Treatment of waste incinerator air-pollution-control residues with FeSO4: Concept and product characterization

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Sørensen, Mette Abildgaard

    2002-01-01

    This paper describes a new concept for treatment of air- pollution-control (APC) residues from waste incineration and characterises the wastewater and stabilised residues generated by the process. The process involves mixing of APC-residues with a ferrous sulphate solution and subsequent oxidation...

  18. Combined incineration of industrial wastes with in-plant residues in fluidized-bed utility boilers--decision relevant factors.

    Science.gov (United States)

    Ragossnig, Arne M; Lorber, Karl E

    2005-10-01

    In Austria more than 50% of the high-calorific industrial residues and wastes generated are utilized for energy recovery in industrial utility boilers. This study investigated full-scale trials of combined incineration of in-plant residues with various industrial wastes. These trials were carried out in order to learn how the alternatively used fuel influences the incineration process itself as well as the quantity and quality of the various incineration products. The currently used fuel, which consisted of in-plant residues as well as externally acquired waste wood and the refuse-derived fuel (RDF) mixtures used during the full-scale trials are characterized in terms of material composition as well as chemical and physical parameters. An input-output mass balance for the incineration plant (two fluidized bed combustion units, 20 and 30 MW, respectively) has been established, based on the data collected during the full-scale incineration trials. Furthermore, pollutant concentrations in the off-gas as well as the solid incineration residue are reported. It is not only the pollutant content but also a variety of other internal as well as external factors that have to be considered if a company is to decide whether or not to thermally utilize specific waste types. Therefore a strengths and weaknesses profile for several types of waste and the specific industrial boiler is also presented.

  19. Research on Toxicity Evaluation of Waste Incineration Residues of Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Rasa Volungevičienė

    2014-10-01

    Full Text Available Recycling waste printed circuit boards (PCB is an extremely complicated process, because PCBs consist of a number of complex components – hazardous and non-hazardous materials sets. Pyrolysis and combustion are currently the most effective treatment technologies for waste printed circuit boards. Pyrolysis can be used for thermally decomposing PCBs allowing for the simultaneous recovery of valuable materials. Following the extraction of valuable materials, the problem of residual ash utilization is encountered. Determining the qualitative and quantitative characteristics of incineration residue helps with choosing effective ash management technologies. This paper analyzes PCB ash generated at three different temperatures of 400 °C, 500 °C and 600 °C. Ash residues have been analysed to determine the quantity and type of metals present. Furthermore, the experiment of leaching heavy metals from ash has been described.

  20. The National Incinerator Testing and Evaluation Program (NITEP): A summary of the characterization and treatment studies on residues from municipal solid waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Sawell, S.E.; Constable, T.W. (Waste Water Technology Centre, Environment Canada, Ottawa, ON (Canada))

    1993-10-01

    The National Incinerator Testing and Evaluation Program (NITEP) was implemented in 1984 to examine the impact of municipal solid waste (MSW) incineration on the environment and human health. The chemical properties and leachability of different types of ash from MSW incinerators were evaluated using a battery of laboratory procedures. Three generic incinerator technologies were tested: two stage combustion, mass burning, and refuse-derived fuel (RDF) combustion. The semi-pyrolytic conditions in the two stage incinerator result in lower fixed solids contents and consequently higher organic contaminant concentrations in bottom ash when compared to the other two systems. Air pollution control system residues from MSW incinerator facilities were solidified using formulations of a Portland Type II cement and a waste pozzolan, using a minimum of solidification additives while retaining physical strength. The formulations produced solidified materials that typically had unconfined compressive strength, hydraulic conductivity and volume change factors appropriate for disposal in a landfill. Solidification typically reduces the solubility of metals under both acidic and highly alkaline leaching conditions. In general the use of cement and waste pozzolans to solidify fly ash from MSW incinerator systems appears to be technically feasible. 51 figs., 23 figs., 19 tabs.

  1. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  2. Characteristics of residual organics in municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Lin, Yen-Ching; Yen, Jui-Hung; Lateef, Shaik Khaja; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2010-10-15

    Although heavy metals in bottom ash have been a primary issue in resource recovery of municipal solid waste incinerator residues in past decades, less studied are potentially toxic and odorous organic fractions that exist as they have not been completely oxidized during the mass burn process. Using supercritical fluid extraction (SFE) and soxtec extraction (SE) techniques, this study investigated the characteristics of un-oxidized organic residues contained in bottom ash from three municipal solid waste incinerators in Taiwan during 2008-2009. All together 99 organics were identified in bottom ash samples using gas chromatography-mass spectrometry (GC-MS). Among the identified organics, aromatic compounds were most frequently detected. No polycyclic aromatic hydrocarbons were extracted by SFE or SE. Several phthalates (e.g., phthalic acid isobutyl tridec-2-yn-1-yl ester, dibutyl phthalate and 2-butoxyethyl butyl benzene-1,2-dicarboxylate), organic phosphates (e.g., octicizer and phosphoric acid isodecyl diphenyl ester), and aromatics and amines including pyridine, quinoline derivatives, chloro- and cyano-organics were successfully extracted. Aromatic amines (e.g., 1-nitro-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylic acid diethylamide and 3-bromo-N-(4-bromo-2-chlorophenyl)-propanamide) and aromatic compounds (other than amines) (e.g., 7-chloro-4-methoxy-3-methylquinoline and 2,3-dihydro-N-hydroxy-4-methoxy-3,3-dimethyl indole-2-one) are probably the major odorous compounds in bottom ash. This work identifies organic pollutants in incinerated bottom ash that have received far less attention than their heavy metals counterpart.

  3. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.

    Science.gov (United States)

    Quina, Margarida J; Santos, Regina C; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-04-01

    This study is mainly related with the physical and chemical characterization of a solid waste, produced in a municipal solid waste (MSW) incineration process, which is usually referred as air pollution control (APC) residue. The moisture content, loss on ignition (LOI), particle size distribution, density, porosity, specific surface area and morphology were the physical properties addressed here. At the chemical level, total elemental content (TC), total availability (TA) and the leaching behaviour with compliance tests were determined, as well as the acid neutralization capacity (ANC). The main mineralogical crystalline phases were identified, and the thermal behaviour of the APC residues is also shown. The experimental work involves several techniques such as laser diffraction spectrometry, mercury porosimetry, helium pycnometry, gas adsorption, flame atomic absorption spectrometry (FAAS), ion chromatography, scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). The results point out that the APC residues do not comply with regulations in force at the developed countries, and therefore the waste should be considered hazardous. Among the considered heavy metals, lead, zinc and chromium were identified as the most problematic ones, and their total elemental quantities are similar for several samples collected in an industrial plant at different times. Moreover, the high amount of soluble salts (NaCl, KCl, calcium compounds) may constitute a major problem and should be taken into account for all management strategies. The solubility in water is very high (more than 24% for a solid/liquid ratio of 10) and thus the possible utilizations of this residue are very limited, creating difficulties also in the ordinary treatments, such as in solidification/stabilization with binders.

  4. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    Science.gov (United States)

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert.

  5. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  6. Metal releases from a municipal solid waste incineration air pollution control residue mixed with compost.

    Science.gov (United States)

    Van Praagh, M; Persson, K M

    2008-08-01

    The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.

  7. Evaluation of pre-treatment methods for landfill disposal of residues from municipal solid waste incineration.

    Science.gov (United States)

    Kim, Sang-Yul; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2003-10-01

    This study presents results concerning leaching of Pb, Cd, Ca, and Cl with reference to one individual batch of bottom ash and fly ash (5:1) resulting from a municipal solid waste incinerator (MSWI) in Japan. This ash mixture was stabilised by the following pre-treatments: water washing, carbonation, and phosphate stabilisation. Once the optimum processing condition for each pre-treatment was determined, the performances were evaluated using both pH-stat leaching (pH 6, 9, 12) and availability tests. These performance tests were carried out with only fly ash without considering the mixture of MSWI residues, in order to accurately determine leaching differences among the pre-treatments. Water washing effectively removed the major elements from MSWI residues and also reduced the leachability of trace metals, such as Pb and Cd. A washing time of 15 minutes with a liquid/solid ratio of 5 was reasonably effective. Carbonation had a significant effect on leachability in alkaline ranges (pH 9 and 12), when the reaction occurred only on the surface of MSWI residues, moreover a moisture content of 10-16.7% was proved suitable for carbonation. On the other hand, phosphate stabilisation, even with small amounts of phosphate (0.16 mol-PO4(3-) kg(-1)), was very effective in reducing the leachability of heavy metals.

  8. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  9. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  10. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  11. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  12. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues.

    Science.gov (United States)

    Tao, Xiao-Qing; Shen, Dong-Sheng; Shentu, Jia-Li; Long, Yu-Yang; Feng, Yi-Jian; Shen, Chen-Chao

    2015-03-01

    Ash from incinerated e-waste dismantling residues (EDR) may cause significant health risks to people through ingestion, inhalation, and dermal contact exposure pathways. Ashes of four classified e-waste types generated by an incineration plant in Zhejiang, China were collected. Total contents and the bioaccessibilities of Cd, Cu, Ni, Pb, and Zn in ashes were measured to provide crucial information to evaluate the health risks for incinerator workers and children living in vicinity. Compared to raw e-waste in mixture, ash was metal-enriched by category incinerated. However, the physiologically based extraction test (PBET) indicates the bioaccessibilities of Ni, Pb, and Zn were less than 50 %. Obviously, bioaccessibilities need to be considered in noncancer risk estimate. Total and PBET-extractable contents of metal, except for Pb, were significantly correlated with the pH of the ash. Noncancer risks of ash from different incinerator parts decreased in the order bag filter ash (BFA) > cyclone separator ash (CFA) > bottom ash (BA). The hazard quotient for exposure to ash were decreased as ingestion > dermal contact > inhalation. Pb in ingested ash dominated (>80 %) noncancer risks, and children had high chronic risks from Pb (hazard index >10). Carcinogenic risks from exposure to ash were under the acceptable level (<10(-6)) both for children and workers. Exposure to ash increased workers' cancer risks and children's noncancer risks. Given the risk estimate is complex including toxicity/bioaccessibility of metals, the ways of exposure, and many uncertainties, further researches are required before any definite decisions on mitigating health risks caused by exposure to EDR incinerated ash are made.

  13. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  14. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  15. Evaluation of medical waste incinerators in Alexandria.

    Science.gov (United States)

    Labib, Ossama A; Hussein, Ahmed H; El-Shall, Waffaa I; Zakaria, Adel; Mohamed, Mona G

    2005-01-01

    Medical establishments play important roles in different activities by using of modern technology to serve the humans and the environment through different departments in the establishment and its firms. Medical wastes are considered as a hazardous waste because they contain toxic materials, infectious, or non-infectious wastes and they are considered as a hazard to millions of patients, health care workers, and visitors. Treatment processes for medical wastes comprise autoclaving, microwaving, chemical disinfection, irradiation, plasma system, and incineration. Incineration is a thermal process, which destroys most of the waste including microorganisms. Combustion process must be under controlled conditions to convert wastes containing hazardous materials into mineral residues and gases. Hospital waste incinerators may emit a number of pollutants depending on the waste being incinerated. These pollutants include particulate matter, acid gases, toxic metals, and toxic organic compounds products of incomplete combustion, e.g., dioxins, furans, and carbon monoxide, as well as sulfur oxides and nitrogen oxides. So, there should be a reduction of emissions of most of these pollutants by air pollution control devices. This study was conducted in 51 medical establishments (ME) in Alexandria. To evaluate its incinerators. It was found that only 31.4% of total ME have their own incinerators to treat their medical waste. Also, the incinerators conditions were poor with incomplete combustion. So, the study recommend handling of all medical wastes of ME in Alexandria by the company which is responsible now for management of domestic solid wastes of the city.

  16. Assessment of long-term pH developments in leachate from waste incineration residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Jakobsen, Rasmus; Christensen, Thomas Højlund

    2006-01-01

    alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1......) corresponding to about 100 000 years in typical landfill scenarios. It was found that pH changes were mainly governed by alkalinity decreases from leaching processes rather than neutralization reactions. The results suggest that leaching testing for assessment purposes should be carried out in the alkaline...... range, for example, at pH 9. The paper offers a thorough basis for further modelling of incineration residue leaching and for modelling the environmental consequences of landfilling and utilization of these residues....

  17. A pilot and field investigation on mobility of PCDDs/PCDFs in landfill site with municipal solid waste incineration residue.

    Science.gov (United States)

    Osako, Masahiro; Kim, Yong-Jin; Lee, Dong-Hoon

    2002-09-01

    A field investigation by boring was carried out in a landfill site primarily with municipal solid waste incineration residue. From the collected core samples, vertical profiles of homologous content of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) in the landfill layer were traced and the behavior of PCDDs/PCDFs was examined. In addition, a pilot-scale study was conducted on the PCDDs/PCDFs leached from incineration fly ash and the treated one using large landfill simulation columns (lysimeters) and the leaching behavior of PCDDs/PCDFs was examined. As a result, it was found that the coexistence of dissolved coloring constituents (DCCs), which might be composed of constituents like dissolved humic matters having strong affinity for hydrophobic organic pollutants, could enhance the leachability of PCDDs/PCDFs, thus contributing to the vertical movement and leaching behavior of PCDDs/PCDFs in the landfill layers of the incineration residue. Moreover, it is highly probable that DCCs derive from the unburned carbon in the bottom ash mixed and buried with the fly ash containing a high content of PCDDs/PCDFs.

  18. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    Science.gov (United States)

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished.

  19. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: Fate of elements and dioxins.

    Science.gov (United States)

    Bergfeldt, Brita; Jay, Klaus; Seifert, Helmuth; Vehlow, Jürgen; Christensen, Thomas H; Baun, Dorthe L; Mogensen, Erhardt P B

    2004-02-01

    Air pollution control (APC) residues from municipal solid waste incinerator plants that are treated by means of the Ferrox process can be more safely disposed of due to reduction of soluble salts and stabilization of heavy metals in an iron oxide matrix. Further stabilization can be obtained by thermal treatment inside a combustion chamber of a municipal solid waste incinerator. The influence of the Ferrox products on the combustion process, the quality of the residues, and the partitioning of heavy metals between the various solids and the gas have been investigated in the Karlsruhe TAM-ARA pilot plant for waste incineration. During the experiments only few parameters were influenced. An increase in the SO2 concentration in the raw gas and slightly lower temperatures in the fuel bed could be observed compared with reference tests. Higher contents of Fe and volatile heavy metals such as Zn, Cd, Pb and partly Hg in the Ferrox products lead to increased concentration of these elements in the solid residues of the co-feeding tests. Neither the burnout nor the PCDD/F formation was altered by the addition of the Ferrox products. Co-feeding of treated APC residues seems to be a feasible approach for obtaining a single solid residue from waste incineration.

  20. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    Science.gov (United States)

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.

  1. Electrodialytic upgrading of three different municipal solid waste incineration residue types with focus on Cr, Pb, Zn, Mn, Mo, Sb, Se, V, Cl and SO4

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Pedersen, Kristine B.

    2015-01-01

    Handling of air pollution control (APC) residues from municipal solid waste incineration (MSWI) is a challenge due to its toxicity and high leaching of toxic elements and salts. Electrodialysis (ED) of the material has shown potential for reduction of leaching of toxic elements and salts to produce...

  2. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...

  3. Electrodialytic upgrading of three different municipal solid waste incineration residue types with focus on Cr, Pb, Zn, Mn, Mo, Sb, Se, V, Cl and SO4

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Pedersen, Kristine B.

    2015-01-01

    Handling of air pollution control (APC) residues from municipal solid waste incineration (MSWI) is a challenge due to its toxicity and high leaching of toxic elements and salts. Electrodialysis (ED) of the material has shown potential for reduction of leaching of toxic elements and salts to produce...

  4. Environmental impact of APC residues from municipal solid waste incineration: reuse assessment based on soil and surface water protection criteria.

    Science.gov (United States)

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2011-01-01

    Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of "building material not allowed". The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

  5. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    Science.gov (United States)

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  6. Treatment of waste incinerator air-pollution-control residues with FeSO4: Laboratory investigation of design parameters

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Christensen, Thomas Højlund; Lundtorp, Kasper

    2002-01-01

    The key design parameters of a new process for treatment of air-pollution-control (APC) residues (the Ferroxprocess) were investigated in the laboratory. The optimisation involved two different APC-residues from actual incinerator plants. The design parameters considered were: amount of iron oxide...

  7. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension - test of a new two compartment experimental cell

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Magro, Cátia; Guedes, Paula

    2015-01-01

    Municipal solid waste incineration (MSWI) residues such as fly ash and air pollution control (APC) residues are classified as hazardous waste and disposed of, although they contain potential resources. The most problematic elements in MSWI residues are leachable heavy metals and salts. For reuse...

  8. Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues

    DEFF Research Database (Denmark)

    Hu, Y.; Hyks, Jiri; Astrup, Thomas

    2008-01-01

    tests with dried APC-residue than in tests with wet residues. The effect of drying appeared to be a combination of decreasing the reduction capacity of the sample (Cr), decreasing pH (Cd, Cu) and in column tests also a wash-out of salts (probably affecting Cd and Pb). If the leaching tests are intended...... to mimic landfill conditions, the results of this paper suggest that the tests should be done on wet, non-dried residue samples, although this may be less practical than testing dried samples....... for the batch and column leaching test; however, these standards do not specify whether or not the residue samples should be dried prior to the leaching testing. Laboratory tests were performed in parallel (dried/nondried) on treated APC-residue samples and evaluated with respect to Cr, Cd, Cu, Pb and Zn...

  9. LCA Of The “Renescience” Concept: An Alternative To Incineration For The Treatment Of Residual Municipal Solid Waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    is the incinerator “Amagerforbrænding” (INC) located in Copenhagen (Denmark). Two different energy systems are considered for the assessment: coal as marginal energy and natural gas as marginal energy. The results of the LCA show that the co-combustion (CC-CC) and biogas scenarios (BG-CC) perform better than......The “REnescience” system consists on a pretreatment of the waste based on heat and enzymes which liquefy the biogenic fraction of the waste (paper and organics). The outputs of the process are then liquid slurry and a remaining solid fraction from which metals, plastic and glass can eventually...

  10. Assessment of long-term leaching from waste incineration air-pollution-control residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Mosbæk, Hans; Christensen, Thomas Højlund

    2006-01-01

    Assessment of long-term leaching from MSWI air-pollution-control (APC) residues is discussed with respect to use in environmental impact assessment, such as life-cycle assessment (LCA). A method was proposed for estimating leaching as a function of the liquid-to-solid (L/S) ratio in a long-term p...

  11. Influence of oxygen flow rate and compost addition on reduction of organic matter in aerated waste layer containing mainly incineration residue

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Asakrura; Kei Nakagawa; Kazuto Endo; Masato Yamada; Yusaku Ono; Yoshiro Ono

    2013-01-01

    Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer,causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter.In this study,efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated.Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR).To effectively accelerate TOC reduction in the waste layer to which compost was added,a high OFR exceeding that by natural ventilation was required.At day 65,the pH of the leachate when OFR was above 102 mol-O2/(day·m3) was lower than that when OFR was below 101 mol-O2/(day·m3).At the same OFR,the pH of waste sample was lower than that of waste sample with compost.Although leachate neutralization could be affected by compost addition,TOC reduction in the waste layer became rather small.It is possible that humic substances in compost prevent the decomposition of TOC in MSWI residue.

  12. Investigation of novel incineration technology for hospital waste.

    Science.gov (United States)

    Liu, Yangsheng; Ma, Lanlan; Liu, Yushan; Kong, Guoxing

    2006-10-15

    Conventional incineration systems for hospital waste (HW) emit large amounts of particulate matter (PM) and heavy metals, as well as dioxins, due to the large excess air ratio. Additionally, the final process residues--bottom and fly ashes containing high levels of heavy metals and dioxins--also constitute a serious environmental problem. These issues faced by HW incineration processes are very similar to those confronted by conventional municipal solid waste (MSW) incinerators. In our previous work, we developed a novel technology integrating drying, pyrolysis, gasification, combustion, and ash vitrification (DPGCV) in one step, which successfully solved these issues in MSW incineration. In this study, many experiments are carried out to investigate the feasibility of employing the DPGCV technology to solve the issues faced by HW incineration processes, although there was no MSW incinerator used as a HW incinerator till now. Experiments were conducted in an industrial HW incineration plant with a capacity of 24 tons per day (TPD), located in Zhenzhou, Henan Province. Results illustrated that this DPGCV technology successfully solved these issues as confronted by the conventional HW incinerators and achieved the expected results for HW incineration as it did for MSW incineration. The outstanding performance of this DPGCV technology is due to the fact that the primary chamber acted as both gasifier for organic matter and vitrifying reactor for ashes, and the secondary chamber acted as a gas combustor.

  13. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  14. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  15. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...

  16. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  17. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  18. Highly Efficient Fecal Waste Incinerator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  19. Leaching behaviour of elements and evaluation of pre-treatment methods for municipal solid waste incinerator residues in column leaching tests.

    Science.gov (United States)

    Kim, Sang-Yul; Tanaka, Nobutoshi; Matsuto, Toshihiko; Tojo, Yasumasa

    2005-06-01

    Two new pre-treatment methods (water-washing/carbonation and carbonation/phosphate stabilization) of municipal solid waste (MSW) incinerator residues were evaluated by column leaching tests under aerobic conditions and anaerobic conditions (which were changed to aerobic conditions after 10 months). A mixture of bottom ash and fly ash (5:1 ratio) was pre-treated using each method. Shredded incombustible residues (SIR) were added to each ash preparation in proportions similar to the ratios present in landfills. For comparison, landfill wastes typical of Japan, namely, a mixture of bottom ash, chelating-pre-treated fly ash, and SIR, were also examined. Leachate samples were collected periodically and analysed over a 15-month period. When compared with chelating pretreatment, both water-washing/carbonation and carbonation/ phosphate stabilization reduced the leaching of Pb, Al, and Cu by about one to two orders of magnitude. Moreover, the initial concentrations of Ca and Pb in leachates from column of water-washing/carbonation were 56-57% and 84-96% less than those from the column of carbonation/phosphate stabilization. Therefore, water-washing/carbonation was considered to be a promising approach to obtain early waste stabilization and to reduce the release of heavy metals to near-negligible levels. The leaching behaviour of elements was also discussed.

  20. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...... metals (approx. 3%) the preliminary studies were performed on untreated samples to evaluate the possible application of the least expensive materials and processes. Pastes and mortars of low alkali sulphate resistant Portland cement with 0%, 10%, and 20% APC substitution were prepared. Mixes with 10......% and 20% APC showed a major retarding effect of APC on the development of hydration. The APC was found to be pozzolanic. Chemical shrinkage measurements indicated early expansive reactions of pastes with the APC including evolution of air. Crack formation was observed in mortars with APC, and strength...

  1. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Electrodialytic upgrading of municipal waste incineration fly ash for reuse

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2012-01-01

    As incineration becomes a more widespread means of waste treatment, volumes of incineration residues increase and new means of handling become a demand. Municipal Solid Waste Incineration (MSWI) fly ash is hazardous material, which is presently disposed off as such; primarily due to its high...... to investigate the leachability of salts and toxic elements as a function of treatment time and current density. Results show that a delicate balance between pH and treatment-time exist and that continuous monitoring of pH and conductivity may be used for controlling of the process at an industrial scale...... utilization in mortar. In: Proceedings of 3rd International Conference on Engineering for Waste and Biomass Valorisation, Beijing, China, (2010)....

  3. Electrodialytic upgrading of municipal waste incineration fly ash for reuse

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2012-01-01

    As incineration becomes a more widespread means of waste treatment, volumes of incineration residues increase and new means of handling become a demand. Municipal Solid Waste Incineration (MSWI) fly ash is hazardous material, which is presently disposed off as such; primarily due to its high......]. In order to optimize the process and reach the lowest possible leachability of target constituents (As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Zn, Cl, Na and SO4) at minimum time and energy consumption, the present work gives results of 10 pilot scale (8 kg MSWI fly ash each) electrodialysis experiments at different...... utilization in mortar. In: Proceedings of 3rd International Conference on Engineering for Waste and Biomass Valorisation, Beijing, China, (2010)....

  4. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    In Europe, about 20% of municipal solid waste is incinerated. Large differences can be found between northern and southern Europe regarding energy recovery efficiencies, flue gas cleaning technologies and residue management. Life-cycle assessment (LCA) of waste incineration often provides contrad...

  5. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    CO2-loads from combustible waste are important inputs for national CO2 inventories and life-cycle assessments (LCA). CO2 emissions from waste incinerators are often expressed by emission factors in kg fossil CO2 emitted per GJ energy content of the waste. Various studies have shown considerable...... variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... of this study was to quantify the importance of source separation for determination of emission factors for incineration of residual household waste. This was done by mimicking various source separation scenarios and based on waste composition data calculating resulting emission factors for residual waste...

  6. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  7. 40 CFR 264.344 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.344 Hazardous waste incinerator permits. (a) The owner or operator of a... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  8. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...... of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed...... material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...

  9. Effective incineration technology with a new-type rotary waste incinerator

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-qiang; ZHU Jian-zhong; CAI Ming-zhao; XIE Xin-yuan

    2003-01-01

    The technology of steady combustion in a new type of rotary incinerator is firstly discussed. The formation and control of HCl, NOx and SO2 during the incineration of sampled municipal organic solid waste are studied with the incinerator. Results showed that the new model of rotary incinerator can effectively control and reduce the pollutant formations by post combustion.

  10. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  11. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.

    Science.gov (United States)

    Inanc, Bulent; Inoue, Yuzo; Yamada, Masato; Ono, Yusaku; Nagamori, Masanao

    2007-03-22

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.

  12. LCA Of The “Renescience” Concept: An Alternative To Incineration For The Treatment Of Residual Municipal Solid Waste

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    The “REnescience” system consists on a pretreatment of the waste based on heat and enzymes which liquefy the biogenic fraction of the waste (paper and organics). The outputs of the process are then liquid slurry and a remaining solid fraction from which metals, plastic and glass can eventually...

  13. Solid waste utilization: incineration with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  14. Critical analysis of the integration of residual municipal solid waste incineration and selective collection in two Italian tourist areas.

    Science.gov (United States)

    Ranieri, Ezio; Rada, Elena Cristina; Ragazzi, Marco; Masi, Salvatore; Montanaro, Comasia

    2014-06-01

    Municipal solid waste management is not only a contemporary problem, but also an issue at world level. In detail, the tourist areas are more difficult to be managed. The dynamics of municipal solid waste production in tourist areas is affected by the addition of a significant amount of population equivalent during a few months. Consequences are seen in terms of the amount of municipal solid waste to be managed, but also on the quality of selective collection. In this article two case studies are analyzed in order to point out some strategies useful for a correct management of this problem, also taking into account the interactions with the sector of waste-to-energy. The case studies concern a tourist area in the north of Italy and another area in the south. Peak production is clearly visible during the year. Selective collection variations demonstrate that the tourists' behavior is not adequate to get the same results as with the resident population.

  15. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted.

  16. A process for treatment of residues from dry/semidry APC systems at municipal solid waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjelmar, O. [VKI, Hoersholm (Denmark)] Holland, D. [FLS miljoe a/s, Valby (Denmark)] Poulsen, B. [KARA, Roskilde (Denmark)

    1997-08-01

    The main objective of the project has been to establish and test a process for treatment of residues from the semidry (and dry) lime injection based APC processes at MSWIs, which will ensure that the residues can be managed in an environmentally safe manner. In pursuit of this goal, the following activities have been carried out: Performance of pilot scale extractions (approximately 50 kg of residue per batch) at the KARA MSWI in Roskilde of semidry APC system residues in order to establish and optimize process conditions. The optimization includes consideration of the possibilities for subsequent treatment/stabilization of the extracted solid phase as well as the possibility of treatment and safe discharge/utilization of the extract; Performance of chemical characterization, hydrogeochemical model calculations and experimental work in order to improve the understanding of the mechanisms and factors which for several contaminants control the equilibrium between the solid and liquid phases, both in the short and the long germ, and to use this information to obtain an environmentally acceptable method for stabilization/treatment of the extracted residues while at the same time minimizing the necessary amount of additives; production of treated residues and performance of leaching tests on these to assess and demonstrate the effectiveness of the entire process (extraction + stabilization/treatment); Evaluation of the technical, economical and environmental consequences of full scale implementation of the process. (EG) EFP-94. 19 refs.

  17. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  18. Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators.

    Science.gov (United States)

    Van Caneghem, Jo; Block, Chantal; Vandecasteele, Carlo

    2014-01-01

    Destruction and formation of dioxin-like PCBs in full scale waste incinerators is studied by analysing input waste streams and boiler and fly ash of a grate furnace incinerator (GFI) incinerating MSW, of a Fluidised Bed Combustor (FBC) incinerating a mix of 50% sludge, 25% refuse derived fuel (RDF) and 25% automotive shredder residue (ASR) and of a rotary kiln incinerator (RKI) incinerating hazardous waste. The dioxin-like PCB fingerprints of the waste inputs show that PCB oils Aroclor 1242 and Aroclor 1254 late are the major dioxin-like PCB contamination source of sludge, RDF and ASR. The dioxin-like PCB fingerprints of the waste inputs are clearly different from the fingerprints of the outputs, i.e. boiler and fly ash, indicating that in full scale waste incinerators dioxin-like PCBs in the input waste are destroyed and other dioxin-like PCBs are newly formed in the post combustion zone. The dioxin-like PCB fingerprint of boiler and fly ash of all three incinerators corresponds well to the fly ash fingerprint obtained in lab scale de novo synthesis experiments, indicating that dioxin-like PCBs are mainly formed through this mechanism. The high PCB concentration in the input waste mix of the RKI does not promote the formation of dioxin-like PCBs through precursor condensation.

  19. Mercury Levels In Fly Ash And Apc Residue From Municipal Solid Waste Incineration Before And After Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Jensen, Pernille Erland

    2016-01-01

    carbon. Two distinct behaviours were observed for mercury as a result of the electrodialytic treatment. This element became enriched in the MSWI residues from the semi-dry system with activated carbon, whereas it decreased in ESP’s and cyclone’s FA. This work presents for the first time information about...

  20. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...

  1. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  2. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  3. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  4. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...

  5. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    . Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location......A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type...

  6. Investigation of Dioxin formation- and destruction mechanisms in waste incineration plants in order to improve the quality of the residues. Phase 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jan; Dahl, J.; Akoh Hove, E. (FORCE Technology, Kgs. Lyngby (Denmark)); Baun, D.L.; Hulgaard, T. (Ramboell, Copenhagen (Denmark)); Marklund, S. (Umeaa Univ., Umeaa (Sweden)); Astrup, T. (Technical Univ. of Denmark. Dept. of Environmental Engineering, Kgs. Lyngby (Denmark)); Lundtorp, K. (Babcock and Wilcox Voelund, Esbjerg (Denmark))

    2009-11-15

    The aim of this project was to produce a theory and a model for the formation of dioxin suitable for prediction of dioxin formation in flue gas, based on experiments conducted at Umeaa University. Furthermore the model should be tested using data from another project, where measurements on the FASAN waste incineration plant has been carried out. A theory has been proposed and a model has been programmed and implemented into the FLUENT CFD software package. The predictions show qualitative and quantitative correlation between the model and the Umeaa test reactor. When the developed model was implemented on the full scale plant, it was however not possible to obtain a quantitative correlation between the model results and the measurements of dioxins in ash samples. There was however a reasonable qualitative correlation. The model needs further work to produce better quantitative results for full scale plants. This work must focus more on full scale measurements, in order to obtain good data for tuning and comparison. It is also recommended to do some work on a more basic level at the Umeaa test reactor to tune the more basic echanisms in the model. The model shows a very small region in the full scale boiler where the vast majority of the dioxin formation takes place. This knowledge is useful as it can point to uncontaminated ash fractions in waste incineration plants. The discovery of a small region where dioxin formation takes place is also an inspiration for potential future evelopments in boiler design for minimizing dioxin formation. Dioxin measurements in ash samples from the full scale test runs show dioxin levels in the same order of magnitude for all experiments with minor differences between the various experiments. This indicates that changes in waste input within the range of products tested is likely to have limited effect on dioxin formation in the boiler, and hence the dioxin content of fly ash and flue gas upstream the flue gas treatment system. (LN)

  7. Mass balance for POPs in hazardous and municipal solid waste incinerators.

    Science.gov (United States)

    Van Caneghem, J; Block, C; Van Brecht, A; Wauters, G; Vandecasteele, C

    2010-02-01

    The amount of different persistent organic pollutants (POPs) in the input of waste incinerators was compared to that in the output. Three cases were considered: a rotary kiln incinerating hazardous waste, a grate furnace incinerating municipal solid waste (MSW) and the same grate furnace co-incinerating plastics of waste of electrical and electronic equipment (WEEE) and automotive shredder residue (ASR) with MSW. The mass balance for PCBs in the rotary kiln indicates that these POPs are destroyed effectively during incineration. The grate furnace can be a sink or source of PCDD/Fs and PCBs depending on the concentrations in the incinerated waste. In order to compare the total amount of POPs in input and output, a methodology was developed whereby the amount of POPs was weighed according to minimal risk doses (MRDs) or cancer potency factors. For both incinerators the PCDD/Fs, PCBs and polyaromatic hydrocarbons (PAHs) are the main contributors to total weighed POP output. In MSW, the PCDD/Fs, PBDD/Fs and polybrominated diphenylethers (PBDEs) are the main contributors to the weighed POP input. The ratios of the weighed POP-input over -output clearly indicate that the rotary kiln incinerating hazardous waste is a weighed POP sink. The grate furnace incinerating MSW is a weighed POP sink or source depending on the POP-concentrations in the waste, but the difference between output and input is rather limited. When e.g. ASR and plastics of WEEE, containing high concentrations of PBDEs and PCBs, are co-incinerated in the grate furnace, it is clearly a weighed POP sink.

  8. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  9. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  10. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

  11. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  12. Behavior and control of chlorine in dyestuff residue incineration

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-hua; TAN Zhong-xin; JIANG Xue-guang; CHI Yong; CEN Ke-fa

    2006-01-01

    Dyestuff residue, a type of hazardous waste, is incinerated in the tubular furnace, and thermodynamic equilibrium model is used to calculate and analyze the chlorine behavior. The HCl emission and its effects on the behaviors of heavy metals are studied.Meanwhile, the effects of three dechlorine reagents are predicted at a high temperature. Results show that HCl emission is dependent on incineration temperature. The HCl evaporated mainly derives from the organic chlorine. Under the working condition of 500--900℃, the main products of Hg, Pb, Cu, Ni, Zn, and Mn in reaction with HCl are HgCl2 (g), PbCl4(g), PbCl2 (g), (CuCl)3 (g), NiCl2 (s),NiCl2 (g), ZnCl2 (s), ZnCl2 (g), Zn (g), MnCl2 (s), and MnCl2 (g), respectively. Among the three dechlorine reagents, CaCO3 is optimal to remove chlorine at high temperature, little of HCl is released below 800℃, whereas Fe3O4 is unstable at high temperature.

  13. Metal recovery from municipal solid waste incineration bottom ash (MSWIBA): state of the art, potential and environmental benefits

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Holtze, Maria S.; Astrup, Thomas Fruergaard

    Incineration has a central role in the waste management system in Denmark (e.g. 52% of the household waste) resulting in approximately 726000t of solid residues each year. However, the targets imposed by the Danish Waste Strategy and the increasing discussions about resource in waste raise an issue...

  14. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  15. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables)

    DEFF Research Database (Denmark)

    Bigum, Marianne Kristine Kjærgaard; Damgaard, Anders; Scheutz, Charlotte

    2017-01-01

    the misplaced special waste is only 0.5% of residual household waste, it constitutes in the residual household waste the most significant fraction with respect to metal content when iron and aluminum are excluded. By extending the boundary of the LCA beyond the traditional “zero burden boundary”, we were able......The contribution of misplaced special waste (sWEEE, lamps, CRT, batteries, ink cartridges and cables) to environmental impacts from incineration of residual household waste was quantified through life cycle assessment (LCA)-modelling. Misplaced special waste was quantified to constitute less than 1...... and batteries. However as shown by sensitivity analysis, lack of good data on the transfer of rare and hazardous metals to the flue gas in the incineration process should receive further investigation before the environmental impacts from misplaced incinerated special waste can fully be concluded upon. Although...

  16. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  17. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...

  18. Envirotoxins from waste incineration - how does the supervision work?; Miljoegifter fraan avfallsfoerbraenningen - hur fungerar tillsynen?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    Incineration of household wastes has increased rapidly in Sweden during the last few years, and new plants are being built. The volume of residues from waste incineration is expected to grow from 450,000 tons in 1999 to 1,100,000 tons in 2008. The National Audit Office (SNAO) has made an inquiry into the supervision by responsible authorities of incineration plants and landfills in order to how the environmental legislation is applied in practise. The investigation includes case studies of six incineration plants and seven landfills where the residues from the plants are disposed. The supervision is part of a complex system made up of state, local and private actors who all have a responsibility for applying the environmental legislation. SNAO has found serious shortcomings in the operational supervision of all incineration plants studied and several landfills concerning the risk of toxins leaching into the environment. SNAO also points at the lack of knowledge at the Swedish EPA regarding the potential environmental problems of incineration residues and the need for evaluation of the supervisory function. SNAO recommends that the government take an initiative for making more detailed demands in the environmental legislation, and that the Swedish EPA should improve its knowledge about the quality of the operational supervision in accordance with the legislation.

  19. Eco-efficiency assessment of options for metal recovery from incineration residues: a conceptual framework.

    Science.gov (United States)

    Meylan, Grégoire; Spoerri, Andy

    2014-01-01

    Residues from municipal solid waste (MSW) incineration in Switzerland have been a hot topic in recent years, both in the research and practice communities. Regarded by many as an economically and environmentally sound solution to this issue, technological retrofitting of existing grate incinerators has the dual purpose of enhancing the metal recovery of bottom and fly ashes and improving the inertization of residues to be landfilled. How does context influence the economic and environmental performance of this particular technological option? Under which conditions would this technological option be implemented nationwide in the future? What are stakeholders' views on sustainable transitions of MSW incineration? We propose a three-stage methodological procedure to address these questions.

  20. Consolidated Incineration Facility waste burn test. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.

    1995-01-11

    The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency`s (EPA`s) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes.

  1. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations...

  2. Shredder and incinerator technology for treatment of commercial transuranic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters.

  3. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    Science.gov (United States)

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  5. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  6. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown.

  7. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management.

  8. Technical trend of alpha-bearing waste incinerator and R and D program in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Kim, Joon Hyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An alpha-bearing waste incineration technology is being developed from this year, after licensing the {beta}/{gamma}-bearing waste incinerator as a treatment facility for burnable wastes generated from KAERI. Some foreign incineration technologies were reviewed. The alpha-bearing waste generation in Korea and their characteristics were also discussed. 15 refs., 3 tabs., 1 fig.

  9. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  10. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C. [Yonsei Univ., Seoul (Korea, Republic of); Park, W. J.; Lee, B. S.; Lee, S. H. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  11. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C. [Yonsei Univ., Seoul (Korea, Republic of); Park, W. J.; Lee, B. S.; Lee, S. H. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  12. Effect of composition variations on the long-term wasteform behavior of vitrified domestic waste incineration fly-ash purification residues; Influence des variations de composition des vitrifiats de refiom - residus d'epuration des fumees d'incineration d'ordures menageres - sur leur comportement a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Frugier, P.

    2000-07-01

    The effect of variations in the composition of fly-ash purification residue from incinerated domestic waste on the quality of the containment achieved by vitrification was investigated. Three main factors determine the long-term containment quality: the production of a vitrified wasteform, the occurrence of possible crystallization, and the key parameters of long-term alteration in aqueous media. Each of these aspects is described within a composition range defined by variations in the three major elements. (silicon, calcium and aluminum) and two groups of constituents (alkali metals and toxic elements). The silicon fraction in the fly-ash residue was found to be decisive: it is impossible to obtain a satisfactory vitrified wasteform below a given silicon concentration. Compounds with the lowest silica content also exhibited the greatest tendency to crystallize under the cooling conditions prevailing in industrial processes (the dominant crystallized phase is a melilite that occupies a significant fraction of the material and considerably modifies the alteration mechanisms). The initial alteration rate in pure water and the altered glass thickness measured in a closed system at an advanced stage of the dissolution reaction are both inversely related to the silicon concentration in the glass. Several types of long-term behavior were identified according to the composition range, the process conditions and the vitrified waste disposal scenario. Four distinct 'classes' of vitrified wasteform were defined for direct application in industrial processes. (author)

  13. Waste incineration corrosion processes: Oxidation mechanisms by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J.; Hierro, M.P.; Nieto, J. [Departamento de Ciencia de los Materiales. Facultad de Ciencias Quimicas, Grupo de Investigacion de Ingenieria de Superficies, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2008-07-15

    Molten chloride mixtures are formed in waste incineration plants during waste firing and energy production. These mixtures are responsible for degradation processes like hot corrosion. In order to evaluate the damage of molten salt mixtures in waste incineration environments, the alloys 625 and 617 were exposed beneath a molten KCl-ZnCl{sub 2} mixture at 650 C in air. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). An extensive microscopy analysis has been done in order to correlate the electrochemical results, and to establish an electrochemical mechanism for such high temperature corrosion processes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. ALKALINE TREATMENT AND IMMOBILIZATION OF SECONDARY WASTE FROM WASTE INCINERATION

    Directory of Open Access Journals (Sweden)

    Dariusz Mierzwiński

    2017-04-01

    Full Text Available This paper regards the possibility of using geopolymer matrix to immobilize heavy metals present in ash and slag from combustion of waste. In the related research one used the fly ash from coal combustion in one Polish CHP plant and the waste from Polish incineration plants. It was studied if the above-named waste materials are useful in the process of alkali-activation. Therefore, three sets of geopolymer mixtures were prepared containing 60, 50 and 30% of ash and slag from the combustion of waste and fly ash combustion of sewage skudge. The remaining content was fly ash from coal combustion. The alkali-activation was conducted by means of 14M solution of NaOH and sodium water glass. The samples, whose dimensions were in accordance with the PN-EN 206-1 norm, were subjected to 75°C for 24h. According to the results, the geopolymer matrix is able to immobilize heavy metals and retain compressive strength resembling that of concrete.

  15. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences wi...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement.......The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...

  16. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator.

    Science.gov (United States)

    Yanguo Zhang; Qinghai Li; Aihong Meng; Changhe Chen

    2011-03-01

    This paper presents an experimental study of carbon monoxide (CO) formation and emissions in both grate drying bed incinerators and circulating fluidized bed (CFB) incinerators to simulate the two key parts of a combined grate and circulating fluidized bed (grate-CFB) incinerator in order to investigate pollutant emission control in municipal solid waste (MSW) combustion that occurs in a grate-CFB incinerator utilizing a patented technology. Polyvinyl chloride, polystyrene, kitchen waste, paper, textile, etc. were chosen to simulate the MSW. The effects of temperature, air staging, and moisture on the CO formation and emissions were analysed for both the grate drying bed combustion and the CFB combustion. In the grate drying bed, the low temperatures increased the carbon to CO conversion rate which also increased slightly with the moisture content. Industrial field tests in a commercial grate-CFB incinerator showed that the CO concentration at the grate drying bed exit was very high and decreased along furnace height. The carbon to CO conversion rates were 0-20% for the grate drying bed which exceeded the range of 0.8-16% measured in a grate drying bed exit of the commercial grate-CFB incinerator tests. In the commercial grate-CFB incinerator tests, at excess air ratios ranging from 1.5-2.0 or more, the CO emissions decreased to a low and stable level, whose corresponding carbon to CO conversion rates were far lower than 0-10%. The low CO emission is one of the factors enabling the polychlorinated dibenzodioxin/polychlorinated dibenzofuran emissions to satisfy the Chinese national regulations.

  17. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  18. Experiences with the KEMA Corrosion Probe in waste incineration plants and coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.P. de; Leferink, R.G.I. [KEMA Nederland B.V. Arnhem, (Netherlands)

    2001-07-01

    Fireside corrosion is still a major cause of concern in coal- fired power plants and municipal waste incineration plants. In a highly competitive electricity market, the demand for a method to determine the quality or protectiveness of the oxide layers on evaporator walls, in boilers of power plants with low-NO{sub x} firing techniques, will increase. Moreover, co-firing of new fuels (RDF, pulverised wood and other residual fractions) has as yet unknown consequences for corrosion in evaporator walls and super heaters in boiler installations and waste incinerators. Corrosion monitoring enables operators of coal fired power plants to measure and act when corrosion problems are likely to occur. If done properly corrosion monitoring allows the plant operator to adjust the (co-) firing conditions to less corrosive conditions with the highest possible plant efficiency. Recently KEMA developed the KEMA Corrosion Probe (KEMCOP) which enables plant owners to determine fireside corrosion in different locations in their boiler. A good example is the 540 MWe E.on Maasvlakte power plant, which was recently fitted for the exposure of 144 probes simultaneously. The probes can also be used for material testing by exposing different materials under actual firing conditions. Aside from corrosion monitoring also slagging behaviour and condensation of heavy metals can be monitored. In the Netherlands KEMCOP probes are used for several purposes and are more and more becoming common practice for coal fired boilers and waste incinerators. Until now almost 300 probes have been mounted in coal fired boilers and waste incineration plants. (orig.)

  19. Design, operation and management of waste incinerators; Design, Betrieb und Management von Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U.; Swithenbank, J.; Nasserzadeh, V.; Ewan, B.; Lee, P.H. [Sheffield Univ. (United Kingdom). Waste Incineration Centre; Lawrence, D.; Garrod, N.P. [Sheffield Heat and Power Ltd. (United Kingdom); Jones, B.; Sykes, G. [Sheffield Incinerator Plant (United Kingdom); Bernet, U. [Electrowatt Engineering Ltd. (Switzerland)

    1998-09-01

    Design of combustion chambers for solid residues combution is hampered by the non-existence of accurate mathematical models of the combustion process, so that semi-empirical correlations must be used. Modern flow simulation programs (computational fluid dynamics), on the other hand, offer the pssibility of predicting flow in the gaseous phase although further tests are still required for validation. Since experiments on a laboratory scale hardly ever provide reliable data material, research in the field of waste incineration must make tests on industrial-scale systems. For this reason, the Sheffield University Waste Incineration Centre (SUWIC) cooperated with Sheffield Heat and Power Ltd and was therefore able to carry out extensive research at the Bernard Road waste incinerator in Sheffield. (orig./SR) [Deutsch] Die Konstruktion von Feueraeumen zur Feststoffverbrennung wird dadurch behindert, dass kein genaues mathematisches Modell fuer den Verbrennungsprozess existiert. Statt dessen muss noch immer auf halb-empirische Korrelationen zurueckgegriffen werden. Aufgrund moderner Stroemungssimulationsprogramme (Computational Fluid Dynamics) ist hingegen die Vorhersage des Stroemungsverhaltens der Gasphase in Verbrennungsanlagen weiter entwickelt, obwohl zusaetzliche Tests zur Validierung noch erforderlich sind. Da Versuche im Testmassstab selten verlaessliches Datenmaterial liefern, ist die Forschung im Bereich der Muellverbrennung auf Tests an Grossanlagen angewiesen. Dank der guten Beziehungen zu Sheffield Heat and Power Ltd hat Sheffield University Waste Incineration Centre (SUWIC) an der Bernard Road Muellverbrennungsanlage in Sheffield ein umfangreiches Forchungsprogramm durchfuehren koennen. (orig./SR)

  20. A Burning Experiment Study of an Integral Medical Waste Incinerator

    OpenAIRE

    Xie, Rong; Lu, Jidong; Li,Jie

    2010-01-01

    Mass burning of the medical waste is becoming attr active in China because Chinese government has banned landfilling of medical waste. Many advantages can be found in this method, such as reduction in waste vol-ume, destruction of pathogens and transformation of waste into the form of ash. However, the medical waste with high moisture in China is not suitable to be trea ted in the present direct mass burning incinerators. In this paper, a novel integral incinera tor is developed with combinin...

  1. Current Methods to Detoxify Fly Ash from Waste Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, Christine; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2004-07-01

    vitrification, electric arc and melting in a secondary combustion chamber by adding coke as a heating source (coke bed melting furnaces) or residual carbon in the fly ash (Rotary surface melting furnace) are the most common methods. In general, vitrification processes require a high-energy input and are therefore relatively cost intensive. Locking the hazardous components into the matrix by a stabilization/solidification with cement is a common alternative to decontamination. Mixing the fly ash with cement or asphalt is widely used for the reuse of fly ash from coal incineration, but it requires careful attention to any leaching of heavy metals if applied to fly ash from waste incineration. Studies by mixing fly ash with cement at concentrations from 5 to 70 % showed, that in most cases an additional pretreatment step, e.g. washing in HNO{sub 3} solution, is necessary to receive acceptable leaching behaviour and required properties as building material. Related European regulations are currently pending. On the other hand, the use of fly ash as filler for asphalt does not require any pretreatment and is already commonly applied in some countries such as the Netherlands as a well-established method. Solvent extraction methods such as acidic extraction (3R-process) or combined basic and acidic extraction (MR-process) are also designed to remove the contaminants. The effectiveness of these methods is only moderate and a further thermal treatment is required to destroy the dioxins. These methods require relatively high amounts of chemicals and wastewater management. However, they are supposed to be relatively cost effective. Other treatment options that are being tested at laboratory scale such as microbiological treatment and supercritical extraction are optimistic but have no realistic practical relevance at this state.

  2. Life cycle assessment of capital goods related to waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    The environmental impacts from the life cycle of products and systems were evaluated using Life Cycle Assessment (LCA) as a tool. Today most LCAs of waste management systems only considers the impacts from the operation of the system but neglects the environmental impacts from construction......, maintenance and demolition of capital goods. Capital goods are defined as buildings, machinery, trucks and infrastructure at the facility. A LCA was performed using two modelling programmes: Simapro and EASEWASTE. This paper assesses the importance of including capital goods when performing LCAs of waste...... incineration with efficient energy recovery. The environmental costs of the capital goods related to an incinerator was assessed and compared to the operation of the incinerator. The environmental loads from the capital goods were found to be insignificant compared to the benefits from the energy recovery from...

  3. 危险废物焚烧残渣中铜的浸出特性研究%Reduction and Resource of Copper in the Hazardous Waste Incineration Residues

    Institute of Scientific and Technical Information of China (English)

    邓友华; 汪美贞; 冯华军; 沈东升

    2012-01-01

    In order to achieve the reduction and resources of heavy metals of the hazardous waste incineration residues, this test investigated the leaching characteristics of Cu for high levels of Cu of the residues to provide a basis for the reduction and resources. The heavy metal content of the test sample was measured after digestion, found the content of copper (Cu) was up to 22680 mg kg-1, 302 times higher than the hazardous waste landfill standard. Therefore, in this study, hydrochloric acid, sulfuric acid, EDTA and ammonium citrate were used separately to extract and recycle Cu, with the aim to meet to the landfill standard. The results showed that Cu could be extracted easily by sulfuric acid with the efficiency of 87%, under the optimal condition as follows: concentration of 0.25mol L-l, solid-to-liquid ratio of 1:10, the extraction time of 1.5h. The results also showed that extraction of Cu could be improved by adding a certain amount of hydrofluoric acid (HF), with the extraction efficiency higher than 96%. In conclusion, chemical extraction could greatly reduce the content of Cu in the incinerator residue, which not only to reduce the risk of secondary pollution of the environment, but also to create a certain economic value by recycle the valuable metal of Cu in the extraction.%为了达到危险废物焚烧残渣中重金属的减量化和资源化,本试验针对残渣中高含量的Cu,考察残渣中Cu的浸出特性,为其减量化和资源化提供基础.试验样品经过消解后测其中各重金属含量,发现其中Cu含量高达(21016±4) mg/kg,浸出毒性高出危险废物安全填埋标准的20±2倍,故本试验拟用浸提法对其进行减量化,以达到安全填埋的标准.采用盐酸、硫酸、EDTA和柠檬酸铵对Cu进行浸提回收,结果发现硫酸的浸提效果最好,最佳浸提条件为浓度0.25 mol/L、固液比1∶10、浸提时间为1.5h,浸提效率可达87%;研究还显示加入氢氟酸后,Cu浸提效率可高达96

  4. Chemical speciation and mobility of heavy metals in municipal solid waste incinerator fly ash

    Institute of Scientific and Technical Information of China (English)

    LIU Feng; LIU Jian-guo; YU Qian-feng; NIE Yong-feng

    2004-01-01

    Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.

  5. The Use of Microwave Incineration to Process Biological Wastes

    Science.gov (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  6. Variability over time in the mutagenicity of ashes from municipal solid-waste incinerators.

    Science.gov (United States)

    Shane, B S; Gutenmann, W H; Lisk, D J

    1993-01-01

    Incineration of municipal solid waste as an alternative to its disposal in landfills has advantages such as volume reduction and generation of energy. However, both air emissions and the residual ash may pose environmental and human health hazards. The Ames mutagenicity assay was used to determine the mutagenicity of fly and bottom ash from two incinerators over time. This assay is an alternative to costly and time-consuming chemical analyses and is more realistic for the assessment of the best disposition of the ash i.e. whether it could pose a risk to handlers of the ash, whether it can be used in cement or as a fertilizer or whether it should be relegated to a landfill. The mutagenic potency of fly and bottom ash on a per g weight basis of material is similar. Furthermore, the variability over time in mutagenicity indicates that constant monitoring of incineration products and byproducts is essential.

  7. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, G.G.

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that ste

  8. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    Science.gov (United States)

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Combustion Technology for Incinerating Wastes from Air Force Industrial Processes.

    Science.gov (United States)

    1984-02-01

    waste for energy (not recycling cement kiln dust for clinker ) to be distinguishable from a commercial hazardous waste incinerator in -" its potential...ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT . PROJECT, TASK . National Bureau of Standards AREA & WORK UNIT NUMBERS Washington D.C. 20234 PE 63723F JON...high temperature combustion zone transit time which significantly exceeds fuel droplet burnout and mixing times, and (4) employing afterburners

  10. Biodegradable organic matter in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Zhang, Shuo; Herbell, Jan-Dirk; Gaye-Haake, Birgit

    2004-01-01

    For investigation of the behavior of municipal solid waste incineration bottom ash in landfill, we have analysed bottom ash samples taken after the quench tank as well as after five months of storage in the laboratory for elements and organic constituents. Water extractable organic carbon, particulate organic carbon, amino acids, hexosamines and carbohydrates considerably decreased during the five months of storage and their spectra revealed microbial reworking. This shows that the organic matter present in the bottom ash after incineration can provide a substrate for microbial activity. The resulting changes of the physico-chemical environment may effect the short-term behavior of the bottom ash in landfill. Copyright 2004 Elsevier Ltd.

  11. Plant monitoring of air quality around waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Dijk, C.J. van; Dueck, T.A. [Plant Research International, Wageningen (Niger). Dept. of Crop and Production Ecology

    2002-07-01

    Since the early 1990's, three new waste incineration plants have come into operation in agricultural regions in The Netherlands. Multi-year standardised biomonitoring programmes around these incinerators were set up to determine the absence of adverse effects on quality of crop produce due to the incineration of waste. Depending on time of year, plants of kale (Brassica oleracea) and spinach (Spinacia oleracea) were cultivated for use as accumulators of cadmium (Cd), mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs). Trends in fluoride contents were followed by sampling field-grown pasture grass. Cow milk was sampled to determine the concentrations of dioxins. Plants of gladiola (Gladiolus gandavensis) were used for the assessment of visible injury by ambient fluoride in one programme only. The results of many years of biomonitoring showed that the emissions of the waste incinerators did not affect the quality of crop produce and cow milk. Concentrations of the various components in these products were generally similar to background levels and did not exceed standards for maximum allowable concentrations. On one occasion, concentrations of PAHs in spinach were clearly enhanced due to the use of wood-preserving compounds at a barn close to the monitoring site. This incident reveals that our biomonitoring projects are an appropriate tool to detect changes in air quality. (orig.)

  12. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  13. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  14. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a)...

  15. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  16. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-11-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N(2)O emissions, fuel and material consumptions at the plants, energy recovery, and solid residues generated. GHG contributions were categorized with respect to direct emissions from the combustion plant as well as indirect upstream contributions (e.g. provision of fuels and materials) and indirect downstream contributions (e.g. substitution of electricity and heat produced elsewhere). GHG accounting was done per tonne of waste received at the plant. The content of fossil carbon in the input waste, for example as plastic, was found to be critical for the overall level of the GHG emissions, but also the energy conversion efficiencies were essential. The emission factors for electricity provision (also substituted electricity) affected the indirect downstream emissions with a factor of 3-9 depending on the type of electricity generation assumed. Provision of auxiliary fuels, materials and resources corresponded to up to 40% of the direct emission from the plants (which were 347-371 kg CO(2)-eq. tonne( -1) of waste for incineration and 735-803 kg CO(2)-eq. tonne(-1) of waste for co-combustion). Indirect downstream savings were within the range of -480 to -1373 kg CO(2)eq. tonne(-1) of waste for incineration and within -181 to -2607 kg CO(2)-eq. tonne(- 1) of waste for co-combustion. N(2)O emissions and residue management did not appear to play significant roles.

  17. Contaminant transport at a waste residue deposit

    DEFF Research Database (Denmark)

    Engesgaard, Peter Knudegaard; Traberg, Rikke

    1996-01-01

    Contaminant transport in an aquifer at an incinerator waste residue deposit in Denmark is simulated. A two-dimensional, geochemical transport code is developed for this purpose and tested by comparison to results from another code, The code is applied to a column experiment and to the field site...... along with the flow and nonreactive transport parameters obtained by the inverse modeling procedure described in the first paper [Sonnenborg et al., this issue] of this two-paper series. The simulation results of the site model are compared with several measured component breakthroughs at monitoring...

  18. Structures, Mixed Types - Residual Waste Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Residual Waste Operation is a DEP primary facility type related to the Waste Management Residual Waste Program. Residual waste is waste generated at an industrial,...

  19. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  20. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  1. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    Directory of Open Access Journals (Sweden)

    k. louhab

    2006-01-01

    Full Text Available The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result show that the temperature and the length of incineration influence on the structure of the bottom ash and on the chromium in the bottom ash.

  2. 垃圾焚烧灰渣用于二灰碎石路面基层的试验研究%Experiment on Wastes Incineration Residues for Lime-Fly Ash Concrete Pavement Base

    Institute of Scientific and Technical Information of China (English)

    解建光; 陈金东; 曹兴国; 史进舟

    2011-01-01

    By replacing a part of macadam, wastes incineration residues used as aggregates to make lime-fly ash stabilized residues-macadam materials are conducted at nine different proportions. Compaction test , unconfined compressive strength test and shrinkage test are designed to evaluate the pavement performances of the material. Furthermore, the comparative trials are conducted between the new materials and traditional lime-fly ash macadam at the same proportions. Comparing with the traditional lime-fly ash macadam, the maximum dry density decreases by 8. 8% and the optimum water content increases by 38. 4% at the same content of lime and fly ash. Besides, the highest unconf ined compressive strength of lime-fly ash stabilized residues-macadam can reach 1-03 MPa, and the strengths of the new materials are significantly influenced by the content of fly ash. The strength decrease by 21%, if the content of fly ash decreases by 1%. The highest shrinkage coefficient is 67. 2 μ%, and if the content of lime and fly ash decreases by 2.55% the shrinkage coefficient reduces by 3. 1%. The performances of lime-fly ash stabilized residues-macadam can meet the requirements of highway pavement base, and combustion residues can be used as aggregates in road construction.%用城市生活垃圾焚烧灰渣替代部分集料,按照9种不同的配比制备二灰灰渣碎石路面基层材料,进行路用性能试验.结果表明:与普通二灰碎石对比,在相同的二灰含量下,灰渣碎石的最大干密度降低8.8%,而最佳含水量增大38.4%;无侧限抗压强度最高可达1.03 MPa;粉煤灰含量对材料强度影响较为显著,其中粉煤灰含量减少1%,无侧限抗压强度值降低21%;材料的干缩系数最大为67.2μ/%;石灰与粉煤灰含量越低,材料的干缩应变越小,平均干缩系数也越小,当二灰含量减少2.5%,平均干缩系数降低3.1%.二灰灰渣碎石材料满足基层的相关要求,灰渣可以为公路建设提供可持续的集料来源.

  3. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard...

  4. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  5. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made......, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including...

  6. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.

  7. The Louisiana State University waste-to-energy incinerator

    Science.gov (United States)

    1994-10-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  8. The Louisiana State University waste-to-energy incinerator

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  9. 78 FR 72581 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerator Negative Declaration for...

    Science.gov (United States)

    2013-12-03

    ... AGENCY 40 CFR Part 62 Direct Final Approval of Hospital/Medical/Infectious Waste Incinerator Negative... negative declarations from Michigan and Wisconsin regarding Hospital/Medical/ Infectious Waste Incinerator...) requirements to existing solid waste combustors, including HMIWIs, and provide that EPA should include, as...

  10. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  11. The Cement Solidification of Municipal Solid Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    HOU Haobo; HE Xinghua; ZHU Shujing; ZHANG Dajie

    2006-01-01

    The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substitution, deposition or adsorption mechanisms.

  12. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction.

    Science.gov (United States)

    Bac, Bui Hoang; Song, Yungoo; Moon, Yonghee; Kim, Myung Hun; Kang, Il Mo

    2010-08-01

    In this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes. An increase in the reaction time improved the quantity of synthesized zeolitic materials. The reaction temperature determined the type of zeolite. An increase in the NaOH concentration can be an essential factor to improve zeolitic material synthesis, but it significantly reduced the yield of SiO(2) extraction. In conclusion, suitable conditions for obtaining both SiO(2) extraction and synthesized zeolites from the ashes of the incinerated solid waste materials should be: 200 degrees C reaction temperature; a 1 : 30 (g : mL) value for the sample : NaOH ratio; 2 mol L(-1) NaOH concentration; and a reaction time of more than 24 h.

  13. Investigating pyrolysis/incineration as a method of resource recovery from solid waste

    Science.gov (United States)

    Robertson, Bobby J.; Lemay, Christopher S.

    1993-01-01

    Pyrolysis/incineration (P/I) is a physicochemical method for the generation of recoverable resources from solid waste materials such as inedible plant biomass (IPB), paper, plastics, cardboard, etc. P/I permits the collection of numerous gases with a minimal amount of solid residue. Pyrolysis, also known as starved air incineration, is usually conducted at relatively high temperatures (greater than 500 deg C) in the absence of oxygen. Incineration is conducted at lower temperatures in the presence of oxygen. The primary purpose of this study was to design, construct, and test a model P/I. The system design includes safety requirements for temperature and pressure. The objectives of this study were: (1) to design and construct a P/I system for incorporation with the Hybrid Regenerative Water Recovery System; (2) to initiate testing of the P/I system; (3) to collect and analyze P/I system data; (4) to consider test variables; and (5) to determine the feasibility of P/I as an effective method of resource recovery. A P/I system for the recovery of reuseable resources from solid waste materials was designed, constructed, and tested. Since a large amount of inedible plant biomass (IPB) will be generated in a space-based habitat on the lunar surface and Mars, IPB was the primary waste material tested in the system. Analysis of the effluent gases was performed to determine which gases could be used in a life support system.

  14. Leaching from municipal solid waste incineration residues

    DEFF Research Database (Denmark)

    Hyks, Jiri

    I dette studie er udvaskning af farlige stoffer fra restprodukter fra affaldsforbrænding blevet undersøgt ved at kombinere udvaskningstests i laboratoriet med geokemisk modellering. Der blev lagt særlig vægt på at undersøge anvendelsen af laboratoriedata i forhold til efterfølgende modellering af...

  15. Leaching from municipal solid waste incineration residues

    DEFF Research Database (Denmark)

    Hyks, Jiri

    2008-01-01

    I dette studie er udvaskning af farlige stoffer fra restprodukter fra affaldsforbrænding blevet undersøgt ved at kombinere udvaskningstests i laboratoriet med geokemisk modellering. Der blev lagt særlig vægt på at undersøge anvendelsen af laboratoriedata i forhold til efterfølgende modellering af...

  16. Resource recovery from waste incineration residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa

    Affaldsforbrænding er i mange lande en vigtig teknologi til behandling og energiudnyttelse af affald. Udover energi resulterer forbrænding også i produktion af asker. Størstedelen af askerne udgøres af slagge, som efter behandling har gode tekniske egenskaber og kan anvendes til bygge- og...

  17. Utilization of municipal solid waste incineration ash in Portland cement clinker

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Charles Hoi King; Barford, John Patrick; McKay, Gordon [Hong Kong University of Science and Technology, Department of Chemical and Biomolecular Engineering, Hong Kong (China)

    2011-08-15

    Municipal solid waste incineration (MSWI) ash is used in part as raw materials for cement clinker production by taking advantage of the high contents of SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO. It is necessary for environmental reasons to establish a material utilization system for the incineration waste ash residue instead of disposing these ashes into landfill. The aim of this paper is to study the feasibility of replacing clinker raw materials by waste ash residue for cement clinker production. MSWI bottom ash and MSWI fly ash are the main types of ashes being evaluated. The ashes were mixed into raw mixture with different portions of ash residue to produce cement clinker in a laboratory furnace at approximately 1400 C. X-ray diffraction and X-ray fluorescence techniques were used to analyze the phase chemistry and chemical composition of clinkers in order to compare these ash-based clinkers with commercial Portland cement clinker. (orig.)

  18. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime.

  19. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  20. 危险固体废物焚烧残渣的稳定化处理研究%Study on the stabilization of hazardous solid waste incineration residues

    Institute of Scientific and Technical Information of China (English)

    宋二喜; 廖燕; 张弛; 王峰涛; 韩建勋; 沈东升

    2011-01-01

    Conventional hazardous waste stabilizers (Na3PO4, Na2S, humic acid) and carbide slag was employed for stabilization the incineration residues of typical hazardous solid waste. The stabilization performance and ecological risk of each treatment process were evaluated by Pb, Ni, Cu, and Zn removal rates. Results showed that Na3 PO4 and carbide slag obtained approving and steady stabilization effect after 7 days of stabilization. Na2 S and humic acid achieved the best stabilization efficiency at 14, 21 d respectively, but the stabilization performance getting worse as the time prolongs, so Na2 S and humic acid were unfit to be stabilizers. Further tests were conducted to compare the stabilization performance of Na3PO4 and carbide slag, results showed the stabilization effect of carbide slag was better than that of Na3PO4 on the whole. After adding 9% (mass ratio) of carbide slag for 24 h, the removal rate of Pb, Ni, Cu and Zn was 93. 76% ,79. 69% ,98. 40% and 95. 19% ,respectively. 24 h-EC50 values obtained in ecotox-icology experiment showed an obvious toxicity reduction after carbide slag stabilization. After all, carbide slag was the kind of high efficiency, steady and safety stabilizer.%采用常规危险固体废物稳定剂Na3 PO4、Na2S、腐殖酸以及工业固体废物电石渣对台州典型危险固体废物焚烧残渣进行稳定化处理.以残渣中污染最严重的重金属Pb、Ni、Cu、Zn的去除率为衡量指标,进行稳定化时间优化试验.结果表明,Na3 PO4、电石渣可在7d后达到较好的稳定化效果,且随着时间的延长效果稳定;而Na2S和腐殖酸的稳定化效果分别在14、21 d达到最佳,但随着时间的延长,稳定化效果呈下降趋势,不适合作危险固体废物焚烧残渣的稳定剂.通过稳定剂投加比例优化试验发现,电石渣对残渣的稳定化效果优于Na3PO4,在投加9%(质量分数)电石渣的条件下,Pb、Ni、Cu、Zn的浸出率分别为93.76%、79.69%、98.40%和95

  1. Industrial hazardous waste treatment featuring a rotary kiln and grate furnace incinerator: a case study in China.

    Science.gov (United States)

    Ma, Pan; Ma, Zengyi; Yan, Jianhua; Chi, Yong; Ni, Mingjiang; Cen, Kefa

    2011-10-01

    As one of the fastest developing countries, China is facing severe problems concerning hazardous waste treatment and disposal. This paper presents a new incineration technology and demonstration project in eastern China. The incineration system includes a rotary kiln, a grate furnace for burning out the kiln residue and a flue gas post-combustion chamber. Flue gas treatment and emission control is based on: a quench tower, followed by dry hydrated lime and activated carbon injection, a dual bag filter system, and a wet scrubber. It demonstrated that this incineration technology can effectively dispose of industrial hazardous waste with variable and complex characteristics. Gas emissions meet the demands of the Chinese Environmental Protection Association standard.

  2. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits...

  3. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator.

    Science.gov (United States)

    Wang, Jingfu; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-01

    Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  4. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in a two-step system consisting of a waste-to-energy process and a consequent bottom ash treatment. B) An aluminum-pre-sorting step takes place prior to the thermal treatment. In case of B, an additional exergy is spent on pre-sorting, but, in return, a metal of higher quality is obtained. The discussion...

  5. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands

    NARCIS (Netherlands)

    Dijk, van C.J.; Doorn, van W.; Alfen, van A.J.

    2015-01-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the

  6. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands

    NARCIS (Netherlands)

    Dijk, van C.J.; Doorn, van W.; Alfen, van A.J.

    2015-01-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the possibl

  7. Characterization of deposits and their influence on corrosion in waste incineration plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2001-01-01

    A program has been initiated in Denmark to investigate the aggressive environment in various waste incineration plants. The results described are the preliminary results from one waste incineration plant. Deposits and corrosion products have been removed from various locations in the boiler...

  8. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands

    NARCIS (Netherlands)

    Dijk, van C.J.; Doorn, van W.; Alfen, van A.J.

    2015-01-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the possibl

  9. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models.

    Science.gov (United States)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio; Grosso, Mario; Rigamonti, Lucia; Astrup, Thomas

    2011-10-01

    In Europe, about 20% of municipal solid waste is incinerated. Large differences can be found between northern and southern Europe regarding energy recovery efficiencies, flue gas cleaning technologies and residue management. Life-cycle assessment (LCA) of waste incineration often provides contradictory results if these local conditions are not properly accounted for. The importance of regional differences and site-specific data, and choice of LCA model itself, was evaluated by assessment of two waste incinerators representing northern and southern Europe (Denmark and Italy) based on two different LCA models (SimaPro and EASEWASTE). The results showed that assumptions and modelling approaches regarding energy recovery/substitution and direct air emissions were most critical. Differences in model design and model databases mainly had consequences for the toxicity-related impact categories. The overall environmental performance of the Danish system was better than the Italian, mainly because of higher heat recovery at the Danish plant. Flue gas cleaning at the Italian plant was, however, preferable to the Danish, indicating that efficient flue gas cleaning may provide significant benefits. Differences in waste composition between the two countries mainly affected global warming and human toxicity via water. Overall, SimaPro and EASEWASTE provided consistent ranking of the individual scenarios. However, important differences in results from the two models were related to differences in the databases and modelling approaches, in particular the possibility for modelling of waste-specific emissions affected the toxicity-related impact categories. The results clearly showed that the use of site-specific data was essential for the results.

  10. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends.

  11. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  12. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  13. Energy potential of municipal solid waste incineration in urban areas of China.

    NARCIS (Netherlands)

    Zheng, Ling

    2006-01-01

    This study aims to evaluate the energy potential of municipal solid waste (MSW) incineration in Chinese cities from 1996 to 2020. In China, with improving the standard of living recently, the extreme increase of the municipal solid waste generation (MSWG)

  14. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    Science.gov (United States)

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation.

  15. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  16. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  17. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  18. Nutrient recovery from ash after incineration of organic residues

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, L. [ASH DEC Umwelt AG, Vienna (Austria)

    2006-08-15

    Organic residues (sewage sludge, biomass, manure) contain significant amounts of nutrients and organic matter that have justified their cheap disposal on cropland. In recent years, however, many plant and soil scientists, public authorities and food industry companies have called for restrictions on uncontrolled spreading of organic residues on cropland because of constant (PAHs, phthalates) or increasing (PBDEs, Bisphenol A, hormones, antibiotics etc.) concentrations of organic pollutants and heavy metals that are partly accumulated in soils and may be transferred to the food chain. Moreover, intensive cattle and pig farming produces increasing quantities of manure that may lead to over-fertilization of croplands and eutrophication of aquatic bodies. An alternative and safe disposal route for organic residues in incineration that makes use of the calorific value of organics, yields energy, destroys the organic pollutants and concentrates inorganic pollutants and most nutrients - except nitrogen that is lost to the atmosphere - in the ash. Most sludge-, manure- and biomass ashes contain P and K (15-25%), Ca (20-30%); Si (15-25%), Fe (10-20%) and trace nutrients. Because of their commonly high concentrations of copper, zinc, lead and cadmium and their limited usability as a fertilizer (dust, insufficient nutrient plant availability) untreated ashes are frequently banned from application on crop- or woodland and are disposed of in landfills, where nutrient are lost or may even adversely affect water bodies. To minimize adverse effects of biomass-to-energy concepts, ash must be converted to a P-rich fertilizer raw material. The selected technological approach is a thermo-chemical ash treatment at around 1.000 deg. C that removes harmful heavy metals and makes P fully plant available. (BA)

  19. Municipal solid wastes incineration with combined cycle: a case study from Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Cerda Balcazar, Juan Galvarino; Dias, Rubens Alves; Balestieri, Jose Antonio Perrella [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)], E-mails: pos09007@feg.unesp.br, rubdias@feg.unesp.br

    2010-07-01

    Large urban centers have a huge demand for electricity, for the needs of its residents, and a growing problem of management of solid waste generated by it, that becomes an public administrative and great social problem. The correct disposal of solid waste generated by large urban centers is now one of the most complex engineering problems involving logistics, safety, environment, energy spent among other tools for sound management of municipal solid waste (MSW). This study was carried out a study of the use of incinerators and residue derived fuel and MSW with combined cycles, with the aim of producing thermal and mechanical energy (this later becomes electrical energy) and solid waste treatment in Sao Paulo. We used existing models and real plants in the European Union in this case, with the aim of making it the most viable and compatible with the current context of energy planning and resource today. A technical and economic feasibility study for a plant of this nature, using the scheme, is presented. It is expected a good attractiveness of using incinerators combined-cycle, due to its high efficiency and its ability to thermoelectric generation. (author)

  20. Assessment of incineration and melting treatment technologies for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Geimer, R.; Hertzler, T.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  1. Gas purification downstream of waste incineration plants. Gasreinigung hinter Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Igelbuescher, H.; Gresch, H.; Dewert, H.

    1987-08-13

    HCl, HF and also SO/sub 2/ as well as most heavy metals can be separated in dry filters of refuse incineration plants by adding lime hydrate, but the gaseous heavy metals, such as mercury, can only be removed in a secondary wet separator. A secondary wet separator is installed for the separation of the residual acid emission components which are still in the flue gas after passing through the dry filter. Calcium hydroxide solutions and, additionally, an active substance of trimercapto-s-triazine are added to the scrubbing water cycle of this separator.

  2. Incineration of different types of medical wastes: emission factors for gaseous emissions

    Science.gov (United States)

    Alvim-Ferraz, M. C. M.; Afonso, S. A. V.

    Previous research works showed that to protect public health, the hospital incinerators should be provided with air pollution control devices. As most hospital incinerators do not possess such equipment, efficient methodologies should be developed to evaluate the safety of incineration procedure. Emission factors (EF) can be used for an easy estimation of legal parameters. Nevertheless, the actual knowledge is yet very scarce, mainly because EF previously published do not include enough information about the incinerated waste composition, besides considering many different waste classifications. This paper reports the first EF estimated for CO, SO 2, NO x and HCl, associated to the incineration of medical waste, segregated in different types according to the classification of the Portuguese legislation. The results showed that those EF are strongly influenced by incinerated waste composition, directly affected by incinerated waste type, waste classification, segregation practice and management methodology. The correspondence between different waste classifications was analysed comparing the estimated EF with the sole results previously published for specific waste types, being observed that the correspondence is not always possible. The legal limit for pollutant concentrations could be obeyed for NO x, but concentrations were higher than the limit for CO (11-24 times), SO 2 (2-5 times), and HCl (9-200 times), confirming that air pollution control devices must be used to protect human health. The small heating value of medical wastes with compulsory incineration implied the requirement of a bigger amount of auxiliary fuel for their incineration, which affects the emitted amounts of CO, NO x and SO 2 (28, 20 and practically 100% of the respective values were related with fuel combustion). Nevertheless, the incineration of those wastes lead to the smallest amount of emitted pollutants, the emitted amount of SO 2 and NO x reducing to 93% and the emitted amount of CO

  3. Separation of metals from incineration wastes using mineral industry processes

    Energy Technology Data Exchange (ETDEWEB)

    Scheizer, G. [Universite de Technologie, Aix-la-Chapelle (Germany)

    1996-12-01

    The incineration of municipal wastes in Federal Republic of Germany produced about 2.7 to 2.8 millions of tons of solid wastes in 1993 which still contain huge amounts of mineral and organic pollutants. Ashes represent the largest part of wastes with about 2.4 millions of tons. Vitrification is an innovative treatment technique which allows a 90% reduction of the waste volume, the complete removal of the organic matter content, and the storage of these waste in an environmentally neutral form. However, metals must be extracted from the ashes prior to the vitrification process. Most metals fall into the 2.4-2.7 g/cm{sup 3} and > 3 g/cm{sup 3} density ranges. The lighter fraction corresponds to aluminium particles and alloys, while the high density fraction is enriched in copper, copper alloys and more particularly in brass. The treatment process, after drying, consist in the use of high intensity magnetic separation devices (permanent neodymium-bore-iron magnets) for the removal of ferrous particles, and in the use of Foucault currents separation devices for non-magnetic metals. At the pilot-scale, the distribution of the processed wastes corresponds to: 62.6 % of non-metallized ashes, 35.5 % of magnetic products, and 1.9% of non-magnetic products. The possible recycling of the metal fraction must be demonstrated by further studies. (J.S.). Abstract only.

  4. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  5. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  6. UK: Technical data for waste incineration background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade. This report presents a compilation of technical data on waste incineration that serve...... as background for a model of incineration processes to be used in the inventory analysis of LCA....

  7. Chemical properties of heavy metals in typical hospital waste incinerator ashes in China.

    Science.gov (United States)

    Zhao, Lijuan; Zhang, Fu-Shen; Wang, Kaisheng; Zhu, Jianxin

    2009-03-01

    Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.

  8. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Shao, Li-Ming; He, Pin-Jing [Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092 (China)

    2017-04-05

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ({sup 207}Pb/{sup 206}Pb = 0.8550–0.8627 and {sup 208}Pb/{sup 206}Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  9. Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator

    Science.gov (United States)

    Mininni, Giuseppe; Sbrilli, Andrea; Maria Braguglia, Camilla; Guerriero, Ettore; Marani, Dario; Rotatori, Mauro

    An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200-350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm -3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t -1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41-3700 μg ITEQ t -1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91-414 μg kg -1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018-0.5 μg Nm -3) were below the Italian limit of 10 μg Nm -3.

  10. Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis.

    Science.gov (United States)

    Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko

    2015-11-17

    The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.

  11. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  12. Emission of ultrafine particles from the incineration of municipal solid waste: A review

    Science.gov (United States)

    Jones, Alan M.; Harrison, Roy M.

    2016-09-01

    Ultrafine particles (diameter waste, and this article reviews studies carried out on the emissions from modern municipal waste incinerators. The effects of engineering controls upon particle emissions are considered, as well as the very limited information on the effects of changing waste composition. The results of measurements of incinerator flue gas, and of atmospheric sampling at ground level in the vicinity of incinerators, show that typical ultrafine particle concentrations in flue gas are broadly similar to those in urban air and that consequently, after the dispersion process dilutes incinerator exhaust with ambient air, ultrafine particle concentrations are typically indistinguishable from those that would occur in the absence of the incinerator. In some cases the ultrafine particle concentration in the flue gas may be below that in the local ambient air. This appears to be a consequence of the removal of semi-volatile vapours in the secondary combustion zone and abatement plant, and the high efficiency of fabric filters for ultrafine particle collection.

  13. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  14. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Science.gov (United States)

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

  15. gis analysis in the siting of incinerators as a panacea for solid waste ...

    African Journals Online (AJOL)

    Sanda Dogara & Auwal Abdul

    countries are constrained by limited finances and inadequate services (Omran and ... via landfills is expensive and spaces for them are getting scarce. Incineration then becomes an attractive alternative. Waste incineration is a .... conduct Geographic Information System based site suitability and site selection analysis to ...

  16. Small-scale medical waste incinerators: experiences and trials in South Africa

    CSIR Research Space (South Africa)

    Rogers, DEC

    2006-01-01

    Full Text Available incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial...

  17. DC Arc Plasma Furnace Melting of Waste Incinerator Fly Ash

    Institute of Scientific and Technical Information of China (English)

    CHEN Mingzhou; MENG Yuedong; SHI Jiabiao; KUANG Jingan; NI Guohua; LIU Wei; JIANG Yiman

    2009-01-01

    Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China.At a feed-rate of flying ash of 80 kg/h,the temperature at the gas outlet was above 1300℃.Dioxins in the off-gas were recorded as 0.029 ng I-TEQ/Nm3 (international toxic equivalent,I-TEQ),well below 0.5 ng TEQ/Nm3 (toxic equivalent,TEQ),while those in the melted product(slag)were 0.00035 ng/g I-TEQ.Molten slag from the furnace showed excellent resistance against the leaching of heavy metals.These results prove that the plasma furnace is effective for the detoxification and stabilization of MSWI fly ash.

  18. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  19. Precious Metals in Municipal Solid Waste Incineration Bottom Ash

    Energy Technology Data Exchange (ETDEWEB)

    Muchova, Lenka; Bakker, Erwin; Rem, Peter [Faculty of Civil Engineering and Geosciences, Materials and Environment, TU Delft (Netherlands)], E-mail: P.C.REM@TUDELFT.NL

    2009-04-15

    Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam's bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.

  20. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    Science.gov (United States)

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    Science.gov (United States)

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  2. the development of new generation of solid waste refuse incinerators

    African Journals Online (AJOL)

    The design of these incinerators does not allow combustion products directly into ... will be almost impossible since the ash builds a semi-solid ash that cannot be ... subsidence of the ground destroys the incinerators by the base caving in.

  3. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    Science.gov (United States)

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes.

  4. Technical data for waste incineration - background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Erichsen, Hanne; Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade....

  5. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  6. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  7. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    Science.gov (United States)

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating).

  9. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  10. PAH emissions from coal combustion and waste incineration.

    Science.gov (United States)

    Hsu, Wei Ting; Liu, Mei Chen; Hung, Pao Chen; Chang, Shu Hao; Chang, Moo Been

    2016-11-15

    The characteristics of PAHs that are emitted by a municipal waste incinerator (MWI) and coal-fired power plant are examined via intensive sampling. Results of flue gas sampling reveal the potential for PAH formation within the selective catalytic reduction (SCR) system of a coal-fired power plant. In the large-scale MWI, the removal efficiency of PAHs achieved with the pilot-scaled catalytic filter (CF) exceeds that achieved by activated carbon injection with a bag filter (ACI+BF) owing to the effective destruction of gas-phase contaminants by a catalyst. A significantly lower PAH concentration (1640ng/g) was measured in fly ash from a CF module than from an ACI+BF system (5650ng/g). Replacing the ACI+BF system with CF technology would significantly reduce the discharge factor (including emission and fly ash) of PAHs from 251.6 to 77.8mg/ton-waste. The emission factors of PAHs that are obtained using ACI+BF and the CF system in the MWI are 8.05 and 7.13mg/ton, respectively. However, the emission factor of MWI is significantly higher than that of coal-fired power plant (1.56mg/ton). From the perspective of total environmental management to reduce PAH emissions, replacing the original ACI+BF process with a CF system is expected to reduce environmental impact thereof.

  11. Leaching characteristics of fly ash from Chinese medical waste incineration.

    Science.gov (United States)

    Tan, Zhongxin; Xiao, Gang

    2012-03-01

    Many of the characteristics of typical medical waste ash can be found by using ash leaching experiments. The present study investigated the characteristics of fly ash derived from incineration of medical waste in China. The particle diameter of the fly ash was in the range 154-900 μm. Elemental analyses of the fly ash indicated that it contained calcium, aluminium, iron, sodium, potassium and magnesium, and that copper, lead, chromium and mercury were the dominant heavy metals it contained. As leaching time was increased the leaching concentrations of the heavy metals increased and the leaching toxicity was augmented. When the pH was neutral, the concentrations of most heavy metals in the leachate were minimum whereas when the pH was alkali or acid, the leaching toxicity was greatly enhanced. High temperature melting was found to be a good method of fixing heavy metals, and the main components of the sinter were Fe3O4, SiO2, CaSO4 and CaSiO3, etc.

  12. 生活垃圾焚烧残灰中有毒成分的排放特性%Emission characteristics of hazardous components in municipal solid waste incinerator residual ash

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong LI; Yong REN; Sha-sha JI; Xia-li HOU; Tong CHEN; Sheng-yong LU; Jian-hua YAN

    2015-01-01

    目的:探索中国生活垃圾焚烧残灰中重金属、氯苯、多环芳烃等有毒成分的排放特性、排放水平及相互之间的关联特性,并认识其产生、排放与焚烧炉型、焚烧条件的关联,以探索控制其危害的有效方法。方法:1.对中国几个典型的生活垃圾焚烧炉现场采样,获得多个飞灰和底渣的样品;2.通过多种不同的检测手段和方法,分别检测残灰的基本物理化学特性、氯苯、多环芳烃和主要金属元素的浓度;3.结合焚烧炉型和焚烧特性等条件,分析各有毒成分的排放特性和相互之间的关联特性。结论:1.氯苯、多环芳烃和重金属受焚烧因素影响,在残灰中的排放特性各不相同,流化床焚烧炉能消除焚烧和原始垃圾的扰动,能控制氯苯在残灰中的排放,但多环芳烃排放控制不如炉排焚烧炉;2.残灰中主要的有机有毒成分为高氯代氯苯和2至4环等少环类多环芳烃;3.氯苯和多环芳烃在残灰中的含量可能因为不同的产生机理而表现出一定的负关联特点;4.残灰中的金属主要为铝和铁等轻金属,浓度远高于重金属元素,而无毒重金属(主要为Mn、Ni、As和Zn)浓度高于有毒重金属元素(Cu、Pb和Cr),且不同金属表现出不同的对氯苯和多环芳烃的催化促进或抑制作用。%In this study, eight fly ash samples and three bottom ash samples from different areas are collected for analysis of their physicochemical properties and emission content of dioxin precursors and metals. Their surface characteristics, their effects on dioxin precursors, and important aspects of the compositions of residual ash (fly ash and bottom ash) are investigated. Poly-chlorobenzenes (PCBzs) in the fly ash of a fluidized bed incinerator (FBI) are 7.35 to 357.94 µg/kg, and in that of a fire grate incinerator (FGI) are 6.74 to 96.52 µg/kg. The concentrations in bottom ash are the same (i

  13. High Solids Consolidated Incinerator Facility (CIF) Wastes Stabilization with Ceramicrete and Super Cement

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B.W.

    1999-09-14

    High Solids ash and scrubber solution waste streams were generated at the incinerator facility at SRS by burning radioactive diatomaceous filter rolls which contained small amounts of uranium, and listed solvents (F and U). This report details solidification activities using selected Mixed Waste Focus Area (MWFA) technologies with the High Solids waste streams.

  14. Sieving of municipal solid waste incineration (MSWI) bottom ash; Siktning av askor fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, Jelena

    2010-07-01

    Waste-to-Energy is steadily increasing in Sweden and more than 46 % of municipal solid waste (MSW) is being incinerated. Solid residues from MSW incineration (MSWI) mainly constitute of bottom ash and air pollution control (APC) residues. Bottom ashes from MSWI amounted to 0.7 millions of tons and APC residues to 0.2 millions of tons in 2008. Bottom ashes from MSWI contain pollutants like metals (e.g. Pb, Zn, Cu), metalloids (e.g. As, Se), elements forming oxyanions (e.g. Sb, Cr, Mo) and easily soluble salts like chlorides and sulphates. These constituents can leach out polluting the environment if ash comes in contact with water. Treatment methods for decreasing the amount of pollutants in ashes or their mobility are therefore needed. Sieving was investigated as a separate or a complementary treatment method for MSWI ashes. Hypothesis was that the large share of pollutant concentrations could be removed from the ashes through separation of the finest fractions. The rest is less harmful to the environment, more acceptable as secondary construction material or less costly to landfill. Investigation included three MSWI ashes, namely bottom ash from Boraas Energy och Miljoe's plant with fluid bad, boiler ash from the same plant and bottom ash from Renova's stocker grate type plant. Ashes were sieved in 2-4 size fractions. Total content of pollutants and their leachability (batch leaching test, L/S=10 l/kg) was assessed for each of the fractions. Leaching results were compared to limit values stipulated by Swedish Environmental Protection Agency for acceptance of waste at landfills as wells as to recommendations for reuse of waste as a construction material. Results from bottom ash from the stocker grate type incinerator and from the boiler ash confirm the hypothesis that pollutants leach out in higher concentrations from the finer fractions. A large amount of pollutant could be removed from the ashes through sieving, but the goal to produce a fraction that

  15. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber, and...

  16. Environmental assessment of waste incineration and alternatives; Miljoevurdering af affaldsforbraending og alternativer

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.; Fruergaard, T.; Riber, C.; Astrup, T.; Hoejlund Christensen, T.

    2008-06-15

    Life cycle environmental assessment of waste combustion and alternatives were made using the LCA model EASEWASTE. Possible environmental effects for nine effect categories and the resource consumption of fossil fuels through treating 1 ton combustible waste were defined for several waste systems, including waste-only incineration, co-combustion in a fossil-fueled cogeneration plant, and combined biogas and compost production from household waste. The main conclusions of the analyses are: 1) with an optimum location, i.e. in the vicinity to a coal-fueled cogeneration plant, waste-only incineration, co-combustion , and combined biogas and compost production are all equal environmentally viable alternatives . 2) Regarding potential toxic impacts in the area of a coal-fueled cogeneration plant, waste-only incineration and combined biogas and compost production will result in slightly less net emissions compared to co-combustion because of better flue gas cleaning of heavy metals in incinerators than in power plants. 3) Siting the incinerator in a decentralized natural gas cogeneration area, co-combustion in a cogeneration plant is a better solution. 4) Combined biogas and compost production and waste-only combustion are environmentally equal treatments in all power plant areas. (ln)

  17. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials.

    Science.gov (United States)

    Cyr, M; Idir, R; Escadeillas, G

    2012-12-01

    The landfilling of municipal incineration residues is an expensive option for municipalities. This work evaluates an alternative way to render waste inert in cement-based materials by combining the reduction of waste content with the immobilization properties of metakaolin (MK). The functional and environmental properties of ternary and quaternary binders using cement, metakaolin, and two industrial by-products from combustion processes (MSWIFA - Municipal Solid Waste Incineration Fly Ash and SSA - Sewage Sludge Ash) were evaluated. The binders were composed of 75% cement, 22.5% metakaolin and 2.5% residue. Results on the impact of residues on the functional and environmental behavior of mortars showed that the mechanical, dimensional and leaching properties were not affected by the residues. In particular, the use of metakaolin led to a significant decrease in soluble fractions and heavy metals released from the binder matrix. The results are discussed in terms of classification of the leaching behavior, efficiency and role of metakaolin in the immobilization of heavy metals in of MSWIFA and SSA, and the pertinence of the dilution process.

  18. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  19. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants.

  20. Protective Coatings in the Power Boilers Used to Incinerate Waste – Fuel Characteristics of Waste as the Source of Energy

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available A general characteristics of waste management was presented. Municipal waste was characterised and its fuel properties were provided. Numerous thermal processes of waste utilisation were described such as an incinerating process, free-oxygen technology - pyrolysis, technology with oxygen deficiency - gasification and the plasma technology.

  1. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland.

  2. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.

    Science.gov (United States)

    Holm, Olaf; Simon, Franz-Georg

    2017-01-01

    The industrial sector of bottom ash (BA) treatment from municipal solid waste incineration (MSWI) in Germany is currently changing. In order to increase the recovery rates of metals or to achieve a higher quality of mineral aggregates derived from BA, new procedures have been either implemented to existing plants or completely new treatment plants have been built recently. Three treatment trains, which are designated as entire sequences of selected processing techniques of BA, are introduced and compared. One treatment train is mainly characterized by usage of a high speed rotation accelerator whereas another is operating completely without crushing. In the third treatment train the BA is processed wet directly after incineration. The consequences for recovered metal fractions and the constitution of remaining mineral aggregates are discussed in the context of legislative and economical frameworks. Today the recycling or disposal options of mineral residues still have a high influence on the configuration and the operation mode of the treatment trains of BA despite of the high value of recovered metals.

  3. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  4. Optimised utilisation of existing incinerators by installation of upstream reactors for treatment of waste with high calorifica value - HYBRID waste treatment plants; Optimierte Nutzung bestehender Abfallverbrennungsanlagen durch Errichtung vorgeschalteter Reaktoren zur Behandlung heizwertreicher Abfaelle - HYBRID-Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    El Labani, M.

    2000-07-01

    Waste incineration plants are based on the process of thermal waste treatment, i.e. the generation of power from the controlled conversion of organic reactive residue waste. Statutory requirements forced operators to install powerful flue gas cleaning systems into their existing waste incineration plants. This led to a tremendous increase in cost and treatment prices generating pressure to optimize the process. Currently, markets demand additional capacities for the treatment of waste of elevated heating value ({proportional_to}5,0 MWh/Mg). It is possible to treat this type of waste in a conventional waste incineration plant. However, the elevated heating value dictates a reduction in throughput with ever increasing pressure on costs. This is why current concepts consider the treatment of waste of elevated heating value in specific, so called de-centralized plants. These plants are usually of low throughput with accordingly high specific cost of developing the infrastructure. The capacity of existing waste incineration plants has been investigated in order to assess the potential for optimization. Extensive test runs at the Municipal Solid Waste Incineration Plant (MSW) Darmstadt revealed a capacity gap in the flue gas cleaning system even with the incineration unit running at full capacity. This gap could be filled with an additional incineration plant for waste of elevated heating value, whose capacity is matched accordingly. Such additional incineration plant defines in conjunction with the existing waste incineration plant a so called HYBRID Waste Treatment Plant. It is the aim of this treatise to develop an instrument to support the decision making process related to the planning of such plants. (orig.) [German] Abfallverbrennungsanlagen basieren auf dem Verfahren der thermischen Abfallbehandlung; das ist die Energieerzeugung aus der kontrollierten Umwandlung organischer, reaktionsfaehiger Restabfaelle. Aufgrund gesetzlicher Vorgaben mussten bestehende

  5. Energy and exergy optimization of food waste pretreatment and incineration.

    Science.gov (United States)

    Tang, Yuanjun; Dong, Jun; Chi, Yong; Zhou, Zhaozhi; Ni, Mingjiang

    2017-06-22

    With the aim of upgrading current food waste (FW) management strategy, a novel FW hydrothermal pretreatment and air-drying incineration system is proposed and optimized from an energy and exergy perspective. Parameters considered include the extracted steam quality, the final moisture content of dehydrated FW, and the reactor thermal efficiency. Results show that optimal working condition can be obtained when the temperature and pressure of extracted steam are 159 °C and 0.17 MPa, the final moisture content of dehydrated FW is 10%, and the reactor thermal efficiency is 90%. Under such circumstance, the optimal steam energy and exergy increments reach 194.92 and 324.50 kJ/kg-FW, respectively. The novel system is then applied under the local conditions of Hangzhou, China. Results show that approximately 2.7 or 11.6% (from energy or exergy analysis perspective) of electricity can be additionally generated from 1 ton of MSW if the proposed novel FW system is implemented. Besides, comparisons between energy and exergy analysis are also discussed.

  6. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  7. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    Science.gov (United States)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively

  8. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in

  9. Treatment Technologies for Hazardous Ashes Generated from Possible Incineration of Navy Waste

    Science.gov (United States)

    1990-10-01

    Resources Projected for Phase 1 of the RTD&E Program: Waste Characterization/ Source Study A-9 A-4 Analytical Tests on Bottom and Fly Ash Generated from...Overall Project Schedule A-4 A-2 Phase I- Waste Characterization/ Source Study Detailed Schedule A-10 A-3 Phase 2: Pilot Rotary Kiln Incineration...fol- lowing RDT&E program is recommended: * Phase 1--Waste Characterization/ Source Study Project future, post-RCRA conformity, Navy waste data needed to

  10. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value...

  11. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.

    Science.gov (United States)

    Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea

  12. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Astrup, Thomas; Møller, Jacob; Fruergaard, Thilde

    2009-01-01

    Important greenhouse gas (GHG) emissions related to waste incineration and co-combustion of waste were identified and considered relative to critical aspects such as: the contents of biogenic and fossil carbon, N2O emissions, fuel and material consumptions at the plants, energy recovery, and soli...

  13. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current

  14. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zürich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zürich, ERZ Entsorgung - Recycling Zürich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zürich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

    2014-02-15

    Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total

  15. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density heat. We also found that external use of such energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation.

  16. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    Science.gov (United States)

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  17. Thermal destruction of wastes containing polychlorinated naphthalenes in an industrial waste incinerator.

    Science.gov (United States)

    Yamamoto, Takashi; Noma, Yukio; Sakai, Shin-Ichi

    2016-07-02

    A series of verification tests were carried out in order to confirm that polychlorinated naphthalenes (PCNs) contained in synthetic rubber products (Neoprene FB products) and aerosol adhesives, which were accidentally imported into Japan, could be thermally destroyed using an industrial waste incinerator. In the verification tests, Neoprene FB products containing PCNs at a concentration of 2800 mg/kg were added to industrial wastes at a ratio of 600 mg Neoprene FB product/kg-waste, and then incinerated at an average temperature of 985 °C. Total PCN concentrations were 14 ng/m(3)N in stack gas, 5.7 ng/g in bottom ash, 0.98 ng/g in boiler dust, and 1.2 ng/g in fly ash. Destruction efficiency (DE) and destruction removal efficiency (DRE) of congener No. 38/40, which is considered an input marker congener, were 99.9974 and 99.9995 %, respectively. The following dioxin concentrations were found: 0.11 ng-TEQ/m(3)N for the stack gas, 0.096 ng-TEQ/g for the bottom ash, 0.010 ng-TEQ/g for the boiler dust, and 0.072 ng-TEQ/g for the fly ash. Since the PCN levels in the PCN destruction test were even at slightly lower concentrations than in the baseline test without PCN addition, the detected PCNs are to a large degree unintentionally produced PCNs and does not mainly stem from input material. Also, the dioxin levels did not change. From these results, we confirmed that PCNs contained in Neoprene FB products and aerosol adhesives could be destroyed to a high degree by high-temperature incineration. Therefore, all recalled Neoprene FB products and aerosol adhesives containing PCNs were successfully treated under the same conditions as the verification tests.

  18. Indoor air concentrations of mercury species in incineration plants for municipal solid waste (MSW) and hospital waste (HW).

    Science.gov (United States)

    Liu, Yangsheng; Zhan, Ziyu; Du, Fang; Kong, Sifang; Liu, Yushan

    2009-04-01

    Until now, there is limited information about mercury exposures inside solid waste incineration plants although incineration has been considered as one of major solid waste treatments. This study investigated indoor air concentrations of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (Hgp) and indoor dust mercury concentrations in a municipal solid waste incineration (MSWI) plant and a hospital waste incineration (HWI) plant during December 2003 and July 2004. The final results showed that the employees in incineration plants are not only exposed to GEM, but also to RGM and Hgp. For the HWI plant, only concentration of total mercury (HgT) in operation center in summer was below 1000ngm(-3) due to frequent ventilation, while those of GEM and HgT in hospital waste depot exceeded 3000ngm(-3). For the MSWI plant, only concentration of HgT in workplace in winter exceeded 1000ngm(-3). Therefore, more attention should be paid to mercury exposures in HWI plants than in MSWI plants. Indoor dust containing approximately 3968microgHgTkg(-1) (dry matter) possibly served as the potential source for indoor air mercury pollution, especially in the HWI plant.

  19. 77 FR 24403 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Science.gov (United States)

    2012-04-24

    ... AGENCY 40 CFR Part 62 Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan...). ACTION: Direct final rule. SUMMARY: EPA is approving Illinois' revised State Plan to control air pollutants from ``Hazardous/Medical/Infectious Waste Incinerators'' (HMIWI). The Illinois Environmental...

  20. 77 FR 24451 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Science.gov (United States)

    2012-04-24

    ... AGENCY 40 CFR Part 62 Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan...). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve, through direct final rulemaking, Illinois' revised State Plan to control air pollutants from Hazardous/ Medical/Infectious Waste Incinerators (HMIWI...

  1. 77 FR 24405 - Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan for Designated...

    Science.gov (United States)

    2012-04-24

    ... AGENCY 40 CFR Part 62 Direct Final Approval of Hospital/Medical/Infectious Waste Incinerators State Plan...). ACTION: Direct final rule. SUMMARY: EPA is approving Indiana's revised State Plan to control air pollutants from ``Hazardous/Medical/Infectious Waste Incinerators'' (HMIWI). The Indiana Department of...

  2. Mixed Incineration with Dry Sludge in Waste Incineration Plant%垃圾焚烧发电厂中掺烧干化污泥探讨

    Institute of Scientific and Technical Information of China (English)

    石靖宇

    2015-01-01

    介绍了污泥焚烧处理技术的主要方式(联合焚烧和单独焚烧)及应用现状,阐述了垃圾焚烧发电厂中掺烧干化污泥技术在国内外应用情况及其工艺流程与烟气处理工艺,并提出了垃圾焚烧发电厂掺烧干化污泥的可行性及优势。%The main modes (united-incineration and separate incineration) and application status of sludge incineration treatment technology were introduced. The application status of mixed incineration technology with dry sludge in waste incin-eration plants at home and abroad was expounded, as well as its process and flue gas treatment technology. And the feasibility and advantages of waste incineration mixing with dry sludge in waste incineration plant were put forward.

  3. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    Science.gov (United States)

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  4. Waste incineration on its way to the power plants; Muellverbrennung auf dem Weg zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J. [STEAG encotec GmbH, Essen (Germany); Neukirchen, B. [STEAG AG, Essen (Germany)

    2004-07-01

    Looking at the year 2005 and the end of disposal of untreated domestic waste the politic hopes that the prognosticated lack of waste treatment capacity is remedied by coal-fired power plants. The classical municipal waste incinerators by contrast want to get recognition as energetic recycler in comparison with power stations. The decision of the European Court of Justice concerning recycling and disposal of domestic waste by incineration has started the discussion and competition on fuel-rich commercial waste. Are municipal waste incineration plants power stations or must power plants be regarded as incinerators? These questions are still open. (orig.) [German] Mit Blick auf das Jahr 2005 und das Ende der Ablagerung von unbehandeltem Siedlungsabfall hofft die Politik, dass der prognostizierte Mangel an Vorbehandlungskapazitaeten von den Kohlekraftwerken behoben wird. Die klassischen Muellverbrennungsanlagen wollen dagegen mit dem Kraftwerksvergleich die Anerkennung als energetische Verwerter erreichen. Das EuGH-Urteil zur Verwertung oder Beseitigung von Siedlungsabfall durch Verbrennen hat in diesem Jahr die Diskussion und den Kampf um den heizwertreichen Gewerbeabfall angeheizt. Die Frage, wie weit in Zukunft die Muellverbrennungsanlagen als Kraftwerke, aber auch die Kraftwerke als Muellverbrennungsanlagen angesehen werden muessen, ist noch offen. (orig.)

  5. Organic household waste - incineration or recycling; Skal husholdningernes madaffald braendes eller genanvendes? Samfundsoekonomisk analyse af oeget genanvendelse af organisk dagrenovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  6. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Science.gov (United States)

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard waste? Table 1 of this subpart specifies the...

  7. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of...

  8. Domestic wastes incineration in France situation in 2000 evolution and perspectives the 31.12.2002; Incineration des dechets menagers en France situation en 2000 evolution et perspectives au 31.12.2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document presents the analysis and the conclusions of a working group, concerning the domestic wastes incineration. It presents successively the place of the domestic wastes in the wastes management approach, the regulations, the methodology and the corresponding results of an inquiry realized in 2000 and the research programs on the incineration as the Best Available Techniques, the sanitary impacts of the UIOM (domestic wastes incineration plants), the vitrification, the greenhouse effect. (A.L.B.)

  9. Waste incineration within the Swedish district heating systems - Sub-Project 4; Avfallsfoerbraenning inom Sveriges fjaerrvaermesystem - Delprojekt 4 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Holmstroem; David

    2012-07-01

    Waste incineration within the Swedish district heating systems is one of the five sub-projects within the project Perspectives on sustainable waste treatment. The goal of this project is to evaluate the economic potential for waste incineration in the Swedish district heating systems. With the current expansion of incineration, we may relatively soon reach an upper limit for what is demanded by the Swedish district heating systems. How much more waste incineration that is economically attractive to build is of great importance for the development of the Swedish waste system, not least for the alternatives to incineration as for example biogas production. With continued rising quantities of waste and stagnant demand for waste incineration from the district heating systems, today's surplus of treatment capacity may change the market picture for other waste treatment options. How much more waste incineration requested and how quickly the market reaches this level is studied in this project.

  10. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration

    DEFF Research Database (Denmark)

    Damgaard, Anders; Riber, C.; Fruergaard, Thilde

    2010-01-01

    of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction...... impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during......Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion...

  11. Nitrogen oxides from waste incineration: control by selective non-catalytic reduction.

    Science.gov (United States)

    Zandaryaa, S; Gavasci, R; Lombardi, F; Fiore, A

    2001-01-01

    An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.

  12. Mineralogical and chemical investigations of abiotic hydrogen development in incinerator residues; Mineralogische und chemische Untersuchungen zur abiotischen Wasserstoffentwicklung in Muellverbrennungsrueckstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Magel, G.

    2003-07-01

    The monofill of Waldering is the oldest monofill in Bavaria for residues of a municipal solid waste incinerator (MSWI). Bottom ash (BA) and residues of the air pollution control system (APC) from the MSWI in Rosenheim have been deposited since 1976. After the first section was entirely filled, it was covered with a landfill liner and cap, according to the German law for waste treatment. During final operations on the landfill liner a deflagration occurred. The analysis of the landfill gas revealed that hydrogen gas was produced within the landfill body. Due to the sealing, the hydrogen gas could not diffuse to the atmosphere but concentrates within the landfill. Above a concentration of 4%, hydrogen is an explosive gas in the presence of oxygen. Abiotic hydrogen generation in MSWI-residues has been noted in only a few studies which conclude that hydrogen production largely terminates after three months and therefore can be neglected in the long range. However, the occurrence of the long-term hydrogen production in Waldering contradicts these statements. Landfill gas from another landfill for MSWI-residues, situated in Franklin, New Hampshire (USA), contains 5.1% hydrogen. Therefore hydrogen production in a monofill is not unique to Waldering. Deposited material from both monofills has been analysed and compared to fresh material. Owing to different methods of deposition, the BA and APC-residues of the monofill of Waldering were investigated separately whereas composite samples of BA and APC-residues were analysed from the monofill of Franklin. The experimental data of this study - in agreement with some literature studies - show that the production of hydrogen in MSWI-residues is due to hydration reactions of non-noble metals, especially aluminium. (orig.)

  13. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B.W.

    2000-01-11

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials.

  14. The mobile incinerator for intermediate and low level radioactive organic (wood) wastes

    Energy Technology Data Exchange (ETDEWEB)

    Raginsky, L.S.; Demidovich, N.N.; Elanchik, A.G. [A.A. Bochvar Scientific Research Institute of Inorganic Materials (Russian Federation)] [and others

    1993-12-31

    The Chernobyl accident contaminated many settlements and the environment. The programme Vector was designed to mitigate the effects and involves designing a mobile facility for incinerating solid organic intermediate and low-level radioactive wastes. Results of the first stage are described.

  15. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2004-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC)

  16. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2009-01-01

    The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organ

  17. CORRELATION OF POLYCHLORINATED NAPHTHALENES WITH POLYCHLORINATED DIBENZOFURANS FORMED FROM WASTE INCINERATION

    Science.gov (United States)

    Isomer composition of polychlorinated naphthalenes (PCNs) was measured for municipal waste incinerator fly ash samples,and for emission samples produced from soot and copper deposit experiments conducted at EPA. Two types of PCN isomer patterns were identified. One pattern cxonta...

  18. ON THE RELATIONSHIP BETWEEN CO, POHC, AND PIC EMISSIONS FROM A SIMULATED HAZARDOUS WASTE INCINERATOR

    Science.gov (United States)

    Measurements conducted on full-scale hazardous waste incinerators have occasionally shown a relationship between carbon monoxide (CO) emissions and emissions of toxic organic compounds. In this study, four mixtures of chlorinated C1 and C2 hydrocarbons were diluted in commercial...

  19. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Municipal solid waste incineration (MSWI) fly ash, which has been treated electrodialytically for the removal of heavy metals, may have changed characteristics compared to untreated fly ash. In this study, MSWI fly ash was characterized with respect to leaching properties (pH static leaching...

  20. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Science.gov (United States)

    2010-07-01

    ... wood wastes, clean lumber, and/or yard waste? (a) Use Method 9 of 40 CFR part 60, Appendix A to... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber...

  1. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension - test of a new two compartment experimental cell

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Magro, Cátia; Guedes, Paula

    2015-01-01

    of MSWI residues in for instance concrete, the aim of remediation should be reduction of the heavy metal leaching, while at the same time keeping the alkaline pH, so the residue can replace cement. In this study a MSWI residues were subjected to electrodialytic remediation under various experimental...... conditions. Also a newly developed 2 compartment experimental cell was tested. The results show that the pH development in the MSWI residue suspension depended on the type of MSWI residue and the experimental cell type. The acidification of the suspension occurred earlier when using the 2 compartment setup...... and the acidification of the fly ash occurred earlier than for the APC residue but the highest removal was seen with the 3 compartment cell. The lowest final pH for the fly ash and APC residue was 6.4 and 10.9, respectively. The results showed that the leaching of Cd, Cu, Pb and Zn was reduced compared to the initial...

  2. Combustible radioactive waste treatment by incineration and chemical digestion

    Energy Technology Data Exchange (ETDEWEB)

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  3. Physicochemical properties and morphology of vitreous waste forms incorporating hazardous incineration ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Tae; Park, Hyun Soo; Kim, Joon Hyung [KAERI, Taejon (Korea, Republic of); Koo, Ja Kong [KAIST, Taejon (Korea, Republic of); Seo, Yong Chil [Yonsei University, Seoul (Korea, Republic of)

    1999-07-01

    Ash melting experiments were conducted to investigate the applicability of glass matrix as a binder for the solidification of hazardous incineration ash. Several batches of hazardous incineration ash from a paint-factory were melt at 1300 deg C. to fabrication solidified waste forms with the addition of different contents of base-glass material as an additive. The XRD analysis of the final waste forms indicated mixtures of ash and additive are satisfactorily vitrified to form amorphous phases. Even though solidification agents (base-glass) were added, the total waste volume was reduced after vitrification. The volume reduction factor increased with HWI ash loading and reached up t 4.6. The minimum compressive strength and microhardness were 54 MPA and 5.9 GPa, respectively, which were higher than those of cement-solidified incineration ash. All the vitreous waste forms passes the standard extraction tests performed in accordance with Korean MOE's EP and US EPA's TCLP method and thus they could be classified as non-hazardous wastes to save disposal cost. The total mass leach rates were several g/m{sup 2}.d after 14 days of MCC-5S leaching test. Morphology and chemical analysis of waste glass by SEM/EDS before and after leaching tests showed that titanium in the glass network was very durable to leave a Ti-rich layer at the surface of the waste form after leaching. The overall assessment of experimental results showed that the applicability of vitrification technology to treat hazardous incineration ashes would be viable. (author). 20 refs., 6 tabs., 7 figs.

  4. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  5. Effect of improving flue gas cleaning on characteristics and immobilisation of APC residues from MSW incineration

    Energy Technology Data Exchange (ETDEWEB)

    Geysen, D. [Public Waste Agency of Flanders, OVAM, Stationsstraat 110, B-2800 Mechelen (Belgium)]. E-mail: daneel.geysen@ovam.be; Vandecasteele, C. [Department of Chemical Engineering, K.U. Leuven, de Croylaan 46, B-3001, Leuven (Belgium); Jaspers, M. [INDAVER, Dijle 17 a, B-2800 Mechelen (Belgium); Brouwers, E. [INDAVER, Dijle 17 a, B-2800 Mechelen (Belgium); Wauters, G. [INDAVER, Dijle 17 a, B-2800 Mechelen (Belgium)

    2006-01-16

    The flue gas cleaning system of a MSW incinerator with a capacity of 350 kt/year was changed to improve the HCl elimination efficiency. Instead of the semi-wet operating spray reactor and subsequent baghouse, a two-step wet flue gas cleaning was added behind the baghouse. Elemental composition, X-ray powder diffraction patterns and TGA measurements showed that the resulting APC residue was totally different from the former residue. As a consequence, leaching characteristics of both residues also differed and another treatment was required prior to disposal. For the former residue, mainly leaching of Pb (>100 mg/l), necessitated treatment prior to landfilling. The lower alkalinity of the new residue resulted in a leachate pH of 9.7 and a Pb concentration of 0.8 mg/l. The leachate pH of the former residue was 12.4. The leaching of Pb and Zn increased above 100 mg/l when immobilising the new residue with cement. Better results were obtained when immobilising with micro silica. The high CaCl{sub 2}.2H{sub 2}O content of the new residue brought along clogging of the bag filter system. Adding 1.4% of CaO (or 1.9% of Ca(OH){sub 2}) to the residue already improved these inconveniences but again significantly changed the leaching behaviour of the residue.

  6. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  7. Generation and distribution of PAHs in the process of medical waste incineration.

    Science.gov (United States)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Levels of polycyclic aromatic hydrocarbons in different types of hospital waste incinerator ashes.

    Science.gov (United States)

    Zhao, Lijuan; Zhang, Fu-Shen; Hao, Zhengping; Wang, Hailin

    2008-07-01

    Waste ashes from three types of hospital waste (HW) incinerators, built in SARS (Severe Acute Respiratory Syndrome) period and currently running in China, were collected and polycyclic aromatic hydrocarbons (PAH) properties in the ashes were investigated. The mean summation PAH levels in the waste ashes varied widely from 4.16 mg kg(-1) to 198.92 mg kg(-1), and the mean amounts of carcinogenic PAHs ranged from 0.74 to 96.77 mg kg(-1), exceeding the limits regulated by several countries. Among the three types of incinerators, two medium-scale incinerators generated relatively high levels of PAHs (mean summation PAH 22.50 and 198.92 mg kg(-1)) compared to small-scale and large-scale incinerators (mean summation PAH 4.16 and 16.43 mg kg(-1)). Bottom ashes were dominated by low molecular weight PAHs (LM-PAH; containing two- to three-ringed PAHs) and medium molecular weight PAHs (MM-PAH; containing four-ringed PAHs), while fly ashes were abundant in MM-PAH and high molecular weight PAHs (HM-PAH, containing five- to six-ringed PAHs). Statistical analysis indicated that there was a positive relationship (R2=0.88) between organic matter and total PAHs thus it has the potential to be used as an indicator for PAHs in HW ashes. Moreover, it was found that PAHs in the ashes correlated highly with some metallic elements either positively (e.g. Fe, Ti, Mg) or negatively (Ca), indicating that these elements might promote or prevent PAH formation during HW combustion. Although bottom ash resulted from HW incinerators has not been classified as hazardous material, the results of this study indicated that this type of waste ash contained high levels of PAHs thus need special treatment before landfill.

  9. Research paper 2000-B-8: the implementation of the municipal waste incineration directives

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    End-of-pipe options are needed whenever recycling and source reduction can not cope with waste streams at acceptable costs. One of the disposal options is waste incineration. The incineration of waste was considered 'clean' for a long time. In the 1970's and 1980's it proved that the incineration of municipal waste was a significant source of air pollution. Notorious pollutants were hydrogen chloride, hydrogen florid, sulphur dioxide, oxides of nitrogen, fine particulate matter, 'heavy metals' and dioxines and furans. Most notorious and issue of public anxiety in some countries were emissions of dioxines and that might cause cancer and birth defects. Municipal waste is domestic waste from households and comparable waste from markets and companies. Consent is present that in the long history of waste incinerators, incineration in plants started in Europe around 1900, important steps to secure health and the environment have been taken and will be taken in the future. Debates are still going on the level of emissions that is negligible and acceptable. Also in the European arena waste management is about knowledge, perceptions, uncertainties and negotiations. Arguments are on the right level of ambition and the right level of fine-tuning where precautionary measures are discussed. The European Union decided to issue two European Directives on the atmospheric emissions from municipal waste incineration in 1989. This chapter focuses on the implementation and effects of the 1989 Directives. In section 2 of this chapter we summarize the bargaining on the 1989 European Directives. Section 2 indicates that characteristics of municipal waste incineration and the level of pre-existing national regulation sectors in individual member states played decisive roles. When the 1989 Directives came into force, the requirements had to be integrated in the national legislation in European Member States. In section 3 Germany and the Netherlands will prove

  10. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  11. Carcinogenic risk assessment for emissions from clinical waste incineration and road traffic.

    Science.gov (United States)

    Wheatley, Andrew; Sadhra, Steven

    2010-10-01

    The most significant potentially carcinogenic substances arising from a state-of-the-art clinical waste incinerator (CWI) and vehicle emissions were identified as polychlorinated dibenzo-p-dioxins, polycyclic aromatic hydrocarbons (PAHs), benzene, 1-butadiene, arsenic, cadmium, chromium and nickel. Long-term exposures of the notional maximum exposed individual (MEI) in the local environment, together with aggregate emissions from transport of clinical waste, were estimated. Mass emission rates of PAHs from the CWI to air were compared with previously published estimates of mass emissions to land from CWI bottom ash. Aggregate emissions from road transport of clinical waste were of a similar order to stack emissions from incineration. Mass emissions of PAHs to landfill generally greatly exceeded those from stack emissions. Emissions associated with operation of the CWI present a negligible contribution to overall cancer risk from PAHs and other carcinogens. Uncertainty in the quantitative risk estimates presented here is discussed in the context of these findings.

  12. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-01-01

    Full Text Available Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have the advantage of being located near the waste collection area apart from the high volume reduction ratio. Improvements in the emission control systems and combustion technology can make incineration a highly feasible disposal method. Low furnace temperature due to heat losses through fuel moisture loss and ash sensible heat loss has been a disadvantage with these systems. In this study, a small percentage of the combustion air is pre-heated in a non-contact type heat exchanger and its effect on the available energy of combustion gases at the evaporator outlet is studied. The study is performed for two different waste samples. Results indicate significant increase in available energy at the evaporator outlet and better relative performance for the lower grade fuel. A comparison is made with similar methods reported in the literature along with a brief discussion on the methodologies adopted. The results confirm the importance of installing ash sensible heat recovery mechanism for waste incineration systems as well as the feasibility of the air based method.

  13. [Modeling research on impact of pH on metals leaching behavior of air pollution control residues from MSW incinerator].

    Science.gov (United States)

    Zhang, Hua; He, Pin-Jing; Li, Xin-Jie; Shao, Li-Ming

    2008-01-01

    Metals leaching behavior of air pollution control residues (APC residues) from municipal solid waste incinerator (MSWI) is greatly dependent on the leachate pH. pH-varying leaching tests and Visual MINTEQ modeling were conducted to investigate the mechanism of pH effect on the metals leaching characteristics from MSWI APC residues. Results show that, under acidic environment (for Cd, Zn, and Ni, pH < 8; for Pb, Cu, and Cr, pH < 6; for Al, pH < 4), leaching concentrations of metals increase greatly with the decrease of pH. Release of amphoteric metals, Pb and Zn, can be induced in strong alkaline leachate, reaching to 42 and 2.4 mg x L(-1) at pH 12.5 respectively. The equilibrium modeling results are well in agreement with the analyzed leaching concentrations. Variation of leachate pH changes the metals speciation in the leaching system, thus influencing their leaching concentrations. Speciation and leaching behavior of Pb, Zn, Cu, Ca, and Al mainly depend on their dissolution/precipitation reactions under different leachate pH. Leachability of Cd, Cr, and Ni can be lowered under acidic and neutral leachate pH due to HFO adsorption, while under alkaline conditions, the effect of adsorption is not significant and dissolution/precipitation becomes the major reactions controlling the leaching toxicity of these heavy metals.

  14. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  15. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, Elisa, E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Maresca, Alberto; Olsson, Mikael Emil [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark); Holtze, Maria Sommer [Afatek Ltd., Selinevej 18, 2300 Copenhagen S (Denmark); Boldrin, Alessio; Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Building 115, 2800 Lyngby (Denmark)

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  16. Fluidized beds and their application to hazardous wastes incineration. Lecho fluidizado y su aplicacion a la incineracion de residuos peligrosos

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, J.F.; Franco, M.

    1993-01-01

    The fluidized bed combustion technology and its application to sludge and hazardous wastes incineration are analyzed. A review on specific advantages of this technology including those related to investment costs, operation and maintenance, as well as operation flexibility are given.

  17. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    National Research Council Canada - National Science Library

    Claudio Ferone; Francesco Colangelo; Francesco Messina; Luciano Santoro; Raffaele Cioffi

    2013-01-01

      In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction...

  18. Integral incineration plant of urban solid wastes in Melilla (Spain); Planta integral incineradora de residuos solidos urbanos en Melilla

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Amoros, F.

    1996-12-01

    Melilla is a city of 6.700 people by Km?. The construction of an integral incineration plant was a necessity. The present article presents the project, design, separation of solid wastes and construction of mentioned plant. (Author)

  19. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites.

    Science.gov (United States)

    Goh, C K; Valavan, S E; Low, T K; Tang, L H

    2016-12-01

    Incineration fly ash, a waste from municipal solid waste incineration plant can be used to replace conventional filler as reinforcing filler to enhance the mechanical strength of a composite. Surface modification was performed on the incineration fly ash before mixing into the soft polymer matrix so as to improve interfacial bond of the filler and epoxy resin. In this study, detailed characterisation of mechanical, morphological and leaching behaviours of municipal solid waste incineration (MSWI) fly ash infused composite has been carried out. Flexural and tensile test was conducted to determine the effect on mechanical properties of the composite by varying the concentration of incineration fly ash filler added into polymer matrix and surface modification of incineration fly ash filler using silane coupling agent and colloidal mesoporous silica (CMS). The results indicated that composite infused with incineration fly ash filler surface treated with CMS shown improvement on the tensile and flexural strengths. In addition, SEM images showed that surface modification of incineration fly ash with colloidal mesoporous silica enhanced the interfacial bonding with polymer resin which explained the improvement of mechanical strength. Leaching test showed result of toxic metals such as Pb, Zn, Fe, Cu, Cr, Cd and Rb immobilised in the polymer matrix of the composite. Hence, the use of MSWI fly ash as reinforcing filler in the composite appears green and sustainable because this approach is a promising opportunity to substitute valuable raw material with MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Hansson, A. N.; Jensen, S. A.

    2013-01-01

    The majority of waste in Denmark is disposed via waste to energy (WTE) incineration plants which are fabricated from carbon steel. However, due to the increasing corrosiveness of waste over the years, more corrosion resistant alloys are required. In Denmark, Inconel 625 (UNSN06625) is the weld....... The composition of the deposits from the exposed waterwall panels was also analysed each time sections were removed. This paper will compare the various nickel alloys in the two areas and assess the results of the long‐term testing project....

  1. The Design of a Portable Municipal Waste Incinerator With Fuzzy Logic Based Support for Emission Estimation

    Directory of Open Access Journals (Sweden)

    Jude C. Akpe

    2016-12-01

    Full Text Available A fuzzy logic interface system to estimate oxygen requirement for complete combustion as well as the level of pollution from incinerator gas flue in order to manage solid waste from domestic, institutional, medical and industrial sources was designed. The designed incinerator is double chambered operating with a maximum temperature of 760 °C in the lower chamber and 1000°C in the upper chamber.  The insulating wall is made up of a refractory brick of 55mm in thickness having a 2mm thickness low carbon steel as the outer wall.  Hydrogen Chloride (HCl and Nitrous oxides (NOx are the gases was used to demonstrate the Fuzzy Inference System (FIS model. The FIS was built with five input variables (Food, PVC, Polythene, Paper and Textile and three input variables with two membership functions. The FIS was developed to estimation the degree of possibility distribution of pollution that should be expected when a certain composition of waste is incinerated. The plots of composition of waste high in food against oxygen require for combustion gives a possibility distribution of about 0.9 which is high according to the fuzzy set definition while the plot of waste composition high in PVC against HCL shows linearity.

  2. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator.

    Science.gov (United States)

    Huai, X L; Xu, W L; Qu, Z Y; Li, Z G; Zhang, F P; Xiang, G M; Zhu, S Y; Chen, G

    2008-01-01

    A mathematical model was presented in this paper for the combustion of municipal solid waste in a novel two-stage reciprocating grate furnace. Numerical simulations were performed to predict the temperature, the flow and the species distributions in the furnace, with practical operational conditions taken into account. The calculated results agree well with the test data, and the burning behavior of municipal solid waste in the novel two-stage reciprocating incinerator can be demonstrated well. The thickness of waste bed, the initial moisture content, the excessive air coefficient and the secondary air are the major factors that influence the combustion process. If the initial moisture content of waste is high, both the heat value of waste and the temperature inside incinerator are low, and less oxygen is necessary for combustion. The air supply rate and the primary air distribution along the grate should be adjusted according to the initial moisture content of the waste. A reasonable bed thickness and an adequate excessive air coefficient can keep a higher temperature, promote the burnout of combustibles, and consequently reduce the emission of dioxin pollutants. When the total air supply is constant, reducing primary air and introducing secondary air properly can enhance turbulence and mixing, prolong the residence time of flue gas, and promote the complete combustion of combustibles. This study provides an important reference for optimizing the design and operation of municipal solid wastes furnace.

  3. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  4. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics.

    Science.gov (United States)

    Duan, Feng; Chyang, Chiensong; Wen, Jiaruei; Tso, Jim

    2013-09-01

    Some municipal solid waste (MSW) can be used as the fuel. Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI). Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste, and silica sand was used as the bed material. The effects of operating conditions, such as the bed temperature, freeboard temperature, excess oxygen ratio, and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated. The experimental results show that the freeboard temperature is the most important factor for CO emission. The order of operating conditions impact on the NO emission is: (1) excess oxygen ratio; (2) bed temperature; (3) freeboard temperature; and (4) static bed height. Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm. On the other hand, the cyclone has no significant effect on the NO emission. Despite having high nitrogen content, a low conversion from fuel-N to NO was attained. Compared with other types of combustors, VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  5. Incineration of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics

    Institute of Scientific and Technical Information of China (English)

    Feng Duan; Chiensong Chyang; Jiaruei Wen; Jim Tso

    2013-01-01

    Some municipal solid waste (MSW) can be used as the fuel.Combustion of MSW with high nitrogen content is successfully conducted in a lab-scale vortexing fluidized-bed incinerator (VFBI).Pigskin with 16.5 wt.% nitrogen content was used to simulate the high nitrogen content kitchen waste,and silica sand was used as the bed material.The effects of operating conditions,such as the bed temperature,freeboard temperature,excess oxygen ratio,and static bed height on the CO and NO concentrations at the exit of combustor and cyclone were investigated.The experimental results show that the freeboard temperature is the most important factor for CO emission.The order of operating conditions impact on the NO emission is:(1) excess oxygen ratio; (2) bed temperature; (3)freeboard temperature; and (4) static bed height.Utilizing cyclone can significantly reduce the CO emission concentration when the CO concentration released from the freeboard is higher than 50 ppm.On the other hand,the cyclone has no significant effect on the NO emission.Despite having high nitrogen content,a low conversion from fuel-N to NO was attained.Compared with other types of combustors,VFBI reduces the CO and NO emission concentrations much better when burning MSW with high nitrogen content.

  6. Activated carbon treatment of municipal solid waste incineration flue gas.

    Science.gov (United States)

    Lu, Shengyong; Ji, Ya; Buekens, Alfons; Ma, Zengyi; Jin, Yuqi; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Activated carbon injection is widely used to control dioxins and mercury emissions. Surprisingly little attention has been paid to its modelling. This paper proposes an expansion of the classical Everaerts-Baeyens model, introducing the expression of fraction of free adsorption sites, f (s), and asserting the significant contribution of fly ash to dioxins removal. Moreover, the model monitors dioxins partitioning between vapour and particulate phase, as well as removal efficiency for each congener separately. The effects of the principal parameters affecting adsorption are analysed according to a semi-analytical, semi-empirical model. These parameters include temperature, contact time during entrained-flow, characteristics (grain-size, pore structure, specific surface area) and dosage of activated carbon, lignite cokes or mineral adsorbent, fly ash characteristics and concentration, and type of incinerator plant.

  7. FORMATION MECHANISMS AND CONTROL STRATEGIES FOR DIOXINS IN INCINERATION PROCESS OF MUNICIPAL SOLID WASTES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    1 IntroductionWith the progress of industrization and citization,a rapidly increase in municipal solid wastes (MSWs)has become one of serious global environmental andecological problems. Compared to filling andfertilizing technologies, the MSWs treating processwith incineration combined heat recovery for powergeneration has attracted considerable attention, as thismethod may significantly decrease landfill volumeand utilize energy contained in MSWs. Somedeveloped countries have given great concerns todevelo...

  8. Destruction behavior of hexabromocyclododecanes during incineration of solid waste containing expanded and extruded polystyrene insulation foams.

    Science.gov (United States)

    Takigami, Hidetaka; Watanabe, Mafumi; Kajiwara, Natsuko

    2014-12-01

    Hexabromocyclododecanes (HBCDs) have been used for flame retardation mainly in expanded polystyrene (EPS) and extruded polystyrene (XPS) insulation foams. Controlled incineration experiments with solid wastes containing each of EPS and XPS were conducted using a pilot-scale incinerator to investigate the destruction behavior of HBCDs and their influence on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs). EPS and XPS materials were respectively blended with refuse derived fuel (RDF) as input wastes for incineration. Concentrations of HBCDs contained in the EPS- and XPS-added RDFs, were 140 and 1100 mg kg(-1), respectively. In which γ-HBCD was dominant (68% of the total HBCD content) in EPS-added RDF and α-HBCD accounted for 73% of the total HBCDs in XPS-added RDF. During the incineration experiments with EPS and XPS, primary and secondary combustion zones were maintained at temperatures of 840 °C and 900 °C. The residence times of waste in the primary combustion zone and flue gas in the secondary combustion zone was 30 min and three seconds, respectively. HBCDs were steadily degraded in the combustion chambers and α-, β-, and γ-HBCD behaved similarly. Concentration levels of the total HBCDs in the bag filter exit gas for the two experiments with EPS and XPS were 0.7 and 0.6ngmN(-3), respectively. HBCDs were also not detected (polystyrene is increased in the input wastes just to make sure of formation prevention and emission control of PBDD/DFs. The concentrations and congener patterns of PCDD/DFs and dl-PCBs in the samples during the three experiments were not affected by an addition of HBCDs.

  9. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.

    Science.gov (United States)

    Razak, Hashim Abdul; Naganathan, Sivakumar; Hamid, Siti Nadzriah Abdul

    2009-12-30

    Controlled low-strength material (CLSM) is slurry made by mixing sand, cement, ash, and water. It is primarily used as a replacement for soil and structural fillings. This paper presents the findings of a preliminary investigation carried out on the performance of industrial waste incineration bottom ash as CLSM. CLSM mixes were designed using industrial waste incineration bottom ash, and cement. Tests for density, setting time, bleed, and compressive strength on cubes under various curing conditions, corrosivity, and leaching of heavy metals and salts were carried out on the CLSM mixtures, and the results discussed. Compressive strength for the designed CLSM mixtures ranged from 0.1 to 1.7 MPa. It is shown that the variations in curing conditions have less influence on the compressive strength of CLSM at high values of water to cement ratio (w/c), but low values of w/c influences the strength of CLSM. The CLSM produced does not exhibit corrosive characters as evidenced by pH. Leaching of heavy metals and salts is higher in bleed than in leachate collected from hardened CLSM. Cement reduces the leaching of Boron in bleed. It is concluded that there is good potential for the use of industrial waste incineration bottom ash in CLSM.

  10. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  11. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    Science.gov (United States)

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the

  12. Incinerators, Solid Waste, Waste Cleanup OPEN Responsible Party Sites., Published in 2010, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Incinerators, Solid Waste dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2010. It is described as...

  13. Incinerators, Solid Waste, Waste Cleanup INACTIVE Responsible Party Sites, Published in 2010, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Incinerators, Solid Waste dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2010. It is described as...

  14. Incinerators, Solid Waste, Solid Waste Test Sites, Published in 2007, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Incinerators, Solid Waste dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2007. It is described as...

  15. Incinerators, Solid Waste, Waste Cleanup CLOSED Responsible Party Sites, Published in 2010, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Incinerators, Solid Waste dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2010. It is described as...

  16. Incinerators, Solid Waste, Solid Waste Facilities., Published in 2007, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Incinerators, Solid Waste dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2007. It is described as...

  17. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  18. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Directory of Open Access Journals (Sweden)

    Danielle C. Ashworth

    2013-01-01

    Full Text Available Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of <0.01 μg/m3. Proximity and modelled PM10 concentrations for both MSWIs at postcode level were highly correlated when using continuous measures (Spearman correlation coefficients ~ 0.7 but showed poor agreement for categorical measures (deciles or quintiles, Cohen’s kappa coefficients ≤ 0.5. Conclusion. To provide the most appropriate estimate of ambient exposure from MSWIs, it is essential that incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks.

  19. Chemical Stabilization of Hanford Tank Residual Waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  20. Chemical stabilization of Hanford tank residual waste

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J., E-mail: kirk.cantrell@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lukens, Wayne W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Buck, Edgar C.; Mausolf, Edward J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2014-03-15

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH){sub 2}], an in situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and Ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of uranium from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. All three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective Maximum Contaminant Levels (MCLs) for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  1. Combustion aerosols from municipal waste incineration - Effect of fuel feedstock and plant operation

    DEFF Research Database (Denmark)

    Zeuthen, J.H.; Pedersen, Anne Juul; Hansen, Jørn

    2007-01-01

    ( NaCl), batteries, and automotive shredder waste. Also, runs with different changes in the operational conditions of the incinerator were made. Mass- based particle size distributions were measured using a cascade impactor and the number- based size distributions were measured using a Scanning......). The mass- based particle size distribution was bimodal with a fine mode peak around 0.4 mm and a coarse mode peak around 100 mu m. The addition of NaCl, shredder waste, and impregnated wood increased the mass concentration of fine particles ( aerodynamic diameter below 2.5 mu m). In general the mass...

  2. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    L. Reijnders [University of Amsterdam, Amsterdam (Netherlands)

    2007-02-15

    Application of phosphogypsum, coal combustion ashes and waste incineration ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride. Source reduction, destruction of persistent organics and separation techniques may reduce the concentrations of such components. With a few exceptions, separation techniques currently lead to significantly higher (private) costs. Higher waste disposal costs, tighter regulations and higher prices for competing virgin minerals could make the use of the purified phosphogypsum and ashes in building materials more attractive.

  3. Volatilization of heavy metals during incineration of municipal solid wastes

    Institute of Scientific and Technical Information of China (English)

    SUN Lu-shi; S. Abanades; J.D.Lu; G.Flamant; D.Gauthier

    2004-01-01

    Incineration experiments with MSW, which had been impregnated with heavy metals, were presented toobtain information on the volatilization behavior of the elements cadmium (Cd), lead (Pb), and zinc (Zn) underdifferent conditions. Experiments were carried out in a bubbling fluid bed system connected to a customizedinductively coupled plasma optical emission spectroscopy(ICP-OES) for analyzing metals in the flue gas. The resultsindicated that the combustion temperature, the gas atmosphere, and the chlorine content in the flue gas could affectthe volatilization behavior of heavy metals. In the fluidized bed combustion, a large surface area was provided by thebed sand particles, and they may act as absorbents for the gaseous ash-forming compound. Comparer with themetals Cd and Pb, the vaporization of Zn was Iow. The formation of stable compounds such as ZnO·Al2O3 couldgreatly decrease the metals volatilization. The presence of chlorine would enhance the volatilization of heavy metalsby increasing the formation of metal chlorides. However, when the oxygen content was high, the chlorinatingreaction was kinetically hindered, which heavy metals release would be delayed.

  4. Risk for non Hodgkin’s lymphoma in the vicinity of French municipal solid waste incinerators

    Directory of Open Access Journals (Sweden)

    Sauleau Erik-André

    2008-10-01

    Full Text Available Abstract Background Dioxin emissions from municipal solid waste incinerators are one of the major sources of dioxins and therefore are an exposure source of public concern. There is growing epidemiologic evidence of an increased risk for non-Hodgkin's lymphoma (NHL in the vicinity of some municipal solid waste incinerators with high dioxin emission levels. The purpose of this study was to examine this association on a larger population scale. Methods The study area consisted of four French administrative departments, comprising a total of 2270 block groups. NHL cases that had been diagnosed during the period 1990–1999, and were aged 15 years and over, were considered. Each case was assigned a block group by residential address geocoding. Atmospheric Dispersion Model System software was used to estimate immissions in the surroundings of 13 incinerators which operated in the study area. Then, cumulative ground-level dioxin concentrations were calculated for each block group. Poisson multiple regression models, incorporating penalized regression splines to control for covariates and dealing with Poisson overdispersion, were used. Five confounding factors were considered: population density, urbanisation, socio-economic level, airborne traffic pollution, and industrial pollution. Results A total of 3974 NHL incident cases was observed (2147 among males, and 1827 among females during the 1990–1999 time period. A statistically significant relationship was found at the block group level between risk for NHL and dioxin exposure, with a relative risk (RR of 1.120 (95% confidence interval [CI] 1.002 – 1.251 for persons living in highly exposed census blocks compared to those living in slightly exposed block groups. Population density appeared positively linked both to risk for NHL and dioxin exposure. Subgroup multivariate analyses per gender yielded a significant RR for females only (RR = 1.178, 95% CI 1.013 – 1.369. Conclusion This study, in

  5. Development of thermal sprayed layers for high temperature areas in waste incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Bendix, D.; Tegeder, G.; Crimmann, P.; Metschke, J.; Faulstich, M. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2008-05-15

    Corrosion and wear in the hot gas area of thermal energy plants are severe problems, which often cause premature damage of components. In general, the most components of plants are made of materials, which are not stable under corrosive conditions. For corrosion protection (and also wear protection) and lifetime extension of these components, coatings with more resistant materials are applied. Because of the high concentration of corrosive species and the alternating composition of the atmosphere near to the components, the waste incineration plant is the 'worst case' of high temperature corrosion. Nowadays, the most usual coating process to protect pipes in the waste incineration plants is cladding. In the last few years, alternative processes are under investigation because cladding is very cost-intensive. The specific costs of thermal spraying are much lower than those of cladding. In addition, the coating by thermal spraying reduces the risk of the dilution of substrate and coating material, different materials can be combined (e.g. metal alloys, ceramics) and the thickness of the layer for an acceptable resistance according to corrosion and wear can be drastically reduced. Thermal spraying has the potential to create cost-efficient coatings to protect components in the critical zones of incineration plants. Since many years, ATZ Entwicklungszentrum is involved in the development and/or advancement of materials, technologies and applications of thermal spraying for corrosion and/or wear protection in thermal energy plants. The main focuses of the investigations are layers for components in high temperature areas of waste incineration plants. On the basis of the present results, different coatings (metal alloys, ceramics) and different spray technologies (e.g. HVOF, APS) have been tested by different strategies (corrosion tests under laboratory scale, air cooled material probes inside the hot gas area of an incineration plant and coated pipes in

  6. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases.

    Science.gov (United States)

    Wei, Yunmei; Shimaoka, Takayuki; Saffarzadeh, Amirhomayoun; Takahashi, Fumitake

    2011-03-15

    Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of heavy metals. The occurrence and uneven distribution of these heavy metals in bottom ash can increase the complexity of such residues in terms of long-term behavior upon landfilling or recycling. Bottom ashes sampled from three stoker-type incinerators in Japan were analyzed in this paper. This study presents detailed information on the mineralogical characterization of bottom ash constituents and the weathering behavior of these constituents by means of optical microscopy and scanning electron microscopy. It was revealed that bottom ash mainly consists of assorted silicate-based glass phases (48-54 wt% of ash) and mineral phases including melilites, pseudowollastonite, spinels, and metallic inclusions (Fe-P, Fe-S, Fe-Cu, Cu-Sn, Cu-Zn, Cu-S, and Cu-Pb dominated phases), as melt products formed during the incineration process. The compounds embedded in the glass matrix, e.g. spinels and metallic inclusions, played the most important role in concentration of heavy metals (Pb, Zn, Cu, Cr, Mn, Ni, etc.). Other phases such as refractory minerals and ceramics, frequently found in ash, were of less significance in terms of their influence on the involvement of heavy metals. Analysis of lab-scale artificially weathered and 10-year landfilled bottom ash samples revealed that secondary mineralization/alteration of the bottom ash constituents principally carbonation and glass evolution substantially decreased the potential risk of the heavy metals to the surrounding environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  8. Characterization of bottom ash from two hospital waste incinerators in Rabat, Morocco.

    Science.gov (United States)

    Bakkali, Meriem E L; Bahri, Meriem; Gmouh, Said; Jaddi, Hassan; Bakkali, Mohammed; Laglaoui, Amin; Mzibri, Mohammed E L

    2013-12-01

    The uncontrolled disposal of bottom ash generated by the incineration units of hazardous and infected wastes in developed countries are the main cause of significant damage, such as contamination of the soil, as well as surface and underground waters, which may put both the environment and public health at risk. In Morocco, little information is available on the chemical properties of the resulting ashes. In this study, 16 hospital waste ash samples were collected from the incinerators of the two main hospitals in Rabat: Ibn Sina and Cheikh Zayd. A series of tests was conducted, including particle size distribution, mineralogical and chemical composition, and heavy metal leaching behaviour. The results showed that the samples were composed mainly of P2O5 (18%), SiO2 (17%), Na2O (16%), CaO (14%) and SO3 (10%). Moreover, chemical analysis clearly demonstrated that medical waste (MW) contains large amounts of waste generated by domestic activities in the hospital, with a lack of sorting system in the monitoring of MW. Furthermore, the ashes contained high concentrations of heavy metals such as zinc, lead, chromium and nickel with a vast range of 0.5-25071 mg/kg. Leaching tests showed that the extracted amounts of all the heavy metals were lower, with concentrations waste acceptance criteria regarding these heavy metals.

  9. A Critical Evaluation of Waste Incineration Plants in Wuhan (China Based on Site Selection, Environmental Influence, Public Health and Public Participation

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2015-07-01

    Full Text Available With the rapid development of the waste incineration industry in China, top priority has been given to the problem of pollution caused by waste incineration. This study is the first attempt to assess all the waste incineration plants in Wuhan, the only national key city in central China, in terms of environmental impact, site selection, public health and public participation. By using a multi-criterion assessment model for economic, social, public health and environmental effects, this study indicates these incineration plants are established without much consideration of the local residents’ health and environment. A location analysis is also applied and some influences of waste incineration plants are illustrated. This study further introduces a signaling game model to prove that public participation is a necessary condition for improving the environmental impact assessment and increasing total welfare of different interest groups in China. This study finally offers some corresponding recommendations for improving the environmental impact assessments of waste incineration projects.

  10. Life cycle assessment of capital goods related to waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    , maintenance and demolition of capital goods. Capital goods are defined as buildings, machinery, trucks and infrastructure at the facility. A LCA was performed using two modelling programmes: Simapro and EASEWASTE. This paper assesses the importance of including capital goods when performing LCAs of waste......The environmental impacts from the life cycle of products and systems were evaluated using Life Cycle Assessment (LCA) as a tool. Today most LCAs of waste management systems only considers the impacts from the operation of the system but neglects the environmental impacts from construction...

  11. PCDD/Fs in soil around a hospital waste incinerator: comparison after three years of operation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Li; Mi Yan; Jie Yang; Tong Chen; Shengyong Lu; Jianhua Yan

    2012-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can be formed during the cooling of flue gases in waste incinerator.These pollutants are either in the gas phase or attached to the fine particles,escaping dust collection.After stack emission,they are slowly oxidized photochemically (gas phase),or eventually are deposited (dry and wet deposition of particulate) in earth surface.In 2007 and 2010,11 soil samples were collected in the vicinity of a hospital waste incinerator (HWI),prior and after its startup.In order to find out any variation of PCDD/Fs in soil,in brief dioxins,their concentrations were analyzed by high-resolution gas chromatography with high-resolution mass spectrometry (HRGC/HRMS).Compared to the baseline survey (2007),PCDD/Fs in soil significantly increased,by average,+81.6% in total PCDD/Fs and +132.7% in international toxic equivalency (Ⅰ-TEQ) unit.By principal component analysis (PCA),both the PCDD/Fs homologue and the HxCDF isomer profile in soil were found to become more similar with fly ash.Generally,this incinerator influences the soil only in a limited area.More comprehensive supervision,stricter management and more advanced technology should be implemented m this plant to reduce pollutants emission,even though the level of PCDD/Fs in soil is quite low at present.

  12. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  13. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  14. Dioxins and their fingerprint in size-classified fly ash fractions from municipal solid waste incinerators in China--mechanical grate and fluidized bed units.

    Science.gov (United States)

    Lu, Sheng-Yong; Du, Yingzhe; Yan, Jian-Hua; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2012-06-01

    The distribution of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), in brief dioxins, has seldom been addressed systematically in fly ash from municipal solid waste incinerators (MSWIs). This study shows the amount and fingerprint of PCDD/Fs in fly ash from four different Chinese MSWIs, that is, three mechanical grate units and one circulating fluidized bed unit. In these fly ash samples, dioxins-related parameters (international toxic equivalent quantity, total amount of PCDD/Fs, individual isomer classes, and 17 toxic 2,3,7,8-substituted congeners) all tend to increase with decreasing particle size for mechanical grate incinerators, yet only for the finest fraction for fluidized bed units. Moreover, the fluidized bed incinerator seems superior to grate incineration in controlling dioxins, yet a comparison is hampered by internal differences in the sample, for example, the fluidized bed fly ash has much lower carbon and chlorine contents. In addition, the presence of sulfur from mixing coal as supplemental fuel to the MSW may poison the catalytic steps in dioxins formation and thus suppress the formation of dioxins. With more residual carbon and chlorine in the fly ash, it is easier to form dioxins during cooling. Nevertheless, there is no apparent relation between Fe, Cu, and Zn contents and that of dioxins in fly ash.

  15. Burnout model of a grate-firing waste incinerator for complete simulation of the combustion space; Abbrandmodell einer Muellrostfeuerung fuer eine vollstaendige Feuerraumsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Kruell, F.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl Energieanlagentechnik

    1998-09-01

    In the past few decades, grate firing has become an established technology for incineration of residual waste and other materials of the domestic waste type. Process control is difficult because of the heterogeneous nature of the waste which is also subject to seasonal and regional variations. In addition, the waste composition may change significantly as a result of recycling as required by new laws. (orig.) [Deutsch] In den letzten Jahrzehnten hat sich die Rostfeuerung fuer die thermische Entsorgung von Restmuell und hausmuellaehnlichem Gewerbemuell bewaehrt. Die Prozessfuehrung bzw. die Feuerfuehrung solcher Anlagen wird insbesondere durch die starke Heterogenitaet des Muells erschwert, der zusaetzlich jahreszeitlichen und regionalen Schwankungen unterliegt. Zudem kann es in der Zusammensetzung der einzelnen Abfallarten durch die Entnahme von Wertstoffen infolge der Umsetzung von gesetzlichen Vorschriften und Gesetzen - wie Abfallgesetz und Kreislaufwirtschaftsgesetz - zu signifikanten Verschiebungen kommen. (orig.)

  16. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  17. Environmental Assessment of a Waste Incineration Tax. Case Study and Evaluation of a Framework for Strategic Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Anna; Johansson, Jessica [Swedish Defence Research Agency, Stockholm (Sweden); Nilsson, Maans [Stockholm Environment Inst., Stockholm (Sweden); Eldh, Peter; Finnveden, Goeran [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Industrial Ecology

    2003-12-01

    A framework for Strategic Environmental Assessment (SEA) is tested in a case study on a proposed waste incineration tax. Also included is testing of developed methods for valuation and site-dependent life cycle impact assessment. The results indicate that although a suggested waste incineration tax of 400 SEK/ton is likely to lead to environmental improvements, these are small compared to the potential improvements as shown in more visionary scenarios. In order to go in this direction a waste incineration tax based on the content of fossil carbon in the waste would be useful. The framework for SEA includes several different pathways. These have different advantages and disadvantages and provide different types of information. It is therefore suggested that they largely complement each other and that the choice of methods should be done in relation to the function of the SEA and the questions asked.

  18. Nuclear Waste Removal Using Particle Beams Incineration with Fast Neutrons

    CERN Document Server

    Revol, Jean Pierre Charles

    1997-01-01

    The management of nuclear waste is one of the major obstacles to the acceptability of nuclear power as a main source of energy for the future. TARC, a new experiment at CERN, is testing the practicality of Carlo Rubbia's idea to make use of Adiabatic Resonance Crossing to transmute long-lived fission fragments into short-lived or stable nuclides. Spallation neutrons produced in a large Lead assembly have a high probability to be captured at the energies of cross-section resonances in elements such as 99Tc, 129I, etc. An accelerator-driven sub-critical device using Thorium (Energy Amplifier) would be very effective in eliminating TRansUranic elements which constitute the most dangerous part of nuclear waste while producing from it large amounts of energy. In addition, such a system could transform, at a high rate and little energetic cost, long-lived fission fragments into short-lived elements.

  19. Treatment of Clinical Solid Waste Using a Steam Autoclave as a Possible Alternative Technology to Incineration

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-03-01

    Full Text Available A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min and temperature (111 °C, 121 °C and 131 °C at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.

  20. Treatment of clinical solid waste using a steam autoclave as a possible alternative technology to incineration.

    Science.gov (United States)

    Hossain, Md Sohrab; Balakrishnan, Venugopal; Rahman, Nik Norulaini Nik Ab; Sarker, Md Zaidul Islam; Kadir, Mohd Omar Ab

    2012-03-01

    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.

  1. Incineration versus gasification: A comparison in waste to energy plants

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzi, U.; Pasini, S.; Ferri, L.D.A. [Politecnico di Milano (Italy). Dipt. di Energetica

    1995-12-31

    Waste thermodestruction has obvious advantages; nevertheless, it encounters problems not very easy to solve, such as those related to gas cleaning and to restricting standards for emission control. One important aspect is the possibility of heat recovery with production of valuable energy such as electric energy. A new technology, at least as far as its application to waste disposal (mainly municipal waste) is concerned, is represented by gasification. It becomes interesting to establish a comparison between this new technology and the traditional one. This comparison does not appear, however, to be very simple, since for gasification only few documented experiments can be found, and these are often difficult to relate to a common evaluation factor. The present paper describes the state of the art of the traditional technology in the thermodestruction field to define a comparison basis. Then, a general discussion is given for the gasification technology, emphasizing different possible solutions to allow for a quantitative evaluation. At last the various aspects of the problem (related to plant, environment, energy, economics, etc.) are specifically compared for the purpose of finding elements which allow for a quantitative evaluation or for emphasizing parameters useful for a final choice.

  2. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... waste? (a) Use EPA Reference Method 9 in Appendix A of 40 CFR part 60 to determine compliance with the opacity limit. (b) Conduct an initial test for opacity as specified in § 60.8 of subpart A of 40 CFR part... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of...

  3. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...

  4. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Eliza, E-mail: eliza.harris@empa.ch [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Zeyer, Kerstin [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kegel, Rainer; Müller, Beat [FOEN, Federal Office for the Environment, Air Pollution Control and Chemicals, CH-3003 Berne (Switzerland); Emmenegger, Lukas; Mohn, Joachim [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2015-01-15

    Highlights: • N{sub 2}O emissions from waste incineration with SNCR NO{sub x} removal are 51.5 ± 10.6 g t{sup −1}. • This is significantly lower than the reported Swiss emission factor of 120 g t{sup −1} (FOEN, 2013). • N{sub 2}O contributes <0.3% and ≈2.5% of GHG emissions from SCR and SNCR plants. • Measured isotopic SP of 17.7‰ is likely characteristic for N{sub 2}O emissions from SNCR. • CH{sub 4} emitted by waste incineration is negligible, contributing <0.01% to total GHGs. - Abstract: Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N{sub 2}O and CH{sub 4} were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NO{sub x} removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NO{sub x} removal. N{sub 2}O emissions from incineration plants with NO{sub x} removal through selective catalytic reduction were 4.3 ± 4.0 g N{sub 2}O tonne{sup −1} waste (wet) (hereafter abbreviated as t{sup −1}) (0.4 ± 0.4 g N{sub 2}O GJ{sup −1}), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6 g N{sub 2}O t{sup −1}; 4.5 ± 0.9 g N{sub 2}O GJ{sup −1}). These emission factors, which are much lower than the value of 120 g N{sub 2}O t{sup −1} (10.4 g N{sub 2}O GJ{sup −1}) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N{sub 2}O emitted from the two

  5. Chemical stabilization of Hanford tank residual waste

    Science.gov (United States)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and Ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of uranium from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. All three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective Maximum Contaminant Levels (MCLs) for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste.

  6. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  7. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland.

    Science.gov (United States)

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-01

    Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010-August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3 ± 4.0g N2O tonne(-1) waste (wet) (hereafter abbreviated as t(-1)) (0.4 ± 0.4 g N2O GJ(-1)), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6g N2O t(-1); 4.5 ± 0.9g N2O GJ(-1)). These emission factors, which are much lower than the value of 120g N2O t(-1) (10.4g N2O GJ(-1)) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of (14)N(15)NO relative to (15)N(14)NO - was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17-19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6g CH4 t(-1) (0.2 ± 0.5g CH4 GJ(-1)), which is expected due to high incinerator temperatures and efficient combustion. Copyright © 2014 Elsevier Ltd

  8. Status and Prospect of Domestic Waste Incineration%生活垃圾焚烧技术现状思考及展望

    Institute of Scientific and Technical Information of China (English)

    昝文安

    2011-01-01

    Application status of domestic waste incineration technology in China was introduced Understandings of incineration technology and relative standards were expounded, and development of waste incineration technology was expected.%阐述了我国生活垃圾焚烧处理技术应用现状,简述了对焚烧处理技术及相关标准的理解,并对焚烧技术的发展进行展望.

  9. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  10. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin).

  11. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  12. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system......-removal in flue-gas cleaning from waste incineration....

  13. Air quality around of incineration plan of solid urban wastes; Calidad del aire en el entorno de una incineradora de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Mateu Barcelo, J.; Mas Torres, F.; Cerda Martin, V.; Colom-Altes, M.; Oms Molla, M.T.

    1996-12-01

    The measuring surveillance and control of incineration plant of urban solid wastes in San Reus has the main mission on the control of quality air in this are. The present study analyzes the data of emission of metal wastes. (Author)

  14. Occupational airborne contamination in South Brazil: 2. Oxidative stress detected in the blood of workers of incineration of hospital residues.

    Science.gov (United States)

    Possamai, F P; Avila, S; Budni, P; Backes, P; Parisotto, E B; Rizelio, V M; Torres, M A; Colepicolo, P; Wilhelm Filho, D

    2009-11-01

    One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.

  15. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    Science.gov (United States)

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 浅谈危废物焚烧线控制系统%Dangerous waste incineration line control system

    Institute of Scientific and Technical Information of China (English)

    李小新; 陈其伟; 陈光湘

    2011-01-01

    This paper dangerous waste incineration line control system is discussed, the development of the main structure, burn line condition and function as well as the electric wire european-standard hazardous waste incineration, meter, DCS system, monitoring,process simulation screen is introduced in this paper.%本文对危废物焚烧线控制系统的研制进行了阐述,对焚烧线的主体结构、工况与功能以及危废焚烧线的电气、仪表、DCS系统、监控、工艺模拟屏作了介绍.

  17. Research paper 2000-B-1: the implementation of the municipal waste incineration directive (89/429) in France

    Energy Technology Data Exchange (ETDEWEB)

    Schucht, S.

    2000-07-01

    This paper constitutes a contribution to the project 'IMPOL - The Implementation of EU Environmental Policies: Efficiency Issues'. The paper deals with the implementation of the EU Directives directed at atmospheric emissions from new (89/369/EEC) and existing (89/429/EEC) municipal waste incineration plants in France. The goal of this paper is twofold: a historic review of the implementation processes and their evaluation following economic criteria of environmental effectiveness and economic efficiency. The focus is on the implementation of the Directives' requirements towards existing municipal waste incineration plants, i.e. those plants having received their operation licence after December 1, 1990. For France we find a general picture of poor compliance. This result has to be differentiated, though: the current compliance rate of plants of a capacity above 6 t/h is almost 100% (although compliance often came late) while the majority of smaller plants does not comply with the Directive's requirements. With a waste incineration park of about 250 plants currently, many of which are very small plants and only treat weak amounts of waste, France constitutes an exception compared to other European countries. A further specific characteristic of France is the high share of waste incineration in total waste treatment (especially in the big cities) which amounts to almost 40%. The outline of the paper is the following: chapter two gives some context information on the French municipal waste incineration plant park and its structure, on the development of waste quantities, on the legal framework and on available subsidy schemes. Chapter three assesses environmental effectiveness, i.e. goal attainment and factors explaining the results. Chapter four comprises the assessment of cost efficiency. Chapter five contains the historic review, i.e. a characterisation of the implementation process, and chapter six concludes, linking the characterisation of

  18. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    Science.gov (United States)

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-06-24

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017. Published by Elsevier Ltd.

  19. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.

    Science.gov (United States)

    Chen, Laiguo; Liu, Ming; Fan, Ruifang; Ma, Shexia; Xu, Zhencheng; Ren, Mingzhong; He, Qiusheng

    2013-03-01

    The potential for Hg release during municipal solid waste incineration (MSWI) is attracting increased attention due to high volume of municipal waste being treated by incineration in China. Emission amounts have been estimated using emission factors developed for other countries. To fine tune our emission estimate total mercury (THg) and mercury speciation were measured using isokinetic sampling in eight plants, of which six used grate furnace combustor (GFC) and two circulation fluidized bed combustors (CFBCs). Results showed that average THg concentration (19.5 ± 13.6 μg/Nm) in flue gas at the facilities that used CFBC was significantly lower than that at those using GFC (51.4 ± 28.3 μg/Nm, p=0.002). Gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM, Hg), and particulate mercury (Hg) represented 95.5 ± 3.8%, 4.1 ± 3.9% and 0.4 ± 0.3% in GFC, and 63.8 ± 8.6%, 33.6 ± 10.5% and 2.6 ± 1.9% in CFBC, respectively. The measured average THg emission factor for the 8 MSWI plants was 208 ± 130 mg/t in the Pearl River Delta (PRD) region, with 217 ± 158 mg/t and 188 ± 17.7 mg/t were from GFC and CFBC, respectively. Using the average emission factor the estimated total mercury emissions from MSWI were 4.67 ± 2.91 t in China, and 770 ± 65.5 kg in the PRD region in 2010. Of these, 4240 ± 210 kg, 408 ± 231 kg and 14.8 ± 14.1 kg, and 688 ± 37 kg, 78.9 ± 40.6 kg and 3.2 ± 3.0 kg were GOM, Hg, and Hg, respectively. Mercury emissions will continue to increase as the amounts of MSW being incinerated increases.

  20. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  1. Relationship between distance of schools from the nearest municipal waste incineration plant and child health in Japan.

    Science.gov (United States)

    Miyake, Y; Yura, A; Misaki, H; Ikeda, Y; Usui, T; Iki, M; Shimizu, T

    2005-01-01

    In Japan, the main source of dioxins is incinerators. This study examined the relationship between the distance of schools from municipal waste incineration plants and the prevalence of allergic disorders and general symptoms in Japanese children. Study subjects were 450,807 elementary school children aged 6-12 years who attended 996 public elementary schools in Osaka Prefecture in Japan. Parents of school children completed a questionnaire that included items about illnesses and symptoms in the study child. Distance of each of the public elementary schools from all of the 37 municipal waste incineration plants in Osaka Prefecture was measured using geographical information systems packages. Adjustment was made for grade, socioeconomic status and access to health care per municipality. Decreases in the distance of schools from the nearest municipal waste incineration plant were independently associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue (adjusted odds ratios [95% confidence intervals] for shortest vs. longest distance categories =1.08 [1.01-1.15], 1.05 [1.00-1.11], 1.06 [1.01-1.11], and 1.12 [1.08-1.17], respectively). A positive association with fatigue was pronounced in schools within 4 km of the second nearest municipal waste incineration plant. There was no evident relationship between the distance of schools from such a plant and the prevalence of atopic dermatitis or allergic rhinitis. The findings suggest that proximity of schools to municipal waste incineration plants may be associated with an increased prevalence of wheeze, headache, stomach ache, and fatigue in Japanese children.

  2. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.

    Science.gov (United States)

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2013-02-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash.

  3. Corrosion in waste incineration facilities; Korrosion i avfallsfoerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2004-11-01

    Waste is a heterogeneous fuel, often with high levels of chlorine, alkali and heavy metals. This leads to much more severe corrosion problems than combustion of fossil fuels. The corrosion rates of the materials used can be extremely high. Materials used for heat transferring parts are usually carbon steel or low alloyed steel. These are significantly cheaper than other steels. Austenitic stainless steel is also used, but is often avoided due to its sensitivity to stress corrosion cracking. More advanced materials, such as nickel base alloys, can be used in extremely aggressive environments. Since these materials are expensive and do not always have sufficient mechanical properties, they are often used as coatings on carbon steel tubes or as composite tubes. A new method, which shows good results at the first tests in plants, is electroplating with nickel. Plastic materials can be used in low temperature parts if the temperature does not exceed 150 deg C. A glass fibre inforced material is probably the best choice. The parts of the furnace that are most prone to corrosion are waterwalls where the refractory coating is lost, has not been applied to a sufficient height in the boiler or is not used at all. Failures of superheaters often occur in areas near soot blowers or on the tubes exposed to the highest flue gas temperatures. Few cases of low temperature corrosion are reported in the literature, possibly because these problems are unusual or because low temperature corrosion rarely causes costly and dramatic failures. Waterwall tubes should be made of carbon steel, because of the price and to minimise the risk for stress corrosion cracking. Usually the tubes must be covered with a more corrosion resistant material to withstand the environment in the boiler. Metal coatings can be used in less demanding environments. Refractory is probably the best protection for waterwalls from severe erosion. Surfaces in extremely corrosive areas, e.g. the fuel feed area, should

  4. Optimisation of water-cannon cleaning for deposit removal on water walls inside waste incinerators.

    Science.gov (United States)

    Graube, Franziska; Grahl, Sebastian; Rostkowski, Slawomir; Beckmann, Michael

    2016-02-01

    Deposits in municipal waste incinerators are very inhomogeneous in structure and constitution. They cause corrosion and reduce the efficiency, so they need to be removed frequently. Among other systems, operators use water cannons for the deposit removal. Two different removal mechanisms of water-cannon cleaning are suggested: A direct shattering of the deposit by the impact of the water jet, as well as the cracking caused by thermal stresses where droplets cool the deposits. As the contribution of each of the aforementioned mechanisms to the overall cleaning efficiency is unknown, we performed empirical investigations to determine the dominating effect. In a first experimental setup focusing on thermal stress, cold droplets were applied onto hot deposits taken from a waste incinerator. Results showed that the cleaning effect strongly depends on the deposit thickness and structure, so that the deposits could be categorised in three different groups. A second measurement campaign focused on the influence of deposit material, deposit temperature and water jet momentum. It could be shown that both deposit material and temperature have a significant effect on the cleaning efficiency, whereas an increase in water jet momentum only led to modest improvements. The combination of these two parameter studies implies that the influence of the thermal stress outweighs that of the momentum. This knowledge is applicable to the cleaning setup by increasing the temperature gradient. © The Author(s) 2015.

  5. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    Science.gov (United States)

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  6. PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.

    Science.gov (United States)

    Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2017-08-01

    Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm(-3) and 1.09-3.36 ng I-TEQ Nm(-3), respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.

  7. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed......, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some...

  8. Electrical efficiency in waste incineration plants - Turgi case study; Elektrizitaetseffizienz in Kehrichtverwertungsanlagen - Fallbeispiel KVA Turgi

    Energy Technology Data Exchange (ETDEWEB)

    Haenny, D.; Schnyder, G.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the more efficient use of electricity in the waste incineration plant in Turgi, Switzerland. Using this plant as a model, an evaluation of the potential for increasing efficiencies in the area of electricity consumption was carried out. All energy-relevant processes and technologies were analysed on site in order to draw up a catalogue of optimisation measures. The measures described were evaluated and classified, whereby their feasibility and economic viability were taken into account. The electricity savings potential for the Turgi plant was extrapolated: the potential increase in efficiency in all thermal waste treatment plants in Switzerland indicates annual savings of around 38 GWh, which is equivalent to the electricity consumption of around 10,000 private households.

  9. An approach for modeling thermal destruction of hazardous wastes in circulating fluidized bed incinerator.

    Science.gov (United States)

    Patil, M P; Sonolikar, R L

    2008-10-01

    This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.

  10. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-12-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative for the European Union member countries were considered. For AD, biogas utilisation with a biogas engine was considered and two potential situations investigated - biogas combustion with (1) combined heat and power production (CHP) and (2) electricity production only. For incineration, four technology options currently available in Europe were covered: (1) an average incinerator with CHP production, (2) an average incinerator with mainly electricity production, (3) an average incinerator with mainly heat production and (4) a state-of-the art incinerator with CHP working at high energy recovery efficiencies. The study was performed using a life cycle assessment in its consequential approach. Furthermore, the role of waste-sorting guidelines (defined by the material fractions allowed for SSOHW) in relation to GWP of treating overall SSOHW with AD was investigated. A case-study of treating 1tonne of SSOHW under framework conditions in Denmark was conducted. Under the given assumptions, vegetable food waste was the only material fraction which was always better for AD compared to incineration. For animal food waste, kitchen tissue, vegetation waste and dirty paper, AD utilisation was better unless it was compared to a highly efficient incinerator. Material fractions such as moulded fibres and dirty cardboard were attractive for AD, albeit only when AD with CHP and incineration with mainly heat production were compared. Animal straw, in contrast, was always better to incinerate. Considering the total amounts of individual material fractions in waste generated within households in Denmark, food waste (both animal and vegetable derived) and kitchen tissue are the main material

  11. UK: Technical data for waste incineration background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    UK: In life cycle assessment (LCA) the environmental impacts from a product are assessed throughout the entire life-cycle of the product, i.e. from the extraction of the raw materials from which the product is made through manufacture and use of the product to the final disposal of the product...... and possible recycling hereof. The assessment is based on an inventory of inputs and outputs (resource/material consumption and generation of energy and emissions) for all the processes that occur as part of the product life-cycle. A model is developed to estimate the inputs and outputs associated...... with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...

  12. Technical data for waste incineration - background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Erichsen, Hanne; Hauschild, Michael Zwicky

    In life cycle assessment (LCA) the environmental impacts from a product are assessed throughout the entire life-cycle of the product, i.e. from the extraction of the raw materials from which the product is made through manufacture and use of the product to the final disposal of the product...... and possible recycling hereof. The assessment is based on an inventory of inputs and outputs (resource/material consumption and generation of energy and emissions) for all the processes that occur as part of the product life-cycle. A model is developed to estimate the inputs and outputs associated...... with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...

  13. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    Science.gov (United States)

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production.

  14. Propensity for the formation of dioxins during the cool-down of plumes from medical waste incinerators in South Africa

    CSIR Research Space (South Africa)

    Rogers, D

    2006-02-01

    Full Text Available /annum)2. In SA, as in most developing countries, less than 1% of the 137 medical waste incinerators registered in SA3 are fitted with gas clean up systems, and the exhaust gases are vented at temperatures above the onset of dioxin formation (450 °C to 150...

  15. Application of CFD in Investigation of Ventilation Strategies for Improvement of Working Environment in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Heiselberg, Per; Svidt, Kjeld; Kragh, Hans

    In this study CFD was applied to investigate the ability of different ventilation systems and strategies to improve working conditions in a waste incineration plant. The plant, VS Amagerforbn:ending, had expanded to supply both district heating and power. Because of that too high temperatures were...

  16. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent...

  17. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the le

  18. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the le

  19. Low-cost waste incineration and recycling from the operator`s point of view; Kostenguenstige thermische Abfallverwertung und Kreislaufwirtschaftsgesetz aus Betreibersicht

    Energy Technology Data Exchange (ETDEWEB)

    Burgorf, J. [Saarberg-Oekotechnic GmbH, Saarbruecken (Germany)

    1998-09-01

    The 1996 Act on Recycling and Waste Management specified that waste production should be reduced first of all, and that waste still produced should be recycled or used for power generation. Dumping and `classic` incineration are permissible only if it is the more acceptable solution from an environmental point of view. There are two categories of thermal treatment: Thermal treatment of `waste for dumping`, and use of the energy content of `waste for utilisation`. The contribution analyzes the effects of the law on future waste management concepts in consideration of the current situation of thermal treatment of residual waste. (orig.) [Deutsch] Das im Oktober 1996 in Kraft getretene Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG) schreibt in den Grundsaetzen der Kreislaufwirtschaft fest, dass Abfaelle in erster Linie zu vermeiden und in zweiter Linie stofflich oder energetisch zu verwerten sind. Die Beseitigung von Abfaellen - und darunter faellt auch die `klassische` Muellverbrennung - ist nur dann zugelassen, wenn sie gegenueber der Verwertung die umweltvertraeglichere Loesung darstellt. Fuer die thermische Behandlung von Abfaellen denfiniert das KrW-/AbfG deshalb zwei Wege mit unterschiedlichen Ansaetzen: Zum einen die thermische Behandlung von `Abfaellen zur Beseitigung`, wie sie bisher in vielen Anlagen zur Muellverbrennung realisiert worden ist und zum anderen die energetische Nutzung von `Abfaellen zur Verwertung`. Der vorliegende Beitrag soll die Auswirkung dieser Vorgabe auf zukuenftige Abfallwirtschaftskonzepte unter Beruecksichtigung der derzeitigen Situation der thermischen Restabfallbehandlung darstellen. (orig.)

  20. Energetic planning in civil engineer: solid urban residues incineration; Planejamento energetico na engenharia civil: o caso da incineracao de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto; Ferruccio, Sheilla Jones Akel [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil

    1993-12-31

    There is an Hybrid Thermic Reactor operating in Americana (SP) since 1986 with the only duty of incinerating hospital residues. This kind of pyrolytic decomposition had proved to be self-sustainable on the energetic point of view based on the composition of the hospital waste. So, it seems interesting to compare, energectly, the mass reduction efficiency existent in the operation of the Hybrid Thermic Reactor and the expected in the work being developed about Thermochemical Decomposition in situ, an attempt without preceding of reproduction of the effects of a pyrolytic reactor inside existing cells in landfills, using as a generating heat source the biogas generated in adjacent cell in the same area. (author) 4 refs., 3 figs.

  1. Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management.

    Science.gov (United States)

    Klein, R; Baumann, T; Kahapka, E; Niessner, R

    2001-05-30

    Municipal solid waste is treated in incineration plants to reduce the volume, the toxicity and the reactivity of the waste. The final product, municipal solid waste incineration (MSWI) bottom ash, was considered as a material with a low reactivity, which can safely be deposited in a MSWI bottom ash landfill, or which can be used, e.g. in road construction after further treatment. However, temperature measurements in MSWI bottom ash landfills showed temperatures up to 90 degrees C, caused by exothermic reactions within the landfill. Such high temperatures may affect the stability of the flexible polymer membrane liner (FML) and may also lead to an accelerated desiccation of the clay barrier. At the beginning of this study it was uncertain whether those reported results would be applicable to modern landfills, because the treatment techniques in MSWI and landfills have changed, bottom and fly ash are stored separately, and the composition of the incinerated waste has changed significantly since the publication of those results. The aim of this study was to gain detailed knowledge of temperature development under standard disposal conditions in relation to the rate of ash disposal, the variation of layer thickness, and the environmental conditions in a modern landfill. Temperatures were measured at nine levels within the body of a landfill for a period of nearly 3 years. Within 7 months of the start of the disposal, a temperature increase of up to 70 degrees C within the vertical centre of the disposal was observed. In the upper and central part of the landfill this initial temperature increase was succeeded by a decrease in temperature. The maximum temperature at the time of writing (May 2000) is about 55 degrees C in the central part of the landfill. The maximum temperature (45.9 degrees C) at the FML was reached 17 months after the start of the deposition. Since then the temperatures decreased at a rate of 0.6 degrees C per month. Temperature variation within each

  2. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods.

    Science.gov (United States)

    Chiang, Kung-Yuh; Tsai, Chen-Chiu; Wang, Kuen-Sheng

    2009-01-01

    This study investigates four extraction methods (water extraction, toxicity characteristics leaching procedure (TCLP), modified TCLP with pH control, and sequential chemical extraction (SCE)), each representing different liquid-to-solid (L/S) ratios, pH controls, and types of leachant, and their effects on the leaching concentration of heavy metals in municipal solid waste (MSW) incinerator air pollution control (APC) residue. The results indicated that for extraction with distilled water, the heavy metal leaching concentration (mg/l) decreased with L/S ratio, but the amount of heavy metal released (AHMR), defined as the leached amount of heavy metals to the weight of the tested sample (mg/kg), increased with an increase in L/S ratio, in the range of 2-100. The results also showed that both the leaching concentration and the amount of released metals were strongly pH-dependent in the TCLP and modified TCLP tests. In the case of pHs lower than 6.5, the leaching concentrations of Cd, Pb, Cu, Zn, and Cr decreased with an increase in pH. As pH increased higher than 6.5, Cr and Zn were almost insoluble. Meanwhile, Cd and Cu also showed a similar trend but at pHs of 8.5 and 7.5, respectively. Due to the nature of amphoteric elements, in the case of pHs higher than 7, the Pb leaching concentration increased with increasing pH. In modified TCLP tests with the pH value controlled at the same level as in the SCE test, the heavy metal speciation approached the extractable carbonate bound fraction by the SCE. Both amounts of targeted metals leached from the SCE and modified TCLP tests were much higher than those for the regular TCLP and water extraction tests.

  3. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    Science.gov (United States)

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-02-25

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology.

  5. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  6. Solidification/stabilization of ash from medical waste incineration into geopolymers.

    Science.gov (United States)

    Tzanakos, Konstantinos; Mimilidou, Aliki; Anastasiadou, Kalliopi; Stratakis, Antonis; Gidarakos, Evangelos

    2014-10-01

    In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50°C for 24h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2-8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.

  7. Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag.

    Science.gov (United States)

    Zhang, Zhikun; Li, Aimin; Wang, Xuexue; Zhang, Lei

    2016-10-01

    Municipal solid waste incineration (MSWI) fly ash (FA) is classified as hazardous waste and requires special treatment prior to landfilling due to its high levels of alkali chlorides and heavy metals. In this paper we presented and discussed a novel method of converting FA into an inert and non-hazardous material, by using the metastable state of vitrified amorphous slag (VAS). XRD results showed that VAS remained in the amorphous state when sintered at 700 and 800°C and were in the crystalline state at 900 and 1000°C. Heavy metals- and Cl-containing phases appeared during phase transformation process. The residual rates of heavy metals and Cl increased with the decrease of FA:VAS ratios. The prolonged leaching test and potential ecological risk assessment of heavy metals showed that the heavy metals were well immobilized into the sintered samples and presented no immediate threat to the environment. The results indicated that the immobilization of heavy metals was due to the reaction with silicate or aluminosilicate matrices within VAS and/or the incorporation into the new generated crystals. The proposed method can be considered as a potential promising technique for the stabilization/solidification of MSWI fly ash with high Cl content.

  8. Study of air pollution in the proximity of a waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, V. [Department of Physics and Astronomy – University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Calzolai, G. [Department of Physics and Astronomy – University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN) – Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M. [National Institute of Nuclear Physics (INFN) – Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lucarelli, F., E-mail: lucarelli@fi.infn.it [Department of Physics and Astronomy – University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN) – Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Nava, S.; Giannoni, M. [National Institute of Nuclear Physics (INFN) – Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Becagli, S.; Frosini, D. [Department of Chemistry – University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)

    2015-11-15

    Montale is a small town in Tuscany characterised by high PM10 levels. Close to the town there is a waste incinerator plant. There are many concerns in the population and in the press about the causes of the high levels of pollution in this area. Daily PM10 samples were collected for 1 year by the FAI Hydra Dual sampler and analysed by different techniques in order to obtain a complete chemical speciation (elements by PIXE and ICP-MS, ions by Ion Chromatography, elemental and organic carbon by a thermo-optical instrument); hourly fine (<2.5 μm) and coarse (2.5–10 μm) PM samples were collected for shorter periods by the Streaker sampler and hourly elemental concentrations were obtained by PIXE analysis. Positive Matrix Factorization identified and quantified the major aerosol sources. Biomass burning turned out to be the most important source with an average percentage contribution to PM10 of 27% of and even higher percentages during the winter period when there are the highest PM10 concentrations. The contribution of the incinerator source has been estimated as about 6% of PM10.

  9. Leaching characteristics of heavy metals during cement stabilization of fly ash from municipal solid waste incinerators

    Institute of Scientific and Technical Information of China (English)

    Shunwen LIANG; Jianguo JIANG; Yan ZHANG; Xin XU

    2008-01-01

    The leaching characteristics of heavy metals in products of cement stabilization of fly ash from a muni-cipal solid waste incinerator were investigated in this paper. The stabilization of heavy metals such as Cd, Pb, Cu, and Zn in fly ash from such incinerators was exam-ined through the national standard method in China based on the following-factors: additive quantity of cement and Na2S, curing time, and pH of leaching liquor. The results showed that as more additives were used, less heavy metals were leached except for Pb, which is sensitive to pH of the leachate, and the worse effect was observed for Cd. The mass ratio of cement to fly ash=10% is the most appropriate parameter according to the national standard method. When the hydration of cement was basically finished, stabilization of heavy metals did not vary after curing for 1 d. The mixtures of cement and fly ash had excellent adaptability to environmental pH. The pH of leachate was maintained at 7 when pH of leaching liquor varied from 3 to 11.

  10. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water.

    Science.gov (United States)

    Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen

    2012-01-17

    The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.

  11. Paper waste - recycling, incineration or landfilling? A review of existing life cycle assessments.

    Science.gov (United States)

    Villanueva, A; Wenzel, H

    2007-01-01

    A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.

  12. Review of the incineration of 500 tonnes of radio-active residues; Bilan de l'incineration de 500 tonnes de residus radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J.; Seyfried, P.; Charbonneaux, M. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    During its first five years operation, the incinerator at the Marcoule Centre has burnt almost 500 tonnes of radio-active residues. Improvements in some of the details of the process have been made during this period; they concern the nature of the materials involved. The technical and radiological results for the installation are very favorable, and have made it possible to maintain a high charge factor.Although the overall economic results are not advantageous in the case of ungraded solid residues this method represents nevertheless the best available for eliminating oils, solvents, wood and dead animals. It can also be of use furthermore each time that a dilution in the atmosphere can advantageously be used as a method of disposing of certain radio elements such as tritium or carbon 14 in the form of gases or vapours. (author) [French] L'incinerateur du Centre de Marcoule a brule, durant les 5 premieres annees de fonctionnement, pres de 500 tonnes de residus radioactifs. Les ameliorations de detail realisees au cours de cette periode ont porte sur la nature des materiaux employes. Les bilans techniques et radiologiques de l'installation sont tres favorables et ont permis de maintenir un facteur de charge eleve. Si le bilan economique n'est pas favorable a l'incineration des residus solides 'tout venant' cette methode constitue cependant la solution ideale pour l'elimination des huiles, des solvants, du bois et des cadavres d'animaux. En outre, elle peut etre interessante chaque fois que la dilution dans l'atmosphere peut etre avantageusement mise a profit pour rejeter certains radioelements tels que le tritium ou le carbone 14 sous forme de gaz ou de vapeurs. (auteur)

  13. Did we choose the best one? A new site selection approach based on exposure and uptake potential for waste incineration.

    Science.gov (United States)

    Demirarslan, K Onur; Korucu, M Kemal; Karademir, Aykan

    2016-08-01

    Ecological problems arising after the construction and operation of a waste incineration plant generally originate from incorrect decisions made during the selection of the location of the plant. The main objective of this study is to investigate how the selection method for the location of a new municipal waste incineration plant can be improved by using a dispersion modelling approach supported by geographical information systems and multi-criteria decision analysis. Considering this aim, the appropriateness of the current location of an existent plant was assessed by applying a pollution dispersion model. Using this procedure, the site ranking for a total of 90 candidate locations and the site of the existing incinerator were determined by a new location selection practice and the current place of the plant was evaluated by ANOVA and Tukey tests. This ranking, made without the use of modelling approaches, was re-evaluated based on the modelling of various variables, including the concentration of pollutants, population and population density, demography, temporality of meteorological data, pollutant type, risk formation type by CALPUFF and re-ranking the results. The findings clearly indicate the impropriety of the location of the current plant, as the pollution distribution model showed that its location was the fourth-worst choice among 91 possibilities. It was concluded that the location selection procedures for waste incinerators should benefit from the improvements obtained by the articulation of pollution dispersion studies combined with the population density data to obtain the most suitable location. © The Author(s) 2016.

  14. Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators.

    Science.gov (United States)

    Kim, S C; Jeon, S H; Jung, I R; Kim, K H; Kwon, M H; Kim, J H; Yi, J H; Kim, S J; You, J C; Jung, D H

    2001-01-01

    Removal efficiencies of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) by air pollution control devices (APCDs) in the commercial-scale municipal solid waste (MSW) incinerators with a capacity of above 200 ton/day were evaluated. The removal efficiencies of PCDDs/PCDFs were up to 95% when the activated carbon (AC) was injected in front of electrostatic precipitator (EP). Spray dryer absorber/bag filter (SDA/BF) had high removal efficiency (99%)) of PCDDs/PCDFs when a mixture of lime and AC was sprayed into the SDA. When the AC was not added in scrubbing solution, the whole congeners of PCDDs/PCDFs were enriched in the wet scrubber (WS) with negative removal efficiencies of -25% to -5731%. Discharge of PCDDs/PCDFs was decreased with increasing the proportions of AC added in scrubbing solution. Selective catalytic reduction (SCR) system had the removal efficiencies of up to 93% during the test operation.

  15. Municipal waste management in Italy. Incinerators; Impianti di smaltimento. Indagine sui termoutilizzatori RU (rifiuti urbani)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In this work are reported the data related to the incineration plants of municipal wastes in Italy. Technologies, energy production, air pollution monitoring and emission analysis are here considered. [Italian] L'obiettivo di questo lavoro e' proseguire e sviluppare l'analisi presentata per la prima volta da Federambiente nel 1998 che riguarda il parco impianti incenerimento dei rifiuti urbani e assimilabili presenti o presenti su tutto il territorio nazionale. I dati sono riferiti a 63 impianti ed aggiornati al 1999. Sono state trattate le tecnologie utilizzate dai forni, le capacita', le quantita' trattate nel 1998 e 1999, la produzione energetica e, particolare enfasi e' stata data all'analisi delle emissioni, con riferimento alla normativa vigente.

  16. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered...... breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal...... routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality...

  17. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  18. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.

    Science.gov (United States)

    Ducom, Gaëlle; Radu-Tirnoveanu, Daniela; Pascual, Christophe; Benadda, Belkacem; Germain, Patrick

    2009-07-30

    This study focuses on a new way of reusing municipal solid waste incinerator bottom ash: landfill gas purification before energetic valorisation. A pilot plant was designed and operated on a landfill site located in France (Loire). One kilogram bottom ash is able to sequestrate more than 3.0 g of hydrogen sulphide, 44 mg of methyl mercaptan, and 86 mg of dimethyl sulphide. Hydrogen sulphide retention is probably due to acid-basic reactions conducting to sulphur mineralisation under the form of low solubility metal sulphides. The reaction medium is hydration water. The retention mechanism for methyl mercaptan is probably similar but dimethyl sulphide is most likely retained by physical adsorption. As methane is not retained by bottom ash, the landfill gas energetic content will not be lowered. There seems to be no appreciable difference in these results whether bottom ash is fresh or carbonated. These results are encouraging in the perspective of a field scale application of this biogas treatment process.

  19. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction.

  20. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.

  1. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  2. Selected occupational-health-hazard controls in the incineration of hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, M.Y.

    1984-09-01

    Surveys of control technology in the hazardous-waste incineration industry (SIC-4953) were conducted. Twelve walkthrough and four in-depth surveys were conducted. State-of-the-art engineering controls existed at three facilities. At these facilities, liquid wastes in 55 gallon drums were dumped automatically into hoppers enclosed within ventilated booths. Bulk liquids received in tank trailers or 600-gallon dumpsters were connected by electrically grounded transfer hoses to the furnace or to storage tanks. The trailers were vented to spot (local) scrubbing systems, and explosive proof pumps were used. Solids, sludges, and sample bottles were handled by an automated pack and drum-feed system or by a loader. General ventilation, 12 to 15 changes per hour, was provided. The facilities provided employee training in health hazards and safety. Good-work practices such as using appropriate personal-protective equipment and safety belts and chutes around kiln openings were observed. Concentrations of low-to-medium toxicity materials were between 1 and 15% of their threshold-limit values. The author notes that at some facilities respiratory protection was used as an added precaution when handling highly toxic wastes, although the engineering controls alone were sufficient to meet the exposure standard.

  3. Method for determining effective flame emissivity in a rotary kiln incinerator burning solid waste

    Institute of Scientific and Technical Information of China (English)

    Jin-cai DU; Qun-xing HUANG; Jian-hua YAN

    2012-01-01

    Temperature is the most important parameter for the improvement of combustion efficiency and the control of pollutants.In order to obtain accurate flame temperatures in a rotary kiln incinerator using non-intrusive thermographic method,the effective flame emissivity was studied.A combined narrow- and wide-band model and Mie scattering method were used to calculate the radiative properties for gases and fly-ash particles under different combustion conditions.The effects of the air/waste ratio and fly-ash particles on the effective flame emissivity were discussed.The results of numerical calculations showed that the effective emissivity decreased from 0.90 to 0.80 when the air/waste ratio increased from 1.0 to 1.8,and the effect of the fly-ash particles was ignorable under the conditions discussed in this paper.Experimental measurement results indicated that the accuracy of the thermographic temperature measurements improved significantly if the setting of the flame emissivity was adjusted according to the air/waste ratio.

  4. Electrodialytic upgrading of MSWI APC residue from hazardous waste to secondary resource

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Parés Viader, Raimon

    The aim of this project was to contribute to the development of electrodialytic treatment technology of air pollution control residues (APC) from municipal solid waste incineration (MSWI) to obtain maximal leaching reduction by optimization of treatment time and current density for different types...... of MSWI APC residues. The concept idea was in a pilot scale unit to reduce the mobility of toxic elements and salts by electrodialytic treatment enough for the residual product to constitute an environmentally safe resource for substitution of virgin resources in construction material e.......g. for substitution of cement or fillers in concrete. In general leaching could not be reduced by optimizing current density and treatment time in the pilot scale stack treatment unit, as hypothesized, even though there was evidence of dependency on current density for e.g. zinc, this was not true for most elements...

  5. Bioenergy from Biofuel Residues and Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided.

  6. Discussion on installation construction technology of incineration furnace in waste incineration power project%垃圾焚烧发电项目焚烧炉安装施工工艺探讨

    Institute of Scientific and Technical Information of China (English)

    吉英俊

    2012-01-01

    总结了垃圾焚烧发电项目焚烧炉安装的施工经验,以实际项目为例,研究探讨了焚烧炉安装的工艺流程,从而合理、安全、有序地安排施工,确保工期质量。%This paper summarized the installation construction experience of incineration furnace in waste incineration power project, taking actu- al project as an example, researched and discussed the process of incineration furnace installation, so as to reasonable, safe, orderly arrange construction, ensured project quality.

  7. Risk of cancer in the vicinity of municipal solid waste incinerators: importance of using a flexible modelling strategy

    Directory of Open Access Journals (Sweden)

    Goria Sarah

    2009-05-01

    Full Text Available Abstract Background We conducted an ecological study in four French administrative departments and highlighted an excess risk in cancer morbidity for residents around municipal solid waste incinerators. The aim of this paper is to show how important are advanced tools and statistical techniques to better assess weak associations between the risk of cancer and past environmental exposures. Methods The steps to evaluate the association between the risk of cancer and the exposure to incinerators, from the assessment of exposure to the definition of the confounding variables and the statistical analysis carried out are detailed and discussed. Dispersion modelling was used to assess exposure to sixteen incinerators. A geographical information system was developed to define an index of exposure at the IRIS level that is the geographical unit we considered. Population density, rural/urban status, socio-economic deprivation, exposure to air pollution from traffic and from other industries were considered as potential confounding factors and defined at the IRIS level. Generalized additive models and Bayesian hierarchical models were used to estimate the association between the risk of cancer and the index of exposure to incinerators accounting for the confounding factors. Results Modelling to assess the exposure to municipal solid waste incinerators allowed accounting for factors known to influence the exposure (meteorological data, point source characteristics, topography. The statistical models defined allowed modelling extra-Poisson variability and also non-linear relationships between the risk of cancer and the exposure to incinerators and the confounders. Conclusion In most epidemiological studies distance is still used as a proxy for exposure. This can lead to significant exposure misclassification. Additionally, in geographical correlation studies the non-linear relationships are usually not accounted for in the statistical analysis. In studies of

  8. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori, E-mail: matsukami.hidenori@nies.go.jp [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Watanabe, Mafumi [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Takigami, Hidetaka [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan)

    2014-09-15

    Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, < 0.01–0.048 μg m{sup −3} and < 0.5–68 μg kg{sup −1}. Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of

  9. Incineration of Pre-Treated Municipal Solid Waste (MSW for Energy Co-Generation in a Non-Densely Populated Area

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2013-12-01

    Full Text Available The planning actions in municipal solid waste (MSW management must follow strategies aimed at obtaining economies of scale. At the regional basin, a proper feasibility analysis of treatment and disposal plants should be based on the collection and analysis of data available on production rate and technological characteristics of waste. Considering the regulations constraint, the energy recovery is limited by the creation of small or medium-sized incineration plants, while separated collection strongly influences the heating value of the residual MSW. Moreover, separated collection of organic fraction in non-densely populated area is burdensome and difficult to manage. The paper shows the results of the analysis carried out to evaluate the potential energy recovery using a combined cycle for the incineration of mechanically pre-treated MSW in Basilicata, a non-densely populated region in Southern Italy. In order to focalize the role of sieving as pre-treatment, the evaluation on the MSW sieved fraction heating value was presented. Co-generative (heat and power production plant was compared to other MSW management solutions (e.g., direct landfilling, also considering the environmental impact in terms of greenhouse gases (GHGs emissions.

  10. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  11. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  12. Incineration as treatment system of urban solid wastes. La incineracion como parte del sistem integral de tratamiento de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano Martinez, F. (IDAE. Madrid (Spain))

    1993-01-01

    Spain produces 12 million tons of municipal solid wastes. The incineration is the cleanest process and, at the moment, its use is complementary with the recycling. This article analyzes the Spanish situation and the process in USA and European Community.

  13. Incineration plant of urban solid wastes in Tarragona: experiences of five year functioning; Planta incineradora de residuos solidos urbanos de Tarragona: experiencias de cinco aos de funcionamiento

    Energy Technology Data Exchange (ETDEWEB)

    Nadal Albiol, R.

    1996-12-01

    The incineration plant of urban solid wastes in Tarragona (Spain) was founded in 1991. After five years, the author does an review of the state of the art in the plant. The technical environmental experience are shown. (Author) 7 refs.

  14. International experience of Foster Wheeler in the incineration of urban solid wastes; Experiencia internacional de Foster Wheeler en el campo de la incineracion de residuos solidos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Eisen, C.; Florez, J. M.

    1996-12-01

    The enterprise Foster Wheeler presents its experience on incineration or urban solid wastes. The main examples of construction in the international area are the Camden and the Valorsul plants. (Author)

  15. Unlimited prices for waste. An analysis of Dutch waste incinerators in a European market; Afvalprijzen zonder grens. Een analyse van de Nederlandse afvalverbrandingsinstallaties in een Europese markt.

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, E.; Aalbers, R.F.T.; Varkevisser, M.

    2001-03-20

    Report of a study on the consequences of opening national borders for the combustion of low and high calorific waste for the financial position of waste incinerating plants in the Netherlands. [Dutch] Verslag van een onderzoek naar de gevolgen van het opengaan van nationale grenzen voor het verbranden van laag- en hoogcalorisch afval voor de financiele positie van de Nederlandse AVI's (afvalverbrandingsinstallaties)

  16. Examination of the influence of redox conditions, sulphur and chlorine on the evaporation of heavy metals during solid waste incineration; Untersuchung des Einflusses von Redoxbedingungen, Schwefel und Chlor auf die Verdampfung von Schwermetallen in Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Christian [Sandoz GmbH, Kundl, Tirol (Austria); Valle, Massimiliano [Ladurner Sanierung GmbH - Ladurner Umwelt AG (Italy)

    2008-12-15

    In order to facilitate the riskless landfilling or utilization of slags from solid waste incineration plants for example in road construction, low heavy metal contents of these slags and therefore the enrichment of heavy metals in the gas cleaning residues is crucial. A thesis and a dissertation written at the Institute of Environmental Engineering of the University of Innsbruck focused amongst others on the factors determining the behaviour of heavy metals during solid waste incineration. Several heavy metal evaporation experiments in the lab should primarily clarify the influence of redox conditions, sulphur and chlorine on the evaporation of the selected elements zinc, lead, cadmium, antimony and tin. The article describes the methods applied and the achieved results of these lab experiments. (orig.)

  17. Characterization of hot-mix asphalt concrete containing municipal solid waste incinerator ash using the dynamic modulus (E) test

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, H.F. [Sultan Qaboos Univ., Muscat (Oman). College of Engineering

    2007-07-01

    In 2001, approximately 229 million tons of municipal solid waste (MSW) were produced in the United States. MSW consists of items such as paper, grass clippings, furniture, clothing, bottles, food scraps, appliances, paint, and batteries. MSW incinerator ash is the by-product produced during the combustion of municipal solid waste in combustor facilities and has two components, namely bottom ash and fly ash. To reduce the disposal problem, the incinerators are used to reduce the volume and weight of MSW. This is usually a self-sustained process using the waste as a fuel resulting in as much as a 90 and 75 per cent reduction in volume and weight, respectively. This paper presented the results of a study that investigated the use of incinerator ash as a partial replacement of fine aggregate in hot-mix asphalt concrete. MSW incinerator ash was collected from an incinerator facility at Sultan Qaboos University in Oman and a physical and chemical characterization of the ash was conducted. MSW ash was used in the mixture to replace fine aggregate with a percentage ranging from 0 to 40 per cent, by total aggregate weight. The mixes were designed using the Marshall mix design method and the dynamic modulus test was conducted on samples prepared at optimum asphalt contents for mixes containing different percentage of ash and at different temperatures and frequencies. Master curves for different percentages of ash in the mix were developed from the testing results. It was found that the Marshall mix design results for the mixes containing MSW ash indicated a decrease in stability, and specific gravity, and an increase in air voids. 18 refs., 10 figs.

  18. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    Science.gov (United States)

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.

  19. Risk of congenital anomalies around a municipal solid waste incinerator: a GIS-based case-control study

    Directory of Open Access Journals (Sweden)

    Garavelli Livia

    2009-02-01

    Full Text Available Abstract Background Waste incineration releases into the environment toxic substances having a teratogenic potential, but little epidemiologic evidence is available on this topic. We aimed at examining the relation between exposure to the emissions from a municipal solid waste incinerator and risk of birth defects in a northern Italy community, using Geographical Information System (GIS data to estimate exposure and a population-based case-control study design. By modelling the incinerator emissions, we defined in the GIS three areas of increasing exposure according to predicted dioxins concentrations. We mapped the 228 births and induced abortions with diagnosis of congenital anomalies observed during the 1998–2006 period, together with a corresponding series of control births matched for year and hospital of birth/abortion as well as maternal age, using maternal address in the first three months of pregnancy to geocode cases and controls. Results Among women residing in the areas with medium and high exposure, prevalence of anomalies in the offspring was substantially comparable to that observed in the control population, nor dose-response relations for any of the major categories of birth defects emerged. Furthermore, odds ratio for congenital anomalies did not decrease during a prolonged shut-down period of the plant. Conclusion Overall, these findings do not lend support to the hypothesis that the environmental contamination occurring around an incineration plant such as that examined in this study may induce major teratogenic effects.

  20. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans.

    Science.gov (United States)

    Wang, Lin-Chi; Lee, Wen-Jhy; Lee, Wei-Shan; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2003-01-20

    This study attempts to clarify the effects of chlorine content in waste on the formation mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in full scale incinerators by proposing and using the principal component analysis (PCA) to compare the congener profiles of PCDD/Fs in the stack flue gases of 17 emission sources, including incinerators and vehicles. Four incinerators, among these 17 emission sources, were sampled and analyzed in this study, and the data for the other 13 emission sources were selected from previous studies. These 17 emission sources can be classified into four categories, including medical waste incinerators (MWIs, H1-H5), municipal solid waste incinerators (MSWIs, M1-M8), vehicle fuel combustion (unleaded gas-fueled vehicles, UGFV; diesel-fueled vehicles, DFV, n = 2) and polyvinylchloride (PVC) facility vent combustors (PVC1 and PVC2, n = 2). PCA was conducted for these emission sources with the fractions of 17 2,3,7,8-congeners in the stack flue gases as variables to clarify the effect of chlorine content in feeding wastes on the emission of PCDD/Fs. From the results of PCA, we extrapolated that the threshold value of the chlorine content was at 0.8-1.1%, and the formation mechanisms of PCDD/Fs are influenced first by whether the chlorine content in the feeding waste is over or below the threshold value then by other factors, which furnaces or APCDs represent. When the chlorine level in the waste is below the threshold value at 0.8-1.1%, the formation of PCDDs dominates, probably because the chlorine is used to chlorinate the non-substituted phenol to produce chlorophenols, which are important precursors for PCDDs. rather than chlorinate the dibenzofuran. While the chlorine level in the waste exceeds this threshold (0.8-1.1%), the rates of formation of PCDFs increase faster than those of PCDDs, probably because the chlorine content in the waste contributes to the deterioration of combustion conditions, and many

  2. 变频装置在生活垃圾焚烧发电厂中的应用%Application of Inverter in Domestic Waste Incineration Power Plants

    Institute of Scientific and Technical Information of China (English)

    王颖; 刘云杰; 蒋金明; 高波

    2013-01-01

    介绍了垃圾焚烧技术中变频器的应用,并结合某垃圾发电厂工程介绍其在工程设计中的应用.%The application of inverter in waste incineration technology was introduced. Its application in engineering design was expounded by combining a project of waste incineration power plant.

  3. Dioxine and PAH-emissions from private incineration of wastes; Dioxin- und PAK-Emissionen der privaten Abfallverbrennung: Umwelt-Materialien Nr. 172 Luft

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2004-07-01

    This report published by the Swiss Agency for the Environment, Forests and Landscape (SAEFL) presents the results of a literature study and situation analysis on the burning of wastes at the domestic level. The private burning of municipal solid waste, urban waste wood and other wastes as a potential source of toxic emissions and residues is discussed. Beside the heavy metals found in ash and flue gas, the paper looks at organic substances such as polycyclic aromatic hydrocarbons (PAH) and polychlorinated dibenzo-p-dioxines and polychlorinated dibenzofuranes (PCDD/F) that can be emitted in relevant concentrations. The aim of the study - to evaluate emission factors of PCDD/F and PAH from private waste incineration in wood stoves and boilers, in barrels, and in open fires - is discussed. A survey of recent investigations in Europe and the United States and the correlation between the most relevant emission factors is looked at. Critical situations leading to extremely high PCDD/F emissions are described.

  4. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the

  5. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the connec

  6. Enrichment of PCDDs/PCDFs in peripheral utilities of the municipal solid waste incineration facility.

    Science.gov (United States)

    Kim, Sam-Cwan; Song, Geum-Ju; Seok, Kwang-Seol; Ko, Yun-Hwa; Hunsinger, Hans

    2013-05-01

    This study was performed to suggest the improvements through measuring the amounts of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), re-synthesized in peripheral utilities (PUs) of a commercial-scale municipal solid waste incineration facility (MSWIF) where a few research results existed. The PUs examined in this study consisted of air pre-heaters (APHs) and gas/gas re-heater (GGRH) and kerosene-fired duct burner for selective catalytic reduction (SCR) process. PCDDs/PCDFs in flue gas were simultaneously measured at the inlet and outlet of PUs. Flue gas was cooled down from 380 °C to 249 °C by exchanging the heat with fresh air in APHs, and then heated up to 383 °C by GGRH and duct burner from 164 °C at the outlet of bag filter. The results showed that PCDDs/PCDFs were 3-4 times higher within this temperature range of PUs. In comparison of PCDDs/PCDFs concentrations at the inlet with those at the outlet of PUs, particulate-phase PCDDs/PCDFs were about 9.5-10 times enriched while gaseous-phase ones were decreased by about 33-41%. The PCDDs/PCDFs re-synthesized in the PUs, where PCDDs were relatively higher than PCDFs, showed somewhat different patterns compared to those formed at incinerators and emitted at stack. Through the investigations for PUs, we conclude that the PUs used in MSWIFs was a potential source for de novo synthesis of PCDDs/PCDFs.

  7. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    Science.gov (United States)

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p < 0.05) in the extractable or acid-soluble and reducible fractions. By adopting the proposed approach, the leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001.

  8. Characterisation and management of ash produced in the hospital waste incinerator of Athens, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Kougemitrou, Irene [Harokopio University of Athens, 70 El. Venizelou Str., 17671 Athens (Greece); Godelitsas, Athanasios, E-mail: agodel@geol.uoa.gr [University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Tsabaris, Christos [Hellenic Center of Marine Research, 19013 Anavyssos (Greece); Stathopoulos, Vassilis [Technological Educational Institute of Chalkida, 34400 Psahna (Greece); Papandreou, Andreas [CERECO S.A. Ceramics and Refractories Technological Development Company, 34100 Chalkida (Greece); Gamaletsos, Platon [University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Economou, George [Institute of Geology and Mineral Exploration, Olympic Village, 13677 Acharnai (Greece); Papadopoulos, Dimitris [APOTEFROTIRAS S.A., Ano Liossia, 19200 Elefsina (Greece)

    2011-03-15

    Bottom and fly ash samples (BASH and FASH) from the APOTEFROTIRAS S.A. medical waste incinerator (Athens, Greece) were investigated. Powder-XRD data and geochemical diagrams showed BASH to be an amorphous material, analogous to basaltic glass, and FASH consisting of crystalline compounds (mainly CaClOH). Bulk analyses by ICP-MS and point analyses by SEM-EDS indicated a high content of heavy metals, such as Fe, Cu and Cr, in both samples. However, BASH was highly enriched in Ni while FASH was additionally enriched in Zn and Pb. Gamma-ray measurements showed that the radioactivity of both ash samples, due to natural and artificial radionuclides ({sup 137}Cs, {sup 57}Co), was within the permissible levels recommended by IAEA. According to EN-type leaching tests, BASH was practically inert with regard to the mobility of the hazardous elements in aqueous media. FASH, however, showed a relatively high EN (and TCLP) leachability with regard to Pb and Zn. Finally, the stabilisation method, suggested for the treatment of FASH, included compression of the powder into briquettes using an appropriate machine and embedding the briquettes into pozzolanic cement blocks. After this treatment, TCLP and EN-type tests showed minimal release of Pb and Zn, thereby demonstrating a reliable management of ash waste.

  9. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    Science.gov (United States)

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems.

  10. Model comparison of flow through a municipal solid waste incinerator ash landfill

    Science.gov (United States)

    Johnson, C. A.; Schaap, M. G.; Abbaspour, K. C.

    2001-03-01

    The drainage discharge of a municipal solid waste incinerator (MSWI) bottom ash landfill was simulated using various modelling approaches. Two functional models including a neural networks approach and a hydrological linear storage model, and two mechanistic models requiring physical/hydrodynamic properties of the waste material, HYDRUS5 and MACRO (Version 4.0) were used. The models were calibrated using an 8-month data set from 1996 and validated on a 3-month data set from winter 1994/1995. The data sets comprised hourly values of rainfall, evaporation (estimated from the Penman-Monteith relationship), drainage discharge and electrical conductivity. Predicted and measured discharges were compared. The discharge predicted by the functional models more exactly followed the discharge patterns of the measured data but, particularly the linear storage model, could not cope with the non-linearity of the system that was caused by seasonal changes in water content of the MSWI bottom ash. The fit of the neural networks model to the data improved with increasing prior information but was less smooth than the measured data. The mechanistic model that included preferential discharge, MACRO, better modelled the discharge characteristics when inversely applied, indicating that preferential flow does occur in this system. However, even the inverse application of HYDRUS5 could not describe the system discharge as well as the linear storage model. All model approaches would have benefited from a more exact knowledge of initial water content.

  11. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    Science.gov (United States)

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching.

  12. Studies on the production of building material grade slag from hazardous-waste incineration plants; Untersuchungen zur Herstellung einer Schlacke mit Baustoffqualitaet aus Sondermuellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J.; Herbel, J.D.; Pasel, C. [Duisburg Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In an attempt to restore the competitive power of hazardous-waste incineration within the present legal framework, plant operators have in some cases lowered disposal prices below the break-even point; in this respect there is no further room for improvement. One approach towards a new marketable solution could be to use rotary kilns not only for disposal but also as production plants. This could be achieved by means of input control and loading materials. If, for example, the slag remaining after combustion could be made to meet building material specifications, thus providing a marketable product, then rotary kilns would be able to serve as production plants for a secondary raw material. If it should prove possible in the course of manufacturing campaigns to develop slags from hazardous-waste incineration plants to a marketable product, then operators will thus have complied to the demand of the Law on Recycling and Waste Management for waste avoidance and that of the Emission Control Law for residue recycling. Targeted use of suitable loading materials for quality improvement could enable operators of hazardous-waste incineration plants to secure a new strategic position on the market as building material manufacturers and utilise existing plant capacities. [Deutsch] Um die Sonderabfallverbrennung im Rahmen der rechtlichen Vorgaben wieder konkurrenzfaehig zu machen, haben die Anlagenbetreiber die Entsorgungspreise teilweise unter die Grenze der Kostendeckung zurueckgenommen; hier besteht kein Spielraum mehr. Ein neuer, marktgerechter Ansatz koennte sich dann ergeben, wenn die Drehrohroefen statt als Beseitigungsaggregate durch Inputsteuerung und Zuschlaege eventuell auch als Produktionsanlagen einzusetzen waeren. Wenn z.B. die Schlacke, als Rueckstand aus der Verbrennung, als ein im Baustoffmarkt absetzbares Produkt nach Qualitaetskriterien gezielt hergestellt wuerde, koennte der Drehrohrofen als Produktionsanlage fuer einen Sekundaerrohstoff betrieben werden

  13. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements.

    Science.gov (United States)

    Cai, Zuansi; Jensen, Dorthe L; Christensen, Thomas H; Bager, Dirch H

    2003-02-01

    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filler in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration. Two types of FGA were treated by the Ferrox-process, which removes the majority of the easily soluble salts in the FGA and provides binding sites for heavy metals in terms of ferrihydrite. Cubes of cement treated base layer materials containing 5% stabilised FGA were cast, sealed and cured for two weeks. Cylinders (diameter 100 mm, length 150 mm) were drilled from these cubes for tank leaching experiments. Duplicate specimens were subject to compression strength testing and to tank leaching experiments. The compressive strength of the CTB fulfilled the Danish requirements for CTB, i.e. strength more than 5 MPa after 7 days. The tank leaching tests revealed that leaching of heavy metals was not significantly affected by the use of chemically stabilised flue gas ashes from waste incineration. Assuming that diffusion controls the leaching process it was calculated that less than 1% of the metals would leach during a 100-year period from a 0.5 m thick concrete slab exposed to water on one side. Leaching of the common ions Ca, Cl, Na and SO4 was increased 3-20 times from the specimens with chemically stabilised flue gas ashes from waste incineration. However, the quantities leached were still modest. These experiments suggest that FGA from waste incineration after Ferrox-treatment could be re-used in CTB without compromising the strength and leaching from the base layer.

  14. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pHSb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration.

  15. Management of solid residues in waste-to-energy and biomass systems

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J.; Bergfeldt, B. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Technische Chemie; Wilen, C.; Ranta, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Schwaiger, H. [Forschungsgesellschaft Joanneum mbH, Graz (Austria); Visser, H.J.M. [ECN Energy Research Centre of the Netherlands, Petten (Netherlands); Gu, S.; Gyftopoulou, E.; Brammer, J. [Aston Univ., Birmingham (United Kingdom)

    2007-12-15

    A literature review has been performed for getting in-depth information about quality of residues from thermal processes for waste and biomass as well as their disposal or utilisation options and current practices. Residues from waste incineration have been subject to intense research programs for many years and it can be concluded that the quality of bottom ashes has meanwhile a high standard. The question whether an utilisation as secondary building material is accepted or not depends on the definition of acceptable economic impac. For filter ashes and gas cleaning residues the situation is more complex. Their quality is known: due to their high inventory of heavy metals and organic micro-pollutants they are classified as hazardous waste which means they require specific measures for their safe long-term disposal. A number of stabilisation and treatment processes for filter ashes and gas cleaning residues including the recovery of species out of these materials have been developed but none has been implemented in full scale due to economic constraints. There is reason to speculate that even recovery processes which are not profitable for private companies might point out economically useful if future and long-term costs which have to be covered of the society, e.g. for rehabilitation of contaminated sites, are taken into account. Their quality as well as that of residues from combustion of contaminated biomass is mainly depending on the quality of the fuel. The inventory of critical ingredients in fuel produced from waste or waste fractions, especially of halogens and heavy metals, is often rather high and shows typically a wide range of variation. A reliable quality control for such fuels is very difficult. Other residues can - like gas cleaning residues from waste incineration - be inertised in order to meet the criteria for the access to cheaper landfills than those for hazardous waste. A similar conclusion can be drawn for the quality and management of

  16. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.

    Science.gov (United States)

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2010-09-01

    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.

  17. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme.

  18. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  19. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    Science.gov (United States)

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  20. Prospect of municipal solid wastes incinerating systems. Means to cope with diversifying solid waste treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiozuki, H.

    1981-01-01

    Advanced techniques developed recently by the company to cope with the escalatory anti-pollution restrictions, needs of energy conservation, automation and labor conservation, and resources conservation are summarized. The techniques and apparatus developed by the company and applied to practical applications are introduced. Those techniques and apparatus are an improved stocker, elimination of injurious gases by the dry method, improvement of waste heat recovery and utilization, direct heat recovery through a fluidized bed combustion furnace, mixed combustion of sewage water, night soil and sludges, automations (combustion, control of heat generation, solid waste feeding and ash delivery, optimum control of combustion) and resources recycling techniques.

  1. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  2. Distribution of heavy metals in an incineration system of solid wastes in the Three-Gorges region of the Yangtze River

    Institute of Scientific and Technical Information of China (English)

    HUANG Chuan; WANG Li'ao; CHEN Gangcai; LUO Yu; ZHANG Jun; CUI Zhiqiang

    2008-01-01

    On the basis of investigations on the composition and contents of heavy metals in the domestic refuse in the Three-Gorges region of the Yangtze River, in combination with the experimental results, this paper deals with the distribution rule of heavy metals in the various compartments of an incineration system: leachate pool, fly ash and residue. It is concluded that in the leachate pool heavy metals should not be neglectable since about 30% of Pb and 10% of Cr are leached here; in the incineration system, above 74% of Cr, As and Pb exists in residue; above 96% of Hg exists in fly ash and the contents of Cd in fly ash are close to those of residue. It is also concluded that the physical conditions of incineration have a significant influence on the distribution of heavy metals in the incineration system.

  3. Cytotoxicity to alveolar macrophages of airborne particles and waste incinerator fly-ash fractions.

    Science.gov (United States)

    Gulyas, H; Gercken, G

    1988-01-01

    A waste incinerator fly ash was separated into different grain-size fractions by sieving and sedimentation in butanol. The element content of each fraction was determined by atomic absorption and emission spectrometry. The fly-ash fractions, an eluted fine fly-ash fraction and an eluted airborne dust were analysed microscopically for particle size and numbers, together with standard quartz DQ 12 and three element-analysed airborne dusts. Rabbit alveolar macrophages, isolated by lung lavage, were incubated for 24 h with the particulates, the two eluates and a mixed element compound solution corresponding to the element concentrations of one airborne dust. At the end of incubation, the activities of lactate dehydrogenase, N-acetyl-beta-glucosaminidase, beta-galactosidase and acid phosphatase were determined in medium and cell lysates. Cytotoxicity was expressed as ratio of extracellular to total LDH (lactate dehydrogenase) activity. Release of N-acetyl-beta-glucosaminidase and beta-galactosidase was correlated positively with LDH release, whereas the total activity of acid phosphatase decreased with increasing LDH release. Cytotoxicity of the dusts was correlated with particle numbers, and As, Sb and Pb contents. The contribution of As to particle toxicity is discussed. Eluates of dusts did not affect rabbit alveolar macrophage viability.

  4. Characterization of mechanochemical treated fly ash from a medical waste incinerator

    Institute of Scientific and Technical Information of China (English)

    Zheng Peng; Qiong Ding; Yangzhao Sun; Chen Jiang; Xinhua Gao; Jianhua Yan

    2010-01-01

    The mechanochemical treatment of fly ash generated from a medical waste incinerator was subjected to grinding for 2 hr at 400 r/min in a planetary ball mill.The treated fly ash was characterized by a suite of analytical methods including High Resolution Gas Chromatograph/High Resolution Mass Spectrometer,Mastersizer 2000 Particle Size Analyzer,QUADRASORBTM SI Surface Area Analyzer,Scanning Electron Microscopy and X-ray diffraction.Results showed that abatement efficiency of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) in terms of total concentration averagely amount to 76% which was relatively higher than that of Ⅰ-TEQ concentration averagely amount to 56%;the most concentration of toxic congeners as well as isomers of PCDDs/Fs decreased after mechanochemical treatment.The treated fly ash was characterized by a more homogeneous distribution of concaves as well as the significant decreasing in overall panicle size and great enlargement in surface area.The major crystallization phases or intensities were considerably changed by mechanochemical treatment,of which a new phase containing chlorine formed may be a possible factor suggesting chlorination reaction occurring on the crystalline surface.

  5. [Mercury pollution investigation in predominant plants surrounding Shenzhen Qingshuihe municipal solid waste incineration plant].

    Science.gov (United States)

    Zhao, Hong-Wei; Zhong, Xiu-Ping; Liu, Yang-Sheng; Wang, Jun-Jian; Hong, Yuan; Zhao, Kang-Sai; Zeng, Hui

    2009-09-15

    In order to investigate the effects of mercury emission from municipal solid waste incineration (MSWI) on the surrounding plants and soils, the mercury concentrations were examined in the plant samples including leaves and stems and the soil samples around Shenzhen Qingshuihe MSWI Plant. Results show that, these plants are significantly polluted by mercury, the mercury concentrations of the plant leaves are 0.030 9-0.246 7 mg x kg(-1), with the mean value 0.094 8 mg x kg(-1), among the local prominent plants, the mercury concentrations in the leaves are in the order of: Acacia confuse > Litsea rotundifolia > Acacia mangium > Acacia auriculaeformis > Schima superb > Ilex asprella. The mercury concentrations of the plant stems are 0.007 4-0.119 6 mg x kg(-1), with the mean value 0.041 7 mg x kg(-1). For the same plant, the mercury concentration in its leaf correlates positively with that in its stem, but presents little correlation with that in the soil where it grows. Under the direction of the dominant wind, the concentration of smoke diffusion is often influenced by the distance from the stack and the difference of terrain. The mercury concentrations of the plant leaves and stems vary almost in accordance with spatial heterogeneity patterns of smoke diffusion. These results demonstrate that the interaction of the smoke and plant leaves play the leading role in the mercury exchange between plants and environment.

  6. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    Science.gov (United States)

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale.

  7. Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching.

    Science.gov (United States)

    Funari, V; Mäkinen, J; Salminen, J; Braga, R; Dinelli, E; Revitzer, H

    2017-02-01

    Bio- and hydrometallurgical experimental setups at 2-l reactor scale for the processing of fly ash from municipal waste incinerators were explored. We aimed to compare chemical H2SO4 leaching and bioleaching; the latter involved the use of H2SO4 and a mixed culture of acidophilic bacteria. The leaching yields of several elements, including some of those considered as critical (Mg, Co, Ce, Cr, Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn (>85%), Cr (∼65%), Ga (∼60%), and Ce (∼50%). Chemical leaching showed the best yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching was effective for Nd (76%), Pb (59%), and Co (55%). The two leaching methods generated solids of different quality with respect to the original material as we removed and significantly reduced the metals amounts, and enriched solutions where metals can be recovered for example as mixed salts for further treatment. Compared to chemical leaching the bioleaching halved the use of H2SO4, i.e., a part of agent costs, as a likely consequence of bio-produced acid and improved metal solubility.

  8. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production.

    Science.gov (United States)

    Wu, Kai; Shi, Huisheng; Guo, Xiaolu

    2011-01-01

    The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  9. Concentration and distribution of PCNs in ambient soil of a municipal solid waste incinerator.

    Science.gov (United States)

    Tian, Zhenyu; Li, Haifeng; Xie, Huiting; Tang, Chen; Han, Ying; Liu, Wenbin

    2014-09-01

    The impact of a typical municipal solid waste incinerator (MSWI) on polychlorinated naphthalene (PCN) concentrations in surrounding soil was studied. We collected 6 stack gas samples from the MSWI and 21 soil samples from sampling sites at distances of between 300 and 1,700 m from the MSWI stack. Total dl-PCN (dioxin-like PCN) concentrations in the stack gas samples ranged from 6898 and 89,032 pg m(-3), with a mean value of 36,241 pg m(-3). The total dl-PCN concentrations in the soil samples ranged from 30.35 to 280.9 pg g(-1), with a mean value of 87.03 and a median value of 70.32 pg g(-1), while the TEQ values were between 7.7 and 130.2 fg TEQ g(-1), with a mean value of 41.12 fg TEQ g(-1) and a median value of 31.52fg TEQ g(-1). The PCN homologue patterns and the results of Principal Component Analysis suggested that the MSWI may be a source of PCNs in the soils. A contour map, created using an ordinary Kriging interpolation technique, showed that a limited area (≤ 1,000 m radius) surrounding the MSWI was influenced by the emissions from the MSWI. Furthermore, an exponential function equation was proposed to quantify the relationship between TEQs of PCNs and the distance from the stack.

  10. NOx emission from incineration of organic hazardous liquid waste containing hexamethylendiamine in fluidized bed

    Institute of Scientific and Technical Information of China (English)

    别如山; 李季; 杨励丹

    2002-01-01

    Experiments have been conducted to investigate NOx concentration profiles along bed height and influences of temperature and excess air on NOx emission in the range from 700 ℃ to 900 ℃, when waste water containing 5% Hexamethylenediamine incinerated in a bench scale hot fluidized bed. The testing results indicate that the concentration of NO2 is larger than that of NO along bed height except in the freeboard at 900 ℃, where NO, NO2 concentrations are zero. Temperature and excess air play significant role on NOx emission. With increasing in temperature the NOx emission decreases very rapidly in the range from 700 ℃ to 900 ℃. With increasing in excess air, NOx emission increases considerably at 700 ℃, but it is almost independent of excess air at 800 ℃,and at 900 ℃ NOx emission is zero indicating that NH2 from NH2(CH2)6NH2 has strong effect on de-NOx with increasing in temperature and excess air. NOx concentration profiles decrease progressively with bed height because of reduction of NOx by NH2. The mechanism of NOx formation and destruction is presented in the paper.

  11. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.

    Science.gov (United States)

    Ko, Ming-Sheng; Chen, Ying-Liang; Wei, Pei-Shou

    2013-03-01

    The municipal solid waste incinerators (MSWIs) in Taiwan generate about 300,000 tons of fly ash annually, which is mainly composed of calcium and silicon compounds, and has the potential for recycling. However, some heavy metals are present in the MSWI fly ash, and before recycling, they need to be removed or reduced to make the fly ash non-hazardous. Accordingly, the purpose of this study was to use a hydrocyclone for the separation of the components of the MSWI fly ash in order to obtain the recyclable portion. The results show that chloride salts can be removed from the fly ash during the hydrocyclone separation process. The presence of a dense medium (quartz sand in this study) is not only helpful for the removal of the salts, but also for the separation of the fly ash particles. After the dense-medium hydrocyclone separation process, heavy metals including Pb and Zn were concentrated in the fine particles so that the rest of the fly ash contained less heavy metal and became both non-hazardous and recyclable.

  12. Characterization of fly ash from a hazardous waste incinerator in Medellin, Colombia.

    Science.gov (United States)

    Cobo, Martha; Gálvez, Araceli; Conesa, Juan A; Montes de Correa, Consuelo

    2009-09-15

    Bag filter (BF) fly ash from a hazardous waste incinerator located in Medellín, Colombia was characterized. Particle size distribution, chemical composition, metal loading, surface area, morphology, and chemical environment were assessed before and after fly ash extraction with toluene. Fly ash consists of low surface area platelets of SiO(2) smaller than 0.5 microm agglomerated in spheres between 20 and 100 microm. High concentration of sodium chloride, carbon, and heavy metals such as Cu, Fe, Pb, Hg, Cd, Co and Mn are deposited over the fly ash surface. The carbon is oxidized and forms different structures such as amorphous carbon black, nano balls and more crystalline fullerenes like nano onions. The high concentration of dioxins, furans and dioxin-like PCBs (superior to 185 ng WHO-TEQ/g) is favored by oxidized carbon, chlorine and metals such as Cu and Fe on the shell of the particles. Before and after toluene extraction, fly ash samples presented similar morphology. However, after extraction their particle size increased while their surface area decreased by 35% and the carbon and metal contents decreased by 35% and 50%, respectively.

  13. Effect of Moisture on Partitioning of Heavy Metals in Incineration of Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    蒙爱红; 李清海; 贾金岩; 张衍国

    2012-01-01

    The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influences heavy metals in following ways, to increase the moisture in flue gas and decrease the combustion temperature, to prolong the combustion time, and to prolong the releasing time of volatiles with the furnace temperature decreased by increasing the moisture. The volatilization of Pb, Zn and Cd was enhanced by increasing the moisture in MSW because of the prolonged combustion time. For Pb and Zn, the combustion time was important at higher temperature, while for Cd, it was important at low temperature. The moisture content showed slight effect on Cu partitioning. When extra chlorine was added to MSW, such as 1%PVC + 0.5%NaCl, the volatilization of Pb, Zn and Cu was enhanced by increasing the moisture because water evaporation reduced the temperature and increased devolatilization time. At higher temperature, NaCl tends to decompose and generates more free chlorine, producing more metal chlorides. Since Cd is a strong volatile heavy metal in MSW, the effect of moisture content on its volatilization is less than that of Pb, Zn or Cu during the MSW incineration.

  14. Novel mercury control technology for solid waste incineration: sodium tetrasulfide (STS) as mercury capturing agent.

    Science.gov (United States)

    Liu, Yangsheng; Xie, Shaodong; Li, Yaqiong; Liu, Yushan

    2007-03-01

    Traditional pollution control technologies are able to capture oxidized forms of mercury to some extent; however, they show low efficiency for the control of elemental mercury emissions. This study developed a novel mercury removal technology: injection of sodium tetrasulfide (Na2S4) dissolved in the sodium hydroxide (NaOH) solution in the spray-dryer system. The effects of flue gas temperature and Na2S4 level in flue gas on the mercury removal efficiency were investigated. Na2S4 was decomposed into Na2S (S2-) and elemental S (S0), which reacted with HgCl2 and elemental Hg (Hg0), and HgS was then formed. Under the optimized operation parameters, this technology can simultaneously remove over 88% of HgCl2 and more than 90% of Hg0 from a flue gas stream containing about 400 microg m(-3) Hg0 and 1200 microg m(-3) HgCl2. The increased flue gas temperature (>170 degrees C) and the decreased Na2S4-to-Hg mass ratio (S-Hg-R) (hospital-waste incinerator with a capability of 20 tons per day (TPD).

  15. Removal of carbon constituents from hospital solid waste incinerator fly ash by column flotation.

    Science.gov (United States)

    Liu, Hanqiao; Wei, Guoxia; Zhang, Rui

    2013-01-01

    Hospital solid waste incinerator (HSWI) fly ash contains a large number of carbon constituents including powder activated carbon and unburned carbon, which are the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. Therefore, the removal of carbon constituents could reduce PCDD/Fs in fly ash greatly. In this study, the effects of the main flotation parameters on the removal of carbon constituents were investigated, and the characteristics of the final product were evaluated. The results showed that loss on ignition (LOI) of fly ash increased from 11.1% to 31.6% during conditioning process. By optimizing the flotation parameters at slurry concentration 0.05 kg/l, kerosene dosage 12 kg/t, frother dosage 3 kg/t and air flow rate 0.06 m(3)/h, 92.7% of the carbon constituents were removed from the raw fly ash. Under these conditions, the froth product has LOI of 56.35% and calorific values of 12.5 MJ/kg, LOI in the tailings was below 5%, and the total toxic equivalent (TEQ) of PCDD/Fs decreased from 5.61 ng-TEQ/g in the raw fly ash to 1.47 ng-TEQ/g in the tailings. The results show that column flotation is a potential technology for simultaneous separation of carbon constituents and PCDD/Fs from HSWI fly ash.

  16. Simulation of the plume emitted by a municipal waste incinerator located in the Madeira island

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.; Ribeiro, C.; Pereira, M.; Borrego, C. [Campus Univ., AVEIRO (Portugal). IDAD - Inst. of Environment and Development

    2004-07-01

    The study of meteorological circulations in small islands has been quite limited with the majority of the research published concerning the analysis of the eolic potential for energy production. Other researchers focused on the description of the dispersion of gases emitted by volcanic activity. In this paper, a mesoscale meteorological and dispersion model was applied to simulate the behaviour of the plume of a municipal waste incinerator (MSW) that was constructed in the southern slope of the Madeira island at an altitude of 1380 m. Madeira is a Portuguese island located in the Atlantic Ocean at approximately 32 40'N and 16 52'W with a clear east-west development. The island is relatively small (60 x 20 km{sup 2}) but is characterized by very complex orography with maximum peaks reaching 1800 m. The fact that the orography has the same east-west development creates a very strong distinction between the northern and the southern slopes. The northern slope is strongly exposed to the prevalent synoptic flows and the southern slope is much warmer, quiet and where the majority of the population lives. The climate is very mild with small thermal amplitudes and maximum temperatures between 18 to 28 C. Sea temperature during summer rises to 22-23 C. (orig.)

  17. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Christopoulos, Konstantinos; Mousios, Epameinontas; Gidarakos, Evangelos

    2012-03-15

    In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI Fly Ash

    Directory of Open Access Journals (Sweden)

    Bing Gong

    2017-06-01

    Full Text Available In the present work, thermal treatment was used to stabilize municipal solid waste incineration (MSWI fly ash, which was considered hazardous waste. Toxicity characteristic leaching procedure (TCLP results indicated that, after the thermal process, the leaching concentrations of Pb, Cu, and Zn decreased from 8.08 to 0.16 mg/L, 0.12 to 0.017 mg/L and 0.39 to 0.1 mg/L, respectively, which well met the limits in GB5085.3-2007 and GB16689-2008. Thermal treatment showed a negative effect on the leachability of Cr with concentrations increasing from 0.1 to 1.28 mg/L; nevertheless, it was still under the limitations. XRD analysis suggested that, after thermal treatments, CaO was newly generated. CaO was a main contribution to higher Cr leaching concentrations owing to the formation of Cr (VI—compounds such as CaCrO4. SEM/EDS tests revealed that particle adhesion, agglomeration, and grain growth happened during the thermal process and thus diminished the leachability of Pb, Cu, and Zn, but these processes had no significant influence on the leaching of Cr. A microbial assay demonstrated that all thermally treated samples yet possessed strong bactericidal activity according to optical density (OD test results. Among all samples, the OD value of raw fly ash (RFA was lowest followed by FA700-10, FA900-10, and FA1100-10 in an increasing order, which indicated that the sequence of the biotoxicity for these samples was RFA > FA700-10 > FA900-10 > FA1100-10. This preliminary study indicated that, apart from TCLP criteria, the biotoxicity assessment was indispensable for evaluating the effect of thermal treatment for MSWI fly ash.

  20. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project.

  1. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration.

    Science.gov (United States)

    Zhang, Yanguo; Chen, Yong; Meng, Aihong; Li, Qinghai; Cheng, Hefa

    2008-05-01

    We used two approaches to investigate the impact of sulfur and chlorine compounds on transfer of a semivolatile heavy metal, cadmium, during municipal solid waste (MSW) incineration: experiments using a tubular furnace reactor and thermodynamic equilibrium calculations. Artificial wastes representative of typical MSW in China with and without the presence of sulfur and chlorine compounds were combusted at 850 degrees C, and the partitioning of Cd among bottom ash, fly ash and flue gas was quantified. The results indicate that sulfur compounds in the elemental form and reduced state could stabilize Cd in the form of CdS due to local reducing environment, while sulfur in the oxidized forms slightly increased Cd volatilization during incineration. In contrast, the presence of chlorine compounds significantly increased the partitioning of Cd on fly ash. Chemical equilibrium calculations show that sulfur binds with Cd and alters Cd speciation at low temperatures (<700 degrees C), while chlorine significantly increases the volatilization of Cd through formation of volatile CdCl(2) and thus its partitioning on the fly ash between 400 and 1000 degrees C. The equilibrium calculation results also suggest that SiO(2)- and Al(2)O(3)-containing minerals could function as sorbents stabilizing Cd as condensed phase solids (CdSiO(3) and CdAl(2)O(4)). These findings provide useful information on understanding the partitioning behavior of Cd and can help development of strategies to control volatilization of Cd during MSW incineration.

  2. The prospects for incineration of municipal solid waste in Russia in order to produce heat and electric power

    Science.gov (United States)

    Baskakov, A. P.

    2014-04-01

    The article presents the results of the low-temperature pyrolysis of the main components of municipal solid waste (MSW): wood, products of wood processing (paper, cardboard, fabrics, etc.), various plastics, rubber, as well as of a representative sample of MSW. A waste-to-energy plant is described, at which municipal solid waste is subjected to the pyrolysis, and then pyrolysis products are incinerated in a slagging-bottom furnace. The paper presents an analysis of the operation of a modern waste-to-energy plant equipped with a wet scrubber, with a high-degree recovery of the heat of exhaust gases by means of a heat pump, and with evaporation cooling of glowing slag in a tank filled with water. Chemical treatment of water circulating in the system makes it possible to convert heavy metals and other hazardous substances into the insoluble form and then to remove them.

  3. 渗沥液回喷焚烧炉的可行性探讨%Feasibility of Waste Leachate Sprayed back into Incinerator

    Institute of Scientific and Technical Information of China (English)

    郭冏

    2013-01-01

    Aiming at treatment of waste leachate from waste treatment plants,the technical and economic feasibility of waste leachate sprayed back into incinerator of waste treatment plants was discussed.%针对垃圾处理厂渗沥液处理问题,从技术和经济上对垃圾渗沥液回喷焚烧炉处理技术可行性进行了探讨.

  4. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  5. 600t/d生活垃圾焚烧锅炉的燃烧调整%Combustion Adjustment of 600t/d Waste Incineration Boiler

    Institute of Scientific and Technical Information of China (English)

    江勇

    2011-01-01

    垃圾焚烧炉主要以燃烧城市生活垃圾为主.城市生活垃圾热值低、水分高,燃烧调整控制难度较大.本文就如何调整生活垃圾焚烧炉燃烧进行了总结,希望能对垃圾焚烧生产人员有所启发.%Municipal solid waste mainly burned in incinerator. Because of low heating value and high moisture of municipal solid waste, controlling combustion is difficult. The article summarizes how to adjust the combustion municipal solid waste incinerator. It hopes to inspire the production staff for waste incineration.

  6. 生活垃圾焚烧炉混烧医疗废物的利与弊——以上海御桥生活垃圾焚烧发电厂为例%Advantage and Disadvantage of Waste Incinerator Burning Domestic Waste with Medical Waste:Taking Shanghai Yuqiao Domestic Waste Incineration Plant as an Example

    Institute of Scientific and Technical Information of China (English)

    王炜岚

    2013-01-01

    By comparing with operating data of Shanghai Yuqiao Domestic Waste Incineration Plant in 5 years, changes of operational parameter after the waste incinerator burning domestic waste with medical waste were analyzed, as well as influences of the system on operational situation, life cycle of equipment, and production cost.%通过对上海御桥生活垃圾焚烧发电厂前后5a的运行数据的比较,分析了生活垃圾焚烧炉混烧医疗废弃物后运行参数的变化及其系统对运行工况、设备寿命及生产成本的影响.

  7. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    Science.gov (United States)

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Investigation of basic properties of fly ash from urban waste incinerators in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-guo; XU Xin; WANG Jun; YANG Shi-jian; ZHANG Yan

    2007-01-01

    Basic properties of fly ash samples from different urban waste combustion facilities in China were analyzed using as X-ray fluorescence(XRF), scanning electron microscopy(SEM),X-ray diffraction(XRD). The leaching toxicity procedure and some factors influencing heavy metals distribution in fly ash were further investigated. Experimental results indicate that the fly ash structures are complex and its properties are variable. The results of XRF and SEM revealed that the major elements (>10000 mg/kg, listed in decreasing order of abundance) in fly ash are O, Ca,Cl, Si, S, K, Na, Al, Fe and Zn. These elements account for 93% to 97%, and the content of Cl ranges from 6.9% to 29%, while that of SiO2 does from 4.48% to 24.84%. The minor elements (1000 to 10000mg/kg) include Cr, Cu and Pb. Primary heavy metals in fly ash include Zn, Pb, Cr, Cu etc. According to standard leaching test, heavy metal leaching levels vary from 0 to 163.1 mg/L (Pb) and from 0.049 to 164.9 mg/L (Zn), mostly exceeding the Chinese Identification Standard for hazardous wastes. Morphology of fly ash is irregular, with both amorphous structures and polycrystalline aggregates. Further research showed that heavy metals were volatilized at a high furnace temperature, condensed when cooling down during the post-furnace system and captured at air pollution control systems. Generally, heavy metals are mainly present in the forms of aerosol particulates or tiny particulates enriched on surfaces of fly ash particles. The properties of fly ash are greatly influenced by the treatment capacities of incinerators or the variation of waste retention time in chamber. Fly ash from combustors of larger capacities generally has higher contents of volatile component and higher leaching toxicity, while those of smaller capacities often produce fly ash containing higher levels of nonvolatile components and has lower toxicity. The content of heavy metals and leaching toxicity maybe have no convincing correlation, and

  9. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  10. Performance evaluation of non-incineration treatment facilities for disinfection of medical infectious and sharps wastes in educational hospitals of Shahid Beheshti University of Medical Sciences in 2013

    Directory of Open Access Journals (Sweden)

    Anooshiravan Mohseni Band-pay

    2015-06-01

    Full Text Available Background: In 2007, a rule prohibiting the use of incinerators was ratified by the Iranian Islamic Parliament. Based on this rule, the Ministry of Health emphasized the sterilization of infectious waste at its production source by means of non-incineration equipment and methods. This research examined the performance of non-incineration technologies in treating medical infectious and sharps wastes at educational hospitals affiliated with Shahid Beheshti University of Medical Sciences. Methods: This cross-sectional descriptive study was conducted in 12 educational hospitals of Shahid Beheshti University of Medical Sciences. First, a questionnaire was designed and its validity approved. Then the required data was gathered during visits to participating hospitals. Finally, the collected data were analyzed using Microsoft Excel and SPSS version 16. Results: Findings showed that the daily production of infectious and sharps wastes in the studied hospitals generally equaled 3387 kg. All hospitals were equipped with non-incineration systems; however, only 83.3% of them were active. Some infectious waste was disposed of along with urban wastes without being sterilized. Monthly biological assessments of treatment equipment were implemented for only 41.7% of the equipment. Conclusion: The failures of the non-incineration systems demand that appropriate investigations be conducted prior to the purchase of these devices. Monthly biological assessments are essential to ensure the accuracy of the systems’ performance in hospitals.

  11. Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case.

    Science.gov (United States)

    Vandecasteele, C; Wauters, G; Arickx, S; Jaspers, M; Van Gerven, T

    2007-01-01

    An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

  12. 纸厂废弃塑料焚烧过程中HCl的排放特性%Emission characters of HCl during paper mill plastic waste incineration

    Institute of Scientific and Technical Information of China (English)

    桑圣欢; 段钰锋; 陈惠超; 冒咏秋; 张平平

    2013-01-01

    Plastic waste from a paper mill with chlorine incineration was investigated in a small tube furnace. Factors such as temperature, particle size, and detention time in the process of waste plastic incineration were considered. Thermogravimetric analysis (TG) coupled with Fourier transfer infrared spectroscopy was used to analyze emission characters of HCl. Results show that conversion rate of Cl to HCl increased with the temperature, particle size and detention time; TG-FTIR shows HC1 was generated at about 200 t, reached maximum at about 300 ℃. and declined gradually after 400 ℃. XRD indicates that residual chlorine resided in the ash in the form of inorganic chloride.%在小型管式炉中进行了纸厂含氯废弃塑料焚烧过程中HCl析出特性实验,研究了温度、粒径、停留时间对HCl析出的影响;同时借助热重-傅里叶红外光谱联用技术(TG-FTIR)研究了HCl在焚烧过程中的析出规律.结果发现,燃烧过程中Cl→HCl的转化率随温度、粒径和停留时间的增大而显著增加;TG-FTIR结果表明,HCl在200℃左右开始析出,300℃左右达到最大值,400℃后析出峰逐渐消失.XRD结果可知,残余氯以无机氯盐的形式存在灰样中.

  13. Emission and distribution of PCDD/Fs, chlorobenzenes, chlorophenols, and PAHs from stack gas of a fluidized bed and a stoker waste incinerator in China.

    Science.gov (United States)

    Wang, Tianjiao; Chen, Tong; Lin, Xiaoqing; Zhan, Mingxiu; Li, Xiaodong

    2016-12-29

    The concentrations, homologue, and congener profiles, as well as the gas/particle distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), chlorobenzenes (CBzs), chlorophenols (CPhs), and polyaromatic hydrocarbons (PAHs) from stack gas of two different municipal solid waste incinerators in China, were characterized. The incinerators were a stoker furnace incinerator equipped with the advanced air pollution control device (APCD) and a common circulating fluidized bed (CFB) furnace. The concentration of PCDD/Fs in the stack gas of the stoker incinerator ranged 0.011-0.109 ng international toxic equivalent factor (I-TEQ)/Nm(3) and was below the current limit for PCDD/F emissions from the municipal solid waste incinerators (MSWIs) in China (0.1 ng I-TEQ/Nm(3)) in most of the cases. Moreover, the concentration of PCDD/Fs in the stack gas of the stoker incinerator was significantly lower than that of the CFB incinerator (0.734 to 24.6 ng I-TEQ/Nm(3)). In both incinerators, the majority of the total PCDD/F emissions (above 90%) ended up in the gas phase. 2,3,4,7,8-PeCDF, which occupied 24.3-43.6 and 32.5-75.6% of I-TEQ contribution in MSWIs A and B, respectively, was the most abundant congener. However, different types of incinerators and APCDs induced different congener and homologue distributions. The total concentration of CBzs from the stoker incinerator (0.05-3.2 μg/Nm(3)) was also much lower than that formed from the CFB incinerator (10.9-75.2 μg/Nm(3)). The phase distribution of CBzs followed the same pattern as with the PCDD/Fs. Moreover, the emission level of CBz was 100-1000 times higher than that of the PCDD/Fs, which determines the applicability of CBzs as indicators of PCDD/F emissions. High correlations between the emission concentrations of PCDD/Fs, TeCBz, and PCBz in specific ranges were revealed. Furthermore, high concentrations of CPhs (0.6-141.0 μg/Nm(3)) and PAHs (148.6-4986.5 μg/Nm(3)) were detected in the stack gases of MSWI

  14. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-03-15

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap.

  15. Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste.

    Science.gov (United States)

    Zhang, Lin; Su, Xiaowen; Zhang, Zhixuan; Liu, Siming; Xiao, Yuxin; Sun, Mingming; Su, Jixin

    2014-11-01

    Treatment and disposal of fly ash in China are becoming increasingly difficult, since its production has steadily risen and its features are uncertain. The excess pollutant components of fly ash are the key factor affecting its treatment and resource utilization. In this study, fly ash samples collected from a power plant with circulating fluidized incinerators of municipal solid waste (MSW) located in Shandong Province (eastern China) were studied. The results showed that there were no obvious seasonal differences in properties of fly ash. The content of total salt, Zn, and pH exceeded the national standards and low-ring polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (Fs) were the main organic components of fly ash for this power plant, which posed great threats to the surrounding environment. The amount of Zn of fly ash was higher than other heavy metals, which should be due to alkaline batteries of MSW. The leachate of fly ash had low concentrations of heavy metals and the main soluble components were sulfates and chlorides. The major mineral crystals of fly ash were SiO2, CaSO4, and Fe2O3. The main organic pollutants were low-ring PAHs, polychlorinated PCDDs, and low-chlorinated PCDFs, and concentrations were lower than the limiting values of the national regulations. Additionally, the distribution of PCDD/Fs had either a positive or a negative linear correlation with fly ash and flue gas, which was associated with the chlorinated degree of PCDD/Fs. The analysis was conducted to fully understand the properties of fly ash and to take appropriate methods for further comprehensive utilization.

  16. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2016-12-19

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu(0)-alloy-phase and to a minor degree due to secondary precipitation (PbCl2). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs.

  17. Evaluation of the toxicity of char residues produced in the co-pyrolysis of different wastes

    OpenAIRE

    Bernardo, Maria; Lapa, N.; Gonçalves, Margarida; Barbosa, Rui; Mendes, Benilde; Pinto, Filomena

    2009-01-01

    The high amounts of solid waste produced in industrial installations and in urban centers is a complex problem of today's society. The traditional strategies for solid waste transformation and disposal include and filling or incineration. Other approaches are being exploited namely waste selective collection and recycling on the energetic valorization of solid wastes through pyrolysis. In the pyrolytic process, the wastes are converted into a gaseous and liquid phase that can be used in energ...

  18. Evaluation of the toxicity of char residues produced in the co-pyrolysis of different wastes

    OpenAIRE

    Bernardo, Maria; Lapa, N.; Gonçalves, Margarida; Barbosa, Rui; Mendes, Benilde; Pinto, Filomena

    2009-01-01

    The high amounts of solid waste produced in industrial installations and in urban centers is a complex problem of today's society. The traditional strategies for solid waste transformation and disposal include and filling or incineration. Other approaches are being exploited namely waste selective collection and recycling on the energetic valorization of solid wastes through pyrolysis. In the pyrolytic process, the wastes are converted into a gaseous and liquid phase that can be used in energ...

  19. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  20. Properties of residual marine fuel produced by thermolysis from polypropylene waste

    Directory of Open Access Journals (Sweden)

    Linas Miknius

    2015-06-01

    Full Text Available Thermal degradation of waste plastics with the aim of producing liquid fuel is one of the alternative solutions to landfill disposal or incineration. The paper describes thermal conversion of polypropylene waste and analysis of produced liquid fuel that would satisfy ISO 8217-2012 requirements for a residual marine fuel. Single pass batch thermolysis processes were conducted at different own vapour pressures (20-80 barg that determined process temperature, residence time of intermediates what resulted in different yields of the liquid product. Obtained products were stabilized by rectification to achieve required standard flash point. Gas chromatography and 1H NMR spectrometry show aliphatic nature of the liquid product where majority of the compounds are isoalkanes and isoalkenes. Only lightest fractions boiling up to a temperature of 72 oC have significant amount of n-pentane. Distribution of aromatic hydrocarbons is not even along the boiling range. The fractions boiling at a temperature of 128 oC and 160 oC have the highest content of monocyclic arenes – 3.16 % and 4.09 % respectively. The obtained final liquid residual product meets all but one requirements of ISO 8217-2012 for residual marine fuels.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6105

  1. Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust

    Directory of Open Access Journals (Sweden)

    Inés Durán

    2017-06-01

    Full Text Available The selective separation of CO2 from gas mixtures representative of flue gas generated in waste incineration systems is studied on two activated carbons obtained from pine sawdust and compared to a commercial activated carbon. Dynamic adsorption experiments were conducted in a fixed-bed adsorption column using a binary mixture (N2/CO2 with a composition representative of incineration streams at temperatures from 30 to 70 °C. The adsorption behavior of humid mixtures (N2/CO2/H2O was also evaluated in order to assess the influence of water vapor in CO2 adsorption at different relative humidity in the feed gas: 22% and 60%. Moreover, CO2 adsorption was studied in less favorable conditions, i.e., departing from a bed initially saturated with H2O. In addition, the effect of CO2 on H2O adsorption was examined. Experimental results showed that the CO2 adsorption capacity can be reduced significantly by the adsorption of H2O (up to 60% at high relative humidity conditions. On the other hand, the breakthrough tests over the adsorbent initially saturated with water vapor indicated that H2O is little affected by CO2 adsorption. The experimental results pointed out the biomass based carbons as best candidates for CO2 separation under incineration flue gas conditions.

  2. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  3. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.

    Science.gov (United States)

    Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2016-10-27

    Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH)2, KCl and SiO2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.

  4. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  5. 大型垃圾焚烧厂垃圾抓斗起重机选型探讨%Selection of Waste Grab Crane in Large-scale Waste Incineration Plants

    Institute of Scientific and Technical Information of China (English)

    杨海根; 杨凌云

    2011-01-01

    简述了国内外大型垃圾焚烧厂垃圾抓斗起重机配置情况,针对国内垃圾焚烧厂大型化的趋势,探讨垃圾抓斗起重机的选型模式.%Arrangement situation of waste grab crane in large-scale waste incineration plants at home and abroad was expounded. In accordance with developing trend of large-scale waste incineration plant in China, selection mode of waste grab crane was discussed.

  6. 欧盟废物焚烧指令的研究与借鉴%Comparison Between European Union Waste Incineration Directive and Chinese Solid Waste Incineration Management System

    Institute of Scientific and Technical Information of China (English)

    孙绍锋; 郭瑞; 金晶; 胡华龙

    2016-01-01

    为进一步完善我国废物焚烧标准体系,防控废物焚烧环境风险,本文对欧盟废物焚烧指令与我国焚烧标准体系进行了对比分析。欧盟废物焚烧指令分别对专用焚烧厂和协同焚烧厂从废物运输到处理处置全过程的污染物排放控制做出了相关规定,适用于危险废物和非危险废物的焚烧以及常规污染物和有毒污染物的控制。欧盟废物焚烧指令对不同规模的焚烧设施采用统一标准,以日均值和半小时均值为污染物排放限值,更客观、准确地评价了污染物排放对环境的影响。与欧盟废物焚烧指令相比,我国废物焚烧标准涉及废物联合利用处置的相关条文较少,内容不详,项目缺失。我国烟尘、HCl的排放限值均在欧盟标准限值6倍以上,SO2的排放限值是欧盟标准的4~8倍。除CO、NOx的排放限值外,其他污染物排放限值也明显高于欧盟标准限值。我国采用抽样监测方法,监测结果可能在日常排放值的95%置信区间外,不具备代表性。我国可借鉴欧盟废物焚烧指令的成果制定协同焚烧标准,并严格污染物排放限值,考虑采用日均值或半小时均值的评价方法,提高我国废物焚烧标准的精确性和可执行性。%To improve the standards of solid waste incineration management and environmental risk controlling system, the comparison between European Union (EU) and China was studied in this article. The Waste Incineration Directive (WID) is a directive issued by the EU and relates to standards and methodologies required by Europe for the practice and technology of incineration, which illustrated the permit of air emission for incineration plant and co-incineration plant passing through the whole waste treatment process, including delivery, treatment and final disposal. This directive is applied to both incinerations of hazardous waste and non-hazardous waste for controlling the emission

  7. Gas treatment and emissions control in the incineration plant of urban wastes in Palma de Mallorca (Spain); Depuracion de gases y control de emisiones en la planta incineradora de RSU de Palma de Mallorca

    Energy Technology Data Exchange (ETDEWEB)

    Oms, M.T.; Colom-Altes, M.; Mateu Barcelo, J.

    1996-12-01

    The incineration plant of solid urban wastes in Palma de Mallorca (Spain) was necessary for the processing of wastes. The plant was built in 1996 and the article summarizer the design, construction and control emission during the combustion. (Author)

  8. An environmental analysis of options for utilising wasted food and food residue.

    Science.gov (United States)

    Oldfield, Thomas L; White, Eoin; Holden, Nicholas M

    2016-12-01

    The potential environmental impact of wasted food minimisation versus its utilisation in a circular bioeconomy is investigated based on a case study of Ireland. The amount of wasted food and food residue (WFFR) produced in 2010 was used for business-as-usual, (a) and four management options were assessed, (b) minimisation, (c) composting, (d) anaerobic digestion and (e) incineration. The environmental impacts Global Warming Potential (GWP), Acidification Potential (AP) and Eutrophication Potential (EP) were considered. A carbon return on investment (CRoI) was calculated for the three processing technologies (c-e). The results showed that a minimisation strategy for wasted food would result in the greatest reduction of all three impacts, -4.5 Mt CO2-e (GWP), -11.4 kt PO4(3)-e (EP) and -43.9 kt SO2-e (AP) compared to business as usual. For WFFR utilisation in the circular bioeconomy, anaerobic digestion resulted in the lowest environmental impact and best CRoI of -0.84 kg CO2-e per Euro. From an economic perspective, for minimisation to be beneficial, 0.15 kg of wasted food would need to be reduced per Euro spent.

  9. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  10. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  11. Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash

    Institute of Scientific and Technical Information of China (English)

    Jianguo Jiang; Sicong Tian; Chang Zhang

    2013-01-01

    The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas.The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash,and the sequestered CO2 could be entirely released at high temperatures.When CO2 content was reduced to 12%,the reaction rate decreased; the uptake fell to 41 g CO2/kg ash,and 70.7% of the sequestered CO2 could be released.With 12% CO2 in the presence of SO2,the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash,and only 52.9% of the sequestered CO2 could be released.SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.

  12. Characterization of particulate residues from greenlandic mswi for use as secondary resources

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Dias-Ferreira, Célia; Jensen, Pernille Erland

    2016-01-01

    In Greenland, waste incineration is used in the larger towns to treat the municipal solid waste. The incineration reduces the amount of waste, but produces particulate incineration residues such as fly and bottom ash that are disposed of. Most construction materials are imported to Arctic areas....... The focus in this study is a characterisation of Greenlandic incineration residues to assess the potential as local secondary resources. In this study, fly ash samples from all the incinerators and bottom ash from two incinerators were collected and investigated for several physical-chemical properties...... as secondary material. The bottom ashes consisted of coarser particles and exhibited lower heavy metal leaching than the fly ash. All residue samples were different and evaluation of reuse should be made individually, however the fly ash shows potential as cement replacement and bottom ash as sand replacement...

  13. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  14. Separation Process of Municipal Solid Waste Incineration Bottom Ash%生活垃圾焚烧炉渣分选处理工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄炳辉

    2013-01-01

      通过一个实例,分析介绍了生活垃圾焚烧炉渣分选处理的一种工艺。实践证明:综合利用破碎、筛分、磁力分选、跳汰分选、摇床分选等固废处理技术,对炉渣进行分选预处理,可有效回收利用Fe、Cu、Al等废旧金属,有效分离收集未燃尽的剩余垃圾,并妥善处理,从而使炉渣的性质满足资源化利用的技术要求,变废为宝。%This article takes an example to introduce a separation process of municipal solid waste incineration bottom ash .It has proven that sScrap metal like iron ,copper and aluminum can be recycled and fully used by using the combination technology such as crushing ,screening ,Magnetic ,jigging ,oscillating ,etc .This method is also very efficient for unburnt residual waste's separation and treatment ,so as to make sure that bottom ash can be utilized completely .

  15. Environmental Bioassay Evaluation of Foundry Waste Residuals

    OpenAIRE

    Bastian, Kenneth Chad; Alleman, James E.

    1996-01-01

    Although the constructive reuse of foundry residuals represents a decidedly beneficial goal with distinct economic and environmental benefits, potential end-users are nonetheless reluctant to use these residuals, given an inherent concern about potential unforeseen environmental liabilities. Results of foundry residual leachate characterization to date strongly suggest that many ferrous foundries are discarding sands whose quality is fully amenable to their future use with embankment constru...

  16. Electrodialytic remediation of air pollution control residues

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) consists of the fly ash, and, in dry and semi-dry systems, also the reaction products from the flue gas cleaning process. APC residue is considered a hazardous waste due to its high alkalinity, high content of salts...

  17. Electrodialytic remediation of air pollution control residues

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) consists of the fly ash, and, in dry and semi-dry systems, also the reaction products from the flue gas cleaning process. APC residue is considered a hazardous waste due to its high alkalinity, high content of salts...

  18. Heavy metal levels (Pb, Cd, Cr and Hg) in the adult general population near an urban solid waste incinerator.

    Science.gov (United States)

    Zubero, Miren Begoña; Aurrekoetxea, Juan José; Ibarluzea, Jesús María; Arenaza, Maria Jesús; Rodríguez, Carlos; Sáenz, José Ramón

    2010-09-15

    In 2005 an urban solid waste incinerator (SWI) was commissioned in Bilbao (Basque Country, Spain). Serum and urine samples were collected from 95 and 107 volunteers in 2006 and 2008 respectively, of which 62 were repeats from the same individuals. Blood lead levels (BPb) were determined, as were the concentrations of cadmium (Cd), chromium (Cr) and mercury (Hg) in urine (UCd, UCr and UHg). The town of Alonsotegi and a borough of Bilbao (Altamira, Rekalde) were considered to be close, less than 2 km from the plant, and correspond to an urban environment with high traffic density. The areas of reference were a borough of Bilbao (Santutxu-Zurbaran), 5 km from the plant, also in an urban area with high traffic density, and a small town with little industrial activity and low traffic density (Balmaseda) 20 km from the plant; neither of these is downwind from the site with respect to prevailing winds. There was a significant correlation for BPb, r=0.63 (p0.05). Multiple linear regression models did not show increases over time of the levels of BPb, UCd, UCr and UHg in the areas close to the SWI compared to those of areas located further away, after adjusting for confounding variables. These results reinforce the hypothesis that populations near modern plants for solid waste incineration do not manifest increased levels of heavy metals. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Copper speciation in municipal solid waste incinerator bottom ash leachates; Kopparformer i lakvatten fraan energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Susanna; Gustafsson, Jon Petter [Royal Inst. of Tech., Stockholm (Sweden); Schaik, Joris van; Berggren Kleja, Dan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Hees, Patrick van [Oerebro Univ. (Sweden)

    2006-03-15

    The formation of copper (Cu) complexes with dissolved organic carbon (DOC) in bottom ash from municipal solid waste incineration (MSWI) may increase the total amount of Cu released but at the same time reduce its toxicity. In this study, DOC in a MSWI bottom ash leachate was characterized and the Cu-binding properties of different DOC fractions in the ash leachate and in a soil solution were studied. This knowledge may be used for improved environmental assessment of MSWI bottom ash in engineering applications. The Cu{sup 2+} activity at different pH values was measured potentiometrically using a Cu-ion selective electrode (Cu-ISE). Experimental copper complexation results were compared to speciation calculations made in Visual MINTEQ with the NICA-Donnan model and the Stockholm Humic Model (SHM). The MSWI bottom ash leachate contained a larger proportion of hydrophilic organic carbon than the investigated soil solution and other natural waters. The hydrophilic fraction of both samples showed Cu{sup 2+} binding properties similar to that of the bulk, cation-exchanged, leachate. For the ash leachate, the pH dependence of the Cu activity was not correctly captured by neither the SHM nor the NICA-Donnan model, but for the soil solution the model predictions of Cu speciation were in good agreement with the obtained results. The complex formation properties of the ash DOC appears to be less pH-dependent than what is assumed for DOC in natural waters. Hence, models calibrated for natural DOC may give inconsistent simulations of Cu-DOC complexation in MSWI bottom ash leachate. A Biotic Ligand Model for Daphnia Magna was used to provide an estimate of the copper concentrations at LC50 for a simulated bottom ash leachate. It was concluded that the Cu concentrations in certain bottom ash leachates are high enough to pose an ecotoxicological risk; however, after dilution and soil sorption, the risks for neighboring water bodies are most likely negligible. Three processes were

  20. 垃圾焚烧底渣中重金属的研究%Study on heavy metals in solid waste incineration bottom ash

    Institute of Scientific and Technical Information of China (English)

    徐朝友; 梅凡民; 刘翠

    2011-01-01

    采用Tessier四步分级提取法对垃圾焚烧飞灰中的4种重金属(锌、镍、铜、镉)的化学形态进行了研究.结果表明,金属Cd主要以底渣态的形式存在(占总镉质量的61.22%~62.41%),Ni,Zn以底渣态和铁锰氧化态为主,Cu主要以有机结合态为主(占总铜质量的60.97%~62.29 %).同时4种金属的生物有效性由高到低顺序依次为Ni,Cd,Zn,Cu.%The 4 heavy metals (Zn, Ni, Cu, Cd) in solid waste incineration bottom ash are studied by Four-step sequential chemical extraction method of Tessier. The results show that metal Cd mainly exists in residual fraction (account for 61.22% to 62.41 % of the total mass of cadmium), metal Ni and Zn mainly exists in residual fraction and Fe-Mn oxide fraction, metal Cu mainly exists in organic fraction (account for 60. 97% to 62.29% of the total mass of copper). The bioavailability of four heavy metals from high to low is Ni, Cd, Zn, Cu.

  1. Characterization of domestic wastes incineration clinkers. Study on the possibilities of dioxines transfer in the environment; Caracterisation des machefers d'incineration d'ordures menageres. Etude sur les possibilites de transfert de dioxines vers l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Bartet, B.

    2001-07-15

    The clinkers, resulting from the domestic wastes incineration, contain dioxines. In order to evaluate the possible transfer of these pollutants in the environment, especially towards the underground water, this document brings together data on the dioxines content in clinkers from domestic wastes incineration, other combustion wastes and soils. After a comparison of the dioxines content and the emission factors, the report presents the experimental study on the transfer vectors identification. (A.L.B.)

  2. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  3. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  4. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  5. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Science.gov (United States)

    2010-07-01

    ... Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and...) Emission limits for existing sources. You must not discharge or cause combustion gases to be emitted into... percent oxygen, provided that the combustion gas temperature at the inlet to the initial...

  6. Experimental and statistical determination of indicator parameters for the evaluation of fly ash and boiler ash PCDD/PCDF concentration from municipal solid waste incinerators.

    Science.gov (United States)

    Streibel, T; Nordsieck, H; Neuer-Etscheidt, K; Schnelle-Kreis, J; Zimmermann, R

    2007-04-01

    On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of

  7. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally de

  8. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  9. Towards a coherent European approach for taxation of combustible waste

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.

  10. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  11. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.

    Science.gov (United States)

    Wang, Lei; Templer, Richard; Murphy, Richard J

    2012-09-01

    This study uses Life Cycle Assessment (LCA) to assess the environmental profiles and greenhouse gas (GHG) emissions for bioethanol production from waste papers and to compare them with the alternative waste management options of recycling or incineration with energy recovery. Bioethanol production scenarios both with and without pre-treatments were conducted. It was found that an oxidative lime pre-treatment reduced GHG emissions and overall environmental burdens for a newspaper-to-bioethanol process whereas a dilute acid pre-treatment raised GHG emissions and overall environmental impacts for an office paper-to-bioethanol process. In the comparison of bioethanol production systems with alternative management of waste papers by different technologies, it was found that the environmental profiles of each system vary significantly and this variation affects the outcomes of the specific comparisons made. Overall, a number of configurations of bioethanol production from waste papers offer environmentally favourable or neutral profiles when compared with recycling or incineration.

  12. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (<100 #/cm3), stressing the efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition