WorldWideScience

Sample records for waste heat recovery

  1. Heat exchangers for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Akyurt, M.; Najjar, Y.S.H.; Alp, T. (King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering)

    1993-01-01

    A survey is made of the equipment used for heat recovery and utilization. Types and merits of commonly employed heat exchangers are presented, and criteria for selecting heat exchangers are summarized. Applications for waste heat recovery are emphasized. It is concluded that careful selection and operation of such equipment would be expected to result in energy savings as well as problem-free operation. (author)

  2. Recovery and utilization of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Beirutty, M.; Akyurt, M.; Najjar, Y.; Alp, T. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Coll. of Engineering)

    1993-09-01

    A review of waste heat recovery and utilization is presented. The potential for re-using the otherwise waste heat in different branches of industry is discussed. Traditional and new ways to recover the discharged heat from industrial equipment are illustrated. It is concluded that there exist numerous opportunities for recuperating and using waste heat. (author)

  3. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  4. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...... vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...

  5. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  6. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  7. Sustainable Development through Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    P. S. Bundela

    2010-01-01

    Full Text Available Problem statement: Waste Heat Recovery (WHR steam Technology is a proven Technology pioneered by Japanese for cement plant and it is economically viable. Electrical Power can be generated by adopting the latest technology in this field. It used a medium to low temperature (120-350°C Turbine technology (standard thermal power plants run on steam temp-500°C. Approach: It requires treat exchangers (Hx designed for high dust load, no additional fuel is required Kymore Cement Works has proposed to install a power plant of 9 MW which will be operated with the recovered waste heat from the clinker coolers and kilns from its both clinker units. The hot air from cooler and kiln passes through the ESP is taken to the waste heat recovery exchangers. Adequate size of heat-exchangers will be located at proper locations in order to achieve optimum temperature of Thermic Oil from waste gases. Conclusion/Recommendations: This is required for optimal power yield. The hot flue gases will pass through a Heat Exchanger by which the temperature (heat of the waste gas is transferred to the internal elements of the heat exchangers which is used for heating of the thermo oil. In turn this thermal oil vaporizes the organic fluid in close loop cycle. Multi level pressure turbine system will be installed which increases usable heat content resulting in higher power output. The turbine will be run by the organic vapors to generate the electrical energy. The system of oil collection, oil transfer to the vaporizer and its recycling process will be made for the complete recycling of the thermal oil.

  8. Rankine cycle waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  9. Solid waste utilization: incineration with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  10. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM 5. FUNDING NUMBERS 6...release. Distribution is unlimited. ENERGY EFFICIENT WASTE HEAT RECOVERY FROM AN ENGINE EXHAUST SYSTEM Aaron R. VanDenBerg Lieutenant, United...HEAT RECOVERY DEVICES Ships mainly extract heat and energy from exhaust gases by using a waste heat boiler located in the actual exhaust duct. The

  11. Thermophysical relationships for waste heat recovery using looped heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J.; Akyurt, M.; Najjar, Y.S.H.; Al-Rabghi, O.M. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Mechanical Engineering)

    1994-09-01

    A scheme is described for the recovery of waste heat from stacks of gas turbine engines by means of heat-pipe loops. The recovered energy is supplied to an absorption chiller that cools the intake air of the gas turbine engine to enhance its performance. Mathematical expressions are introduced which accurately portray existing tabulated thermophysical properties data for those variables needed during the modelling of the system. (author)

  12. Waste heat recovery using looped heat pipes for air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J.; Akyurt, M.; Najjar, Y.S.H. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Mechanical Engineering Dept.)

    1994-07-01

    A scheme is described for the recovery of waste heat from stacks of gas turbine engines and the utilization of recovered energy for the cooling of ambient air. Relationships are summarized for the modeling of components of the cooling system. Samples are presented from performance data that is predicted by the model. Effect of size and design of system components, as well as operational variables on system performance, are discussed. It is concluded that the single most significant variable in the design of the looped heat-pipe recovery and utilization system is the geometry of the exhaust pipe of the gas turbine engine. (author)

  13. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  14. Applications guide for waste heat recovery

    Science.gov (United States)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  15. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  16. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  17. Use of photovoltaics for waste heat recovery

    Science.gov (United States)

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  18. A Review on Electroactive Polymers for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ewa Kolasińska

    2016-06-01

    Full Text Available This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers.

  19. Investigations of waste heat recovery from bulk milk cooler

    Directory of Open Access Journals (Sweden)

    S.N. Sapali

    2014-11-01

    Full Text Available Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recovered to improve the energy efficiency of plant. The waste heat is utilized to heat the water which is used to clean the milk processing equipments thus saving thermal or electrical energy used to heat the water separately. Shell and coil type heat exchanger is designed and used to recover the waste heat during condensation process. Heat rejected in condensation process consists of superheat and latent heat of the refrigerant. In this work, attempt has been made to recover complete superheat along with part of latent heat which is a present research issue. The results show that complete superheat and 35% of latent heat is recovered. Heat recovery rate is measured for various mass flow rates. Water is flowing on shell side and refrigerant through tubes. The effectiveness of the heat exchanger is determined and the results achieved are presented in this paper. Significant improvements have been achieved and COP of the system is increased from 3 to 4.8.

  20. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpti

  1. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Wan Adibah Wan Mahari

    2016-09-01

    Full Text Available This study investigated the use of microwave pyrolysis as a recovery method for waste shipping oil. The influence of different process temperatures on the yield and composition of the pyrolysis products was investigated. The use of microwave heating provided a fast heating rate (40 °C/min to heat the waste oil at 600 °C. The waste oil was pyrolyzed and decomposed to form products dominated by pyrolysis oil (up to 66 wt. % and smaller amounts of pyrolysis gases (24 wt. % and char residue (10 wt. %. The pyrolysis oil contained light C9–C30 hydrocarbons and was detected to have a calorific value of 47–48 MJ/kg which is close to those traditional liquid fuels derived from fossil fuel. The results show that microwave pyrolysis of waste shipping oil generated an oil product that could be used as a potential fuel.

  2. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  3. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  4. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  5. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    and of the primary heat exchanger, organic Rankine cycle turbogenerators appear thus to be the preferred solution to abate CO2 emissions and pollutants on oil and gas facilities. As a practical consequence, this paper provides guidelines for the design of high-efficiency, cost-competitive and low-weight power...

  6. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  7. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration.

  8. Thermoelectric waste heat recovery from an M1 Abrams tank

    Science.gov (United States)

    Stokes, C. David; Thomas, Peter M.; Baldasaro, Nicholas G.; Mantini, Michael J.; Venkatasubramanian, Rama; Barton, Michael D.; Cardine, Christopher V.; Walker, Grayson W.

    2012-06-01

    The addition of advanced sensors, targeting systems and electronic countermeasures to military vehicles has created a strategic need for additional electric power. By incorporating a thermoelectric (TE) waste heat recovery system to convert available exhaust heat to electricity, increased electric power needs can be met without reducing the energy efficiency of the vehicle. This approach allows existing vehicles to be upgraded without requiring a complete re-design of the engine and powertrain to support the integration of advanced electronic sensors and systems that keep the performance at the state of the art level. RTI has partnered with General Dynamics Land Systems and Creare, Inc. under an Army Research Lab program to develop a thermoelectric exhaust waste heat recovery system for the M1 Abrams tank. We have designed a reduced-scale system that was retrofitted to the tank and generated 80W of electric power on the vehicle operating on a test track by capturing a portion of the exhaust heat from the Honeywell/Lycoming AGT-1500 gas turbine engine.

  9. Application of fluidized-bed technology to the recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.; Evans, A.R.

    1979-08-01

    The fluidized-bed, waste-heat boiler (FBWHB) may represent a significant opportunity for industrial energy conservation. The applications of FBWHBs to the recovery of heat from waste streams are examined. Compared to other waste-heat recovery units, FBWHBs can transfer more heat per unit volume and are physically smaller - an important consideration for retrofit and construction costs. A detailed discussion of fluidized beds, including their application in waste-heat recovery and the factors affecting FBWHB design is presented. Design methodology is discussed along with a preliminary engineering design for recovering heat from a waste-gas stream, a typical FBWHB application.

  10. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu;

    2013-01-01

    In off-shore oil and gas platforms the selection of the gas turbine to support the electrical and mechanical demand on site is often a compromise between reliability, efficiency, compactness, low weight and fuel flexibility. Therefore, recovering the waste heat in off-shore platforms presents both...... technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  11. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    OpenAIRE

    Prateep Pattanapunt; Kanokorn Hussaro; Tika Bunnakand; Sombat Teekasap

    2013-01-01

    Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation p...

  12. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  13. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  14. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    OpenAIRE

    Fang Fang; Hong Yue; Yeli Zhou; Jiancun Feng; Jianhua Zhang

    2012-01-01

    In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power ...

  15. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    Science.gov (United States)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  16. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  17. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  18. Rock Smelting of Copper Ores with Waste Heat Recovery

    Science.gov (United States)

    Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad

    It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.

  19. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  20. System and method for determining the net output torque from a waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  1. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the engine

  2. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  3. Industrial applications study. Volume IV. Industrial plant surveys. Final report. [Waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence M.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1977-01-01

    An initial evaluation of the waste heat recovery and utilization potential in the manufacturing portion of the industrial sector is presented. The scope of this initial phase addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, the methodology and approaches for data gathering and assessment were established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. This study represents an important first step in the evaluation of waste heat recovery potential.

  4. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  5. Industrial applications study. Volume II. Industrial data base. Final report. [Waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence W.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1976-12-01

    An initial evaluation of the waste heat recovery and utilization potential in the manufacturing portion of the industrial sector is presented. The scope of this initial phase addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, the methodology and approaches for data gathering and assessment were established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated.

  6. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  7. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency......In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  8. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  9. Investigations of waste heat recovery from bulk milk cooler

    OpenAIRE

    S.N. Sapali; S.M. Pise; A.T. Pise; D.V. Ghewade

    2014-01-01

    Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP) of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recov...

  10. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  11. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  12. Optimal Number of Thermoelectric Couples in a Heat Pipe Assisted Thermoelectric Generator for Waste Heat Recovery

    Science.gov (United States)

    Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin

    2017-01-01

    Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.

  13. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    Science.gov (United States)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  14. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  15. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  16. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  17. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    technological and economic challenges that need to be overcome. However, onshore established technologies such as the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle can be tailored to recover the exhaust heat off-shore. In the present paper, benefits and challenges of these three...... different technologies are presented, considering the Draugen platform in the North Sea as a base case. The Turboden 65-HRS unit is considered as representative of the organic Rankine cycle technology. Air bottoming cycles are analyzed and optimal design pressure ratios are selected. We also study a one...... pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...

  18. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for heavy-dut

  19. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  20. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand...

  1. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  2. Effect of working fluids on organic Rankine cycle for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bo Tau Liu; Kuo Hsiang Chien; Chi Chuan Wang [Industrial Technology Research Inst., Hsinchu, Taiwan (China). Energy and Resources Lab.

    2004-06-01

    This study presents an analysis of the performance of organic Rankine cycle (ORC) subjected to the influence of working fluids. The effects of various working fluids on the thermal efficiency and on the total heat-recovery efficiency have been investigated. It is found that the presence of hydrogen bond in certain molecules such as water, ammonia, and ethanol may result in wet fluid conditions due to larger vaporizing enthalpy, and is regarded as inappropriate for ORC systems. The calculated results reveal that the thermal efficiency for various working fluids is a weak function of the critical temperature. The maximum value of the total heat-recovery efficiency occurs at the appropriate evaporating temperature between the inlet temperature of waste heat and the condensing temperature. In addition, the maximum value of total heat-recovery efficiency increases with the increase of the inlet temperature of the waste heat source and decreases it by using working fluids having lower critical temperature. Analytical results using a constant waste heat temperature or based on thermal efficiency may result in considerable deviation of system design relative to the varying temperature conditions of the actual waste heat recovery and is regarded as inappropriate. (author)

  3. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  4. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  5. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  6. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  7. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  8. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  9. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the was

  10. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Science.gov (United States)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  11. Sizing models and performance analysis of waste heat recovery organic Rankine cycles for heavy duty trucks

    OpenAIRE

    Guillaume, Ludovic; Legros, Arnaud; Quoilin, Sylvain; Declaye, Sébastien; Lemort, Vincent

    2013-01-01

    This paper attempts to address this problematic of selecting the architecture, the expander and the working fluid for a waste heat recovery organic (or non-organic) Rankine cycle on a truck engine. It focuses especially on three expander technologies: the scroll, the piston and the screw expanders, and three working fluids: R245fa, ethanol and water. Peer reviewed

  12. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel en

  13. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; Jager, B. de; Willems, F.P.T.

    2016-01-01

    This paper presents an integrated energy and emission management strategy, called Integrated Power- train Control(IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO – NOx 2 trade-off by minimizing the operational costs associated with fu

  14. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpt

  15. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; Jager, B. de; Willems, F.P.T.

    2016-01-01

    This paper presents an integrated energy and emission management strategy, called Integrated Power- train Control(IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO – NOx 2 trade-off by minimizing the operational costs associated with fu

  16. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan;

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...

  17. Waste heat recovery options in a large gas-turbine combined power plant

    Science.gov (United States)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  18. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    Science.gov (United States)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  19. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  20. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  1. Performance and Reliability of Exhaust Gas Waste Heat Recovery Units

    Science.gov (United States)

    2014-09-01

    researched. Correlations and relations of extended surfaces with heat transfers can be found in heat transfer textbooks , design handbooks, journals... chemistry . The root causes of thermal induced failures are primarily caused by adverse temperature differences within the WHRU during startup, operation...the ε- NTU method and correlations obtained from open sources such as heat transfer textbooks and handbooks. Subsequently, Chapter VI presents the

  2. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and

  3. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  4. Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

    Science.gov (United States)

    Silverstein, Abe

    1939-01-01

    Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.

  5. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Kowalczyk Tomasz

    2015-09-01

    Full Text Available The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  6. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Science.gov (United States)

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-09-01

    The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid - organic working fluid - as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  7. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  8. Influence of Compressor Station Waste-Heat Recovery Section on Operational Efficiency of Gas Turbine Drive with Isobaric Heat Supply and Regenerative Heat Utilization

    Directory of Open Access Journals (Sweden)

    A. Nesenchuk

    2013-01-01

    Full Text Available The possibility to utilize existing secondary energy resources for heat supply of an industrial enterprise has been proposed on the basis of the analysis on operation of compressor stations of a cross-country gas pipe-line. The paper considers an influence of waste heat recovery section on operational efficiency of gas turbine drive with regenerative heat utilization.

  9. Promising Waste Heat Recovery%余热回收大有可为

    Institute of Scientific and Technical Information of China (English)

    饶霞飞

    2013-01-01

    目前,国内市场余热回收率达30%~50%,余热回收利用基本上不到20%,在美国等其他发达国家则达到50%的利用率。中国余热发电还处于初级阶段,在未来10年中将会有一个跨越式发展。%At present, the waste heat recovery in domestic market amounts to 30%~50%;the recycling waste heat in domestic market is basically less than 20%, but amounting to 50%in the United States and other developed countries. Waste heat power generation in China is still in its infancy, which will have a leapfrog development in the next 10 years.

  10. Waste Heat Recovery by Heat Pipe Air-Preheater to Energy Thrift from the Furnace in a Hot Forging Process

    Directory of Open Access Journals (Sweden)

    Lerchai Yodrak

    2010-01-01

    Full Text Available Problem statement: Currently, the heat pipe air-preheater has become importance equipment for energy recovery from industrial waste heat because of its low investment cost and high thermal conductivity. Approach: This purpose of the study was to design, construct and test the waste heat recovery by heat pipe air-preheater from the furnace in a hot brass forging process. The mathematical model was developed to predict heat transfer rate and applied to compute the heat pipe air-preheater in a hot brass forging process. The heat pipe air-preheater was designed, constructed and tested under medium temperature operating conditions with inlet hot gas ranging between 370-420°C using water as the working fluid with 50% filling by volume of evaporator length. Results: The experiment findings indicated that when the hot gas temperature increased, the heat transfer rate also increased. If the internal diameter increased, the heat transfer rate increased and when the tube arrangement changed from inline to staggered arrangement, the heat transfer rate increased. Conclusion/Recommendations: The heat pipe air-preheater can reduced the quantity of using gas in the furnace and achieve energy thrift effectively.

  11. Potential for domestic heat recovery

    Science.gov (United States)

    Feldman, K. T., Jr.; Tsai, G. J.

    1981-11-01

    The potential for reducing gas-fired heating costs by the use of waste heat is discussed. A heat recovery heat exchanger can be installed to recover waste heat from the hot exhaust gases going up the flue pipe from a furnace, water heater, or clothes dryer. Some specific designs are described for heat recovery equipment. Specific design and performance of the Hallofin heat exchanger and the heat pipe heat exchanger are evaluated.

  12. Recovery of exhaust waste heat for a hybrid car using steam turbine

    Science.gov (United States)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  13. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    Directory of Open Access Journals (Sweden)

    Hou Xuejun

    2012-06-01

    Full Text Available With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas components are analysed and the diesel engine exhaust emission rates and exhaust gas waste heat rates are calculated. The calculating results proved the economic feasibility of waste heat recovery from Z12V190 diesel engine exhaust gas. Then, the mainly harmful components are analysed and the corresponding methods of purification and processing about Z12V190 diesel engine exhaust gas pollution discussed. In order to achieve full recovery of waste heat, save energy, purify treatment pollution and ultimate to lay the foundation for waste gas recovery and pollution treatment, the comprehensive process flows of Z12V190 diesel engine exhaust gas pollution processing and waste heat recovery are preliminary designed.

  14. Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations

    Directory of Open Access Journals (Sweden)

    Khaled Senary

    2016-09-01

    Full Text Available Problems resulting from gas emissions lead to increase the concern about safety and health issues with the demand to reduce the emissions from marine shipping. Marine power plants are considered as one of the greatest contributors in the pollutants around the world. Waste heat recovery systems when implemented with ship propulsion system can reduce emissions, fuel consumption and improve the overall efficiency of power generation and utilization. The present article describes the waste heat recovery technology and the potential for ship operators to lower the fuel costs, exhaust emissions, and the effect on the EEDI of the ship. The main research target is to improve the propulsion machinery efficiency of liquefied natural gas carrier using WHRS. The proposed system leads to meet the requirements and regulations set by the IMO for TIER III.

  15. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  16. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  17. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  18. Conflict between internal combustion engine and thermoelectric generator during waste heat recovery in cars

    Science.gov (United States)

    Korzhuev, M. A.

    2011-02-01

    It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.

  19. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Prateep Pattanapunt

    2013-01-01

    Full Text Available Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation performs a thermodynamics analysis. An energy-based approach is performed for optimizing the effective working condition for waste-heat recovery with exhaust gas to air shell and tube heat exchanger. The variations of parameters, which affect the system performance such as, exhaust gas and air temperature, velocity and mass flow rate and moisture content is examined respectively. From this study, it was found that heat exchanger could be reduced temperature of exhaust gases and emission to atmosphere and the time payback is the fastest. The payback period was determined about 6 months for investigated ANSYS. The air is circulated in four passes from the top to the bottom of the test section, in overall counter-flow with exhaust gas. The front area is 1720×1720 mm, the flow length 7500 mm, the inner and outer diameter of exhaust gas is 800 mm, the tube assembly consist of 196 tubes, the tube diameter is 76.2 mm, the tube thickness is 2.6 mm, the tube length is 4500 mm, the tube length of air inner and outer is 500 mm. The result show that, the boiler for superheated type there are exhaust gas temperature is 190°C, 24% the moisture content of fuel and there are palm kernel shell 70 tons day-1 which there are the high temperature after the heat exchanger, 150°C. It was occurred acid rain. The hot air from heat exchanger process can be reduced the moisture of palm kernel shell fuel to 15%.The fuel consumption is reduced by about 2.05% (322.72 kJ kg-1

  20. Study and Design of Waste Heat Recovery using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Seyed Saied Homami

    2016-03-01

    Full Text Available Existing energy crisis in the world has diverted human perspective to the optimum usage of the available energy resources. One of these solutions is waste heat recovery systems[1]. Simultaneous production of fresh water, power and cooling from waste heat improves energy efficiency in industrial applications which could be operated by organic Rankine cycles. In this article, cogeneration of electricity and heat (CHP in the petrochemical industry, textile and paper production has been reviewed and the usage of aforesaid cycle in these industries is determined. Designing organic Rankine cycle (with operating fluid organic trans-butene and taking advantage of the excess low pressure steam, a strategy for producing three valuable products of fresh water, power and refrigeration in the petrochemical industries has been offered. Simultaneous production of 10,000 kg/hr fresh water, 1533 kw power and access to the lower temperatures of about 226 K and 260 K were resulted.

  1. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim;

    2014-01-01

    of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined......Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  2. Investigation of Heat Exchange Efficiency in the Heat Exchanger Waste Heat Recovery with Granular Nozzle

    Directory of Open Access Journals (Sweden)

    Boshkova I.L.

    2016-12-01

    Full Text Available The article analyzes the characteristics of the heat transfer process between the dispersed and gaseous medium for the moving and fixed layer of particulate material. The methods of calculus of thermal and hydraulic regimes of heat exchangers with a dense layer of particles were elaborated. The results of experimental studies of the process of heating of different kinds of granular material, intended for use as a nozzle in the recuperative heat exchanger. The influence of the height of heating chamber, the particle diameter on the output temperature of the granular material has been determined. The dependence of the temperature of the gas and solid components of the height of the nozzle has been presented.

  3. Modeling of waste heat recovery by looped water-in-steel heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Lamfon, N.J.; Najjar, Y.S.H.; Habeebullah, M.H.; Alp, T.Y. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1995-08-01

    Modeling and simulation of a water-in-steel heat pipe heat recovery system is undertaken in this paper. The heat recovery system consists of a looped two-phase thermosyphon that receives heat from the stack of a gas turbine engine and delivers it to the generator of an NH{sub 3}-H{sub 2}O absorption chiller. Variations in the operating temperature as well as evaporator geometry are investigated, and the consequences on system effectiveness are studied. It is concluded that the model for the water-in-steel looped thermosyphon overcomes drawbacks of the water-in-copper thermosyphon, and that the steel system is simpler in design, lower in cost, and more competent in performance. (author)

  4. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-06-01

    A comprehensive numerical model has been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details of the model and results from the analysis of General Motors' prototype TEG were described in part I of the study. In part II of this study, parametric evaluations are considered to assess the influence of heat exchanger, geometry, and thermoelectric module configurations to achieve optimization of the baseline model. The computational tool is also adapted to model other topologies such as transverse and circular configurations (hexagonal and cylindrical) maintaining the same volume as the baseline TEG. Performance analysis of these different topologies and parameters is presented and compared with the baseline design.

  5. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  6. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  7. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  8. A comprehensive study on waste heat recovery from internal combustion engines using organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Tahani Mojtaba

    2013-01-01

    Full Text Available There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.

  9. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  10. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  11. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    Science.gov (United States)

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production.

  12. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    Science.gov (United States)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  13. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  14. Potential industrial applications for fluidized-bed waste heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.; Lytton, M.; Rao, C.

    1979-12-01

    Information was developed on potential applications of Fluidized-Bed Waste Heat Recovery Systems (FWHRS) in US industries that will assist the DOE in their decision to plan and participate in a demonstration project of the FWHRS. The study included a review of the literature and personal contacts (via telephone) with industry personnel with the objective to identify a limited number of applications. Technical and economic assessments for specific applications were accomplished by developing generalized design, performance, and cost parameters that could be applied based on selected critical characteristics of each potential application of the FWHR system. Waste energy streams identified included flue gas and off-gas from boilers, furnaces, and kiln. Utilization of the waste energy recovered included electric power generation, preheating combustion air and boiler feedwater, and drying. A course of action is recommended to DOE regarding generic users for demonstration projects.

  15. Experimental performance of a waste heat recovery and utilization system with a looped water-in-steel heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Habeebullah, M.H.; Akyurt, M.; Najjar, Y.S.H.; El-Kalay, A.K. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1998-07-01

    An experimental facility is described for the recovery, by means of heat-pipes, of waste-heat from exhaust gases, and the utilization of the recovered energy to cool ambient air. To this end, heat of combustion gases, generated in a stainless-steel combustion chamber, is recovered from the stack by means of a heat-pipe system. The recovered heat is utilized to run a modified commercial aqua-ammonia absorption chiller. Chilled water from the chiller is supplied to a fan-coil type cooling tunnel to cool the intake air of a (conceptual) gas turbine engine to boost its performance. It is concluded from test results that the experimental facility performs well, and that it behaves as predicted by modeling and simulation studies. The system is able to extract between 70 and 93% of the technically recoverable energy from exhaust gases, and utilizes the extracted energy to cool air. (Author)

  16. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  17. Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2014-03-01

    Full Text Available This paper presents a significant method and a basic idea of waste heat recovery from high temperature slags based on Time Temperature Transformation (TTT curves. Three samples with a fixed CaO/SiO2 ratio of 1.05 and different levels of Al2O3 were designed and isothermal experiments were performed using a Single Hot Thermocouple Technique (SHTT. The TTT curves established through SHTT experiments described well the variation of slag properties during isothermal processes. In this study, we propose a multi-stage control method for waste heat recovery from high temperature slags, in which the whole temperature range from 1500 °C to 25 °C was divided into three regions, i.e., Liquid region, Crystallization region and Solid region, based on the TTT curves. Accordingly, we put forward an industrial prototype plant for the purpose of waste heat recovery and the potential of waste heat recovery was then calculated. The multi-stage control method provided not only a significant prototype, but also a basic idea to simultaneously extract high quality waste heat and obtain glassy phases on high temperature slags, which may fill the gap between slag properties and practical waste heat recovery processes.

  18. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  19. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-11-01

    Full Text Available In this paper, two cases of heat exchangers (HEXs which previously were used in exhaust of internal combustion engines (ICEs are modeled numerically to recover the exhaust waste heat. It is tried to find the best viscous model to obtain the results with more accordance by experimental results. One of the HEXs is used in a compression ignition (CI engine with water as cold fluid and other is used in a spark ignition (SI engine with a mixture of 50% water and 50% ethylene glycol as cold fluid. As a main outcome, SST k–ω and RNG k–ε are suitable viscous models for these kinds of problems. Also, effect sizes and numbers of fins on recovered heat amount are investigated in various engine loads and speeds.

  20. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  1. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  2. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  3. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  4. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    In order to reduce the formation of acid rain and its harmful effects, stricter legislations on emissions of sulphur oxides from ships applies as of 2015 in emission control areas and globally in 2020 by the international maritime organization (IMO). Consequently, prices on low sulphur fuels...... of the machinery system. The wet sulphuric acid process has shown to be an effective way of removing sulphur oxides from flue gas of land-based coal fired power plants. Moreover, organic Rankine cycles are suitable for heat to power conversion for low temperature heat sources. This paper is aimed at designing......-stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...

  5. Experimental campaign and modeling of a low capacity waste heat recovery system based on a single screw expander

    OpenAIRE

    2014-01-01

    In recent years, due to the increasing concern over energy shortage and global warming, the interest in low grade heat recovery from industrial processes has grown dramatically. Several studies have underlined the potential of small-capacity Organic Rankine Cycle (ORC) power plants for Waste Heat Recovery (WHR) applications. For such systems, accurate models based on actual experimental data represent an important tool, in particular when control issues are considered. This paper presents an ...

  6. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  7. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine

    Science.gov (United States)

    Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro

    2016-10-01

    In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.

  8. Split radiator design for heat rejection optimization for a waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  9. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...

  10. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  11. Dynamic test on waste heat recovery system with organic Rankine cycle

    Institute of Scientific and Technical Information of China (English)

    王志奇; 刘力文; 夏小霞; 周乃君

    2014-01-01

    Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature. The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency (39.49−35.24 Hz), the expander efficiency and thermal efficiency drop by 16%and 21%within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed.

  12. Optimization of Design Pressure Ratio of Positive Displacement Expander for Vehicle Engine Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Young Min Kim

    2014-09-01

    Full Text Available This study investigated the effect of the built-in volume ratio of an expander on the performance of a dual-loop Rankine cycle system for the engine waste heat recovery of a vehicle. Varying vehicle operating conditions can cause a positive displacement expander to operate in both under- and over-expansion states. Therefore, analysis of the off-design performance of the expander is very important. Furthermore, the volume and weight of the expander must be considered in its optimization along with the efficiency. A simple modeling of the off-design operation of the expander showed that a built-in volume ratio that causes under-expansion rather than over-expansion at the target condition is more desirable.

  13. Waste Heat Recovery by Closed-Loop Oscillating Heat Pipe with Check Valve from Pottery Kilns for Energy Thrift

    Directory of Open Access Journals (Sweden)

    P. Meena

    2008-01-01

    Full Text Available This study aims to design, construct and test the waste heat recovery by closed-loop oscillating heat pipe with check valve from pottery kilns for energy thrift, were used the working fluids with a filling ratio of 50%. The (CLOHO/CV was made of copper capillary tube with inside diameter of 2.03 mm. The lengths of evaporator and condenser section were 20 cm. The lengths of adiabatic section 10 cm. The number of turn was 40 meandering turns. The ratio of number of check valves was 0.04. The evaporator section was heated by hot gas, while the condenser section was cooled by fresh air. From the experiment, it indicated that the working fluid changes form water to R123, the heat transfer rate increased to 4,800 and 7,900 Watts and the effectiveness increased from 0.32 to 0.44. The CLOHP/CV heat exchanger can reduce the quantity of using gas in pottery kilns and achieve energy thrift.

  14. Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2015-05-01

    Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.

  15. The alternatives for pot-ale disposal. [Evaporation by waste heat recovery and anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, S. (UKAEA Harwell Lab. (UK). Energy Technology Div.)

    1990-01-01

    Pot-ale is a by-product of whisky distilling and when concentrated by evaporation can be sold as cattle feed. Examples of energy savings achieved by recovering waste heat from distilleries and using this waste heat to evaporate the water from the pot-ale are described. Another option for pot-ale disposal is anaerobic digestion to biogas. (UK).

  16. Waste heat recovery in SITD coal moisture control system%SITD煤调湿工艺的余热利用

    Institute of Scientific and Technical Information of China (English)

    朱文君

    2015-01-01

    介绍了SITD煤调湿工艺中采用多种余热回收技术,以减少系统蒸汽消耗量,分析了系统中冷凝水闪蒸汽回收、热水余热发电以及焦炉烟道气余热利用技术,可增加系统安全性,又可有效降低蒸汽能耗。%This paper introduces several waste heat recovery methods in SITD coal moisture control system to reduce steam consumption in the system. The technologies of recovery of condensate flash steam in the system,power generation with hot water waste heat and utilization of coke oven flue gas waste heat adopted in the system can increase safety of the system and effectively reduce steam con-sumption.

  17. Analysis of waste heat recovery from coke oven waste gas flue%焦炉烟道气余热回收工艺分析

    Institute of Scientific and Technical Information of China (English)

    刘庆达; 丁震; 李昌胤; 刘云

    2014-01-01

    By comparison of old and new technologies in waste gas flue heat exchange,with descrip-tion of waste heat recovery unit and by analysis of economic benefit for the new technology,the waste heat recovery unit from coke oven waste gas flue is highlighted in this paper,which is characterized with lower investment,short payback period,lower operational & maintenance cost and a remarkable economic benefit.%对比了烟道废气换热新、旧工艺,介绍了废气余热回收装置。分析了新工艺的经济效益。焦炉烟道废气热回收装置投资省,见效快,运行、维护成本低,经济效益明显。

  18. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  19. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    Emanuel Feru

    2014-10-01

    Full Text Available This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the waste heat recovery system modeling is improved by including evaporator models that combine the finite difference modeling approach with a moving boundary one. Over a specific cycle, the steady-state and dynamic temperature prediction accuracy improved on average by 2% and 7%. From a control design perspective, the objective is to maximize the waste heat recovery system output power.However, for safe system operation, the vapor state needs to be maintained before the expander under highly dynamic engine disturbances. To achieve this, a switching model predictive control strategy is developed. The proposed control strategy performance is demonstrated using the high-fidelity waste heat recovery system model subject to measured disturbances from an Euro-VI heavy-duty diesel engine. Simulations are performed usinga cold-start World Harmonized Transient cycle that covers typical urban, rural and highway driving conditions. The model predictive control strategy provides 15% more time in vaporand recovered thermal energy than a classical proportional-integral (PI control strategy. In the case that the model is accurately known, the proposed control strategy performance can be improved by 10% in terms of time in vapor and recovered thermal energy. This is demonstrated with an offline nonlinear model predictive control strategy.

  20. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... by 3.4e5.9%. A simplified cost analysis suggests higher purchase costs as result of increased process complexity. © 2013 Elsevier Ltd. All rights reserved....

  1. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  2. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  3. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  4. Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator

    Science.gov (United States)

    Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.

    2017-08-01

    Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.

  5. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    Science.gov (United States)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  6. Integrated Energy and Emission Management for Diesel Engines with Waste Heat Recovery Using Dynamic Models

    Directory of Open Access Journals (Sweden)

    Willems Frank

    2015-01-01

    Full Text Available Rankine-cycle Waste Heat Recovery (WHR systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel engine with WHR system. This Integrated Powertrain Control (IPC strategy optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption. Contrary to other control studies, the proposed control strategy optimizes overall engine-aftertreatment-WHR system performance and deals with emission constraints. From simulations, the potential of this IPC strategy is demonstrated over a World Harmonized Transient Cycle (WHTC using a high-fidelity simulation model. These results are compared with a state-of-the-art baseline engine control strategy. By applying the IPC strategy, an additional 2.6% CO2 reduction is achieved compare to the baseline strategy, while meeting the tailpipe NOx emission limit. In addition, the proposed low-level WHR controller is shown to deal with the cold start challenges.

  7. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  8. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...

  9. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  10. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    OpenAIRE

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic p...

  11. Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle

    Directory of Open Access Journals (Sweden)

    Legros Arnaud

    2014-08-01

    Full Text Available The purpose of this article was to compare different waste heat recovery system technologies designed for automotive applications. A complete literature review is done and results in two comparative graphs. In the second part, simulation models are built and calibrated in order to assess the fuel consumption reduction that can be achieved on a real driving cycle. The strength of this article is that the models are calibrated using actual data. Finally, those simulations results are analyzed and the Rankine cycle and turbocompound are the two most profitable solutions. However the simulations of the turbocompound shows its limitations because the impact on the exhaust pressure drop is not taken into account in the assessment of the car fuel consumption. Fuel reduction of up to 6% could be achieved, depending on the driving cycle and the waste heat recovery technology.

  12. Recovery of Waste Heat of Gas Engine Heat Pump%燃气机热泵余热利用理论分析

    Institute of Scientific and Technical Information of China (English)

    王明涛; 杨昭; 陈轶光

    2011-01-01

    对燃气机热泵余热利用方式进行了理论分析,从能量平衡角度分析了除霜的可行性,计算结果表明:除霜热量占余热回收总量的比值为6.5%~9.5%;在不同的除霜周内,制冷剂气化热量占回收余热总量的比值变化较大,最大不超过45%,从能量角度利用余热除霜是可行的;燃气机热泵的Cop可以提高30%,一次能源利用率在1.3~1.8,可见利用余热供热对提高燃气机热泵的性能系数具有重要的意义.%The methods of waste heat recovery from gas engine, heat pump ( GEHP ) were analyzed theoretically. From the aspect of energy balance, the feasibility of the waste heat defrosting method was discussed, the results showed that the waste heat for defrosting was small, accounting for 6. 5% ~9. 5% of the total waste heat, and the waste heat for refrigerant was less than 45% of the total waste heat, so the waste heat defrosting method was feasible. The waste heat can significantly improve the Cop and primary energy utilization rate of GEHP.

  13. Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications

    OpenAIRE

    Quoilin, Sylvain

    2011-01-01

    This thesis contributes to the knowledge and the characterization of small-scale Organic Rankine Cycles (ORC). It is based on experimental data, thermodynamic models and case studies. The experimental studies include: 1. A prototype of small-scale waste heat recovery ORC using an open-drive oil-free scroll expander, declined in two successive versions with major improvements. 2. A prototype of hermetic scroll expander tested on vapor test rig designed for that purpose. The achieve...

  14. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    Science.gov (United States)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  15. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  16. Applications of thermal energy storage to process heat and waste heat recovery in the primary aluminum industry. Final report, September 1977-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Katter, L.B.; Hoskins, R.L.

    1979-04-01

    The results of a study entitled, Applications of Thermal Energy Storage to Process Heat and Waste Heat Recovery in the Primary Aluminum Industry are presented. In this preliminary study, a system has been identified by which the large amounts of low-grade waste energy in the primary pollution control system gas stream can be utilized for comfort heating in nearby communities. Energy is stored in the form of hot water, contained in conventional, insulated steel tanks, enabling a more efficient utilization of the constant energy source by the cyclical energy demand. Less expensive energy storage means (heated ponds, aquifers), when they become fully characterized, will allow even more cost-competitive systems. Extensive design tradeoff studies have been performed. These tradeoff studies indicate that a heating demand equivalent to 12,000 single-family residences can be supplied by the energy from the Intalco plant. Using a 30-year payback criterion (consistent with utility planning practice), the average cost of energy supplied over the system useful life is predicted at one-third the average cost of fossil fuel. The study clearly shows that the utilization of waste energy from aluminum plants is both technically and economically attractive. The program included a detailed survey of all aluminum plants within the United States, allowing the site specific analyses to be extrapolated to a national basis. Should waste heat recovery systems be implemented by 1985, a national yearly savings of 6.5 million barrels of oil can be realized.

  17. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  18. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  19. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...

  20. Naturally-Forced Slug Flow Expander for Application in a Waste-Heat Recovery Cycle

    Directory of Open Access Journals (Sweden)

    Ben de Witt

    2014-11-01

    Full Text Available This paper investigates a slug-flow expander (SFE for conversion of high-pressure gas/vapor into kinetic energy of liquid slugs. The energy transfer from high-pressure to kinetic energy is quantified using thrust plate measurements. Non-dimensional thrust data is used to quantify performance by normalizing measured thrust by thrust for the same water flow rate at zero air flow rate. A total of 13 expander configurations are investigated and geometries with the shortest cavity length and the smallest exit diameter are found to result in the largest non-dimensional thrust increase. Results show that thrust augmentation increases with the initiation of slug flow in the SFE. The analysis performed on the normalized thrust readings suggested that as the water and air flow were increased to critical conditions, the liquid slugs produced by the SFE augmented the thrust measurements. The final performance evaluation was based on linear regression of the normalized thrust measurements where slug flow was generated for each SFE architecture. Greater magnitudes of the slope from the linear regression indicated the propensity of the SFE to augment thrust. This analysis confirmed that for the SFE configurations over the range of values investigated, the SFE increased thrust up to three times its original value at no air flow. Given the inherent multiphase nature of the slug-flow expander, application to systems involving expansion of wetting fluids (water as part of a waste-heat recovery system or air with water droplet formation (as part of a compressed-air energy storage system could be considered.

  1. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    Science.gov (United States)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-01

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  2. 热泵技术在油田生产污水余热回收中的应用%Application of heat pump in waste heat recovery for waste water of oilfield production

    Institute of Scientific and Technical Information of China (English)

    张水生; 袁长军

    2015-01-01

    Heat pump is used for waste heat recovery,which can solve the issues of recovering waste heat in high temperature waste water in oil production.%针对油田生产污水水量多,温度较高,余热资源丰富却没有回收利用的现状,应用热泵技术进行生产污水余热回收,降低能源消耗,并对现场应用效果进行分析.

  3. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  4. Experimental study on waste heat recovery from an IC engine using thermoelectric technology

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh C.

    2011-01-01

    Full Text Available A major part of the heat supplied in an IC engine is not realized as work output, but dumped into the atmosphere as waste heat. If this waste heat energy is tapped and converted into usable energy, the overall efficiency of the engine can be improved. The percentage of energy rejected to the environment through exhaust gas which can be potentially recovered is approximately 30-40% of the energy supplied by the fuel depending on engine load. Thermoelectric modules (TEM which are used as Thermoelectric generators (TEG are solid state devices that are used to convert thermal energy from a temperature gradient to electrical energy and it works on basic principle of Seebeck effect. This paper demonstrates the potential of thermoelectric generation. A detailed experimental work was carried to study the performance of TEG under various engine operating conditions. A heat exchanger with 18 TEG modules was designed and tested in the engine test rig. Thermoelectric modules were selected according to the temperature difference between exhaust gases side and the engine coolant side. Various designs of the heat exchangers were modeled using CAD and analysis was done using a CFD code which is commercially available to study the flow & heat transfer characteristics. From the simulated results it was found that rectangular shaped heat exchanger met our requirements and also satisfied the space and weight constraint. A rectangular heat exchanger was fabricated and the thermo electric modules were incorporated on the heat exchanger for performance analysis. The study also revealed that energy can be tapped efficiently from the engine exhaust and in near future TEG can reduce the size of the alternator or eliminate them in automobiles.

  5. Modeling and simulation of combined gas turbine engine and heat pipe system for waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lamfon, N.J. [Saudi Aramco Jeddah Refinery, Jeddah (Saudi Arabia); Najjar, Y.S.H.; Akyurt, M. [King Abdulaziz Univ., Mechanical Engineering Dept., Jeddah (Saudi Arabia)

    1998-12-01

    The results of a modeling and simulation study are presented for a combined system consisting of a gas turbine engine, a heat pipe recovery system and an inlet-air cooling system. The presentation covers performance data related to the gas turbine engine with precooled air intake as coupled to the water-in-copper heat pipe recovery system. This is done by matching the two mathematical models. The net power output is improved by 11% when the gas turbine engine is supplied with cold air produced by the heat-pipe recovery and utilization system. It is further concluded from the results produced by the combined mathematical model that the thermal efficiency of the gas turbine engine rises to 6% at 75% part load. It is to be anticipated that this rising trend in increases of thermal efficiency of the gas turbine engine would continue for operations at other (lower) part load conditions. (author)

  6. Heat recovery equipment for engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-04-01

    The recovery and use of waste heat from prime movers is an important consideration for evaluating an on-site power system, since it is the basic factor that makes possible a substantial increase in fuel-use efficiency. The equipment usually employed to recover waste heat can be categorized as: (a) shell-and-tube type heat exchangers, (b) radiator-type heat exchangers, (c) exhaust gas boilers for the generation of pressurized hot water and/or steam, (d) steam separators, and (e) combined packaged units for ebulliently cooled internal combustion piston engines. The functional requirements and cost considerations involved in applying these devices for the recovery of waste heat from various types of prime-movers considered for application in the ICES Systems Engineering Program are examined.

  7. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  8. Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Steven Lecompte

    2015-04-01

    Full Text Available Organic Rankine cycles (ORCs are an established technology to convert waste heat to electricity. Although several commercial implementations exist, there is still considerable potential for thermo-economic optimization. As such, a novel framework for designing optimized ORC systems is proposed based on a multi-objective optimization scheme in combination with financial appraisal in a post-processing step. The suggested methodology provides the flexibility to quickly assess several economic scenarios and this without the need of knowing the complex design procedure. This novel way of optimizing and interpreting results is applied to a waste heat recovery case. Both the transcritical ORC and subcritical ORC are investigated and compared using the suggested optimization strategy.

  9. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery

    Science.gov (United States)

    Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui

    2015-08-01

    We consider a near-field thermophotovoltaic device with metal as the emitter and semiconductor as the photovoltaic cell. We show that when the cell is a III-V semiconductor, such as GaSb, parasitic phonon-polariton heat transfer reduces efficiency in the near-field regime, especially when the temperature of the emitter is not high enough. We further propose ways to avoid the phonon-polariton heat transfer by replacing the III-V semiconductor with a non-polar semiconductor such as Ge. Our work provides practical guidance on the design of near-field thermophotovoltaic systems for efficient harvesting of low-quality waste heat.

  10. Experimental investigation of heat transfer and pressure drop in fin-tube waste heat recovery heat exchangers

    OpenAIRE

    2014-01-01

    The aim of this master thesis was to investigate heat transfer and pressure drop of fin-tube heat exchangers. Experimental investigations of heat transfer and pressure drop in fin-tube bundles has been performed. The main focus was to investigate the influence of the fin height and the fin tip clearance. The effect of the uneven heat transfer distribution on the heat transfer coefficient has been analyzed.A literature survey has been dedicated to investigate the influence of the fin height an...

  11. Application of the Waste Heat Recovery Technology in FPSO%余热回收利用技术在 FPSO 中的应用

    Institute of Scientific and Technical Information of China (English)

    牛欢; 马永涛

    2015-01-01

    结合中海油FPSO余热回收利用改造经验,介绍烟气余热回收利用技术特点,分析中海油FPSO上能源消耗情况,以及烟气余热回收技术在FPSO上实施的可行性,认为FPSO发电机组余热回收利用前景广阔.%In terms of the experiences of waste heat recovery and utilization for FPSO in CNOOC, the technical features of the waste heat recovery and utilization technology of flue gas are introduced.The energy consumption of CNOOC FPSO is ana-lyzed, as well as the feasibility of the flue gas heat recovery technology in FPSO.It is concluded that applying the waste heat re-covery and utilization technology of the generator set in FPSO has vast prospects.

  12. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik

    2014-01-01

    of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina...... and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle....

  13. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    Science.gov (United States)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.

  14. Waste heat recovery from diesel engine using custom designed heat exchanger and thermal storage system with nanoenhanced phase change material

    Directory of Open Access Journals (Sweden)

    Wilson John Maria Robert

    2017-01-01

    Full Text Available In this research study an attempt has been made to recover the heat energy of the exhaust gas from a Diesel engine, using a triangular finned shell and tube heat exchanger with segmental baffle at 20°, and efficiently store as sensible and latent heat energy using thermal storage tank having phase change material with CuO nanoparticles. The nanoparticles and the phase change material form the nanoparticle-enhanced phase change material and mainly the thermal conductivity of the phase change material can be enhanced through the dispersion of the nanoparticles. The temperature variations of the heat transfer fluid in the heat recovery heat exchanger with various load conditions of the Diesel engine are studied. The performance of the heat exchanger is evaluated using heat extraction rate and effectiveness. Evaluation of the performance of the thermal storage system can be analyzed by using the total heat energy stored and charging rate during the charging period for the selected nanoparticle-enhanced phase change material.

  15. Process integration and waste heat recovery in Lithuanian and Danish industry. Case Study: Textile company DROBE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    A process integration study has been made in the wool company `DROBE`, located in Kaunas, Lithuania. The study is limited to the finishing workshop because this workshop is by far the largest consumer of thermal energy at the factory. Theoretical and practical heat exchanger networks are generated, and several possibilities of waste heat utilisation have been evaluated. By local optimisation of two machines with the largest energy consumption in the finishing workshop it will be possible to save 11.1% of thermal energy equivalent to about 1,560 MWh/year. With the current expenses for production of thermal energy this amounts to 125,000 Lt/year. (1 kWh = 0.08 Lt). (au)

  16. Comparison of Waste Heat Recovery from the Exhaust of a Spark Ignition and a Diesel Engine

    Science.gov (United States)

    Wojciechowski, K. T.; Schmidt, M.; Zybala, R.; Merkisz, J.; Fuć, P.; Lijewski, P.

    2010-09-01

    We present herein a design for and performance measurements of a prototype thermoelectric generator (TEG) mounted on both a spark ignition engine (0.9 dm3) and a self-ignition engine (1.3 dm3). Using the prototype TEG as a tool, benchmark studies were performed in order to compare its parameters in terms of heat recovery from exhaust gases of both engine types. The test bed study was performed with an Automex AMX-210/100 eddy-current brake dynamometer. To provide a comprehensive overview of the TEG operating conditions, characterization of its parameters such as temperature distribution, heat flux density, and efficiency was done at engine speeds and loads similar to those within the range of operation of real road conditions.

  17. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    Science.gov (United States)

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger.

  18. Non-linear model predictive supervisory controller for building, air handling unit with recuperator and refrigeration system with heat waste recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2016-01-01

    In this paper we examine a supermarket system. In order to grasp the most important dynamics we present a model that includes the single zone building thermal envelope with its heating, cooling and ventilation. Moreover we include heat waste recovery from the refrigeration high pressure side. The...

  19. Development prospect about the gas waste heat recovery of EAF steelmaking process%电炉炼钢烟气余热回收的发展前景

    Institute of Scientific and Technical Information of China (English)

    余成华; 穆彦均

    2011-01-01

    Domestic and international steel furnace waste heat utilization was introduced, and theprospect of evaporative cooling flue gas waste heat recovery in the electric furnace steel - making wasanalyzed.%介绍国内外炼钢电炉的余热利用情况,并就汽化冷却烟道在电炉炼钢烟气余热回收的运用前景做了分析.

  20. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system

    Directory of Open Access Journals (Sweden)

    Arash Nemati

    2017-03-01

    Full Text Available A thermodynamic modeling and optimization is carried out to compare the advantages and disadvantages of organic Rankine cycle (ORC and Kalina cycle (KC as a bottoming cycle for waste heat recovery from CGAM cogeneration system. Thermodynamic models for combined CGAM/ORC and CGAM/KC systems are performed and the effects of some decision variables on the energy and exergy efficiency and turbine size parameter of the combined systems are investigated. Solving simulation equations and optimization process have been done using direct search method by EES software. It is observed that at the optimum pressure ratio of air compressor, produced power of bottoming cycles has minimum values. Also, evaporator pressure optimizes the performance of cycle, but this optimum pressure level in ORC (11 bar is much lower than that of Kalina (46 bar. In addition, ORC's simpler configuration, higher net produced power and superheated turbine outlet flow, which leads to a reliable performance for turbine, are other advantages of ORC. Kalina turbine size parameter is lower than that of the ORC which is a positive aspect of Kalina cycle. However, by a comprehensive comparison between Kalina and ORC, it is concluded that the ORC has significant privileges for waste heat recovery in this case.

  1. Domestic wastewater heat recovery

    OpenAIRE

    Veijola, T.

    2017-01-01

    The aim of this thesis is to study and explain the purpose and the function of drain water heat exchangers. The thesis goes over theory behind heat transfer and heat exchangers and presents the general solutions of domestic drain water heat recovery systems. Systems gone over in detail are the different general shower drain water heat recovery systems. Another part of the thesis is a case study of an actual shower drain water heat recovery system of a Finnish household. The purpose of th...

  2. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  3. 烧结主排烟气减排与余热高效回收技术%Technologies of emission reduction and efficient waste heat recovery of sinter waste gas

    Institute of Scientific and Technical Information of China (English)

    毛艳丽; 张东丽; 曲余玲

    2011-01-01

    详细阐述了世界上主要应用的烧结主排烟气减排与余热高效回收的工业化方案及效果,并对国内烧结主排烟气减排与余热高效回收提出了建议.%The major industrial solutions and their application results for emission reduction and efficient waste heat recovery of sinter waste gas were explained in detail. The suggestions for emission reduction and efficient waste heat recovery of sinter waste gas were thus put forward.

  4. Design and optimization of air bottoming cycles for waste heat recovery in off-shore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik

    2014-01-01

    -objective optimization approach is employed to maximize the economic revenue, the compactness and the power production of the air bottoming cycle. The system compactness is assessed by introducing a detailed model of the shell and tube recuperator and including geometric quantities in the set of optimization variables......This paper aims at comparing two methodologies to design an air bottoming cycle recovering the waste heat from the power generation system on the Draugen off-shore oil and gas platform. Firstly, the design is determined using the theory of the power maximization. Subsequently, the multi....... Findings indicate that using the power production, the volume of the recuperator and the net present value as objective functions the optimal pressure ratio (2.52) and the exhaust gas temperature (178.8 °C) differ from the values (2.80 and 145.5 °C) calculated using the theory of the power maximization...

  5. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    Science.gov (United States)

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity.

  6. Toward a Heat Recovery Chimney

    Directory of Open Access Journals (Sweden)

    Min Pan

    2011-11-01

    Full Text Available The worldwide population increase and subsequent surge in energy demand leads electricity producers to increase supply in an attempt to generate larger profit margins. However, with Global Climate Change becoming a greater focus in engineering, it is critical for energy to be converted in as environmentally benign a way as possible. There are different sustainable methods to meet the energy demand. However, the focus of this research is in the area of Waste Heat Recovery. The waste heat stored in the exiting condenser cooling water is delivered to the air flow through a water-air cross flow heat exchanger. A converging thermal chimney structure is then applied to increase the velocity of the airflow. The accelerated air can be used to turn on the turbine-generator installed on the top the thermal chimney so that electricity can be generated. This system is effective in generating electricity from otherwise wasted heat.

  7. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  8. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  9. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    Science.gov (United States)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  10. Waste Heat Recovery Analysis of Solar Energy and Gas Heat Pump Heating System%太阳能燃气热泵供暖系统及余热回收分析

    Institute of Scientific and Technical Information of China (English)

    郝红; 毛立功; 李媛

    2015-01-01

    The performance of waste heat recovery of solar energy and gas heat pump system was studied.The simulation model of the system,the cylinder cooling systems and exhaust waste heat recovery device are established in Matlab.The changing rule of the cylinder cooling water flow rate,the controlling of waste heat recovery ratio and the temperature rising of heating recovery water flowing through the cylinder cooler and the waste heat recovery device are analyzed in this paper.Finally,the economic of solar energy and gas heat pump with waste heat recovery device for a certain building in Shenyang area are made in certain extent.The results are shown in the following:when the engine revolutions increases 100 r/min,the cooling water flow rate are increased by 0.285 ~1.21 g/s.When the waste heat recovery ratio is 0.7,the energy utilization of the system are achieved in this condition. The temperature of heat recovery circulating water are increased by 2 ~5 ℃ after flowing through the cylinder cooling systems. The temperature of heat recovery circulating water are increased by 2 ℃ after flowing through the exhaust waste heat recovery de-vice.Solar energy and gas heat pump with heat recovery device is more economical than the system of non -heat recovery device.%对太阳能燃气热泵供暖系统及余热回收性能进行了研究。建立了系统的仿真模型,对套缸冷却系统和排烟余热回收器进行了模拟计算。分析了套缸冷却水流量的变化规律、确定了排烟余热回收比(排烟余热中回收的热量占排烟余热总热量的比例)、热回收循环水流经套缸冷却器及排烟余热回收器后的温升情况,最后以沈阳地区某建筑为例,对系统余热回收的经济性进行了分析。结果表明:发动机转速每增加100r/min,所需的套缸冷却水流量增0.285~1.21g/s;排烟余热回收比为0.7时,系统可以获得最大的能源利用率(是指有效利用部分与总

  11. Waste Heat Recovery and Energy Efficient Analysis of Screw Air Compressors%螺杆式空压机余热回收及节能分析

    Institute of Scientific and Technical Information of China (English)

    郭衷中

    2015-01-01

    介绍了螺杆式空气压缩机的余热回收,着重分析了余热回收的意义,节能计算、节能空间和市场前景。并以某厂为例,进行了实际的节能计算。%waste heat recovery of screw air compressor is Introduced,four aspects of waste heat recovery are emphatically analyzed,including significance,energy-efficient computing energy space and market prospect.Take a factory as an example,energy-efficient is computed.

  12. Waste heat recovery with heat pipes in the modern electric arc furnace process%电炉流程中热管式余热回收

    Institute of Scientific and Technical Information of China (English)

    杨振国; 刘青; 谢银幕

    2011-01-01

    结合国内外电炉烟气热量处理的现状,分析了热管式余热回收的原理及特点,研究了其系统的结构特点、工艺流程、关键参数以及如何使系统产生的蒸汽质量满足VD(RH)炉生产的要求,并对其在莱钢50t电炉余热回收中的工程应用情况进行了阐述,指出该技术具有良好的应用前景.%The principle and characteristic of waste heat recovery with heat pipes were analyzed in combination with the present condition of utilizing electric arc furnace(EAF) flue gas at home and abroad.The structure character,technical processes,and key parameters of this system were studied comprehensively.How to make high quality steam to meet the demand of VD(RH) furnaces was also discussed.A practical application of waste heat recovery in 50t EAF in Laiwu Steel shows a good prospect of the technology.

  13. Economic and Environmental Analysis of Thermoelectric Waste Heat Recovery in Conventional Vehicles Operated in Korea: A Model Study

    Science.gov (United States)

    Bang, S.; Kim, B.; Youn, N.; Kim, Y. K.; Wee, D.

    2016-03-01

    Thermoelectric (TE) waste heat recovery from automotive exhaust streams is a potential technology that can significantly increase the overall efficiency of vehicles and subsequently reduce the consumption of fossil fuels. By reducing the consumption of fossil fuels, vehicular application of TE generators may also potentially reduce the emission of greenhouse gases (GHGs) and other air pollutants from the transportation sector. In this study, we analyse the economic benefit and feasibility of TE waste heat recovery systems in conventional vehicles operated in Korea by analytically modeling related vehicle systems and by analyzing driving patterns in urban environments. The economic effects of the associated efficiency improvement and the reduction of GHGs and air pollutants are simultaneously considered. Vehicular application of a TE generator may reduce 0.15 kL/year for a mid-size sedan and 1.04 kL/year for a medium-duty truck through fuel savings at a typical driving speed of 80 km/h. Based on the benefit-cost ratio analysis, it is shown that the economically acceptable costs of TE waste heat recovery systems are 744 /kW for the mid-size sedan and 2905 /kW for the medium-duty truck, respectively, when an operation period of 10 years is assumed. In terms of GHGs and air pollutants, the reduction annually amounts to 0.334 tCO2e of GHGs, 0.142 kg of CO, 0.00290 kg of VOC, 0.0150 kg of NO X , 0.198 kg of NH3, and 0.00006 kg of SO X for the mid-size sedan, while 2.65 tCO2e of GHGs, 1.974 kg of CO, 0.401 kg of VOC, 6.98 kg of NO X , 0.00034 kg of NH3, and 0.00229 kg of SO X can be annually reduced by applying a TE generator in the medium-duty truck.

  14. 烟叶密集烘烤余热回收利用的可行性分析%Feasibility Analysis of Waste Heat Recovery of Tobacco Curing

    Institute of Scientific and Technical Information of China (English)

    钟浩; 罗会龙; 李志民; 和智君; 崔国民

    2011-01-01

    分析了目前密集烤房烟叶烘烤的能耗现状;对密集烤房烟气及排湿气流余热回收节能潜力进行了初步估算,并以热管式余热回收器为例进行了经济性分析;在此基础上,初步分析了烟叶密集烘烤余热回收利用的可行性.%The current stares of energy consumption of bulk curing barn are briefly introduced in this paper. The energy-saving potentiality of waste heat recovery in bulk curing barn is estimated. And cost-effectiveness analysis of heat-pump heat recovery device is presented. Based on these, the feasibility of waste heat recovery of tobacco curing is also discussed.

  15. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  16. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  17. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    Science.gov (United States)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  18. 熔盐炉余热回收系统分析研究%Analysis of Waste Heat Recovery System for Molten Salt Heater

    Institute of Scientific and Technical Information of China (English)

    刘雁; 闫博

    2016-01-01

    Molten salt furnace is applied to heat process whose temperature is above 400 ℃. Molten salt furnace has high outlet temperature flue gas. Applying waste heat recovery system recycling energy can achieve remarkable energy saving effect. In view of the waste heat recovery system forms and thermodynamic parameters, analyzed the advantages and disadvantages of all kinds of waste heat recovery system, provides the theory basis for molten salt furnace waste heat recovery system design.%熔盐炉经常用于400℃以上的介质换热,熔盐炉出炉烟气温度较高,应用余热回收系统回收能量可取得显著的节能效果。本文针对余热回收系统形式及热力参数,分析各种余热回收系统的优缺点,为熔炉盐炉余热回收系统设计提供理论依据。

  19. Comparative Analysis of Technology of Waste Heat Recovery Systems of Engine%发动机废气余热利用技术的对比分析

    Institute of Scientific and Technical Information of China (English)

    马俊达; 卢小锐; 黎苏; 郑清平

    2012-01-01

    分析了目前汽车余热利用技术的现状和余热回收系统的特征,展示了各种余热回收系统的基本结构。、分别对余热制冷技术和余热发电技术的系统参数和结构特征进行了对比。根据两种技术存在的共同问题,提出了推动余热利用发展的关键技术。%The existing situation of the techniques used in vehicles about recycling the exhaust energy is analyzed. The paper introduces the characteristics of waste heat recovery systems, and shows the basic structure of waste heat recovery system. For waste heat refrigeration technology and waste heat electric-power generation technology, their parameters and characteristics of the systems are compared respectively. According to two kinds of technologies in a common problem, the key technologies of waste heat recovery are put forward.

  20. An Example of Waste Heat Recovery of Heating Furnace Based On Energy Cascade Utilization%基于能量梯级利用的加热炉余热回收实例

    Institute of Scientific and Technical Information of China (English)

    王雷

    2016-01-01

    A complex recovery method for heating furnace waste heat based on energy cascade utilization is introduced. Through successful application in a transformation project of walking beam heating furnace, the feasibility and universality of the waste heat recovery method was proved.%介绍了一种基于能量梯级利用的组合式加热炉余热回收方法,通过在一个步进梁式加热炉改造项目中成功应用,证明了此余热回收方法的可行性和通用性.

  1. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...... %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit...

  2. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  3. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  4. 烟气余热深度回收方法研究%Research Progress of Flue Gas Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    谢正和; 陈鹏; 贾向东; 刘英杰; 朱迎春; 李洋

    2016-01-01

    To solve the current energy and environment problems,must be to increase rate of energy to achieve energy conservation and emission reduction.The depth of the flue gas waste heat recovery technology for energy conservation and emissions reduction has substantial significance.This paper expounds several typical flue gas waste heat recovery units and its research progress,technology of flue gas waste heat was predicated.%烟气余热深度回收技术是提高能源利用率的重要途径。本文阐述了几种具有代表性的烟气余热深度回收装置,介绍了技术研究进展情况,并在此基础上对烟气余热深度技术进行了展望。

  5. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  6. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  7. Parametric and exergetic analysis of a two-stage transcritical combined organic Rankine cycle used for multiple grades waste heat recovery of diesel engine

    Science.gov (United States)

    Tian, H.; Zhang, J.; Xu, X. F.; Shu, G. Q.; Wei, H. Q.

    2013-12-01

    Diesel engine has multiple grades of waste heat with different ratios of combustion heat, exhaust is 400 °C with the ratio of 21% and coolant is 90 °C with 19%. Few previous publications investigate the recovery of multiple grades waste heat together. In this paper, a two-stage transcritical combined organic rankine cycle (CORC) is presented and analyzed. In the combined system, the high and low temperature stages transcritical cycle recover the high grades waste heat, and medium to low grades waste heat respectively, and being combined efficiently. Meanwhile, the suitable working fluids for high stage are chosen and analyzed. The cycle parameters, including thermal efficiency (ηth), net power output (Pnet), energy efficiency (ηexg) and global thermal efficiency of DE-CORC(ηglo) have also been analyzed and optimized. The results indicate that this combined system could recover all the waste heat with a high recovery ratio (above 90%) and obtain a maximum power output of 37kW for a DE of 243kW. The global thermal efficiency of DE-CORC can get a max value of 46.2% compared with 40% for single DE. The results also indicate that all the energy conversion process have a high exergy efficiency.

  8. Investigation of the Criteria for Fluid Selection in Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Burak Atakan

    2011-07-01

    its thermodynamic properties as well as on the conditions at which the heat is available, thus it is often unclear if an organic fluid has any advantage compared to inorganic fluids like water. Various substances starting from the refrigerants to high boiling organic liquid have been investigated as possible working fluid for the different temperature ranges at which the waste heat is available. The present communication reports exemplary the results for three different classes of substances, a hydrocarbon (n-heptane, two refrigerants 1.1.1.3.3-pentafluoropropane (R245fa and pentafluoro butane mixture (Solkatherm, SES36, and water in the intermediate temperature range (473 to 773 K where the exhaust gases of combustion engines may be used as energy source for cogeneration. In this range it turns out that for many conditions, water and heptane are well suited working fluids for cogeneration systems. In the present investigation, the attention was not laid on the cycle efficiency alone, but also on the total exergy usage from an enthalpy stream (e.g. exhausts gas. This is used for defining the total efficiency for the process. The results for the thermodynamic parameter total heat recovery efficiency and the surface area of the heat exchanger have been discussed. diagrams were also used for judging the suitability of a fluid. It turns out that water is well suited for many cases in the intermediate temperature regime.

  9. Technology and Equipment of Waste Heat Recovery in Dryer Section of Paper Machine%纸机干燥部余热回收技术与设备

    Institute of Scientific and Technical Information of China (English)

    张秀文

    2012-01-01

    Some waste heat recovery technology and equipment used in dryer section of paper machine at home and abroad were introduced in this paper.%介绍一些国际、国内余热回收技术和设备,供同行分析、研究和借鉴.

  10. 利用相变材料回收高炉冲渣水余热的经济性分析%Economic Analysis of Using Phase Change Material Recovery Waste Heat from Waste Water of Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    肖松; 郑东升; 吴淑英

    2012-01-01

    According to the features of the waste water, the economic analysis of using phase change material recovery waste heat from waste water of blast furnace slag was studied.%根据高炉冲渣水余热的特点,对利用相变材料回收高炉冲渣水余热的经济性进行了分析.

  11. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Gowtham Mohan; Sujata Dahal; Uday Kumar; Andrew Martin; Hamid Kayal

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  12. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  13. 高温熔融钢渣热闷热平衡分析及余热回收利用%Analysis of heat balance and waste heat recovery and utilization for the high temperature molten slag by pyrolytic

    Institute of Scientific and Technical Information of China (English)

    张宇; 陈媛; 张天有; 张健; 韩自博; 刘银梅

    2014-01-01

    对钢渣热闷过程中的热量平衡进行了分析和计算,提出了余热回收方案,并对经济效益进行了分析,为钢渣余热回收的进一步研究和实践打下了基础。%The heat balance during the steel slag self -slaking process by pyrolytic was analyzed and calculated.Put forward the waste heat recovery scheme and analyzed the economic benefits .It lays a solid basis for the further research and practice of steel slag waste heat recovery .

  14. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    finned heat pipes, a high forced convection coefficient (>250 W/m2K, the high end of the range suggested by Incropera and DeWitt20), and no...20. Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. New York (NY): Wiley; 2002. 21. Heat Pipes. Advanced Cooling Technologies, Inc

  15. From Consumption to Prosumption - Operational Cost Optimization for Refrigeration System With Heat Waste Recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Garcia, Jesus Lago; Bendtsen, Jan Dimon;

    2017-01-01

    Implementation of liquid cooling transforms a refrigeration system into a combined cooling and heating system. Reclaimed heat can be used for building heating purposes or can be sold. Carbon dioxide based refrigeration systems are considered to have a particularly high potential for becoming ecient...... heat energy producers. In this paper a CO2 system that operates in the subcritical region is examined. Modelling approach is presented, and used for operation optimisation by way of non-linear model predictive control techniques. Assuming that the heat is sold when using both objective functions...

  16. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  17. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  18. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  19. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain......This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...

  20. 首钢京唐炼铁余热余能回收及潜力%Waste heat recovery and potential of iron-making in Shougang Jingtang

    Institute of Scientific and Technical Information of China (English)

    陈冠军; 沈海波; 张效鹏; 杨小龙; 郭之明

    2012-01-01

    Waste heat and energy in iron - making is account for 60% of process energy consumption, distributing in system of stove, gas de - busting, de - busting before BF, molten slag and cooling water on BF in Jingtang. The present technical Cow was analyzed on stress. It shows that percentage of waste heat and energy recovery is 80.8% by technology such as BFG recovery, dry - TRT and waste gas on hot blast stove preheating air, BFG and coal power, the utilization ratio of waste gas of stove and BFC physical heat is just 30% ~40% , and it should be improved farther. Different Jower grade waste heat potential was analyzed on its end temperature. There is waste heat potential about 65.9kgce/t, and measures and suggestions such as utilization of BFG, waste gas on hot blast stove and waste heat of slag - disposing water were put forward for grade - recovery and rational high efficient utilization of waste heat.%京唐炼铁余热余能占炼铁工序能耗的60%左右,分布于热风炉、高炉煤气除尘、炉前除尘、渣处理和高炉本体冷却水等系统.重点分析现有工艺技术流程,通过高炉煤气回收、干式TRT和热风炉烟气预热空煤气及制粉三项利用技术,已实现炼铁主要余热余能回收80.8%,指出热风炉烟气和高炉煤气物理显热利用率仅为30%~40%,还有待进一步提高.同时,以末端温度为基础分析了各项低品位余热潜力尚有65.9kgce/t,并提出有效利用放散高炉煤气、热风炉烟气和冲渣水余热等措施和建议,为余热梯级回收和合理高效利用提供依据.

  1. Prediction on Power Produced from Power Turbine as a Waste Heat Recovery Mechanism on Naturally Aspirated Spark Ignition Engine Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Safarudin Gazali Herawan

    2016-01-01

    Full Text Available The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM in a sedan car. The amount of heat energy from exhaust is presented and the experimental test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. However, the existence of WHRM affects the performance of engine by slightly reducing the power. The simulation method is created using an artificial neural network (ANN which predicts the power produced from the WHRM.

  2. Thermoelectric Generators on Satellites—An Approach for Waste Heat Recovery in Space

    Directory of Open Access Journals (Sweden)

    Marian von Lukowicz

    2016-07-01

    Full Text Available Environmental radiation in space (from the Sun, etc. and operational thermal loads result in heat flows inside the structure of satellites. Today these heat flows remain unused and are collected, transported to a radiator and emitted to space to prevent the satellite from overheating, but they hold a huge potential to generate electrical power independently of solar panels. Thermoelectric generators are a promising approach for such applications because of their solid state characteristics. As they do not have any moving parts, they do not cause any vibrations in the satellite. They are said to be maintenance-free and highly reliable. Due to the expected small heat flows modern devices based on BiTe have to be considered, but these devices have no flight heritage. Furthermore, energy harvesting on space systems is a new approach for increasing the efficiency and reliability. In this paper, different systems studies and applications are discussed based some experimental characterisation of the electrical behaviour and their dependence on thermal cycles and vibration.

  3. New technology of waste heat recovery from gas primary cooler%煤气初冷器余热回收新技术

    Institute of Scientific and Technical Information of China (English)

    祝仰勇; 宁述芹; 王健; 梁荣华

    2014-01-01

    开发了初冷器余热回收利用新技术。通过热泵机组,夏季回收初冷器上段循环水余热制取低温水,冬季回收初冷器中段循环水余热加热采暖水,实现了初冷器余热的综合利用,降低了能耗,改善了环境。%This paper introduced a new technology of waste heat recovery from gas primary cooler,by which chilled water can be prepared by recovering the waste heat from the upper stage circulating water of the primary cooler in summer and heating water can be heated up by recovering the waste heat from the medium stage circulating water of the primary cooler in winter so that the waste heat from the gas primary cooler can be fully utilized,energy consumption can be saved and environment can be improved.

  4. 定型机有机废气余热回收问题的探讨%The discussions of organic waste gases heat recovery from setting machine

    Institute of Scientific and Technical Information of China (English)

    狄育慧; 黄银鹏; 周林园

    2015-01-01

    热定型机是印染工艺后整理工序中的重要设备,也是印染行业中的能耗“大户”,但是热定型机能源有效利用率太低,超过50%的能量被有机废气带走,对这部分余热的回收势在必行。主要对有机废气余热回收过程中存在的问题提出建设性意见,有效地减少油烟冷凝,提高换热器的热回收效率。%Heat-setting machine is an important equipment in the finishing process and a large part of energy consumption in the dyeing and printing industry. However, the energy efficiency of heat-setting machine is too low:more than 50%of the energy is taken away by organic waste gases. It is necessary to recovery this part of waste heat. The paper focuses on proposing some constructive comments for the process of organic waste gases heat recovery to reduce the oil fume condensate effectively and improve the thermal efficiency of the heat exchanger.

  5. Heat Recovery Steam Generator by Using Cogeneration

    Directory of Open Access Journals (Sweden)

    P.Vivek, P. Vijaya kumar

    2014-01-01

    Full Text Available A heat recovery steam generator or HRSG is an energy recovery heat exchanger that recovers heat from a hot gas stream. It produces steam that can be used in a process (cogeneration or used to drive a steam turbine (combined cycle. It has been working with open and closed cycle. Both of cycles are used to increase the performance and also power on the cogeneration plant. If we are using closed cycle technology, we can recycle the waste heat from the turbine. in cogeneration plant, mostly they are using open cycle technology. additional, by using closed cycle technology, we can use the waste heat that converts into useful amount of work. In this paper, the exhaust gas will be sent by using proper outlet from cogen unit, we are using only waste heat that produce from turbine.

  6. 对二甲苯装置加热炉余热回收分析%The Waste Heat Recovery Analysis for the Heating Furnace of an p-Xylene Unit

    Institute of Scientific and Technical Information of China (English)

    余富海

    2012-01-01

    The article analyzes and probes into the waste heat recovery and utilization situation for the heating furnace of an p-xylene unit and puts forward some measures for energy saving and emission reduction such as adding waste heat recovery system,reducing smoke temperature and reducing the sulfur content in fuel,so as to enhance the heat efficiency of the heating furnace and reduce the unit's energy consumption.%分析并探讨了对二甲苯装置加热炉余热回收利用情况,提出了增加余热回收系统、降低排烟温度、降低燃料中的硫含量等节能减排措施,以提高加热炉热效率,降低装置能耗。

  7. 空气压缩机余热回收的实践%Practice of Waste Heat Recovery from Air Compressors

    Institute of Scientific and Technical Information of China (English)

    王佩; 成强

    2015-01-01

    介绍了空气压缩机余热回收系统的工作原理和节能效果,为相关技术人员提供参考,从而达到节能的目的。%This article introduces working principle and energy saving effect of waste heat recovery system of air compressors. It gives references to technological staff to achieve energy saving.

  8. Repairing of Waste Heat Recovery Device in Ammonia Synthesis Unit%合成废热回收器的修复

    Institute of Scientific and Technical Information of China (English)

    张凤魁

    2013-01-01

    对废热回收器拆卸、检测、存在的问题及修复处理过程作一简要的总结,谨供同行参考。%Make a brief summary for disassembling and inspecting of the waste heat recovery device , testing , problems and repairing process , to provide reference for fellow colleagues .

  9. 生产废水余热回收技术应用探讨%Production Waste Water Waste Heat Recovery Technology Application

    Institute of Scientific and Technical Information of China (English)

    曲学明

    2014-01-01

    生产废水余热回收利用节能降耗,减排增效,投资回收期短,经济和社会效益显著。%production waste water waste heat recycling, energy saving and consumption reducing emissions reduction efficiency, short payback period of investment, economic and social benefit is remarkable.

  10. 翅片在镁熔砣余热回收过程中的效果分析%Effect analysis about fin in fused magnesia waste heat recovery process

    Institute of Scientific and Technical Information of China (English)

    高秀平; 张卫军; 高福特; 池中源; 杨宏飞; 闫志刚; 崔薇薇

    2014-01-01

    应用FLUENT软件,分别对有无翅片的余热回收室内的余热回收过程进行数值模拟。通过对翅片蓄热升温过程、余热回收室内布风情况、余热回收时间、风温变化等方面的对比,分析得到翅片对镁熔坨余热回收的影响,从而为带翅片镁熔砣余热回收方法的确定提供理论依据,所得出结论可用于指导实际生产。%The process of waste heat recovery for the two kinds of waste heat recovery chamber whether it has fins or not was simulated using FLUENT software .Through comparison of the regenerative heat-ing process of fins , air supply conditions in waste heat recovery chamber , and the time of waste heat recovery etc , the influence of fins for fused magnesia waste heat recovery can be obtained by analysis . Therefore , it can provide a theoretical basis for determining fused magnesia waste heat recovery method with fins.And the conclusion will be used to guide the practical production .

  11. ENERGY RECOVERY FROM WASTE IN THE ASPECT OF ELECTRICITY AND HEAT QUALIFICATIONS AS COMING FROM RENEWABLE ENERGY SOURCES AND PARTICIPATION IN THE SYSTEM OF EMISSIONS TRADING

    Directory of Open Access Journals (Sweden)

    Ryszard Wasielewski

    2017-10-01

    Full Text Available The paper presents the qualification of heat and electricity produced in plants using waste as a fuel. It also concerns the issues related with the possibilities of participation in the system of emissions trading. The basis for such considerations is the content of biodegradable fraction in waste, which is treated as “biomass”, based on the definitions set out in relevant legislation. It is necessary to determine content of biodegradable fraction in waste in order to establish the purposes. Two ways of settling share of energy from renewable energy sources were introduced. The first, was based on direct measurement of the share of biodegradable fraction in the tested waste. On the other hand, the second is involved with certain types of waste. Thus, the share of biodegradable fraction is determined by flat-rate value. An applicable auction system does not guarantee the financial support for electricity produced from renewable energy sources, even if it is classified so. A company selling heat to end users is obliged to purchase the heat from renewable energy sources, including thermal treatment plants using municipal waste. The maximum level that the company is obliged to purchase is equal to the customers’ demand. Both the municipal waste incineration and hazardous waste incineration plants are exempted from the obligations provided in the Act on system of emission trading. This applies only to the waste incineration plants, which incinerate only the municipal waste or hazardous waste and the plants which are processing waste, not producing of heat. When an installation uses alternative fuel, it is not automatically excluded from participation in the system of emission trading. For biodegradable fraction of alternative fuel, the emission factor equal to 0 can be used. For the remaining alternative fuels, an emission factor determined on the basis of laboratory tests must be assigned. In order to demonstrate that an alternative fuel

  12. Recovery of Industrial Waste Heat%工业企业余热和废热利用研究

    Institute of Scientific and Technical Information of China (English)

    邓元媛; 周吉日; 姚宁; 尹力

    2013-01-01

    工业余热和废热目前在我国的利用率较低,不但造成了能源的巨大浪费,而且直接或间接地造成了环境污染。以实际工程为例,从工程自身的热量需求情况出发,回收工艺副产蒸汽,实现了对余热的梯级综合利用。此余热梯级综合利用系统不但充分利用了工艺副产蒸汽,节约了运行费用,而且可以满足不同用户对热源的需要。%The low utilization of industrial waste heat in China not only creates a huge waste of energy, but also causes environmental pollution directly or indirectly. We researched the actual project. According to the heat demand of the project, we accomplish the cascade comprehensive utilization of waste heat by recycling the byproduct steam. The comprehensive utilization of waste heat cascade system will take full advantage of the byproduct steam in saving operating costs, and meet the heat source demands of various users.

  13. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  14. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    Science.gov (United States)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  15. Optimisation of two-stage screw expanders for waste heat recovery applications

    Science.gov (United States)

    Read, M. G.; Smith, I. K.; Stosic, N.

    2015-08-01

    It has previously been shown that the use of two-phase screw expanders in power generation cycles can achieve an increase in the utilisation of available energy from a low temperature heat source when compared with more conventional single-phase turbines. However, screw expander efficiencies are more sensitive to expansion volume ratio than turbines, and this increases as the expander inlet vapour dryness fraction decreases. For singlestage screw machines with low inlet dryness, this can lead to under expansion of the working fluid and low isentropic efficiency for the expansion process. The performance of the cycle can potentially be improved by using a two-stage expander, consisting of a low pressure machine and a smaller high pressure machine connected in series. By expanding the working fluid over two stages, the built-in volume ratios of the two machines can be selected to provide a better match with the overall expansion process, thereby increasing efficiency for particular inlet and discharge conditions. The mass flow rate though both stages must however be matched, and the compromise between increasing efficiency and maximising power output must also be considered. This research uses a rigorous thermodynamic screw machine model to compare the performance of single and two-stage expanders over a range of operating conditions. The model allows optimisation of the required intermediate pressure in the two- stage expander, along with the rotational speed and built-in volume ratio of both screw machine stages. The results allow the two-stage machine to be fully specified in order to achieve maximum efficiency for a required power output.

  16. Evaluación de un recuperador de calor en una industria frigorífica//Evaluation of waste heat recovery in frigorific industry

    Directory of Open Access Journals (Sweden)

    Josué Imbert‐González

    2014-01-01

    Full Text Available La recuperación de calor forma parte de las medidas propuestas para el empleo adecuado del amoniaco en países tropicales. Este artículo analiza un sistema de recuperación de calor instalado en una instalación de refrigeración industrial. En el análisis, que parte de las lecturas comparativas de parámetros de operación de la instalación, se determinó la efectividad del intercambio térmico, el incremento en laeficiencia del sistema de refrigeración, así como el combustible ahorrado por concepto de calentamiento del agua en la industria. Los resultados obtenidos reportaron que el diseño térmico basado en intercambio de calor en espacios anulares, permite un ahorro importante de recursos y un elevado índice de aprovechamiento térmico.Palabras claves: recuperación de calor, instalación frigorífica, ahorro de energía.________________________________________________________________________________AbstractThe waste heat recovery by heat pipes is accepted as an excellent way of saving energy and preventing global warming. This article assesses the impact of the use of a heat exchanger used as a heat recovery in the refrigeration industry. Elements are evaluated from the point of view of heat transfer, evaluating the quality of heat exchange process. Is calculated increase in the efficiency of the cooling system. The heated water is used in the steam generation system of the industry. Is calculated fuel consumption savings resulting from this warming. The findings provide elements that show the enormous potential of this technique in the refrigeration industry.Key words: waste heat recovery, Industrial refrigeration, saving energy.

  17. 钢渣处理与余热回收技术的分析%Analysis of steel slag treatment technology and waste heat recovery technology

    Institute of Scientific and Technical Information of China (English)

    张宇; 张健; 张天有; 刘银梅; 韩自博

    2014-01-01

    the-steel-slag-treatment-and-waste-heat-recovery-technology-and-device-in-China-and-abroad-were-listed,-compared-and-analyzed-through-a-large-number-of-examples.Through-analysis-and-comparison,it-shows-that-the-heat-in-molten-slag-could-be-recycled-and-re-used-through-different-steel-slag-processing-combined-with-scientific,-economic,reasonable-waste-heat-recovery-technology,and-could-get-remarkable-achievements.At-the-same-time,it-was-pointed-out-that-due-to-the-inherent-characteristics-and-physicochemical-conditions-of-steel-slag,many-waste-heat-recovery-problems-need-researcher’s-continuing-research-to-solve.Finally,the-prospect-of-steel-slag-waste-heat-recovery-were-discussed-and-suggested-that-the-government-and-related-fields-should-give-enough-attention-and-sup-port-for-field-of-steel-slag-waste-recovery.%对国外和中国钢渣处理的余热回收技术和余热回收装置应用案例进行了大量地列举、系统地比较和分析。通过比较和分析表明:熔融钢渣中的余热可以通过各种不同的钢渣处理工艺,结合科学、经济、合理的热能回收技术将余热加以回收和利用,其成果十分显著。同时,指出了由于受钢渣固有特性和物化条件的制约,目前钢渣余热资源的回收存在着许多问题,有待于钢铁行业和热能开发领域的研究者继续探讨和解决。最后,对钢渣余热回收的前景进行了展望,建议政府和相关领域予以足够地重视和支持。

  18. Three impulse control in heating furnace waste heat recovery system%三冲量控制在加热炉余热回收系统中的应用

    Institute of Scientific and Technical Information of China (English)

    辛字; 杨阳; 师建刚

    2012-01-01

    Article introduces three impulse control in Handan steel 2250mm hot still mill heating furnace waste heat recovery system. The three impulse control research and practice, from the aspect of the control system is solved in the heating furnace in waste heat recovery system of steam drum water level in the phenomenon of false.%本文重点介缉三冲量控型在邯钥2250热轧厂加热炉余热回收系统中的应用。通过对三冲量控制的研究与实践,从控制系统方面解决了在加热炉余热回收系统中汽包出现假水位的现象。

  19. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  20. 热管余热锅炉在钢管退火炉余热回收中的应用%Application of Heat Pipe Waste Heat Boiler to Recovery of Waste Heat of Steel Pipe Annealing Furnace

    Institute of Scientific and Technical Information of China (English)

    李永; 宿新天; 张子禹; 刘亮; 郭少春

    2013-01-01

    钢管退火炉排出的烟气带有可观的热量,如不加以回收利用,将造成能源的浪费。如果以钢管退火炉的烟气余热在热管余热锅炉中产生蒸汽加以利用,可使钢管退火炉的热效率提高到70%以上。热管余热锅炉是一种值得推广应用的节能装置。%The fuel gas of steel pipe annealing furnace bears a considerable heat , which, if not recovered and utilized , will cause waste energy .If the steam is produced by using the waste heat of flue gas of steel pipe annealing furnace in a heat pipe waste heat boiler and is utilized , the heat efficiency of steel pipe annealing furnace can be increased to 70%and above .The heat pipe waste heat boiler is an energy saving device worth extensive applying .

  1. 颗粒材料余热回收系统中传热系数的确定%Determination of Heat Transfer Coefficient in Waste Heat Recovery System of Granular Material

    Institute of Scientific and Technical Information of China (English)

    顾永敏; 戴苏明

    2012-01-01

    固体颗粒状的陶粒在生产过程中存在着丰富的余热资源,但回收系统中传热系数的确定比流体工质的更为复杂。基于某陶粒生产企业节能项目的研发,对颗粒材料余热回收系统中传热系数的确定进行了探讨。研究结果比较符合设计预期,对颗粒材料余热回收技术具有工程指导价值。%Rich waste heat exists in the manufacturing process of solid granular ceramsite. But it is much more complex to determine heat transfer coefficient of a solid heat recovery system than liquid working medium. Combined with the research of a ceramic enterprise' s energy-saving project, studies are carried out to determine the heat trans- fer coefficient of granular material waste heat recovery system. The results roughly satisfy the anticipated design and have practical engineering value for the developing of the waste heat recovery technology of granular material.

  2. 热泵回收印染余热系统的设计及维护管理%Design and maintenance management of heat pump system for waste heat recovery

    Institute of Scientific and Technical Information of China (English)

    杨倩鹏; 吴静; 王福强; 史琳

    2013-01-01

    Huge amount of waste heat exists in printing and dyeing wastewater for its large rate of flow.Second stage heat pump system using medium-high and medium-low refrigerants is designed for waste heat recovery from printing and dyeing wastewater,aiming to provide heat for different printing and dyeing process.Meanwhile,the complex water quality of wastewater can cause severe fouling problem in heat exchangers of heat pump system.A fouling monitoring system is designed and relation between fouling and heat transfer is comprehensively analyzed in this study,by which the cleaning period can be predicted and cleaning strategies can be given.This study will provide the reference for waste heat recovery from printing and dyeing wastewater with fouling problem using heap pump system.%针对印染业的余热回收和节能减排,设计了中高温和中低温两级热泵系统,回收印染废水余热并回用于不同印染工序;针对印染废水水质较差,易在换热器表面形成污垢问题,进行了污垢与换热的综合分析和污垢监测系统设计,预测清洗周期并给出清洗建议.

  3. Energy saving and waste heat recovery within the refrigeration and cold storage sector in Lithuania. Final report for fact finding mission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This is the final report for the Fact Finding Mission, which is the first part of the demonstration project in Energy Saving and Waste Heat recovery within the Refrigeration and Cold Storage Sector in Lithuania. The purpose of this first part of the project, The Fact Finding Mission, is the identification and recommendation of one (possibly two) companies for implementation of a demonstration project. The recommendation is based partly on the strictly technical possibilities of implementation of a demonstration project within Energy Saving and Waste Heat Recovery, but also on the interest of the companies in the implementation of this type of measures as well as their possibilities of financing. The result of The Fact Finding Mission is a recommendation for the implementation of a demonstration project at the slaughtering and meat processing company `Taurage Maistas`, for which it is estimated that there are good possibilities of implementing measures for reduction of the energy consumption and utilisation of the generated waste heat. Also, the company is considered by the authorities to be a financially well functioning company. For examples a privatisation process has already been carried out and within a few years the company has turned a deficit to a profit and increased the turnover by approx. 33%. (EG)

  4. Reclaiming Waste Heat

    Science.gov (United States)

    1976-01-01

    'Air-O-Space' heater, based on spacecraft heat, requires no fuel other than electricity to run fan. Installed in chimney flue, heat pipes transfer heat from waste hot gases (but not the gases themselves) to fresh air blown across the other end of the pipes. It can transport roughly 500 times the heat flux of the best solid conductors with a temperature drop of less than 3 degrees per foot. This instrument has also been used by Kin-Tek Laboratories Inc. to produce an instrument to calibrate gas analyzers for air-pollution monitoring.

  5. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.M.

    1985-07-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced ''adiabatic'' diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum improvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  6. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  7. Optimization of the Changing Phase Fluid in a Carnot Type Engine for the Recovery of a Given Waste Heat Source

    Directory of Open Access Journals (Sweden)

    Mathilde Blaise

    2015-07-01

    Full Text Available A Carnot type engine with a changing phase during the heating and the cooling is modeled with its thermal contact with the heat source. In a first optimization, the optimal high temperature of the cycle is determined to maximize the power output. The temperature and the mass flow rate of the heat source are given. This does not take into account the converter internal fluid and its mass flow rate. It is an exogenous optimization of the converter. In a second optimization, the endogenous optimization, the isothermal heating corresponds only to the vaporization of the selected fluid. The maximization of the power output gives the optimal vaporization temperature of the cycled fluid. Using these two optima allows connecting the temperature of the heat source to the working fluid used. For a given temperature level, mass flow rate and composition of the waste heat to recover, an optimal fluid and its temperature of vaporization are deduced. The optimal conditions size also the internal mass flow rate and the compression ratio (pump size. The optimum corresponds to the maximum of the power output and must be combined with the environmental fluid impact and the technological constraints.

  8. 电力变压器余热回收可行性研究%The Power Transformer Waste Heat Recovery Feasibility Study

    Institute of Scientific and Technical Information of China (English)

    周诚; 吴秋敏

    2012-01-01

    The power transformer is one of the electrical power system equipments. If we can effectively full recovery utilize waste heat to power transformers, such as used to solve the electricity substation problem of water supply, the summer air-conditioning problems, winter heating problems. Not only can it greatly improve the substation on duty working conditions, but also it achieves effective energy efficiency measures. The power transformer waste heat recovery methods and economic viability is conducted in-depth analyses.%电力变压器是电力系统中主要的电气设备之一,如果能够有效地将电力变压器余热充分回收,用来解决电力变电站本身供水问题、夏季空调、冬季取暖,不仅能够大大改善变电站值班工作条件,而且还能够实现有效的节能。本文就电力变压器余热回收方法及经济可行性进行了深入的分析。

  9. Engine Waste Heat Recovery Based on Organic Rankine Cycle%基于有机朗肯循环的发动机余热回收技术

    Institute of Scientific and Technical Information of China (English)

    郭丽华; 覃峰; 陈江平; 刘杰

    2012-01-01

    Eight kinds of cycle media in organic Rankine cycle (ORC) were compared during the thermodynamic process. Considering the systemic, reliable and environmental factors, R245fa was the optimum selection for ORC. For the application of Cummins heavy duty vehicle engine, the power generation system with the waste heat recovery was designed. Recovering the heat from charge air, tail pipe gas and exhaust gas, the power generation was realized. The efficiency of waste heat recovery in the system was 10. 4%.%通过比较8种循环工质在有机朗肯循环(ORC)系统中的热力过程,从系统性能、可靠性、环保等角度综合考虑,验证了R245fa用于ORC循环工质的优势.以康明斯某重型车用发动机为应用目标,设计了一套余热回收发电系统,通过回收增压空气、尾管废气、发动机废气的热量,用于发电.经过计算,该系统的余热回收效率为10.4%.

  10. Application of Waste Heat Recovery Technology for Lime Shaft Kiln%白灰竖窑余热回收技术应用

    Institute of Scientific and Technical Information of China (English)

    李淑荣; 张岩峰

    2014-01-01

    Cast iron finned-tube radiator was adopted in the design with suitable fume flowrate, successfully solving the problem of waste heat recovery from higher dust content and lower temperature fumes of kilns and bringing significant economic and social benefits.%设计采用铸铁翼片管散热器,合理确定烟气流速,成功解决了炉窑类含尘浓度高温度相对较低烟气的余热回收问题,经济和社会效益显著。

  11. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  12. Waste Heat Recovery Technology for the Flue Gas of Hot Rolling Heating Furnace%热轧加热炉烟气余热回收利用技术

    Institute of Scientific and Technical Information of China (English)

    刘伟

    2014-01-01

    介绍一种热轧加热炉烟气余热回收利用技术的系统流程、工艺设计方案、主要参数及经济效益。利用这套技术将加热炉烟气潜在余热进行梯级高效利用,并通过生产实践证明,达到了理想的应用效果。%The systematic process, technological design, main parameters and economic benefits of the waste heat recovery technology for the flue gas of hot rolling heating furnace are introduced.Potential waste heat from the heating furnace flue gas was efficiently utilized in a cascade model through adopting the technology, the ideal effect of which has been proved by production practice.

  13. 沙钢2×360m2烧结机余热回收系统技术改造%Reconstruction of Sintering Waste Heat Recovery System

    Institute of Scientific and Technical Information of China (English)

    贺飞; 李坤

    2014-01-01

    介绍了沙钢6号、7号360m2烧结环冷机余热废气回收系统以及环冷机密封系统改造,改造后余热回收蒸汽产量大幅提升,创造良好的生产效益。%The transformation of sealing system of Shagang No.6,No.7 360m2 Sintering circular cooler waste heat and waste gas recovery system is introduced,after the transformation of waste heat recovery steam production is significantly improved,to create a good production efficiency.

  14. Electronic waste disassembly with industrial waste heat.

    Science.gov (United States)

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  15. Rational use of energy via heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Groscurth, H.M. (Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER), Stuttgart Univ. (Germany))

    1992-01-01

    The linear, stochastic optimization model ECCO has been developed as a computerized planning tool for case studies on integrated energy management involving heat recovery by heat exchanger networks, heat pumps and cogeneration. The procedure of stochastic optimization is described in detail. For a model city, which consists of three districts with together nearly 20,000 inhabitants and 4 industrial companies, we obtain the following results: Via heat recovery and cogeneration, the primary energy input into the energy system of the model city may be reduced by 25% compared to a status quo scenario. At the same time, the CO[sub 2]-emissions are reduced by 31% with some fuel switching from coal to natural gas being involved. Introducing waste heat recovery and cogeneration into the model city at the current low energy price level would increase the cost of the energy system by at least 41% with respect to the status quo. (orig./BWI)

  16. 采用热泵技术回收工业循环水余热%Recovery of Waste Heat from Industrial Circulating Water Using Heat Pump

    Institute of Scientific and Technical Information of China (English)

    闫晓燕

    2014-01-01

    如何利用工业余热,特别是30~50℃低温余热,是行业内普遍关注的问题,热泵技术在这方面具有很大潜力,是一项值得推广的节能技术。介绍了太钢自备电厂采用热泵技术回收工业循环水余热的方案与效℃计算。%It has been an issue of common concern in the steel sector to recover indus-trial waste heat, especially 30-50℃ low temperature waste heat. With great potential in this field the heat pump is of an energy saving technology deserving promotion. The project of recovering waste heat from industrial circulating water using heat pump technology at the self-supply power plant of Taiyuan Steel is introduced and economic benefit of the project is calculated as well.

  17. A research on thermoelectric generator's electrical performance under temperature mismatch conditions for automotive waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Z.B. Tang

    2015-03-01

    Full Text Available The thermoelectric generators recover useful energy by the function of thermoelectric modules which can convert waste heat energy into electricity from automotive exhaust. In the actual operation, the electrical connected thermoelectric modules are operated under temperature mismatch conditions and then the problem of decreased power output causes due to the inhomogeneous temperature gradient distribution on heat exchanger surface. In this case study, an individual module test system and a test bench have been carried out to test and analyze the impact of thermal imbalance on the output electrical power at module and system level. Variability of the temperature difference and clamping pressure are also tested in the individual module measurement. The system level experimental results clearly describe the phenomenon of thermoelectric generator's decreased power output under mismatched temperature condition and limited working temperature. This situation is improved with thermal insulation on the modules and proved to be effective.

  18. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  19. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... and otherwise highresource demands, which through conventional methods cannot be addressed. The global optimal designwas a 1.2MW cycle with 2,2,3,3,4,4,5,5-octafluorohexane as the new fluid. The fluid has no ozone depletionpotential and a global warming potential under the regulatory limit. By using...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  20. Waste Heat Recovery and Utilization of Copper Smelting Flash Smelting and Flash Converting Process%铜冶炼"双闪"工艺中余热回收及利用

    Institute of Scientific and Technical Information of China (English)

    鞠霞

    2015-01-01

    Based on upgrading and renovation engineering of a certain non-ferrous copper smelting process technology, the paper discusses flue gas heat waste recovery efficiency and waste heat recovery device of flash smelting furnace, flash converting furnace in copper smelting flash smelting and flash converting process, introduces waste heat utilization system, and puts forward advantages and disadvantages of the waste heat utilization system.%基于某有色铜冶炼工艺技术升级改造工程,论述了铜冶炼"双闪"工艺中闪速熔炼炉、闪速吹炼炉烟气余热回收效率及余热回收装置,介绍了余热利用系统,并指出该余热利用系统的优缺点.

  1. 冷热电三联供系统中的余热回收应用分析%Application of Waste Heat Recovery in CCHP System

    Institute of Scientific and Technical Information of China (English)

    张丹汝; 沈致和; 杜易杰; 赵静

    2014-01-01

    There is a lot of waste heat in CCHP system driven by gas engine, including the heat of jacket water cooling system and the smoke after power generation. The value and the feasibility of heat recycling are analyzed with the example of a Textile Industrial Park in Anhui Province. The waste heat recovery in CCHP system not only reduces the environmental pollution, but also achieves the goal of high-efficient, economic, reasonable and adequate use of energy.%以燃气内燃机驱动的冷热电三联供系统运行过程中存在大量低温余热,主要有缸套水余热和烟气余热。通过对安徽省某纺织工业园的实例进行计算分析,分析了这两部分热量的价值性和用于回收再利用的可行性,结果表明系统余热回收的再利用,不仅降低了环境污染,同时,达到了高效、经济、合理、充分利用能源的目的。

  2. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Amin Mahmoudzadeh Andwari

    2017-07-01

    Full Text Available In this study the influence of utilization of two Waste Heat Recovery (WHR strategies, namely organic Rankine cycle (ORC and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power in terms of Brake Specific Fuel Consumptions (BSFC at various engine speeds and Brake Mean Effective Pressures (BMEP. The model of a 6-cylinder turbocharged engine (Holset HDX55V was calibrated using an experimental BSFC map to predict engine exhaust thermodynamic conditions such as exhaust mass flow rate and exhaust temperature under various operating conditions. These engine exhaust conditions were then utilized to feed the inlet conditions for both the ORC and turbocompounding models, evaluating the available exhaust energy to be recovered by each technology. Firstly the ORC system model was simulated to obtain the power that can be generated from the system. Having this additional power converted to useful work, the BSFC was observed to reduce around 2–5% depending upon engine’s speed and BMEP. The initial model of the engine was then modified by considering a second turbine representing turbocompounding heat recovery system. The BSFC was increased due to the back-pressure from the second turbine, but the energy generated from the turbine was sufficient to reduce the BSFC further. However, by application of turbocompounding no improvement in BSFC was achieved at low engine’s speeds. It is concluded that ORC heat recovery system produces a satisfactory results at low engine speeds with both low and high loads whereas at medium and high engine speeds turbocompounding heat recovery system causes higher BSFC reduction.

  3. 转炉烟气余热回收系统工艺设计%Process Planning of Flue Gas Waste Heat Recovery System in Converter

    Institute of Scientific and Technical Information of China (English)

    江文豪; 姚群

    2014-01-01

    The recovery system can fully recover the waste heat resources of flue gas in converter, and produce steam that can be used, thus obtain remarkable economic benefit. The process planning of flue gas waste heat recovery system of a certain 120t converter has been introduced. Since the system put into operation, the whole production process is stable, and all indicators can reach the design requirements.%转炉烟气余热回收系统将转炉烟气的余热资源充分回收,使之转化为可以利用的蒸汽,经济效益显著。介绍了某钢铁厂120 t转炉烟气余热回收系统的工艺设计要点。该系统自投运以来,整个生产过程运行稳定,各项指标均达到设计要求。

  4. 攀长特公司70t电炉余热回收%Waste Heat Recovery of 70t EAF of Pangang Group Changcheng Steel Company

    Institute of Scientific and Technical Information of China (English)

    董晖

    2013-01-01

    以攀钢集团江油长城特殊钢有限公司连铸项目余热回收工程为例,研究了攀长特公司70t电炉余热资源回收利用系统采用的节能技术、节能设备和节能方法,在此基础上计算了该工程所产生的社会和经济效益。通过攀长特公司70t电炉余热回收工程所产生的经济效益及社会效益,为攀长特公司节能降耗、提高产品竞争力指明了方向。%With the waste heat recovery project of the continuous casting line of Pangang Group Jiangyou Changcheng special steel Co.,Ltd. as an example, the waste heat recovery and utilization of 70t EAF system using energy-saving technologies, energy-saving equipment and energy-saving method was studied. In addition, the social and economic benefits generated by the project were calculated. According the generated economic and social benefits of the project, the direction of saving energy and improving the competitiveness of products was pointed out .

  5. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  6. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  7. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  8. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  9. 吸收式热泵回收高炉软水低温余热供热探讨%Low-temperature waste heat recovery of blast furnace using absorption heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    周春丽; 王治国

    2014-01-01

    Characteristic of closed loop soft water cooling system of blast furnace was introduced .Ab-sorption heat pump was used to recover low -temperature waste heat recovery of soft water out of BF . The technology is feasible with considerable economic benefits , social benefits and environmental bene-fits.Meet the heating demand of iron and steel enterprises in north area with less steam consumption as well as to supply civil heating nearby with extra capacity .%分析了高炉软水密闭循环冷却系统特点,采用吸收式热泵技术回收高炉软水低温余热用于采暖。技术上可行,经济、社会效益和环境效益显著。既满足北方钢铁企业自身采暖需求,又缓解北方钢铁企业冬季蒸汽紧张的局面,富裕热量还可外供附近市政采暖。

  10. Possibilities of energy recovery from municipal waste

    National Research Council Canada - National Science Library

    Vladimír Lapčík; Marta Lapčíková

    2012-01-01

    The article summarizes possibilities of energy recovery from municipal waste. It describes the history of incineration and energy recovery from municipal waste in Czechoslovakia and then in the Czech Republic...

  11. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  12. Polymer Materials for the Heat Recovery

    Science.gov (United States)

    Kolasińska, E.; Kolasiński, P.; Mazurek, B.

    2016-02-01

    Many of the processes in the industry, agriculture and microscale systems are associated with the waste heat generation, which often may be a menace or lower the efficiency of the processes. The thermoelectric cooling is becoming increasingly popular and gives the possibility to convert waste heat into electricity. The current thermoelectric cooling solutions are based on alloy materials. However, the new technologies pay attention to the environment burden, moreover the regulations of the production and recycling are becoming more and more restrictive. Conducting polymers are thermoelectrically active at low temperatures, cheap and environmentally safe. In this paper authors discuss the possibility of the application of conducting polymers for the heat recovery. Due to the operating temperature range and different nature of the waste heat sources, polymers might be an interesting solution and a complement for alloy-based thermoelectric materials. The character and nature of the formation of waste heat sources and conventional technologies of its recovery are also described in this paper. Moreover the advantages of thermoelectric cooling with the use of polymers are presented and two materials based on polyaniline are proposed.

  13. 宝钢不锈钢公司余热余能利用探索与实践%Waste Heat & Waste Energy Recovery Exploration and Practice in Baosteel Stainless Company

    Institute of Scientific and Technical Information of China (English)

    金周

    2014-01-01

    This article introduces the current situation on recovery and reuse of waste heat and energy in Baosteel stainless steel Iron & Steel Group. Based on the analysis of the present problems and Industry benchmarking,raises The total resources of open source in thewastelheat ,existing problems of rational and effective utilization of waste heat and energy and sustainable development, Practice and application of advanced technology.%以宝钢不锈钢有限公司余热余能资源回收利用工作实践为切入点,在深入总结和现状分析及行业对标前提下,提出了在余热余能资源总量开源、合理与高效利用、深度和前沿技术应用等方面拓展思路和观点。

  14. Energy saving in the baking industry by more selective use of energy and by recovery of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, L.; Nieman, W.; Rouwen, W.

    1986-01-01

    Approximately 7000 Tj energy are used yearly by the bakery industry in the Netherlands. Until now, very little is known about energy use in this sector, this being partly due to the extremely decentralised production. The aim of the study is to pinpoint and evaluate methods for energy saving and heat recovery in the bakery. Priority was given to the procedures or places where a large amount of energy is used or is lost. A second important part of the study is to identify the situations where energy can easly be saved in very simple ways. The study was subsidised by the European Economic Community, the Industry group for bakeries and the Dutch Ministry for Economic Affairs. Monitoring was in the hands of a committee, with representation by the Nederlandse Bakkerijstichting (Dutch Bakery Organisation), the Stichting Voorlichting Energiebesparing Nederland (Organisation for Information about Energy Conservation), the Ministry of Agriculture/Fisheries and the Ministry of Economic Affairs.

  15. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  16. District heating by radiant heat recovery from cement kilns

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Salini, Paolo [University of L' Aquila, Monteluco (Italy). Dept. of Mechanical, Energy and Management Engineering]. E-mail: caputo@ing.univaq.it; palumbo@ing.univaq.it; pelmar@ing.univaq.it; salini@ing.univaq.it

    2008-07-01

    Heat loss from rotary kilns may represent a significant percentage of the total energy input especially in high energy-intensive industrial sectors such as cement production. In this paper the technical and economic feasibility of recovering radiant heat lost through the kiln surface, by means of a secondary external shell acting as a heat exchanger for a transfer fluid, is evaluated for district heating purposes. At first the system architecture is outlined and a technical and economical model addressing both the performances and cost estimation for the heat exchanger and the district heating network is developed. Subsequently, a parametric profitability analysis is carried out with reference to some relevant parameters characterizing the available recoverable waste heat and the size of the heat distribution network, namely the distance between kiln and user area and extension of the district heating network. This is made to obtain a mapping of the conditions were the proposed heat recovery system is economically feasible. In the paper it is demonstrated that the relevant heat consumption of cement production may make the district heating option for heat recovery a viable one even in case of low density of inhabitants in the surroundings of the plant. Furthermore significant fuel savings and emission reductions are achieved respect the adoption of traditional residential boilers. author)

  17. Study on Waste Heat Recovery Technology of Marine Diesel Engine%船舶柴油机余热利用技术研究

    Institute of Scientific and Technical Information of China (English)

    吴安戾; 周伟中

    2012-01-01

    介绍了国内外船舶柴油机余热利用技术研究现状;设计了柴油机余热利用系统,并对系统的性能和经济性进行了计算和分析。结果表明,该余热利用系统可回收相当于主机功率12.5%的电能,余热利用系统热效率提高6.03%,虽然增加了投资成本,但可在三年内收回。%The status of waste heat recovery technology (WHR) of marine diesel engine both home andabroad is introduced. A WHR system was designed to recover the waste heat from a marine diesel engine, and the performance calculations and economical analysis were carried out. The results show that approx 12.5% engine power can be recovered through using WHR system, and the thermal efficiency of WHR system increases about 6.03%. Though using WHR system may lead to extra investment costs, but it could be paid back within 3 years.

  18. 烧结余热回收控制系统设计%Design of Sintering Waste Heat Recovery Control System

    Institute of Scientific and Technical Information of China (English)

    王威

    2015-01-01

    According to the characteristics of the waste heat boiler, the waste heat recovery control system that the paper designs completes the deaerator and the boiler feed water pump frequency conversion control and electric control valve of automatic control, deaerator water level and temperature display and control,three steam generator inlet gas temperature,deaerator feed water pressure, lfow,drum water level,pressure,superheated steam outlet pressure, lfow, temperature display,and the drum water level control.%针对余热锅炉的特点,文章设计的余热回收控制系统完成了除氧器和锅炉给水泵变频控制及电动调节阀的自动控制,完成除氧器水位、温度的显示及控制,3个蒸汽发生器的入口废气温度,除氧器给水压力、流量,汽包水位、压力,过热蒸气出口压力、流量、温度的显示,及汽包水位的控制。

  19. Design and Use of Waste Heat Recovery Unit for Comprehensive Waste Combined Combustion Furnace%三综合混炉热回收装置的设计与应用

    Institute of Scientific and Technical Information of China (English)

    鲍剑

    2011-01-01

    An introduction is given to the technological principle, process flow and special technological features of the waste heat recovery unit for the comprehensive waste combined combustion furnace, and relevant suggestions and opinions are given for its promotion and use. The use of this furnace makes possible the recovery of waste residue formed in production, waste ash from the dust collector, and purge from synthesis, and the economic and environmental benefit is remarkable.%介绍了三废综合混燃炉余热回收系统的技术原理、工艺流程和技术特点,对该技术的推广与应用提出了相关的建议与意见.应用三废综合混燃炉,可以回收生产中产生的废渣、集尘器中的废灰及合成弛放气等,经济和环保效益显著.

  20. Design of the Secondary Heat Exchange Device for Waste Heat Recovery of Air Compressor%空压机余热回收二次换热装置的设计研究

    Institute of Scientific and Technical Information of China (English)

    岳畏畏; 陈雷田; 徐新恒; 赵新红

    2013-01-01

    随着能源紧张与环境污染等问题的出现,余热回收利用技术变得尤为重要。在余热回收技术领域中,喷油螺杆式空压机余热回收越来越受重视。余热回收装置作为空压机余热回收技术中较为重要的设备,对其进行设计研究很有必要。通过理论计算,集成了对应160 kW喷油螺杆空压机的余热回收二次换热装置,该装置可实现油温自动控制,并有效降低板换结垢的风险,对其进行热回收特性实验研究,结果表明在一次侧进出口水温70℃/50℃、二次侧进出口水温45℃/60℃工况下,热回收能量为99.85 kW,高于空压机额定功率的50%。为空压机余热回收系统设计提供参考依据,对系统施工安装起到了一定的促进作用。%The waste heat recycling technology is particularly important with the emergence of energy tension and environmental pollu-tion. The heat recovery of injection screw air compressor is more and more crucial in the waste heat recovery technology field, so it is neces-sary to research waste heat recovery device. Through the theoretical calculation, integrating the waste heat recovery of secondary heat exchange device on the injection screw air compressor with the corresponding power is 160kw. The device can realize the automatic control of oil tem-perature; meanwhile, it also can effectively reduce the risk of plate in scaling. Results from the experimental research on the heat recovery characteristics show that in the condition of import and export water temperature is 70℃/50℃ of the primary side, or import and export water temperature is 45℃/60℃of the secondary side, the heat recovery power is 99.85kW. It is higher than 50% of the air compressor power rating. This paper provides reference for air compressor heat recovery system design and also plays a certain role in promoting the system installation.

  1. PVDF 换热器在工业余热回收中的应用分析%Application of PVDF Heat Exchanger in Industrial Recovery of Waste Heat

    Institute of Scientific and Technical Information of China (English)

    赵国春; 孙金栋; 李丹丹; 魏晨晨

    2015-01-01

    The research progress of heat exchanger of plastics is introduced briefly, and the heat transfer performance of PTFE heat exchanger and PVDF heat exchanger are analyzed. PVDF has the better machine-finishing performance than PTFE. Application of PVDF heat exchanger in industrial recovery of waste heat is expounded emphatically, with conclusion that it has more excellent performance compared with metal heat exchanger. Influencing factors of the total heat transfer coefficient of PVDF heat exchanger are presented. The wall resistance is the main influencing factor, which can use small diameter and thin-walled tubes in order to reduce the effect of thermal resistance of pipe wall.%简要介绍了塑料换热器的研究进展,对 PTFE 换热器和 PVDF 换热器性能进行了分析,PVDF比 PTFE 具有更好的机械加工性能。着重分析了 PVDF 换热器在工业余热回收方面的应用,相比金属换热器具有更加优异的性能。分析了 PVDF 换热器总传热系数影响因素,管壁热阻是主要影响因素,可以采用小管径薄壁管减少管壁热阻的影响。

  2. Comparative Analysis of the Technology of Waste Heat Recovery Systems of Engine%发动机废气余热利用技术的对比分析

    Institute of Scientific and Technical Information of China (English)

    马俊达; 卢小锐; 黎苏

    2011-01-01

    The existing situation of the techniques used in car about recycling the exhaust energy is analyzed.The paper introduces the characteristics of waste heat recovery systems and shows the basic structure of waste heat recovery system. To waste heat refrigeration technology and waste heat electric-power generation technology parameters and the characteristics of the system are compared respectively. According to two kinds of technology in a common problem, put forward the key technologies of waste heat recovery.%简单分析了目前汽车余热利用技术的现状。介绍了余热回收系统的特征,展示了各种余热回收系统的基本结构。分别对余热制冷技术和余热发电技术的系统参数和结构特征进行了对比。根据两种技术存在的共同问题,提出了推动余热利用发展的关键技术。

  3. Optimization Analysis of Waste Heat Recovery and Utilization Plan of Industrial Gas%工业烟气余热回收利用方案优化分析

    Institute of Scientific and Technical Information of China (English)

    罗先辉

    2015-01-01

    The waste heat resource of our country is rich, but the waste heat recovery efficiency is not high, and the flue gas waste heat energy saving energy use potential is huge. Taking the waste heat recovery and utilization of industrial flue gas as the research object, the optimization of the waste heat recovery and utilization of industrial gas is analyzed, and it is hoped that it can provide reference for the related research field.%我国工业余热资源较为丰富,但是余热的回收利用效率不高,其中烟气余热的节能利用潜力巨大。以工业烟气余热回收利用为研究对象,对工业烟气余热回收利用方案优化进行了分析,希望能为相关研究领域提供借鉴。

  4. 船舶主机余热利用技术探究%Research on Marine Main Engine Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    孙长江; 张金钊

    2015-01-01

    阐述了船舶余热利用必要性,并通过介绍船舶主机余热回收利用的主要技术手段,结合MAN公司大功率低速船用柴油机加装余热利用装置的经济性分析,探究我国船舶主机余热回收利用的可行性。%This paper expounds the importance of marine main engine waste heat recovery and introduces the main technology of WHR. By making economic analysis for the MAN’s high-power low-speed Marine main engine with WHR equipment, the feasibility of main engine with WHR in our country is explored.

  5. Practices of Energy Conservation of the Waste Heat Recovery Device in Baosteel N(o)4 Blast Furnace%宝钢4号高炉余热回收系统节能实践

    Institute of Scientific and Technical Information of China (English)

    朱勇军; 杨俊; 王训富; 李有庆

    2012-01-01

    To lower energy consumption,the heat energy was recovered by using separate-type heat pipe heat exchanger from the waste heat of hot blast stove in Baosteel N04 Blast fumace.It played an important role in raising the blast air temperature,saving energy and decreasing emission since the waste heat recovery device for hot blast stove of Baosteel N04 blast furnace Was put into operation more than 5 years ago.The effect of the waste heat recovery of Baosteel No4 blast furnace on the blast air temperature and energy consumption Was quantified.The effect of the waste heat recovery device before and after remoulding WaS analyzed and the failure reason of the waste heat recovery Was discussed and improvement measures were proposed.%为了节能降耗,宝钢4号高炉热风炉余热采用分离热管式换热器回收热能.宝钢4号高炉热风炉余热回收装置投入运行5年多来,对提高高炉风温、节能减排起到重要作用.量化了宝钢4号高炉余热回收对高炉风温和高炉能耗的影响,对余热回收改造前后的效果进行了分析,同时对余热回收失效原因和改进措施进行了探讨.

  6. Status and potential of waste heat recovery from sinter cooler exhaust in Baosteel%宝钢烧结冷却废气余热回收现状与潜力

    Institute of Scientific and Technical Information of China (English)

    周茂军; 鲁健; 应风晔; 张代华

    2011-01-01

    阐述了宝钢股份烧结工序冷却废气余热回收的发展和现状,介绍了宝钢烧结实行废气余热回收的有效措施.为最大限度回收废气余热,降低烧结工序能耗,分析了进一步提高烧结废气余热回收水平的潜力,提出了相应技术思路.%Describes the status and potential of sinter cooler exhaust waste heat recovery, as well as the effective measures that have already taken for that purpose in Baosteel.To maximize the recovery of waste heat and reduce the energy consumption in sintering process, the potential for a further heat recovery form sintering exhaust was analyzed and the corresponding technical strategies were presented.

  7. A Probe into the Waste Heat Recovery Technology of Sinter Tail Flue at a Steelmaker%某钢厂烧结机大烟道余热回收技术探究

    Institute of Scientific and Technical Information of China (English)

    胡建红

    2015-01-01

    The waste heat recovery technology of sinter tail flue has entered a stage of rapid development of practical application. In this paper the waste heat recovery and utiliza-tion project of sinter flue at some steel plant is investigated in depth, and the design princi-ple and attention points in designing of the waste heat recovery project are presented, to pro-vide guidance for design and operation of waste heat recovery of sinter tail flue.%烧结机大烟道余热回收技术已进入实际应用快速发展期。深入探讨了某钢厂烧结机大烟道余热回收利用项目,阐述了大烟道余热回收设计中的设计原则和注意事项,以期为烧结机大烟道余热回收的设计、运行提供指导。

  8. 纸机干燥部余热回收技术与设备(续)%Technology and Equipment of Waste Heat Recovery in Dryer Section of Paper Machine (Continuous)

    Institute of Scientific and Technical Information of China (English)

    张秀文

    2012-01-01

    Some waste heat recovery technology and equipment used in dryer section of paper machine at home and abroad were introduced in this paper.%介绍一些国际、国内余热回收技术和设备,供同行分析、研究和借鉴.

  9. Boiler Stack Gas Heat Recovery

    Science.gov (United States)

    1987-09-01

    recover about 17 million Btu/hr. The fact that the exhaust gas was loaded with fiber made the spray recu- perator a prime candidate since it could also wash... properties of water, heating feedwater is more effective than heating air. Research in heat-recovery material technology has identified materials which are...and Acidic fluids up to 180 OF. Piping Fans and Blowers 350 OF flue gas. Scrubbers 300 to 350 OF bagasse flue gas, trash burner flue gas. Electrostatic

  10. Heat recovery from ground below the solar pond

    NARCIS (Netherlands)

    Ganguly, S.; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    The method of heat recovery from the ground below solar ponds is investigated in the present brief note. Solar ponds lose considerable amount of heat from its bottom to the ground due to temperature gradient between them. This waste heat from ground, which is at different temperature at different

  11. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  12. 基于MATLAB软件的蒸汽锅炉连续排污余热回收设计%Process Design of Waste Heat Recovery in Continuous Blowdown of Steam Boiler Based on MATLAB Software

    Institute of Scientific and Technical Information of China (English)

    刘舒佳; 关文吉; 刘伟; 冯圣红; 孙晓禹

    2016-01-01

    An energy-saving scheme is proposed to solve the waste heat and water resources in continuous blowdown of steam boiler. Matlab software is utilized to design calculation program for heat exchanger in heat recovery of steam boiler's continuous blowdown because of the complex problems in heat recovery design. Iterative methods are applied to obtain the heat gain of the deaerated water tank and softened water tank respectively. The heat exchange area of heat exchanger is calculated and investigated in different ways in the process of the waste heat recovery. The optimal plan for calculating heat exchange area is selected with comparison and analysis. The energy saving effect of the continuous waste heat recovery scheme for steam boiler is analyzed and calculated.%为解决蒸汽锅炉连续排污余热回收过程中废热及水资源浪费的问题提出一种节能方案.针对蒸汽锅炉连续排污余热回收过程中换热器设计计算较为复杂的问题,运用Matlab软件就蒸汽锅炉连续排污余热回收过程中换热器的设计计算编写程序,使用迭代的方式得出除氧水箱与软化水箱的分别得热量,探讨以不同的方式计算余热回收过程中换热器换热面积的问题;对比分析换热面积计算的2种方法,选取较优方案.分析计算提出的蒸汽锅炉连续排污余热回收方案的节能效果.

  13. A Discussion on the Application of Waste Heat Recovery Technology in Anyang Steel%安钢焦化余热回收技术应用与探讨

    Institute of Scientific and Technical Information of China (English)

    李铜林

    2013-01-01

    结合安钢焦化75 t/h、140 t/h、190 t/h干熄焦技术的应用及余热回收利用情况,对利用干熄焦、煤调湿等技术回收焦化余热进行探讨,提出了对焦化焦炭、荒煤气和炼焦烟道废气余热回收利用的技术思路。%Utilizing coke dry quenching (CDQ) and coal moisture control processes to recover coking waste heat is discussed in light of the practical application of 75 t/h, 140 t/h, 190 t/h CDQ technology and waste heat recovery in the coking plant of Anyang Steel. Tech-nical ideas on the recovery of coke, raw gas and waste flue gas are presented.

  14. 高炉冲渣余热回收的试验研究与利用分析%Experimental Investigation of Waste Heat Recovery of Blast Furnace Slag Water and Utilization

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The current situation and problems in waste heat utilization of blast furnace slag water are overviewed. In terms of the characteristics of waste heat of the blast furnace slag water, a detailed determination and theoretical analysis and calculation of energy has been made. The small scale tests have been conducted. The comparison of the theoretical calculation and test results indicates that the waste heat recovery of the slag water is feasi-ble. The first-hand test data lay the foundation for the waste heat recovery of the slag water and recovery of low quality steam in later stage.%  概述了目前高炉冲渣水余热利用的现状和存在的问题。根据高炉冲渣水余热的特点,进行了详细的能源诊断和理论分析计算,并进行了小规模的试验研究。通过理论计算和试验研究的对比,验证了高炉冲渣余热回收的可行性,获得了第一手的试验数据,为后期高炉冲渣余热回收和低品质蒸汽的回收奠定了基础。

  15. 锅炉烟气余热回收的节能改造实践%Practice of Transformation of Energy-saving Boiler Flue Gas Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    戴铭

    2014-01-01

    对上海印钞有限公司蒸汽锅炉的烟气余热回收节能改造项目进行效益分析,结果显示锅炉烟气余热回收可以提高热能利用率,降低排污量,并带来比较可观的经济效益。%This paper analyzes the transforms efficiency of flue gas waste heat recovery energy-saving renovation project of steam boiler in Shanghai banknote printing co., ltd.And the result shows thatthe boiler flue gas waste heat recovery can improve the utilization rate of heat energy, reduce emissions, and brings considerableeconomic benefit.

  16. 环冷机密封对烧结余热回收效率影响的研究%Research on Annular Cooler Sealing Influence to Sinter Waste Heat Recovery Efficiency

    Institute of Scientific and Technical Information of China (English)

    徐启明; 兰军鹏; 石伟丽; 高慧文; 顾铮

    2014-01-01

    Take two completely identical sintering machine waste heat recovery systems as testing platform to research the annular cooler sealing influence on sintering waste heat recovery system .The testing result shows that the annular cooler sealing improvement can reduce annular cooler air leakage rate and increase fume volume as well as reducing the fume temperature .However , when the annular cooler blast volume reach certain level , the improve-ment of annular cooler sealing will decrease the waste heat recovery efficiency .The reason is that when the annular cooler blast volume increase , the heat taken from the sinter ore by air will reach limit value and become stable , but the boiler flue gas loss will keep increasing , finally the waste heat recovery system recovery efficiency will decrease .%以两套完全相同的烧结机余热回收系统为测试平台,研究了环冷机密封对烧结余热回收系统的影响。测试结果表明,环冷机密封的改善降低了环冷机漏风率,提高烟气量、同时降低烟气温度。在环冷机鼓风量达到某一特定值时,通过改善环冷机密封反而降低了余热回收效率。这主要是因为环冷机鼓风量增加时,空气从烧结矿中带走的热量会达到一个极限值并趋于稳定,而锅炉的排烟损失始终增加,最终导致余热回收系统的回收效率降低。

  17. Agricultural uses of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Pile, R.S.; Behrends, L.L.; Burns, E.R.; Maddox, J.J.; Madewell, C.E.; Mays, D.A.; Meriwether, J.

    1977-11-16

    A major concern of the Tennessee Valley Authority is to ensure efficient use of Tennessee Valley resources in achieving optimum economic development without degrading the environment. As part of this effort, TVA is exploring many uses for waste heat. Activities to develop ways to use waste heat in agricultural production are described. Primary objectives are to: (1) identify potential agricultural uses of waste heat, (2) develop and test technologies and management criteria for more productive uses, (3) demonstrate technologies in commercial-scale production facilities, and (4) provide technical assistance for commercial application. Waste heat research and development projects under investigation or being planned by TVA independently or cooperatively include: (1) controlled environment greenhouses, (2) biological ecycling of nutrients from livestock manures, (3) soil heating and irrigation, and (4) environmental control for livestock housing. (MHR)

  18. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  19. Process integration and waste heat recovery in Lithuanian and Danish industry. Case study: Dairy `AB Kupiskio Pienas`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The dairy `Kupiskio pienas` in Lithuania is a medium size dairy in the Lithuanian scale, but is considered a small dairy in Denmark. An analysis of most energy consuming processes has been carried out. The total consumption of raw milk is aprox. 40,000 tons per year, and 90% is used in milk powder and butter production. The milk powder outcome makes a total of 47 weight percentage of the final products. The average amount of incoming raw milk for each of MD Foods 45 production units in Denmark is 70,000 tons/year, and 15 wt. % of the final product is milk powder. 7 out of the 45 units are separated for different kinds of milk powder production. Kupiskis dairy is characterised by a large consumption of water for cleaning and cooling purposes, by relatively new equipment, and by a significant variation in the production during the year. The heat is supplied from the district heating plant as steam. Heat (GJ/year) 53,000 - Water (m{sup 3}/year) 200,000. Of this, 9,000 GJ/year is used for heating of buildings. The energy target (including heating of buildings) found by Pinch analysis is: Heating demand, Pinch Target (GJ/year) 33,600 - Pinch Target (MJ/ton) 840. Cooling demand, Pinch Target (GJ/year) 800 - Pinch Target (MJ/ton) 20. If the demand for heating of buildings is excluded of the analysis, the key figure will be close to 600 MJ/ton of raw milk. (au)

  20. Overview of waste heat utilization systems

    Science.gov (United States)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  1. 50t炼钢电弧炉烟气余热回收系统的设计应用%The Design and Application of Flue Gas Waste Heat Recovery System for 50 t Steelmaking EAF

    Institute of Scientific and Technical Information of China (English)

    陶务纯; 杨波; 朱宝晶; 王宝

    2012-01-01

    以电弧炉炼钢过程烟气余热的回收利用及烟气净化除尘为主线,以热管蒸发器为换热元件,合理控制烟气流速,解决高温烟尘的沉降和蒸发器热管灰堵以及烟气温度波动大的难题,完成了50t电弧炉烟气余热回收净化系统设计与施工.对电弧炉炼钢过程中所产生的高温烟气直接进行余热回收,满足电弧炉炼钢流程VD真空处理对蒸汽的需求,实现了高温烟气余热回收利用和环境净化,为国内电弧炉节能降耗和清洁生产进行了有益的探索.%Taking the flue gas waste heat recovery utilization and flue gas cleaning dusting in the EAF steelmaking process as main line and taking heat pipe evaporator as heat transfer element and reasonable control flue gas flow rate, the high temperature dust precipitation and evaporator heat pipe ash plugging and large flue gas temperature fluctuation etc problem were fully solved. The design and construction of flue gas waste heat recovery cleaning system for 501 EAF were completed. High temperature flue gas waste heat produced by EAF under steelmaking process was directly recovered, in order to meet the needs of steam under the VD steel making. Thus high temperature flue gas waste heat recovery utilization and environmental cleaning were realized. For the purpose of energy saving and consumption reducing and clean production in domestic EAF, above-mentioned helpful discussion was carried out.

  2. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization...... variables are the working fluid, the turbine inlet pressure and temperature, the condensing temperature, the pinch points and the fluid velocities in the heat exchangers. The optimization process also includes the complete design of the shell and tube heat exchangers utilized in the organic Rankine cycle...

  3. Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine

    OpenAIRE

    Wenzhi Gao; Wangbo He; Lifeng Wei; Guanghua Li; Ziqi Liu

    2016-01-01

    In this paper, a Rankine cycle test system is established to recover exhaust energy from a 2.0 L gasoline engine. Experiments on the system’s performance are carried out under various working conditions. The experimental results indicate that the recovery power of the expander is strongly related to the load and speed of the gasoline engine. It is found that when the output power of the gasoline engine is 39.8–76.6 kW, the net power of the expander is 1.8–2.97 kW, which is equivalent to 3.9%–...

  4. Process integration and waste heat recovery in Lithuanian and Danish industry. Case study: Chocolate factory `Kraft Jacobs Suchard`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Kraft Jacbobs is a manufacturer of chocolate. The company is planning investments in order to improve the quality and to increase the production. In this connection they are interested energy savings, in reduction of the sewerage, and in the possibilities of water treatment. The investigation has focused on improvement of the utility system and has therefore not been a real process integration study. The existing needs for cooling and heating in the process have been used in the optimisation. The report indicates that it is possible to save up to 50% of the cold water consumption mainly by building a closed water cooling system and by simple renovation. As much as 40% reduction on the heating cost for processes may be possible by changing parameters, insulation, renovation, and automation. The total annual saving will be about 900,000 Litas if all proposals are implemented. (au)

  5. Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Wenzhi Gao

    2016-11-01

    Full Text Available In this paper, a Rankine cycle test system is established to recover exhaust energy from a 2.0 L gasoline engine. Experiments on the system’s performance are carried out under various working conditions. The experimental results indicate that the recovery power of the expander is strongly related to the load and speed of the gasoline engine. It is found that when the output power of the gasoline engine is 39.8–76.6 kW, the net power of the expander is 1.8–2.97 kW, which is equivalent to 3.9%–4.9% of the engine power. The performance simulation shows that the mass flow rate, power output, and isentropic efficiency of the piston expander are directly determined by the intake valve timing. Selecting a suitable intake valve timing can optimize the performance of the expander. The simulation results show that a 1 kW increment in power can be obtained only by selecting an optimum intake open timing. The experimental results further verify that the single-valve piston expander, because of its small dimensions, simple structure, and high speed, is appropriate, and has great potential for energy recovery of gasoline engine exhaust and has good prospects for engineering applications.

  6. 环冷机余热回收与利用系统的能量分析%Energy analysis of waste heat recovery and utilization system for ring cooler

    Institute of Scientific and Technical Information of China (English)

    刘传鹏; 李国俊; 林文佺; 李明浩; 许渡姜; 郁鸿凌

    2015-01-01

    Based on the process of waste heat recovery from sintering and utilization system for ring cooler,the energy flow diagram and the energy flow diagram were draw,the relevant energy evaluation was established. The thermal bal-ance method and exergy analysis were applied to study waste heat utilization in a ring cooler,such as heat loss,energy loss,thermal efficiency and energy efficiency during the process of the conversion and utilization for waste heat resourc-es. The results show that,the thermal efficiency of ring cooler and waste heat boiler were 26.78%and 45.60%,respective-ly,the corresponding energy efficiencies were 22.88%and 45.08%,respectively,hence,ring cooler was the weak link during the recovery and utilization of waste heat system. The main factors affecting the recovery and utilization of waste heat were the air leakage of ring cooler,Un-utilization of sensible heat of the third cooling gas and the process of gas-sol-id heat transfer in sintering bed.%根据某钢厂的环冷机系统回收与利用烧结矿显热的工艺流程,绘制了能流图、(火用)流图,并建立相关能量评价指标,采用热平衡方法和(火用)分析方法对环冷机的余热回收利用状况进行研究,分析了余热资源在回收与利用过程中的热量损失、(火用)量损失、热效率与(火用)效率.结果表明:环冷机、余热锅炉2个环节的热效率分别为26.78%和45.60%,(火用)利用效率分别为22.88%和45.08%,环冷机是余热回收与利用的薄弱环节;目前影响余热回收与利用的主要因素是环冷机取热段的漏风问题、第三段冷却废气所携带的显热尚未被利用以及烧结矿层的气固换热过程.

  7. Engineering practice of sintering main flue gas waste heat recovery in steel factory%钢铁厂烧结主抽烟道余热回收工程实践

    Institute of Scientific and Technical Information of China (English)

    杜蒙; 王辉; 王丽丽; 李鹏元; 徐永权

    2014-01-01

    The technological process of sintering main flue gas waste heat recovery , practical applica-tion, problems in the application and solutions , and economic evaluation of application in Fujian San-ming steel 180 m2 sintering machine were introduced , and the experience was provided for the future sintering main flue gas waste heat recovery .%介绍了福建三钢180 m2烧结机主抽烟道余热回收的工艺流程、实际应用、遇到的问题、解决办法及经济评价,为今后烧结主抽烟道余热回收提供了经验。

  8. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... in cycle efficiency. Furthermore, the results indicated that non-flammable fluids were able to produce near optimum efficiency in recuperated high pressure processes....

  9. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    OpenAIRE

    Taqwim Ismail; Ary Bachtiar Khrisna Putra

    2014-01-01

    Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan...

  10. 高炉熔渣余热回收技术发展过程及趋势%Development Process and Trend of the Waste Heat Recovery Technique of the Molten Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    齐渊洪; 干磊; 王海风; 张春霞; 严定鎏

    2012-01-01

    The development process and characteristic of the blast furnace slag waste heat recovery technique were analyzed from the end of nineteen seventies.The low exergy efficiency is the main limiting factor of commercial operation.The development trend of the blast furnace slag waste heat recovery technique is to improve the recovery efficiency,to optimize the utilization of waste heat and to develop the high value-added slag products.%系统分析了从20世纪70年代末以来高炉熔渣余热回收技术的发展历程及各个时期的特点,通过分析可知,目前高炉熔渣余热回收的效率很低,限制了其商业化运行。提高余热回收效率,优化余热利用方式,开发高附加值的炉渣副产品已成为熔渣余热回收技术发展的趋势。

  11. Current Status and Progress of the Textile and Dyeing Industry Waste Heat Recovery%纺织印染行业余热回收利用现状及研究进展

    Institute of Scientific and Technical Information of China (English)

    张菁雯; 蒋磊; 赵丹; 曾庆福

    2012-01-01

    印染厂废水废气温度高、工艺水和空气温度低,可通过热交换器的热交换等,将废水废气中的热量传递给工艺用水或空气,以达到节约能源、提高生产效率的目的。文章论述了纺织印染行业余热回收利用的现状,阐述了印染余热的主要来源,简要介绍了目前印染废水和废气余热回收利用的技术及装置,评价了余热回收在印染行业的运用潜力。%While the temperature of wastewater and exhaust gas in printing and dyeing mill is high, that of process water and air is low. But through heat transfer in heat exchanger, etc, we can transfer the heat of wastewater and exhaust gas to process water and air, so as to achieve the purpose of save energy and improve production efficiency. The paper discussed current status of waste heat recovery in dyeing and printing industry, expounded the main source of dyeing and printing waste heat, briefly introduced recycling technology and device of waste heat of textile wastewater and exhaust gas, and evaluated the use potential of waste heat recovery in dyeing and printing industry.

  12. High-temperature waste-heat-stream selection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

    1983-08-01

    Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

  13. Proposal of bypass in heat recovery system with sucking air

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Rezničák, Štefan

    2016-06-01

    Waste heat is utilized in a wide variety of technologies for a number of reasons. But the significant one such reason is use of the energy contained for example in waste water or waste heat that would otherwise left unused. Other considerable reason it is also reduces primary costs to operate the technology. The article deals with the arrangement section of the unit in heat recovery systems where the entry of waste gases into defluorinastion device. The technologies re-use heat often use the bypass. Bypass fulfill their duty in equipment failures, for example heat exchanger where it is not possible to stop the operationimmediately and the hot combustion gases can flow bypass without interrupting operation.

  14. Engine Waste Heat Recovery Based on Single Screw Expander%基于单螺杆膨胀机的发动机排气余热回收系统

    Institute of Scientific and Technical Information of China (English)

    张红光; 刘彬; 陈研; 杨凯; 张健; 王东芳

    2012-01-01

    针对发动机排气余热的特点,设计了有机朗肯循环(ORC)排气余热回收系统,采用单螺杆膨胀机作为动力输出装置,采用R245fa作为工质,提出了发动机排气余热利用率的概念和计算方法.结合发动机的试验数据,分析了ORC工质蒸发压力和发动机转速对ORC系统性能的影响,确定了适用于ORC系统的工质蒸发压力的最佳值.研究结果表明,当工质蒸发压力为3.0 MPa时,ORC系统能够在发动机全转速范围内正常工作,并且ORC系统的净输出功率最高可达12.1 kW,热力学第一定律效率最高可达11.27%,热力学第二定律效率最高可达25.8%,发动机排气余热利用率最高可达8.9%,发动机排气余热回收效果明显.%In order to make better use of waste heat energy from engine exhaust gas, the waste heat recovery system based on organic Rankine cycle (ORC) was presented, a single screw expander was used as the power output device, R245fa was used as working fluid, the concept and calculating method of waste heat recovery utilization rate was introduced. On the basis of engine test results, the effects of working fluid evaporating pressure and engine speed on the ORC system performance were analyzed and discussed, and then the optimal value of working fluid evaporating pressure was selected. According to the research results, when the working fluid evaporating pressure is 3.0 MPa, ORC waste heat recovery system can work properly over the whole range of engine speed, the maximum of net power is 12. 1 kW, the maximum of first law efficiency is 11.27% , the maximum of second law efficiency is 25.8% , the maximum of waste heat recovery utilization rate is 8. 9% , waste heat energy from engine exhaust gas can be recovered effectively.

  15. Potential of waste heat in Croatian industrial sector

    Directory of Open Access Journals (Sweden)

    Bišćan Davor

    2012-01-01

    Full Text Available Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU and United Nations Framework Convention on Climate Change (UNFCCC. Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed. [Acknoledgment. The authors would like to acknowledge the financial support provided by the UNITY THROUGH KNOWLEDGE FUND (UKF of the Ministry of Science, Education and Sports of the Republic of Croatia and the World Bank, under the Grant Agreement No. 89/11.

  16. Technology Development on Waste Heat Recovery of Little Water Quenching Method for BF Slag%高炉炉渣微水淬法余热回收技术开发

    Institute of Scientific and Technical Information of China (English)

    邱润强; 许征鹏

    2014-01-01

    The waste heat recovery technology of BF slag was developed by Shandong Jiuyang Group. The technology is consisted of collecting middle pressure saturated steam changed by evaporated cooling water, getting circulating hot air used of wind cooling, again recovered waste heat by waste heat boiler. The recyclable heat quantity of ton of iron is 257.7 MJ, the comprehensive recovery ratio can reach 87%, and the process can save of water consumption 7-9 t every ton of slag compared with the traditional water quenching slag process.%山东九羊集团有限公司开发了高炉炉渣余热回收技术,将绝大部分冷却水蒸发为中压饱和蒸汽进行收集,然后采用风冷工艺获得热循环空气,通过余热锅炉再次回收余热,吨铁可回收热量257.7 MJ,综合回收率可达87%,与传统的水淬工艺相比吨渣可节约用水7~9t。

  17. Research Status and Development Trends of Engine Waste Heat Recovery Technology%发动机余热回收技术的研究现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    刘彬; 梁虹; 陈研; 张红光

    2011-01-01

    综述了国内外发动机余热回收技术的研究现状和发展趋势.从用途上把发动机余热利用技术分为废气涡轮增压、制冷空调、发电、采暖和改良燃料等五种,并分别探讨这些技术的可行性.阐述了有关余热回收的新技术及新理论.最后指出了利用有机工质循环系统将废气余热转化为电能,是汽车余热利用的发展趋势.%This paper summarizes previous research and development of engine waste heat recovery technology both in China and abroad. The paper also discusses the feasibility of the technology, respectively, by classifying the technology into five categories : exhaust turbocharged, refrigeration air conditioning, electricity generation, heating and improving fuel. After elaborating new technologies and new theories of the heat recovery,this paper figures that the development trend of engine waste heat recovery technology would be the utilization of organic working fluid circulation system by converting the exhaust energy into electricity.

  18. Research and design about integrated kiln for waste heat recovery of fused magnesia lump%一体式镁熔砣余热回收窑的研发及设计

    Institute of Scientific and Technical Information of China (English)

    高秀平; 张卫军; 司鹏; 张克宇; 池中源; 蔡特

    2015-01-01

    Carrying out research on waste energy recovery technologies about magnesium melting lumps is important significance for innovation of magnesite melting process and achieving energy con-servation and emissions reduction in new situation.Based on analyzing and summarizing the existing technology about waste heat recovery of magnesium melt, the integrated kiln for waste heat recovery of magnesium melting was designed.By using reciprocating grate transportation, this design accomplished cooling process of magnesium melting and preheating process of magnetite simultaneously, and it sim-plified the system.Meanwhile, it can reduced the loss of energy, and its efficiency of waste heat recov-ery was 30.37%, valuable for putting into use.%开展镁熔砣余热回收技术的研究,对革新我国菱镁矿熔炼工艺、实现新形势下的节能减排具有十分重要的意义。在分析总结已有的镁熔砣余热回收技术的基础上,设计出了一体式镁熔砣余热回收窑,利用往复炉排进行逆流换热,将余热回收和物料预热一体化,系统简单,同时减少了能量损失,余热回收效率达30.37%,具有广泛投入使用的价值。

  19. The Waste - heat Recovery and Equipment Selection of the 200kt/a - Output Plant of the Sulfuric Acid by Pyrite Roasting%年产20万t硫铁矿制酸装置的余热回收和相关设备选型

    Institute of Scientific and Technical Information of China (English)

    陈雄

    2011-01-01

    介绍了200kt/a硫铁矿制酸的余热回收和利用,主要分为高温、中温、低温余热,并介绍了相应的设备选型过程。%The waste- heat recovery of the 200kt/a- output plant of the sulfuric acid by pyrite roasting was introduced, including high temperature waste- heat, middle temperature waste- heat, low temperature waste - heat. And the process of equipment selection was also mentioned.

  20. Performance analysis of air——water dual source heat pump water heater with heat recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  1. 基于余热回收原理的电厂节能降耗技术分析%Power Plant Energy-saving and Cost-reducing Technology Analysis Based on Recovery of Waste Heat

    Institute of Scientific and Technical Information of China (English)

    刘拥军

    2015-01-01

    The waste heat recovery of power plant is one of the important measures of energy saving and emission reduction, is an important part of sustainable development strategy in our country. The hot spots in the power plant of waste heat recovery power plant and engine problems were mainly introduced, and the power plant circulating water heat energy recovery based on the actual comprehensive solutions was put forward, it has certain reference signiifcance.%电厂的余热回收是电厂节能减排的重要措施之一,是我国可持续发展战略的重要组成部分。文章主要介绍了电厂余热回收中的热电联产和热机的问题,并根据实际提出了电厂循环水热能回收的综合性方案,对电厂项目的余热回收设计有一定的参考意义。

  2. 低温位废热回收与液化天然气冷能利用的集成研究%Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization

    Institute of Scientific and Technical Information of China (English)

    白菲菲; 张早校

    2008-01-01

    Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency,respectively and 53.08% and 52.31% in thermal efficiency, respectively.

  3. 大型硫磺制酸废热回收设备的设计与布置%The design and layout of waste heat recovery equipment in large sulphur-burning sulphuric acid plants

    Institute of Scientific and Technical Information of China (English)

    王渭清

    2012-01-01

    介绍了大型硫磺制酸废热回收系统选用的不同工艺流程、设备和蒸汽参数,详细分析了废热锅炉、过热器、省煤器等设备的选型、结构、参数、尺寸、材料,并对废热回收系统的设备、管道布置及防腐保温等方面提出了优化措施。%The processes, equipment and steam parameters of waste heat recovery system used in large-scale sulphur-burning sulphuric acid plants are described. A detail analysis of the structure, parameters, dimensions and materials of waste heat boiler, superheater and economizer is made and optimization measures of equipment and pipe layout, corrosion protection and insulation are proposed.

  4. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  5. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System

    OpenAIRE

    Gaosheng Li; Hongguang Zhang; Fubin Yang; Songsong Song; Ying Chang; Fei Yu; Jingfu Wang; Baofeng Yao

    2016-01-01

    A novel free piston expander-linear generator (FPE-LG) integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC) system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE) was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timi...

  6. 电弧炉佘热回收锅炉的自动控制系统%Automatic Control System of the Waste Heat Recovery Boiler for the EAF

    Institute of Scientific and Technical Information of China (English)

    宋水根; 曾玉清; 刘涛; 曾辉

    2011-01-01

    主要介绍了电弧炉余热回收锅炉的自动控制系统.在该系统中采用了西门子S7-300 PLC,实现对中低压汽包水位PID调节及设备的联锁控制,并对余热回收产生蒸汽全过程进行动态管理和控制.%This paper mainly describes the development of automatic control system of electric furnace Waste heat recovery boiler. PID control,equipments chain starting and the water constant level supply are used in this system. The whole process of dynamic management and control of Steam generation from heat recovery boiler are realized by Siemens S7-300 PLC.

  7. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Science.gov (United States)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  8. Application of Air Compressor System Waste Heat Recovery in Air-conditioning System%空气压缩机系统余热回收在空调系统中的应用

    Institute of Scientific and Technical Information of China (English)

    吴世凤

    2012-01-01

    对空气压缩机的压缩余热进行回收利用,可以降低压缩空气系统损耗,提高生产力,实现节能降耗.将空压机余热用于空调系统冬季采暖和生活热水供应,节能效果良好,经济效益明显,具有实用和推广价值.%Recovering the waste heat of air compressors, can lower the consumption of energy in compressed air system and increase productivity. Illustrates that the waste heat of air compressors can be successfully applied to the air-conditioning system in winter heating and used to warm the domestic water in the meanwhile. Moreover, the good energy-saving result and the obvious economical benefit both indicate that the waste heat recovery of air compressors will have a bright applied prospect.

  9. 余热回收系统中简形件58SiMn组织性能%The Structure Property of Tube 58SiMn in Waste Heat Recovery System

    Institute of Scientific and Technical Information of China (English)

    陈辉; 陈丽丽; 秦盼盼; 于陆宁; 刘士魁

    2011-01-01

    目的 探讨东基集团余热回收系统中筒型结构件(58SiMn钢材)余热回收时组织性能变化,为基于热泵系统的回收工艺做必要的准备以及以沈阳的东基集团余热回收系统回收的热量用于加热职工洗浴用水和蒸汽锅炉补偿水的可行性.方法 基于热泵技术基础之上的余热回收系统进行了分析(包括系统的组成、工作原理、热工参数等).建立余热回收系统,测定了生产现场随季节变化的筒型件冷却过程,确定了以组织分析方法为主的研究手段,对筒型件进行了不同温度(750 ~850℃)加热透热时间2 min,转变为稳定组织的保温时间为10 min,然后进行空冷的处理,最后对样品进行金相观察.比较处理前后的组织变化.结果 在筒型件970℃开始余热回收将不会降低其力学性能,反而力学性能会得到进一步的改善.结论 结果说明所设计的筒型体结构件在生产过程中的热泵式余热回收系统是合理的.%This paper studied changes of the structure property in the cartridge type structures(58SiMn steel) in waste heat recovery system. It made the necessary preparation for the recycling process of the heat pump and provided the possibility of using the recycled calories to provide bath water and compensation for steams boilers. The waste heat recovery system which is based on heat pump was analyzed, including the system composition, working principle, the thermal parameters, etc. After setting up the waste heat recovery system and measuring the cylinder parts' cooling processes which changed with the seasons on the spot,an organizational - analysis-dominant research method was determined. Type of the tube was conducted from different heating temperatures(750 ℃ - 850 ℃) through the thermal time 2 min,into a stable organization holding time of 10min,and after that,the metallographic microstructure of the samples was observed. Finally,changes of the samples before and after the

  10. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating).

  11. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Motorcycle waste heat energy harvesting

    Science.gov (United States)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  13. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  14. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  15. Waste heat generation: A comprehensive review.

    Science.gov (United States)

    Yeşiller, Nazli; Hanson, James L; Yee, Emma H

    2015-08-01

    A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions.

  16. Potential metal recovery from waste streams

    Science.gov (United States)

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  17. Energy recovery from distillery wastes

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, M.

    1981-01-01

    Energy and inorganic substances, principally K in the form of dry ash, are recovered from distillery wastes by evaporation of the water content of the wastes followed by combustion. At the same time, the serious pollution problem associated with molasses distilleries is eliminated. A typical stillage from a 60,000 L molasses/day distillery of conventional design consists of 31.2 tons liquid with 8% dry solids (DS) content/h. To concentrate this to 60% DS, 27.0 tons water/h must be evaporated which requires 6.2 tons steam/h. Subsequent combustion generates 9.6 tons steam/h, and additional K/sub 2/O-containing dry ash suitable for fertilizer is recovered. Approximately 2/3 of the K assimilated by sugarcane during its growth can be recycled in this way.

  18. Heat recovery in a meat processing factory

    Energy Technology Data Exchange (ETDEWEB)

    Richter, N.

    1982-05-01

    The positive results obtained here encourage installing more heat recovery systems. A high quantity of energy is needed to heat the water in the boilers. This water would be pre-heated by utilizing the still existing heat from other cooling systems. Presently, 50% of the cooling efficiency are being used for heat recovery. In order to obtain an optimal energy yield from cooling systems the running times of the aggregates should be as long as possible over the whole year. These preconditions are fulfilled in this system because the enterprise produces mainly in two slufs. Taking the heat need for hot water and heating as a basis, the saving of fuel oil by using heat recovery systems is calculated to be appr. 35,000 l/a.

  19. Energy recovery from solid waste. [production engineering model

    Science.gov (United States)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  20. Energy recovery from solid waste. [production engineering model

    Science.gov (United States)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  1. 带废热回收的预干燥燃褐煤发电系统理论研究%Theoretical Study on a Pre-dried Lignite-fired Power System With Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    郭晓克; 刘明; 肖峰; 严俊杰; 种道彤

    2012-01-01

    在褐煤发电系统中,对褐煤进行预干燥可以明显提高燃褐煤发电系统效率,而褐煤预干燥过程中产生的干燥尾气废热的回收利用可以进一步提高系统效率。为了研究尾气废热回收对系统效率的影响,该文建立了干燥机热平衡模型,并且应用等效热降法建立了该系统干燥尾气废热回收的理论分析模型。该文针对某600 MW燃褐煤机组,对其干燥尾气废热回收的节能潜力进行了分析,并且对干燥机、原煤预热器和给水加热器热效率对整厂热效率的影响进行了计算。计算结果表明:在基准工况下采用原系统,可以节煤11.44 g/(kW h),而采用废热回收,系统的节煤量可提高到14.65 g/(kW h);干燥机效率对整厂效率的影响最为明显,干燥机效率每提高10%,可以增加节煤量达1.8 g/(kW h)。%Lignite pre-drying can improve lignite-fired power system efficiency obviously,and the waste heat recovery can improve efficiency further.In order to consider the effect of waste heat recovery on the system thermal efficiency,this paper established the thermal equilibrium model of the dryer and the theoretical analysis model of waste heat recovery with the application of equivalent heat drop method.The energy saving potential with waste heat recovery was analyzed on an existing 600 MW lignite-fired power plant,and the influence of dryer efficiency,coal preheater efficiency and water heater efficiency on system efficiency improvement were calculated.The results show that: coal consumption rate reduction of pre-dried lignite-fired power system improves from 11.44 g/(kW h) to 14.65 g/(kW h) with waste heat recovery;the dryer efficiency is the most obvious factor on system efficiency,and when 10% higher dryer efficiency is improved the coal consumption rate can increase 1.8 g/(kW h).

  2. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  3. The heat recovery with heat transfer methods from solar photovoltaic systems

    Science.gov (United States)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-04-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc.

  4. Concentration of precious metals during their recovery from electronic waste.

    Science.gov (United States)

    Cayumil, R; Khanna, R; Rajarao, R; Mukherjee, P S; Sahajwalla, V

    2016-11-01

    The rapid growth of electronic devices, their subsequent obsolescence and disposal has resulted in electronic waste (e-waste) being one of the fastest increasing waste streams worldwide. The main component of e-waste is printed circuit boards (PCBs), which contain substantial quantities of precious metals in concentrations significantly higher than those typically found in corresponding ores. The high value and limited reserves of minerals containing these metals makes urban mining of precious metals very attractive. This article is focused on the concentration and recovery of precious metals during pyro-metallurgical recycling of waste PCBs. High temperature pyrolysis was carried out for ten minutes in a horizontal tube furnace in the temperature range 800-1350°C under Argon gas flowing at 1L/min. These temperatures were chosen to lie below and above the melting point (1084.87°C) of copper, the main metal in PCBs, to study the influence of its physical state on the recovery of precious metals. The heat treatment of waste PCBs resulted in two different types of solid products, namely a carbonaceous non-metallic fraction (NMFs) and metallic products, composed of copper rich foils and/or droplets and tin-lead rich droplets and some wires. Significant proportions of Ag, Au, Pd and Pt were found concentrated within two types of metallic phases, with very limited quantities retained by the NMFs. This process was successful in concentrating several precious metals such as Ag, Au, Pd and Pt in a small volume fraction, and reduced volumes for further processing/refinement by up to 75%. The amounts of secondary wastes produced were also minimised to a great extent. The generation of precious metals rich metallic phases demonstrates high temperature pyrolysis as a viable approach towards the recovery of precious metals from e-waste.

  5. 烟气余热回收装置在铝熔保炉除尘系统中的应用%Application of Flue Gas Waste Heat Recovery Unit in Dust Removal System of Aluminum Melting and Holding Furnace

    Institute of Scientific and Technical Information of China (English)

    樊振国

    2016-01-01

    The paper described the necessity and technical requirements of application of flue gas waste heat recovery unit in dust removal system for aluminum melting and holding furnace;it presented critical technology issues needed to be resolved in dust removal system when using flue gas waste heat recovery unit with specific process scheme;it highlighted comparative analysis of economic and social benefits based on case studies.%文章阐述了在铝熔保炉除尘系统中应用烟气余热回收装置的必要性和技术要求;结合余热回收除尘系统工艺方案的设计,给出了烟气余热回收设备在除尘系统中使用时需要解决的关键技术;通过工程实例对比分析除尘系统中应用烟气余热回收设备的经济和社会环境效益。

  6. Recovery of waste and side products of apatite-nepheline and eudialyte ores processing in manufacture of heat-insulating foam glassy-crystalline materials

    Directory of Open Access Journals (Sweden)

    Suvorova O. V.

    2017-03-01

    Full Text Available Overburden and dressing tailings accumulated in the Murmansk region in impressive volumes represent serious challenges of both economic and ecological character. Maintenance of overburden dumps and dressing tailings involves considerable capital and material expenses. Therefore reprocessing of mining waste and manufacture of building materials, including heat-insulating foam-glass materials, is a promising trend. The work discusses the feasibility of recovering silica-containing waste and ore processing byproducts on the Kola Peninsula. Compositions and techniques for producing blocks and pellets from foam-glass crystalline materials have been developed. The effect of modifying agents on the foam-silicate materials' mechanical properties has been investigated. The production conditions for high-quality foam-silicate blocks have been identified. The foam silicates obtained under optimal conditions have featured a relatively low viscosity (0.3–0.5 g/cm³, high strength (up to 5 MPa and heat conductivity (0.09–0.107 Wt/m·K. Methods of improving the operating characteristics of foam silicates based on structure perfecting have been proposed. It has been found that as a result of shorttime baking of grainy samples the product has a grain strength of 5–6 MPa, density of 0.25–0.35 g/cm3 and a resistance to crushing in cylinder of 2.2–3 MPa, which is 2–3 times higher than that of a material subjected to one-stage thermal treatment. The water absorption of the material is 5–6 %, which is by a half lower compared to a one-stage treated material. The thermal conduction coefficient is 0.091–0.096 Wt/m·K. The obtained materials are recommended for use as heat-insulating surfacing and filling material for garrets, floors and roofs in construction and renovation of industrial and civic buildings

  7. Numerical study of heat pipe application in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Song Lin; Broadbent, John; McGlen, Ryan [Thermacore Europe, Ashington (United Kingdom)

    2005-01-01

    Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers with heat pipes have become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectronics, energy and other industrial sectors. Utilisation of a heat pipe fin stack in the drying cycle of domestic appliances for heat recovery may lead to a significant energy saving in the domestic sector. However, the design of the heat pipe heat exchanger will meet a number of challenges. This paper presents a design method by using CFD simulation of the dehumidification process with heat pipe heat exchangers. The strategies of simulating the process with heat pipes are presented. The calculated results show that the method can be further used to optimise the design of the heat pipe fin stack. The study suggests that CFD modelling is able to predict thermal performance of the dehumidification solution with heat pipe heat exchangers. (Author)

  8. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  9. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materials...

  10. Research on Fast Calculation Method of Waste Heat Recovery Unit of Kiln%水泥窑筒体余热回收装置快速计算方法研究

    Institute of Scientific and Technical Information of China (English)

    赵艳玲; 耿亮

    2014-01-01

    The quantity of heat transfer on waste heat recovery unit of kiln has been analyzed with the finite differ-ence method,and Microsoft Excellwas used as the computational tools.Through verification of an engineering case, the calculation tables have reliable precision and high efficiency.%利用有限差分法对窑筒体余热回收装置换热量进行分析,提出了通过 Excel 计算表格进行余热回收装置工况分析的方法。通过工程实例验证,编制的计算表格具有精度可靠、效率高的优点。

  11. Application of Heat Pump Technology in Waste Heat Recovery of Oilfield Sewage%热泵技术在回收油田污水余热资源中的应用

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The low-grade heat energy of oilfield sewage can be recycled by heat pump technology. Part of the low-temperature heat energy can be applied in the other section needing heat in oil field, which solves the waste problem of sewage waste heat. In this article, application of the heat pump system in Daqing, Kongdian and Shengli oil fields was summarized, and the current situation of development of heat pump system and heat exchanger was discussed, which could provide certain reference for the implementation of similar energy-saving renovation project in the future.%热泵技术可以将油田污水中的低品位热能进行回收,以一小部分能量为代价,将这部分低温热能应用于油田中其他需要热的环节,解决了油田污水余热的浪费问题。总结了大庆、孔店、胜利等油田对热泵系统的应用情况,及热泵系统和换热器的发展现状,对油田今后实施同类节能改造项目具有一定的借鉴意义。

  12. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  13. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  14. Calculation of Maximum Waste Heat and Recovery Rate of Liquid and Gas Fuels%液气燃料烟气的最大余热量与节能率计算研究

    Institute of Scientific and Technical Information of China (English)

    丛永杰

    2016-01-01

    The consumption of various liqui d oil and gas fuel grows rapidly in Chinese energy structure. The discharged flue's temperature is generally 160℃ ~180℃ after these fuels are combusted. This part of energy can be used as secondary energy, though whose grade is low. A lot of H elements are in the form of liquid and gas fuels, and the vapor is the flue's main ingredi-ents. In this paper, the waste heat quantity and recovery rate of 0# light diesel oil and natural gas's flue is calculated, whose tem-perature is from 180℃ to 25℃ at the condition of 1 atm. In the 0# light diesel's flue, the residual heat's proportion of the vapor's heat is about 55. 08%. In the natural gas's flue, which proportion is about 79. 41%. Moreover, the vapor's latent heat is about 3/4. Therefore, recovering the latent heat of vapor is of great significance for the heat recovery of the low temperature waste heat.%在中国能源结构中,燃油与天然气所占比例迅速上升.燃烧后排烟温度一般为160℃~180℃,仍含有较多能量,可以二次利用.本文通过对液、气体燃料中具有代表性的0号轻质柴油及天然气烟气的余热量与节能率进行计算,发现低温烟气余热中的水蒸气余热量占有很大比例,柴油烟气为55.08%,天热气烟气为79.41%.回收烟气余热,尤其是其中水蒸汽的潜热对低温烟气的热回收具有重要意义.若有效回收利用,既是对一次能源的二次利用,更符合"十三五"期间国家节能减排的相关政策要求.

  15. Waste heat utilization in industrial processes

    Science.gov (United States)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  16. 大型吸收式热泵应用于火电厂回收余热供热的试验研究%The Experiment Study on Waste Heat Recovery from Circulating Water in Thermal Power Plant Using Large Absorption Heat Pump

    Institute of Scientific and Technical Information of China (English)

    周崇波; 俞聪; 郭栋; 丁贯林

    2013-01-01

    An experiment on waste heat recovery thermal characteristics from circulating water in 125MW and 300MW thermal power plants using large absorption heat pump is conducted. The steam pressure, the temperature of the backwater from heat-supply network, the inlet circulating water temperature of the large absorption heat pump system are analyzed under other external conditions and different parameters. Then the effects of main external parameters on heating capacity, the recovery of residual heat, energy efficiency ratio and other important indicators in the large absorption heat pump are quantitatively discussed . The conclusion provide the firsthand information for the design of the waste heat recovery engineering and regular operation of large absorption heat pump.%针对已在125MW及300MW等级火电厂中投产的大型吸收式热泵系统的变工况热力特性进行试验测试,并分析其试验数据,对吸收式热泵系统在驱动蒸汽压力、热网水回水温度、余热水进水温度等主要外部条件和参数变化条件下的运行指标进行了测试和分析,从而获得了这些主要外部参数改变对吸收式热泵制热能力、余热回收量、能效比等重要指标的定量影响.该试验结果为采用大型吸收式热泵系统进行电厂冷凝热回收供热改造工程的初期设计及投产后的优化运行提供了第一手参考资料.

  17. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    DEFF Research Database (Denmark)

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures...... for the coefficient of performance, COP. By comparing the cycles it is found that for each set of operating conditions the two refrigerants perform equally well at one given inlet temperature of the heat sink. Above this temperature ammonia cycles have the best COP and below CO2 cycles perform best. A general...

  18. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-01-01

    Full Text Available Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have the advantage of being located near the waste collection area apart from the high volume reduction ratio. Improvements in the emission control systems and combustion technology can make incineration a highly feasible disposal method. Low furnace temperature due to heat losses through fuel moisture loss and ash sensible heat loss has been a disadvantage with these systems. In this study, a small percentage of the combustion air is pre-heated in a non-contact type heat exchanger and its effect on the available energy of combustion gases at the evaporator outlet is studied. The study is performed for two different waste samples. Results indicate significant increase in available energy at the evaporator outlet and better relative performance for the lower grade fuel. A comparison is made with similar methods reported in the literature along with a brief discussion on the methodologies adopted. The results confirm the importance of installing ash sensible heat recovery mechanism for waste incineration systems as well as the feasibility of the air based method.

  19. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  20. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  1. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  2. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Taqwim Ismail

    2014-03-01

    Full Text Available Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan sisi exhaust gas, yaitu 0.2, 0.3, dan 0.4 m/s untuk mengetahui unjuk kerja yang berbeda dari compact heat exchanger yang telah didesain.  Hasil yang didapatkan dari studi eksperimen ini adalah dimensi dari compact heat exchanger tipe louvered fin flat tube dan beberapa parameter yang menunjukkan unjuk kerja dari compact heat exchanger seperti nilai heat transfer baik dari sisi air maupun sisi exhaust gas, effectiveness, number of transfer unit (NTU, overall heat transfer coefficient, dan  ΔTLMTD dari compact heat exchanger.

  3. Reform Practice and Benefit Analysis on Flue Gas Waste Heat Recovery Project of Coke Oven%焦炉烟道废气余热回收项目改造实践及效益分析

    Institute of Scientific and Technical Information of China (English)

    王志强

    2015-01-01

    文章结合山西金桃园煤焦化集团有限公司的实际运行情况,分析焦炉烟道废气余热回收改造实践及效益,为众多焦化企业实现节能降耗提供参考。%In this paper, the author combin with the actual operation of Shanxi Jintaoyuan Coking Group Co., Ltd., It ana-lyzes coke oven flue gas waste heat recovery and the practice of rebuilding of benefit, provides the reference for the numer-ous coking enterprises to achieve energy saving.

  4. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  5. Advancement of Double Effect Absorption Cycle by Input of Low Temperture Waste Heat

    Science.gov (United States)

    Kojima, Hiroshi; Akisawa, Atsushi; Kashiwagi, Takao

    Energy conservation is becoming important for global environmental protection. New simple techniques of more efficiently using the waste heat of gas co-generation systems for refrigeration are required. This paper proposes a new method of using low temperature waste heat below 100°C for refrigeration. In the new method, the low temperature waste heat is fed into the weak solution line of the double effect absorption cycle directly via an auxiliary heat exchanger. In this paper, first, the location of the auxiliary waste heat recovery heat exchanger on the solution line was studied for each solution flow type of double effect absorption cycle. Then six promising methods of recovering waste heat were selected, and moreover, the basic model was constructed and the effect of input of the low temperature waste heat was investigated for each selected method.

  6. Simulation on Performance of Thermoelectric Generator Applied in Waste Heat Recovery%废热式温差发电器性能仿真

    Institute of Scientific and Technical Information of China (English)

    杨素文; 肖恒; 欧强; 苟小龙

    2012-01-01

    研究温差发电优化控制问题,温差发电技术是用回收废热转化为电能的转换器,使得温差发电运行稳定,产生大功率效能.温差发电技术涉及三大基本效应,导致其温度分布模型不清,难以实现上述目的.为了探究温差发电器的运行规律,指导温差发电器处于较大输出功率下运行,采用温差发电原理以及传热学理论,建立了一种用以求解温差发电器内部温度分布的数学模型.并以输出功率为目标函数,通过仿真计算得到温差发电器在不同工作条件下的性能特性.仿真比较发现,增强冷端散热能力是提高温差发电器输出功率的有效途径,且水冷效果相比空冷效果优势明显.实验结果可为优化温差发电器工作条件和提高其输出功率提供有价值的理论指导.%Thermoelectric generator technology, due to its several kinds of advantages, especially its promising applications to recover waste heat, has become a noticeable researcher direction. Thermoelectric technology involves three basic effects, which lead to the temperature distribution being difficult to solve. In order to explore operation law which makes thermoelectric generator have a bigger output power, a mathematical model based on thermoelectric principle and heat transfer theory has been built and was used to solve the temperature distribution of thermoelectric generator. The performance characteristics of thermoelectric generator in different operation conditions have been gained in the objective function of output power by simulating. By the comparison, it is found that reinforcing the heat transfer capability is an effective approach and the water is superior to the air for the cooling effect. The results can provide meaningful guidelines for optimizing operation conditions and improving output power of thermoelectric generator.

  7. 热管余热节能回收装置在粮食干燥系统中的应用试验研究%Application test of waste heat recovery device of heat pipe in the grain drying system

    Institute of Scientific and Technical Information of China (English)

    王龙龙; 武文斌; 秦强; 李衡

    2016-01-01

    The waste heat recovery of heat exchanger in the grain drying system of 1.67×106 kJ was studied.The heat pipe device was installed on the top of the heat exchanger,with simple structure and easy maintenance.The experiment results showed that when the furnace temperature was about 316~437℃,and the ambient temperature was 22℃,the clean air temper-ature increased from 22℃ to about 40℃,and the waste heat recovery effect was very obvious,which created good conditions for energy saving and consumption reducing in the drying system.%针对 1.67×106 kJ 粮食干燥系统中换热器的余热回收进行了研究.将热管装置安装在换热器的顶部,其结构简单,维修方便.应用实验结果表明,当炉膛温度在 316~437℃、环境温度 22℃左右时,新鲜空气温度能够从22℃提高到40℃左右,余热回收效果非常明显,这为整个干燥系统的节能降耗创造了很好的条件.

  8. Heat integrated recovery process of low strength DMF waste water%低浓度DMF废水的热集成回收新工艺

    Institute of Scientific and Technical Information of China (English)

    孙钦鹤; 胡仰栋; 伍联营

    2012-01-01

    针对普通精馏回收低浓度废水中的DMF能耗高问题,本文提出了6种热集成节能方案,尽可能充分利用各物流的潜热和显热,以期达到降低能耗的目的;1)初始三效精馏工艺;2)增加多级进料预热器的三效精馏; 3)四效精馏工艺;4)带热泵的三效精馏;5)单塔热泵精馏;6)改进的单塔热泵精馏.并应用Aspen Plus流程模拟软件对6种节能方案进行了模拟计算.结果表明:对于低浓度DMF废水体系,多效精馏和热泵精馏与普通单塔精馏相比,均有显著的节能效果;增加多级进料预热系统,充分利用物流的潜热和显热,能耗明显降低;四效精馏与增加多级进料预热器的三效精馏节能效果相当;热泵精馏比多效精馏更加节能;改进的单塔热泵精馏最节能,节能率达到79%,每小时仅需3.6 t的低压蒸汽,就可处理10t的废水,回收0.5 t的DMF.六种节能方案比普通精馏节省约37.1%、47.6%、47.2%、67.9%、73.3%、79.0%的能耗.本文的研究结果对老装置的改造和新装置的设计有一定的指导意义.%Because of the high energy consumption for the recovery of DMF from low-strength wastewater by ordinary distillation, six new heat integrated energy-saving schemes were proposed, which made use of the logistics of latent heat and sensible heat as much as possible for the purpose of reducing energy consumption. 1) initial there-effect distillation; 2) using multi-stage feed preheaters; 3) using four-effect distillation; 4) three-effect distillation with heat pump; 5) single column with heat pump distillation; 6) improved scheme on the basis of scheme 5. Then the six schemes were simulated and optimized by the software Aspen Plus. The simulation results indicate that for the low strength of DMF wastewater system, multi-effect distillation and heat pump distillation, compared with ordinary single-tower distillation, show an efficient energy saving effect. Adding multi

  9. Study on Vertical Falling Film Absorption Heat Transformer for Low Grade Waste Heat Recovery%低品位余热回收的立式降膜吸收式热变换器研究

    Institute of Scientific and Technical Information of China (English)

    隋军; 刘锋; 郭培军; 金红光

    2015-01-01

    In distributed energy systems driven by internal combustion engines, over 30%of input system energy is taken away by 90 oC~99 oC jacket water whose energy level can be upgraded by absorption heat transformers (AHT). A design method of the AHT driven by the waste heat of jacket water was developed in this study. Then a vertical falling film AHT facility with 20 kW heating capacity was manufactured. And a distributed energy system with AHT was proposed. In the system, the superheated steam was made with waste heat of smoke and jacket water, which improves the energy efficiency.%内燃机分布式能源系统中,90℃~99℃缸套水带走的热量约占系统输入热量的30%,利用吸收式热变换器(AHT)可以有效提升缸套水余热品位。本文提出一种由内燃机缸套水余热驱动的 AHT 的设计方法,研制了制热功率为20 kW的立式降膜AHT机组,并提出集成热变换器的分布式热电联产系统,利用烟气和缸套水余热生产过热蒸汽,实现节能。

  10. Is phosphorus recovery from waste water feasible?

    Science.gov (United States)

    Berg, U; Knoll, G; Kaschka, E; Weidler, P G; Nüesch, R

    2007-02-01

    Phosphorus (P) recovery from waste water must become a predominant goal of all countries to face the limited resources of this essential nutrient. The induced crystallisation of calcium phosphates straight from the waste water phase applying tobermorite-rich calcium silicate hydrate compounds (CSH) from the construction industry as the trigger material has proved to be a suitable method. Laboratory and semi-technical scale experiments were carried out in fixed bed, stirred reactor and expanded bed mode. P-loads of the crystallisation substrates of up to 13 wt-% total P (P-tot) (30 wt-% P2O5) were achieved. Recycling options of the generated products, both as substitute for phosphate rock in the phosphate industry and as a new fertiliser in agriculture, were demonstrated. Indicative operating and investment costs were estimated for conversion of conventional waste water treatment plants (WWTP) designed for nutrient removal and P-precipitation with iron and aluminium reagents to the proposed new crystallisation technology for simultaneous P-removal and P-recovery.

  11. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  12. Installation for the recovery of methane gas from organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferkorn, H.

    1981-11-24

    The invention relates to an installation for the recovery of methane gas from organic waste with a fermentation space, a gas collecting space and a post-fermentation space, as well as with at least one supply line into the fermentation space and one offtake for the excess, fermented liquid from the post-fermentation space, the spaces being heat-insulated and preferably embedded at least partially in the ground, and the post-fermentation space, which preferably is arranged above the fermentation space, being connected in the manner of communicating vessels with the fermentation space, preferably in one structural unit.

  13. Pyrolysis processing for solid waste resource recovery

    Science.gov (United States)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  14. Driving forces for import of waste for energy recovery in Sweden.

    Science.gov (United States)

    Olofsson, Mattias; Sahlin, Jenny; Ekvall, Tomas; Sundberg, Johan

    2005-02-01

    Between 1996 and 2002, the Swedish import of so-called yellow waste for energy recovery increased. The import mainly consisted of separated wood waste and mixes of used wood and paper and/or plastics that was combusted in district heat production plants (DHPPs). Some mixed waste was imported to waste incineration plants for energy recovery (10% of the import of yellow waste for energy recovery in 2002). The import came primarily from Germany, the Netherlands, Norway, Denmark and Finland. We identified six underlying driving forces for this recent increase of imported waste which are outlined and their interactive issues discussed. --The energy system infrastructure, which enables high energy recovery in Sweden. --The energy taxation, where high Swedish taxes on fossil fuels make relatively expensive solid biofuels the main alternative for base load production of district heat. --The quality of the waste-derived fuels, which has been higher in the exporting countries than in Sweden. --The bans on landfilling within Europe and the shortage of waste treatment capacity. --Taxes on waste management in Europe. --Gate fee differences between exporting countries and Sweden. In the future, the overall strength of these driving forces will probably be weakened. A Swedish tax on waste incineration is being investigated. In other European countries, the ambition to reach the Kyoto targets and increase the renewable electricity production could improve the competitiveness of waste-derived fuels in comparison with fossil fuels. Swedish DHPPs using waste-derived fuels will experience higher costs after the Waste Incineration Directive is fully implemented. The uncertainty about European waste generation and treatment capacity, however, might have a large influence on the future gate fees and thus also on the yellow waste import into Sweden.

  15. Disposal of solid wastes with simultaneous energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.

    1980-01-01

    The need for resource recovery from solid wastes is discussed. The incentives for a comprehensive system, a gasification based disposal system, and biological recovery methods are reviewed. Biogas process development and the Lanfilgas process are described. (MHR)

  16. Frost-proof heat recovery; Frostsikker varmegjenvinning

    Energy Technology Data Exchange (ETDEWEB)

    Groenbaek, Henning; Jenssen, Henning Bent

    2011-07-01

    Technical regulations (TEK10) sets high standards for temperature efficiency of ventilation systems. Heat recovery equipment should be selected from the risk of leakage. Rotating heat exchanger has normally no problem with icing before the temperature approaches -20 C. For the countercurrent heat exchanger bypass-icing is the best method of frost resistant heat exchanger. In addition to selecting the best frost protection method, it is also important how to monitor the formation of ice in the exchanger. The best way is to measure the pressure drop over the heat exchanger. Bypass deicing requires that the unit is designed so that outside air can be led outside heat exchanger and directly to the heater. (AG)

  17. Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

    1977-05-01

    An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

  18. Recovery of heavy metals from intractable wastes: A thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, D.W. [Univ. of Toronto (Canada)

    1996-12-31

    The generation of industrial solid wastes containing leachable species of environmental concern is a problem for developing and developed nations alike. These materials arise from direct processing of mineral ores, from production of metals and minerals, from manufacturing operations, and from air and water pollution treatment processes. The general characteristics that make these wastes intractable is that their content of hazardous species is not easily liberated from the waste yet is not bound so tightly that they are safe for landfill disposal or industrial use. The approach taken in this work is a thermal treatment that separates the inorganic contaminants from the wastes. The objective is to provide recovery and reuse of both the residual solids and liberated contaminants. The results from operating this technique using two very different types of waste are described. The reasons that the process will work for a wide variety of wastes are explored. By using the knowledge of the thermodynamic stability of the phases found from the characterization analyses, a thermal regime was found that allowed separation of the contaminants without capturing the matrix materials. Bench scale studies were carried out using a tube furnace. Samples of the wastes were heated in crucible boats from 750 to 1150{degrees}C in the presence of various chlorinating agents. The offgas contained 90{sup +}% of the targeted contaminants despite their complex matrix form. The residue was free of contamination. As a result of the efficient concentrating mechanism of the process, the contaminants in the offgas solids are attractive for reuse in metallurgical industries. As an additional benefit, the organic contaminants of the residues were eliminated. Dioxin traces in the solids before treatment were absent after treatment. 15 refs., 4 figs., 4 tabs.

  19. Heat pipe radiator. [for spacecraft waste heat rejection

    Science.gov (United States)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  20. Accumulation and subsequent utilization of waste heat

    Science.gov (United States)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  1. Cycle of waste heat energy transformation

    Science.gov (United States)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  2. Waste Heat Recovery of Power Plant%热电厂余热回收利用的初步探讨

    Institute of Scientific and Technical Information of China (English)

    王喆; 张亮

    2013-01-01

    根据低碳供暖的理念,以热电联产为平台,采用热泵技术开发多种低温能源用于供热。在供热系统末端,将暖气片用户和地暖用户串联供热,实现热能的梯级利用。依据供暖期各阶段的热负荷变化进行供热调节,同时,在非采暖季,开发非采暖季热力产品,实现热电多产。结合实例,与传统供暖方式进行比较分析,说明该供热系统在经济、节能环保等方面的优越性。%The new concept of low carbon heating is proposed. With the platform of cogeneration, the heat pump technology is utilized to develop various types of cryogenic energy for heating. At the heating end, gradient utilization of heat energy is achieved by connecting the ra-diator heating system and floor heating system in series. Heating methods are adjusted following changes of thermal load during heating peri-od; in the non-heating season, developing the correlate thermal products to realize thermoelectric multi-generation. Combined with examples, comparative analysis on both new heating system and traditional heating system shows that the heating system has advantages in economy, en-ergy conservation and environmental protection, etc.

  3. Waste heat rejection from geothermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.

    1978-12-01

    This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

  4. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys

    Directory of Open Access Journals (Sweden)

    Mahmoud Khaled

    2015-03-01

    Full Text Available This work discusses a waste heat recovery system (WHRS applied to chimneys for heating water in residential buildings. A prototype illustrating the suggested system is implemented and tested. Different waste heat scenarios by varying the quantity of burned firewood (heat input are experimented. The temperature at different parts of the WHRS and the gas flow rates of the exhaust pipes are measured. Measurements showed that the temperature of 95 L tank of water can be increased by 68 °C within one hour. Obtained results show that the convection and radiation exchanges at the bottom surface of the tank have a considerable impact on the total heat transfer rate of the water (as high as 70%.

  5. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  6. Influences of Mixture Composition on Waste Heat Recovery System for Vehicle Internal Combustion Engine%混合工质对车用内燃机余热回收系统的影响

    Institute of Scientific and Technical Information of China (English)

    周启顺; 杨凯; 张红光

    2014-01-01

    通过试验对1台标定功率为280 kW的车用内燃机全工况范围内排气能量的变化规律进行了分析,设计了一套有机朗肯循环余热回收系统,研究了车用内燃机不同工况下有机朗肯循环余热回收系统的工作性能。以典型干工质R245fa和典型湿工质R152a为组元,配制了3种不同类型的非共沸混合工质,研究了变浓度非共沸混合工质对车用内燃机有机朗肯循环余热回收系统性能的影响。研究结果表明,随着车用内燃机转速和扭矩的增加,有机朗肯循环余热回收系统的净输出功率、余热回收效率及所需的非共沸混合工质的质量流量均逐渐增加;R152a含量最高的非共沸混合工质性能最优。%The exhaust energy of 280 kW vehicle internal combustion engine in the whole conditions was analyzed by the ex-periment .A set of organic Rankine cycle system was designed and its working performance was analyzed under different engine operating conditions .Based on R245fa dry substance and R152a wet substance ,three zeotropic mixtures were prepared .The influence of zeotropic mixtures with different composition on the organic Rankine cycle waste heat recovery system performance was investigated .The results showed that the net power output ,waste heat recovery efficiency and required zerotropic mixture mass flow of organic Rankine cycle system increased gradually with the increase of engine speed and torque .The performance of zeotropic mixture containing the highest content of R152a was optimal .

  7. Thermoelectricity from wasted heat of integrated circuits

    KAUST Repository

    Fahad, Hossain M.

    2012-05-22

    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  8. 采用复合相变换热器技术回收CFB锅炉烟气余热%Recovery of waste heat of CFB boiler flue gas by compound phase changing heat exchanger

    Institute of Scientific and Technical Information of China (English)

    刘辉; 徐玉陵; 朱相利; 王永祥; 李世栋

    2011-01-01

    The flue gas waste heat of CFB boiler was recovered by compound phase changing heat exchanger (FXH) to heat the condensate instead of 2# low pressure heater of original steam turbine, and the thermodynamic calculation of flue gas waste heat system was simulated by Matlab software. The results showed that the flue gas temperature reduced from 150 - 155 ℃ to 120 ℃ , the saved extraction steam could increase electric generating power by 175.3 x 10 ( Kw · H)/a,the standard coal consumption rate of power supply reduced 1. 323 g/( Kw · H) , theboiler thermal efficiency increased by 1. 85 percent point,and the simple payback period was about 2.3 years. The flue gas temperature at FXH inlet was not suitable for exceeding 150 ℃ , and the flue gas dew point for the selected coal should range between 108 ℃ and 114 ℃.%采用复合相变换热器(FXH)回收CFB锅炉尾部烟气余热,代替原汽轮机2#低压加热器抽汽加热凝结水,并利用Matlab软件对烟气余热系统进行了热力仿真计算.改造后的运行结果表明,锅炉排烟温度从150~155℃降低至120℃,节省的抽汽可增加发电量175.284×104(kW·h)/a,供电标煤耗降低1.323 g/(kW·h),锅炉热效率提高1.85个百分点,改造静态投资回收期约为2.3a;FXH的进口烟气温度不宜超过150℃,所选燃煤的烟气露点温度在108~114℃较适宜.

  9. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  10. Recovery of Monomer from Nylon waste powder for its Recycling

    Directory of Open Access Journals (Sweden)

    Dilip B.Patil

    2014-03-01

    Full Text Available Recovery of monomer hexamethylene diamine(HMD in the form of dibenzoyl derivative of hexamethylene diamine (DBHMD from Nylon waste rope powder was carried out by degradation of Nylon waste powder of nylon rope waste.The molecular weight of nylon waste powder was found to be 26582.The minimum amount of nylon waste powder and hydrochloric acid required for maximum recovery of HMD and DBHMD was found to be 5g and 5N,50ml hydrochloric acid respectively. Further it was observed that the maximum time and temperature required for getting maximum yield of DBHMD was 120 minutes and 800C respectively.

  11. Energy recovery from garden waste in a LCA perspective

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2015-01-01

    According to the common strategies regarding waste management and energy supply in EU countries, more efficient utilization of organic waste resources (including garden waste) with both nutrient and energy recovery is desired. Each of the most common treatments applied today – composting, direct...... use on land and incineration – only provides one of the two services. A technology ensuring both nutrient and energy utilization is anaerobic digestion (AD) that has become applicable for treatment of garden waste recently. In this study, life cycle assessment aimed to compare four garden waste...... and energy recovery were observed....

  12. Energy-saving Control of Air Combustion Coefficient in Steel Waste Heat Recovery Under 2.5 MPa Saturated Steam%2.5 MPa饱和蒸汽下钢铁余热回收中的空气燃烧系数节能控制

    Institute of Scientific and Technical Information of China (English)

    陈凡

    2016-01-01

    In order to improve the efficiency of waste heat recovery in steel smelting and reduce energy consumption, an energy saving control method based on optimization model of air combustion coefficient is proposed in the recovery of steel waste heat. The air combustion coefficient model of waste heat recovery was established based on the thermodynamic analysis of the waste heat recovery system. The parameters of the model were optimized by using particle swarm optimization algorithm to obtain the optimal parameter configuration and the maximum air combustion coefficient. Thus realizing the energy saving control of the steel waste heat recovery process under the saturated steam. The experimental results show that the proposed method can improve the energy saving control of the steel waste heat recovery with satisfactory results.%在2.5 MPa饱和蒸汽环境下,空气燃烧系数跳变概率大,为了提高钢铁冶炼中余热回收的效率,减少能源消耗,提出一种基于空气燃烧系数优化模型的钢铁余热回收中的节能控制方法。对余热回收系统进行热力学分析,在此基础上建立余热回收的空气燃烧系数模型,利用粒子群算法对模型中的相关参数进行优化,获得最优参数配置和最大的空气燃烧系数。由此实现饱和蒸汽下钢铁余热回收过程中的节能控制。实验结果表明,所提方法能够对钢铁余热回收进行节能控制,效果令人满意。

  13. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  14. Metallurgical recovery of metals from electronic waste: a review.

    Science.gov (United States)

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  15. Battleground Energy Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, Daniel [USDOE Gulf Coast Clean Energy Application Center, Woodlands, TX (United States)

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  16. 小型燃气内燃机CCHP系统余热回收特性实验研究%Study on Features of Waste Heat Recovery in CCHP System Based on Small-Scale Gas Engine

    Institute of Scientific and Technical Information of China (English)

    肖利涛; 秦朝葵

    2014-01-01

    The features are studied in the cooling system of CCHP based on small-scale gas engine. The recovery amount of waste heat increases with the increasing of the load, but its proportion to the total energy is reduced and the energy efficiency in such system is over 80%. The CO emission of engine decreases with the increasing of excess air factor and the NO x emission achieves the maximum value when the excess air factor is 1.16.%将汽油内燃机改装成燃气内燃机,搭建小型燃气内燃机CCHP系统实验台。对小型燃气内燃机CCHP系统的冷却系统余热和烟气余热及排放特性进行了研究。随着负载的增加,系统余热回收量增长,但其所占总能量比例降低,系统整体能源利用率在80%以上。发动机 CO 排放随着过剩空气系数增加而降低,NOx排放量在过剩空气系数为1.16达到最大值。

  17. Utilization of waste heat from energy conversion and industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.R.; Hamilton, R.W.

    The laws of thermodynamics state that no process of energy transformation can take place with perfect efficiency--some waste heat is always produced. The generation of waste heat from energy conversion and industrial processes are discussed. First-law and second-law efficiencies are defined. After listing the amounts of waste heat produced, some technological options for reducing waste heat or using it for other purposes, such as district heating, are described.

  18. Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation%高炉渣余热回收协同转化生物质制氢

    Institute of Scientific and Technical Information of China (English)

    童力; 胡松涛; 罗思义

    2014-01-01

    Blast furnace (BF) slag, one of main byproducts in steelmaking industry, is of high sensible heat and contains some metal oxides, which both can be utilized and is very beneficial to catalytic converse of tar and low carbon hydrocarbons for production of hydrogen-rich gas. Based on this idea, to realize heat recovery of BF slag and utilization for biomass catalytic gasification to generate hydrogen-rich gas, a heat recovery and catalytic conversion system was proposed in this paper. The liquid-solid transition state particles are firstly made by centrifugal granulation from liquid BF slag and then taken them as heat carrier for biomass gasification in a moving-bed reactor, and due to catalysis of multi-metal oxide the selectivity of production hydrogen is improved. Ultimately, the low-grade waste heat of liquid BF slag is translated into the high grade hydrogen energy. To examine main factors influencing gas composition and product distribution, gasification experiments are conducted. The results show that BF slag shows a good catalytic activity for tar cracking and methane reforming. With increase of BF temperature and decreases of particle size the tar content in gasification product decreases and the quality of hydrogen-rich gas improves. At the optimum conditions:BF slag particle size below 2 mm as heat carrier and catalyst, the gas yield can reached 1.65 m3·kg-1, hydrogen content 53.22%and tar content only 2.52%.%高炉渣是钢铁生产过程的主要副产品,是一种多元金属熔体,具有大量显热并能促进焦油及甲烷等低分子碳氢化合物的催化转化。鉴于此本文提出通过干法离心粒化技术将液态炉渣制备成液-固过渡态的高温炉渣颗粒,作为生物质气化热载体,利用炉渣中多种金属矿物对大分子的解构、断键和分解的催化作用,提高气化反应的选择性,实现对炉渣显热的回收和转换,将低品位的液态炉渣余热转换成高品位的氢能。通过

  19. 蓄热体余热回收换热器强化传热实验研究%Heat Transfer Enhancement of Heat Exchanger for Regenerator Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    韩东太; 荐蓓蓓

    2014-01-01

    利用蓄热式热热交换理论和高温空气燃烧技术的原理,在热态实验基础上建立了蜂窝陶瓷蓄热体的性能研究实验。结果表明,热效率及温度效率随换向时间的增加均呈现先上升后下降的趋势,存在一个最佳换向时间,即热效率和温度效率随着长度的增加而增大,但阻力损失也随之增大;同时存在一个最佳气体流速使蓄热体效率与经济效益达到最佳值;蓄热体的平均温度与气体出口温度均随着换向周期数的增加而升高;对于给定几何外形尺寸的蓄热体,四边形孔格结构的蓄热体具有较大的比表面积,流动性更好,具有更高的温度效率和热效率。%Using the regenerative heat exchange theory and the principle of HTAC technology, the experiment on the performance of honeycomb ceramic regenerator is conducted on the basis of thermal experiments. The results show that with the increase of reversing time, both thermal efficiency and temperature efficiency rise first and then fall, and there exists an optimal reversing time, which increases with the increase of length , but resistance loss also increases;there exists an optimal gas flow rate at the same time, which leads to the best regenerator efficiency and economic benefits;the average temperature of regenerator and gas outlet temperature increase with the increase of reversing cycle number;for the regenerator with a given geometric shape and size, the one with the quadrilateral cell structure has a larger surface area, with better liquidity and higher temperature efficiency and thermal efficiency.

  20. 峡江化工厂节能余热回收发电供车间温度调控的应用研究%Energy-Saving Waste Heat Recovery Power Generation for Temperature Control in Workshop of Xiajiang Chemical Plant

    Institute of Scientific and Technical Information of China (English)

    王振华

    2013-01-01

    Heat energy in acid making process at 1 000 ℃ can be recovered. Waste heat recovery is a crucial energy-efficient technology based on requirements about indoor temperature control in preparation workshop of chemical plant. The recovery boiler is utilized for heat recovery. Then waste heat enters into converter, heat exchanger, economizer and superheater to form superheated steam of 450 ℃ and 3.82 MPa, finally into the turbine for generating. The design result shows the waste heat recovery reach 6000 kW/h, which solves the power required for temperature control in workshop, and saves 3.563 million yuan per year for electricity purchasing, with direct economic benefits of 6.15 million yuan per year.%根据化工厂制配车间建筑体室内温度控制的要求,结合硫磺制酸混合燃烧生成1000℃左右的高温炉气热能实施余热回收设计,采取中压锅炉回收热量,经转化器、热交换器、省煤器、过热器产生温度450℃、压力3.82 MPa的中温中压过热蒸汽,进入汽轮发电机组发电。设计结果表明,余热回收热量6000 kW/h,解决了车间建筑温控所需电能,节省外购电费356.3万元/a,获得直接经济效益615万元/a。

  1. Waste Heat Power Generation Technology of Steelmaking EAF%炼钢电炉余热发电技术

    Institute of Scientific and Technical Information of China (English)

    何立波

    2013-01-01

    The waste heat condition of flue gas in steelmaking EAF and the project examples of waste heat power generation were introduced. The technologies of gas pulse soot blowing, steam accumulator and saturated steam generation were used to solve the waste heat recovery problem in the project. The waste heat was hard to recovery because of the overmuch dust and big waste heat fluctuation in the waste heat power generation system of the steelmaking EAF.%介绍了炼钢电炉烟气的余热情况及其余热发电的项目实例.项目利用燃气脉冲吹灰、蒸汽蓄能及饱和蒸汽发电技术,解决炼钢电炉烟气余热发电系统中因烟气含尘多和余热波动大而难于回收利用的问题.

  2. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  3. Performance improvement of a 330MWe power plant by flue gas heat recovery system

    Directory of Open Access Journals (Sweden)

    Xu Changchun

    2016-01-01

    Full Text Available In a utility boiler, the most heat loss is from the exhaust flue gas. In order to reduce the exhaust flue gas temperature and further boost the plant efficiency, an improved indirect flue gas heat recovery system and an additional economizer system are proposed. The waste heat of flue gas is used for high-pressure condensate regeneration heating. This reduces high pressure steam extraction from steam turbine and more power is generated. The waste heat recovery of flue gas decreases coal consumption. Other approaches for heat recovery of flue gas, direct utilization of flue gas energy and indirect flue gas heat recovery system, are also considered in this work. The proposed systems coupled with a reference 330MWe power plant are simulated using equivalent enthalpy drop method. The results show that the additional economizer scheme has the best performance. When the exhaust flue gas temperature decreases from 153℃ to 123℃, power output increases by 6.37MWe and increment in plant efficiency is about 1.89%. For the improved indirect flue gas heat recovery system, power output increases by 5.68MWe and the increment in plant efficiency is 1.69%.

  4. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    Science.gov (United States)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  5. Energy recovery from solid waste. Volume 1: Summary report

    Science.gov (United States)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  6. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  7. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  8. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  9. Biogas recovery from microwave heated sludge by anaerobic digestion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biogas generated from sewage sludge,livestock waste,and food waste by anaerobic digestion is a valuable renewable energy resource.However,conventional anaerobic digestion is not an efficient process.A long hydraulic retention time and low biogas recovery rate hinder the applications of those resources.An effective pretreatment method to destroy sludge microbial cells has been one of the major concerns regarding improvement of the biogas production.This article focuses on the effects of microwave heating on sludge anaerobic digestion.Volatile suspended solid(VSS) and chemical organic demand solubilization of heated sludge were investigated.Microwave heating was found to be a rapid and efficient process for releasing organic substrates from sludge.The increase of organic dissolution ratio was not obvious when holding time was over 5 min with microwave heating.The effect of the VSS solubilization was primarily dependent on heating temperature.The highest value of VSS dissolving ratio,36.4%,was obtained at 170°C for 30 min.The COD dissolving ratio was about 25% at 170°C.Total organic carbon of treated sludge liquor was 1.98 and 2.73 g/L at 150°C and 170°C for 5 min,respectively.A biochemical methane potential(BMP) test of excess sludge and a mixture of primary and excess sludge demonstrated an increase in biogas production.The total biogas from microwave treated mixture sludge increased by 12.9% to 20.2% over control after 30 days of digestion.Biogas production was 11.1% to 25.9% higher for excess sludge than for untreated sludge.The VS removal ratios of mixture sludge and excess sludge were 12% and 11% higher,respectively,compared to the untreated sludge.

  10. 柴油机变工况余热回收TEG-ORC联合系统的性能模拟%Performance Simulation of Diesel Engine's TEG-ORC Waste Heat Recovery System in Different Engine Conditions

    Institute of Scientific and Technical Information of China (English)

    卫海桥; 仇荣赓; 舒歌群; 田华; 李团兵; 张承宇

    2015-01-01

    对某车用柴油机进行热负荷实验,根据其不同工况下的排气特点,设计了一个用于余热回收的温差发电(thermoelectric generator,TEG)-有机朗肯循环(organic Rankine cycle,ORC)联合系统.通过模拟计算研究了柴油机不同工况下该联合系统性能的变化规律.研究结果表明:TEG-ORC 联合循环实现了余热梯级利用,联合系统的输出功率最高可达 30.36,kW,其中 TEG 系统为 2.24,kW,ORC 系统为 28.12,kW;柴油机指示热效率最高可以提高5.52%,加装联合系统后其指示热效率最高值为47.1%.%The characteristics of vehicle diesel engine gas exhaustion under various operating conditions were studied experimentally and a set of waste heat recovery system based on thermoelectric generator(TEG)and organic Rankine cycle(ORC)was designed. The performance of combined TEG-ORC system under various operating conditions was analyzed by simulation. The results indicate that combined TEG-ORC system achieved the graded use of waste energy,the performance of which is better than that of the single TEG or ORC system. The output power of com-bined system can reach as high as 30.36,kW,with TEG's output power being 2.24,kW and ORC's output power 28.12,kW. The indicated thermal efficiency of diesel engine increases by as much as 5.52%,and the maximum indi-cated thermal efficiency of the diesel engine with combined system is 47.1%.

  11. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  12. Sources and potential application of waste heat utilization at a gas processing facility

    Science.gov (United States)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to

  13. Targeting heat recovery and reuse in industrial zone

    Directory of Open Access Journals (Sweden)

    Zarić Milana M.

    2017-01-01

    Full Text Available In order to reduce the usage of fossil fuels in industrial sectors by meeting the requirements of production processes, new heat integration and heat recovery approaches are developed. The goal of this study is to develop an approach to increase energy efficiency of an industrial zone by recovering and reusing waste heat via indirect heat integration. Industrial zones usually consist of multiple independent plants, where each plant is supplied by an independent utility system, as a decentralized system. In this study, a new approach is developed to target minimum energy requirements where an industrial zone would be supplied by a centralized utility system instead of decentralized utility system. The approach assumes that all process plants in an industrial zone are linked through the central utility system. This method is formulated as a linear programming problem (LP. Moreover, the proposed method may be used for decision making related to energy integration strategy of an industrial zone. In addition, the proposed method was applied on a case study. The results revealed that saving of fossil fuel could be achieved. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI172063

  14. Recovery and reuse of asphalt roofing waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  15. Indirect solar loading of waste heat radiators

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R.C.; Tabor, J.E.; Lindman, E.L.; Cooper, A.J.

    1988-01-01

    Waste heat from space based power systems must ultimately be radiated away into space. The local topology around the radiators must be considered from two stand-points: the scattering of sunlight onto the surfaces of the radiator and the heat load that the radiator may put on near-by components of the system. A view factor code (SNAP) developed at Los Alamos allows the computation of the steady-state radiation environment for complex 3-D geometries. An example of the code's utility is given. 4 refs., 2 figs., 1 tab.

  16. Study on methods of calculating resistance of flue gas from cement production line into dual-pressure waste heat recovery power generation system%水泥线双压余热发电系统烟风阻力计算方法研究

    Institute of Scientific and Technical Information of China (English)

    王为术; 贺慧宁; 董英斌; 张红生; 刘军

    2011-01-01

    The dual-pressure waste heat recovery power generation system efficiently recovers low-temperatured waste heat from cement production lines. In order to accurately calculate the pressure of flue gas from cement production lines into the waste heat recovery power generation system, three resistance mathematical models are deduced based on the momentum law and the energy conservation law, which are cooling resistance in clinker layers, resistance of flue gas flowing from boilers into pipeline as well as resistance in boiler tubes. In addition, visual software of calculating resistance of flue gas is developed based on C++ Builder.%水泥线双压余热发电系统可高效回收水泥线低温余热,为准确计算水泥线余热发电系统的烟风阻力,基于动量定律和能量守恒定律,推导建立了熟料料层冷却阻力、锅炉引入管道阻力、锅炉管束阻力等阻力计算模型,并基于C++Builder开发了水泥线余热发电系统烟风阻力可视化计算软件.

  17. Thermal Economy Analysis on Waste Heat Recovery of the Exhaust Flue Gas of Boiler in Power Plant%发电厂锅炉烟气余热回收方案热经济性研究

    Institute of Scientific and Technical Information of China (English)

    龙群力; 朱彦雷; 刘继平

    2012-01-01

    分析某发电厂锅炉排烟余热回收利用的热经济性,提出了供暖期利用烟气余热进行供暖、非供暖期利用烟气余热加热凝结水的回收方案。研究表明,采用该方案,供暖期可节约标准煤987.9da,非供暖期可节约标准煤883.1t/a,合计每年可节约标准煤1871t,具有良好的节能减排效果。%This paper presents a case study of recovering waste heat of the exhaust flue gas of boiler in a power plant. The waste heat can be recovered by installing a low temperature economizer. The low temperature economizer can save the steam extracted from the turbine to heat the condensed water to gain extra work in un-heating period, in the heating period, it heat the circulating water for civilian using. Analysis results show that it is feasible to install a low temperature economizer for recovering the heat of exhaust flue gas in power plant, which has sound effect on energy saving and emission reduction. The benefits generated include saving of standard coal equivalent about 987.9 t in the heating period and 883.1 t in un-heating period. The total annual saving of standard coal is about 1 871 t.

  18. Material Recovery from Wastes: An Employment and Poverty Alleviation Tool

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2017-02-01

    Full Text Available Waste management is not only about removing waste from the environment but also a tool of social integration and economic well-being. Waste management through the three Rs offers advantages of employment, sustainable development and poverty alleviation. The environment requires attention because it is rapidly degrading amidst dwindling natural resources, mounting amounts of wastes while poverty continues to increase. This paper focused on material recovery from wastes through recovery, re-use, and recycling of municipal solid wastes in the north- eastern city of Maiduguri in Nigeria over a period of 24 months between 2011 and 2013. Three waste management scenarios were thought of and adopted within 7 groups made of the major wards, areas of the Maiduguri metropolis and the University of Maiduguri; involving 5000 respondents/participants working under waste collection outfits or operating at open dump areas. Data obtained were analyzed using simple statistical methods. Findings revealed an annual estimate of the recovery as 16.8 tons of bottles/glasses, 158.4 tons of plastics/rubber, and 264 tons of metal. It also indicated that considerable amount of money could be made from material recovery and recycling=N=97,600 was made from the sales of bottles/glasses, =N= 652,800 from plastic/rubber and =N= 1,408,000 from sales of scrap metals. Material recovery, re-use and recycling have many economic and material benefits. They also constitute human capacity development schemes. These recoverables have paved great means of livelihood to many people involved in this activity. There is need for support from either government or private sector.

  19. Overview of waste heat utilization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1979-04-01

    Power plants annually reject about 11 x 10/sup 9/ GJ (11 x 10/sup 15/ Btu) of low-grade heat to the atmosphere. Typically, this heat is found in the large quantities of cooling water necessary to condense the steam in the power-generating cycle. Such cooling water is generally discharged in the range of 15 to 43/sup 0/C (60 to 110/sup 0/F) depending on the temperature of the available inlet water, quantity circulated, plant load, and heat-rejection system used. A number of possible uses have been suggested for this low-grade heat, including: greenhouse horticulture; soil heating (both open field and in greenhouses); spray irrigation for frost protection; organic waste treatment (particularly for algae or biomass production); and aquaculture/mariculture. To date greenhouse and aquaculture/mariculture systems have received the most attention and have, therefore, progressed farthest. This paper describes several innovative techniques that utilize power-plant reject heat for these applications. Schematic descriptions are given for these techniqes and a brief review of the project status is provided. The major efforts to utilize reject heat for agricultural purposes are described not only for the U.S., but efforts in Canada, France, West Germany, and the USSR are noted.

  20. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º......C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...

  1. Waste heat potentials in the drying section of the paper machine in Umka Cardboard Mill

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2011-01-01

    Full Text Available Paper production is one of the most energy intensive industrial processes. The use of waste heat is very important for energy efficiency improvement in paper industry. This paper deals with methods for calculation of potentials of waste heat generated in paper/board production process. For that purpose, the material and heat balance of the cardboard machine at Umka Cardboard Mill has been determined. Field measurements were conducted in order to define the unknown values of process parameters used for calculation in the balance equations and modelling. The focus was given to the cardboard drying section, which consumes most of the energy supplied to the machine. Additional aim of the work presented in the paper was to evaluate the specific energy consumption and the thermal efficiency of all individual energy units within the machine’s drying section. The results indicate two main sources of waste heat: waste heat released to the atmosphere with the discharge air from the present waste heat recovery system (14,380 kW; and waste heat released into the hall from the machine and extracted by the hall ventilation system (4,430 kW. Waste heat from both sources is characterized by fairly low temperatures 58-75ºС and fairly high moisture content (30-40 g/kg. The waste heat can be partly utilized for preheating the fresh air in cardboard drying process, saving up to 13% of steam consumption. The specific heat consumption and specific steam consumption (consumption per tonne of produced cardboard of the machine was 1,490 kWh/t and 1.4 t/t, respectively. The thermal efficiency of drying section and coating drying section was 55.6% and 33.6%, respectively. All these figures imply necessity for further waste heat utilization with the aim of improving the efficiency of energy use.

  2. Collection of low-grade waste heat for enhanced energy harvesting

    Science.gov (United States)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-05-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  3. Collection of low-grade waste heat for enhanced energy harvesting

    Directory of Open Access Journals (Sweden)

    Ercan M. Dede

    2016-05-01

    Full Text Available Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  4. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg(-1) to 16.60 MJ kg(-1) depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm(-3) at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kWe. The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  5. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the be

  6. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  7. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the be

  8. Experimental research on heat transfer performances of salty bath spiral coil waste heat recovery equipment in coke oven ascending pipe%盐浴螺旋盘管式焦炉上升管余热回收装置传热性能试验

    Institute of Scientific and Technical Information of China (English)

    杨哲君; 张素军; 李菊香

    2015-01-01

    对盐浴螺旋盘管式结构的焦炉上升管高温荒煤气余热回收装置进行了以烟气代替荒煤气的传热性能模拟试验,得到了上升管余热回收装置螺旋盘管环形套筒的外壁温度分布、上升管内烟气侧的传热系数、环形套筒内螺旋盘管外盐浴的自然对流传热系数等试验研究结果.结果表明,装置螺旋盘管环形套筒的外壁温度分布并非均匀,随上升管内烟气温度的升高而波动增大;烟气侧对流传热系数在Re数高于2900后随Re数的增大而明显上升;螺旋盘管外盐浴的自然对流传热系数随熔盐温度的升高几乎不变.根据试验结果拟合出环形套筒内螺旋盘管外盐浴的自然对流传热关联式,为实际的工程应用提供参考.%This paper tested the heat transfer performances of a salty bath spiral coil high temperature coke-oven gas waste heat recovery equipment in coke oven ascending pipe. Flue gas was instead of coke-oven gas as the heat transfer media. The experiment obtained temperature distribution of spiral coil sleeve on the outer wall of the waste heat recovery equipment,the heat transfer coefficients of flue gas in ascending pipe,the outer natural convection heat transfer coefficients of salty bath spiral coil in annular sleeve and other experiment results. The test results showed that the temperature distribution of spiral coil sleeve on the outer wall was not uniform,and fluctuated more as the flue gas temperature increased in the ascending pipe;the convection heat transfer coefficient of flue gas increased evidently with the increase ofRe number especially afterRe number was greater than 2900;the outer natural convection heat transfer coefficient of the salty bath spiral coil was almost a constant value with the increase of molten salt temperature. Based on the test results,this paper presented the outer natural convection heat transfer correlation of the salty bath spiral coil in annular sleeve

  9. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    OpenAIRE

    2015-01-01

    There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be pr...

  10. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  11. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    Science.gov (United States)

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2012-06-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  12. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... in parallel to each other, with a goal to evaluate the added value of exergy for LCA studies in the resource recovery context. The functional unit is the treatment of 1 ton MSW. Two alternative approaches for recovering aluminum from MSW directed to a waste-to-energy plant are considered. A) MSW is treated...

  13. Zero Waste; Energy Recovery From Non-recyclable Mixed Municipal Waste

    Directory of Open Access Journals (Sweden)

    Igor Laštůvka

    2016-01-01

    Full Text Available Zero Waste is a strategy offering waste management solutions for today’s businesses. The Zero Waste strategy has been created with the objective of stimulating sustainable utilisation of resources, production and consumption with the highest possible level of recycling of generated waste. Due to the fact that currently there is very little information and only few relevant data available as a base for the implementation of the Zero Waste strategy, waste management specialists approach and apply such a strategy in different manners. On the other hand, there are areas of waste management where such a strategy has already been applied on a long-term basis in spite of non-existing relevant legislative tools. Indicators determined in the Zero Waste strategy may be achieved only if the individual countries clearly define legislative environment and adopt a national Zero Waste strategy with achievable objectives unambiguously determined. The area of waste separation, or handling of fractions of waste non-utilisable as secondary materials after separation, is one of the areas directly connected to the Zero Waste strategy. The objective of this paper is the evaluation of the usage of fractions of waste non-utilisable as secondary materials for energy recovery, providing thus valuable knowledge and information for the implementation of the Zero Waste strategy.

  14. Thermoelectric Generation Using Waste Heat in Steel Works

    Science.gov (United States)

    Kuroki, Takashi; Kabeya, Kazuhisa; Makino, Kazuya; Kajihara, Takeshi; Kaibe, Hiromasa; Hachiuma, Hirokuni; Matsuno, Hidetoshi; Fujibayashi, Akio

    2014-06-01

    The steelmaking industry in Japan has significantly reduced its energy use for the past several decades and has kept the highest energy efficiency in the world. However, the steelmaking industry is strongly required to develop new technologies for further energy conservation in view of energy security, high and volatile energy prices, and climate change. One of the key technologies to achieve the requirement is waste heat recovery. This paper describes the thermoelectric generation (TEG) system using the waste heat in the steelmaking process. In this system, the TEG unit, which consists of 16 thermoelectric modules made of Bi-Te thermoelectric materials, generates the electrical power directly by converting the radiant heat released from hot steel products. Each thermoelectric module, whose size is 50 mm × 50 mm × 4.2 mm, generates 18 W when the hot-side temperature is 523 K and the cold-side is 303 K. Therefore, the output of the TEG unit is over 250 W. The performance and the durability of the system have been investigated under various operating conditions in steel works. The results of the verification tests in the JFE steel Corporation's continuous casting line will be discussed.

  15. E-waste management and resources recovery in France.

    Science.gov (United States)

    Vadoudi, Kiyan; Kim, Junbeum; Laratte, Bertrand; Lee, Seung-Jin; Troussier, Nadège

    2015-10-01

    There are various issues of concern regarding electronic waste management, such as the toxicity of hazardous materials and the collection, recycling and recovery of useful resources. To understand the fate of electronic waste after collection and recycling, a products and materials flow analysis should be performed. This is a critical need, as material resources are becoming increasingly scarce and recycling may be able to provide secondary sources for new materials in the future. In this study, we investigate electronic waste systems, specifically the resource recovery or recycling aspects, as well as mapping electronic waste flows based on collection data in France. Approximately 1,588,453 t of new electrical and electronic equipment were sold in the French market in 2010. Of this amount, 430,000 t of electronic waste were collected, with the remaining 1,128,444 t remaining in stock. Furthermore, the total recycled amounts were 354,106 t and 11,396 t, respectively. The main electronic waste materials were ferrous metals (37%), plastic (22%), aluminium (12%), copper (11%) and glass (7%). This study will contribute to developing sustainable electronic waste and resource recycling systems in France.

  16. Industrial applications study. Volume III. Technology data base evaluation of waste recovery systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence W.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1977-01-01

    An analytical study was undertaken to estimate the present and potential technical and economic characteristics of a wide range of components and complete systems capable of converting industrial and commercial waste heat into mechanical or electrical power and/or building and process heating and cooling. The component and system technologies evaluated include: Rankine-, Stirling-, and Brayton-cycle power systems; reciprocating-, rotary-, and turbo-expanders; heat exchangers and heat pumps; thermally driven cooling and dehumidification systems; and integrated systems capable of providing multiple outputs. Extensive analyses were conducted of Rankine-cycle systems using steam, halogenated hydrocarbons, and other organic compounds as working fluids. Performance characteristics, recoverable output power, and installed costs were estimated and are presented herein for Rankine-cycle systems utilizing selected working fluids over a range of waste heat source temperatures between approximately 200 and 1000/sup 0/F. Data describing the performance capabilities, technology and installed costs of heat exchangers, expanders and thermally driven absorption, vapor compression, steam-jet cooling and refrigeration systems are presented herein together with limited performance and cost estimates for Stirling-cycle power recovery systems. The component and system data were used to provide a preliminary assessment of the recoverable energy and associated system costs when integrated with generalized waste heat sources identified by Drexel University from their two-digit SIC industrial energy survey.

  17. Organic rankine cycle waste heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  18. Analysis of the Thermal Parameters in the Production of 58SiMn Steel Based on Waste Heat Recovery Technology of Heat Pump%基于热泵余热回收技术的58SiMn钢件生产中热工参数的分析

    Institute of Scientific and Technical Information of China (English)

    陈辉; 秦盼盼; 陈丽丽; 于陆宁; 刘士魁

    2011-01-01

    目的 探讨用热泵技术对东基集团在加工筒型结构件(58SiMn钢材)的过程中的余热进行回收的可行性以及将回收的热量用于加热职工洗浴用水和蒸汽锅炉的补偿水的可行性.方法 对基于热泵技术基础之上的余热回收系统进行了分析,包括系统的组成、工作原理、热工参数等,根据热泵的技术特点运用热力学机理着重对生产过程中中频加热机组、中频电源的热能散失进行了分析与计算.结果 通过分析与计算生产过程中每小时可回收余热4.16×106kJ,回收的热量可以每小时产生约17.33 t 55℃的热水.结论 每小时产生的热水完全可以满足该厂蒸汽锅炉的补偿水和生产车间职工洗浴用水的需要,证明了所设计的筒型体结构件在生产过程中的热泵式余热回收系统是合理的.在实现废热利用的同时,即可减少冷凝热对环境产生的热污染,又可减少冷却塔的运行费用和噪声,还可以减少蒸汽锅炉的用煤量.%This paper studies the possibility of recovering the waste heat in the machining process of cartridge type structures( 58SiMn steel)and the possibility of using the recalled calories to provide bath water for workers and compensation water for steam boilers. In this paper, the waste heat recovery system based on heat pump was analyzed, including system composition, working principle, thermal parameters, etc. According to the technique characteristics of hot pump and the thermodynamics mechanism, the paper carried out analysis and calculation about the lost thermal energy and the power of the medium repeatedly-heating machine. The whole process can produce 17.33 ton hot water of 55 ℃ per hour using the recalled calories.These hot water can provide the required water for the steam boilers and the worker bathing. This research shows that waste heat recovery system used in the production of the cartridge type structures is effective.

  19. Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector

    Directory of Open Access Journals (Sweden)

    Sunudas T

    2013-09-01

    Full Text Available Boilers are widely used in most of the processing industries like textile, for the heating applications. Surat is the one of the largest textile processing area in India. In textile industries coal is mainly used for the steam generation. In a textile industry normally a 4% of heat energy is wasted through blowdown. In the study conducted in steam boilers in textile industries in surat location, 1.5% of coal of total coal consumption is wasted in an industry by improper blowdwon. This thesis work aims to prevent the wastage in the coal use by optimizing the blowdown in the boiler and maximizing the recovery of heat wasting through blowdown.

  20. Risk and Benefit Calculation of Bao Steel Blast Furnace Slag Water Waste Heat Recovery EMC Project%宝钢高炉冲渣水余热利用合同能源管理项目风险及效益计算

    Institute of Scientific and Technical Information of China (English)

    戴海波

    2015-01-01

    对宝钢高炉冲渣水余热利用合同能源管理项目进引资金风险评估和效益计算,确立项目可行性,为项目的实施提供必要的依据.%The article introduces investment risk assessment and benefit calculation of Bao Steel blast furnace slag water waste heat recovery EMC project. It establishes feasibility of project and provides basic support for project implementation.

  1. Hydrometallurgical recovery of silver from waste silver oxide button cells

    Energy Technology Data Exchange (ETDEWEB)

    Sathaiyan, N.; Nandakumar, V.; Ramachandran, P. [Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2006-10-27

    In recent years, recycling of household batteries has attracted much attention mainly with respect to environmental aspects in addition to the savings. Small silver oxide primary cells used in electric watches become a waste after their life is over. Recycling procedures are needed to prevent any environmental impact from these wastes and to recover the value inherent in the scrap. Smelting and electrolytic methods are discussed for silver recovery from this battery waste. Acid leaching of waste batteries and precipitation of silver as silver chloride followed by smelting at 1000{sup o}C yields a silver recovery of about 83%. An electrolytic route is studied as an alternative to the smelting operation and involves the electrodeposition of silver with higher purity from a silver thiosulfate complex prepared from silver chloride. The electrolysis is potentiostatically controlled at a potential of -0.400 to -0.600V (SCE) for avoiding side-reactions such as the sulfiding of silver. Although recovery methods have been identified in principle, their suitability for mixed small battery waste and economic factors have yet to be demonstrated. (author)

  2. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  3. MUNICIPAL SOLID WASTE AND RECOVERY POTENTIAL: BANGLADESH PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    M. Alamgir, A. Ahsan

    2007-04-01

    Full Text Available A total of 7690 tons of municipal solid waste generated daily at the six major cities of Bangladesh, namely, Dhaka, Chittagong, Khulna, Rajshahi, Barisal and Sylhet, as estimated in 2005. Sampling was done at different waste generation sources such as residential, commercial, institutional and open areas, in different seasons. The composition of the entire waste stream was about 74.4% organic matter, 9.1% paper, 3.5% plastic, 1.9% textile and wood, 0.8% leather and rubber, 1.5% metal, 0.8% glass and 8% other waste. The per capita generation of municipal solid waste was ranged from 0.325 to 0.485 kg/cap/day while the average rate was 0.387 kg/cap/day as measured in the six major cities. The potential for waste recovery and reduction based on the waste characteristics are evaluated and it is predicted that 21.64 million US$/yr can be earned from recycling and composting of municipal solid waste.

  4. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.

  5. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    Science.gov (United States)

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  6. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  7. Open-loop heat-recovery dryer

    Science.gov (United States)

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  8. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  9. 基于有机朗肯循环的柴油机稳态工况废热回收的探讨%Investigation on the Recovery of Waste Heat Based on Steady State of Rankine Cycle in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    韩永强; 王先锋; 张雷; 王虎; 刘洪涛

    2015-01-01

    In order to study the effect of organic Rankine cycle system of reciprocating piston expansion engine with variable expansion ratio on the exhaust gas waste heat utilization, a GT-power simulation model is built based on a 6-cylinder turbocharged diesel engine to analyze the relationship between the organic working medium evaporation pressure and expansion ratio on the expansion engine efficiency and equivalent recovery efficiency of the waste heat recovery system. Results show that with the specific expansion ratio, the output power, efficiency and recovery efficiency of the expansion engine increase with the rise of evaporation pressure. While with the specific evaporation pressure, efficiency and equivalent recovery efficiency of the expansion engine increase firstly and then decrease with the rise of expansion ratio. Thus, the optimum matching between evaporating pressure and expansion ratio can make full use of the potential of waste heat recovery system of organic Rankine cycle.%为了探究可变膨胀比往复活塞式膨胀机有机朗肯循环系统对柴油机尾气余热利用的影响程度,基于某6缸增压柴油机构建GT-power仿真模型,在13工况下仿真并分析有机工质蒸发压力、膨胀比等与余热回收系统膨胀机效率和当量回收效率的关系。结果表明,膨胀比一定时,膨胀机输出的功率、效率及当量回收效率随蒸发压力的上升而提升;蒸发压力一定时,,膨胀机效率和当量回收效率随膨胀比上升先升高后降低;最佳的蒸发压力和膨胀比匹配可充分发挥有机朗肯循环余热回收系统潜力。

  10. Minewater heat recovery project. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-01

    This report consists of three sections: (1) Design, experimental testing and performance analysis of the 20-ft long DBHE (Downhole Bundle Heat Exchanger); (2) Modified design of mine water heat exchanger; and (3) Performance tests on mine water heat exchanger. Appendices summarize design calculations, discuss the scope of the work tasks, and present a diary of the progress throughout the research and development project.

  11. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Robin M. Stewart

    1999-09-29

    Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a

  12. Heat recovery gain more than doubled. Heat recovery system controller; Rueckwaermezahl mehr als verdoppelt. WRG-Controller

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Christian [Kulle und Hofstetter, TGA Consulting, Muenchen (Germany); Niederer, Martin [Konvekta AG, St. Gallen (Switzerland)

    2009-03-15

    The hospital at Munich-Bogenhausen, which is a top level hospital with more than 1000 beds, modernised its heat recovery system first installed in the eighties of last century. A modern high-efficiency integrated recirculation system was installed instead. The system has a novel heat recovery controller which not only detects deviations from optimal operation but also identifies the causes. The system supplier, Konvekta AG of St.Gallen, Switzerland, is able to guarantee a heat recovery rate of 87 percent on a long-term basis. The energy cost for preheating of the ambient air was reduced by 78 percent as compared to the original system. (orig.)

  13. Recovery of mineral oil from waste emulsion using electrocoagulation method

    Directory of Open Access Journals (Sweden)

    Razali Mohd Najib

    2016-01-01

    Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.

  14. Feasibility Study of Recovery Waste Heat of Flue Gas Using Organic Rankine Cycle%有机朗肯循环回收烟气余热的可行性研究

    Institute of Scientific and Technical Information of China (English)

    马新灵; 王慧; 魏新利; 孟祥睿; 杨凯旋

    2013-01-01

    计算了我国电站锅炉可回收的烟气余热量,并对有机朗肯循环低温余热发电系统进行了热力分析.以2台600 MW燃煤机组的排烟余热为热源、R245fa为工质,确定了余热发电机组的最优运行参数和电力容量.用RETScreen软件对该系统进行了投资收益和节能减排效益分析.结果表明:该余热机组发电量为47 502 MWh/a,电力外销收入为1 900.1万元/a,减排CO2量为42 419 t/a.在初始投资成本6 500元/kW、财务负债比率65%的情况下,投资简单偿还期为2.5年,股本回收仅需1.1年,能源产出比为0.14元/kWh,温室气体减排成本为291元/tCO2.30年运行期内,预计可累积现金4.31亿元.%Flue gas waste heat of utility boiler was calculated.Based on flue gas as heat source and R245fa as working fluid,thermodynamic analysis was carried out to waste heat power generation,and the optimal operation parameters and generating capacity were determined.RETScreen was applied to analyse the investment income and benefit analysis of energy saving and emission reduction.The results show that generating capacity of waste heat unit is 47,502 MWh/a,the emission reductions of CO2 is 42,419 t/a.Under the condition of initial investment costs 6,500 RMB/ kW and debt ratio 65%,equity payback only needs 1.1 years,energy production cost is 0.14 RMB/kWh,GHG reduction cost is 291RMB/tCO2.During operation period of 30 years,the cumulative cash is expected to be 431 million RMB.

  15. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  16. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  17. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  18. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  19. 多边界条件下热泵利用循环水余热的CPCS-RBF预测控制%Heat Pump CPCS-RBF Predictive Control Based on Multiple Boundary Conditions in Circulating Water Waste Heat Recovery System

    Institute of Scientific and Technical Information of China (English)

    周洪煜; 杜学森; 张振华; 黄耀珍

    2015-01-01

    In the circulating water waste heat recovery system, when heat pump heating net water outlet temperature trace heating load demand, that’s not only adjusted by driven steam capacity, and is easily influenced by operating conditions variation of the heating net backwater and circulating water, the traditional PID control method has a large overshoot volume and a poor load tracking ability. So a chaotic particle clone selection (CPCS)-radial basis function (RBF) direct multi-step predictive control strategy was proposed, with difference between heat pump heat supply network water outlet temperature predicted value and the set values as the objective function, using CPCS optimization algorithm to calculate the optimal values of driven steam when the objective function is the minimum. The prediction model was constructed by two RBF neural networks according to the field operation data in order to improve the model variable condition adaptability. The experimental results show that the control strategy can comprehensively learn the change of the parameters such as the heating net backwater temperature and circulating water temperature, and make driven steam tone act in advance, trace heating load demand change in time, and adapt fluctuation of exhaust gas residual heat under power generation load change, so has better energy saving effect and variable condition adaptability.%循环水余热回收系统中,热泵热网水出口温度在跟踪供热负荷需求时,在受驱动蒸汽量的调节的同时,往往易受热网回水、循环水等工况变化的影响,传统 PID 控制方式超调量大、负荷跟踪能力差。提出一种混沌变异克隆选择−径向基函数(CPCS-RBF)直接多步预测控制策略,以热泵热网水出口温度预测值与设定值差值为目标函数,利用CPCS优化算法求取目标函数最小时的驱动蒸汽最佳值。预测模型由2个RBF神经网络结合热泵现场运行数据构建,以提高热泵系统

  20. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    Directory of Open Access Journals (Sweden)

    G.V. Pradeep Varma

    2015-03-01

    Full Text Available There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be produced with the available heat recovery against a cement factory demand of 15 MW. The available process heat for cement production and power generation has been estimated at a capacity range from 5000 to 9000 TPD. The analysis recommended a low steam pressure for power generation at above said heat recovery gas temperature.

  1. The economics of resource recovery from municipal solid waste.

    Science.gov (United States)

    Abert, J G; Alter, H; Bernheisel, J F

    1974-03-15

    A prototypical operating statement similar to that used by business firms has been shown to be a useful decision-making tool for a community choosing a solid waste management system. When applied to resource recovery, it highlights the economics of recovery and the values of the input parameters necessary to achieve economic viability, whether in the case of public or private ownership (23). In most communities, refuse processing to recover material resources must be based on more than one source of revenue. In addition to the revenues from the sale of by-products, there must be revenues from processing the incoming refuse and from a user, or dump, fee. In the first case discussed, that of materials recovery by a front end system, resource recovery is shown to be economically feasible for those communities in which the present cost of disposal is relatively high. The indifferent community was one having a current cost of $7.72 per ton; more accurately, this would be the cost for the near-term future. It is not necessary that current costs be used, since many communities are merely "dumping" their refuse. The indifference decision should be based on the cost of an environmentally sound alternative. Energy recovery from municipal solid waste can increase the number of communities in which resource recovery will be an economic adjunct to a solid waste management system. The analysis presented here was based on the assumption that the value of the fuel recovered exactly offset the additional capital and operating costs of the utility which burns it. There could be costs above and beyond this; similarly, there could be a saving by taking into account the economic value of the organic fraction as fuel. However, it is believed that the assumption under which the materials-plus-energy case was analyzed seems to be realistic at this time.

  2. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    like the Northern Europe or in arctic climate like in Greenland or Alaska these ventilation systems will typically face problems with ice formation in the heat exchanger. When the warm humid room air comes in contact with the cold surfaces inside the exchanger (cooled by the outside air), the moisture......Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º...

  3. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.

    Science.gov (United States)

    Hwang, I H; Matsuto, T; Tanaka, N; Sasaki, Y; Tanaami, K

    2007-01-01

    Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 degrees C for 1h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery.

  4. Direct contact heat recovery from molten salt

    Science.gov (United States)

    Technological deficiencies associated with efficient and economical retrieval of heat energy from molten salt systems are addressed. The large latent heat of fusion stored in molten salt hydrates and other candidate phase change materials (PCM) is removed by internal boiling of a volatile heat transfer fluid (HTF). This procedure eliminates the conventional use of submerged heat exchangers which are costly and, in crystallizing salts, ineffective. The thermochemical conditions and material properties that are critical for application of this concept in environments that yield significant energy savings are investigated and defined.

  5. Energy Recovery from Municipal Solid Waste (MSW) in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Berg, A.; Carrasco, J.C. (Unidad de Desarrollo Tecnologico, Univ. de Concepcion, Concepcion (Chile)); Neugebauer, J. (Polysius AG (ThyssenKrupp Technologies AG), 59269 Beckum (Germany)). e-mail: aberg@udt.cl

    2008-10-15

    MSW amount, along with its disposition cost and environmental impacts have been significantly increasing in Chile. Therefore, goal of current study is to evaluate viable technological solutions for the energetic recovery of MSW. Experimental work in the city Concepcion has been performed on pre-treatment processes. Results show that an appropriate physical separation leads to fractions with specific characteristics, therefore applicable for different energetic uses. Keywords: Municipal solid waste (MSW), combustion, biogas, developing countries.

  6. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  7. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    Science.gov (United States)

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  8. Heating System of High Temperature Biogas Digester by Solar Energy and Methane Liquid Heat Recovery Heat Pump%太阳能-沼液余热式热泵高温厌氧发酵加温系统

    Institute of Scientific and Technical Information of China (English)

    裴晓梅; 石惠娴; 朱洪光; 龙惟定

    2012-01-01

    A heating system of biogas digester was developed to avoid area limitations of buried wells in the heating system of biogas digester by ground-source heat pump, in which the heat energy was supplied by hot water from waste heat recovery coupled with solar- assisted heat pump. The key parameters such as the heat load of digester, waste heat recovery rate of the methane liquid, medium and high heat pump, the solar energy collector area and so on werecalculated. The results show that this system can guarantee the temperature of 50+2℃ in the digester, the heat recovery rate of the methane liquid can reach upto 70%. The system is characterized by that the solar energy and waste heat recovery of the methane liquid serve as the low-graded heat sources of the heat pump. There a're three kinds of running modes including the sloar energy heating directly, the solar energy low level heat sources heat pump, and the combination of the solar energy and waste heat recovery low - graded heat resources heat pump and so on. The waste heat recovery technique can make full use of energy of the system and prevent thermal pollution.%针对地源热泵式沼气池加温系统需要打地埋井及铺设地埋管受地质水质局限等问题,系统构建了太阳能—沼液余热式热泵高温厌氧发酵加温系统.对系统发酵池热负荷、沼液余热回收率、中高温热泵机组、太阳能集热装置等关键参数进行了理论计算,得出系统能够保证发酵池温度50±2℃,沼液余热回收量可以达到系统总需要热量的70%.系统特点在于采用太阳能和沼液余热联合作为中高温热泵低位热源并确立其三种运行模式,包括太阳能直接加温模式,太阳能低位热源—热泵加热模式和太阳能—沼液余热回收联合式热泵加温模式.

  9. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...

  10. Exergy analysis of aluminum recovery from municipal solid waste incineration

    DEFF Research Database (Denmark)

    Vyzinkarova, Dana; Allegrini, Elisa; Laner, D.

    Two main challenges, associated with the recovery of aluminum from state-of-the-art municipal solid waste (MSW) incineration plants, are yield as well as quality losses of metallic aluminum due to particle surface oxidation and presence of impurities. Yet, in the framework of life cycle assessment...... (LCA) a direct measure for expressing the quality of primary and secondary resources is missing. In view of a possible solution, exergy has been proposed as a concept to evaluate the quality of resources. In this paper, LCA and exergy analyses for two waste treatment approaches are conducted...... in a two-step system consisting of a waste-to-energy process and a consequent bottom ash treatment. B) An aluminum-pre-sorting step takes place prior to the thermal treatment. In case of B, an additional exergy is spent on pre-sorting, but, in return, a metal of higher quality is obtained. The discussion...

  11. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction.

    Science.gov (United States)

    Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco

    2008-01-01

    Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.

  12. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  13. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  14. Recovery and Concentration of Antioxidants from Winery Wastes

    Directory of Open Access Journals (Sweden)

    Juan Carlos Parajó

    2012-03-01

    Full Text Available Grape and wine byproducts have been extensively studied for the recovery of phenolic compounds with antioxidant activity and a variety of biological actions. The selective recovery and concentration of the phenolic compounds from the liquid phase separated from further diluted winery wastes has been proposed. Adsorption onto non ionic polymeric resins and further desorption with ethanolic solutions was studied. Several commercial food grade resins were screened with the aim of selecting the most suited for the practical recovery of phenolic compounds with radical scavenging activity. Under the optimized desorption conditions (using Sepabeads SP207 or Diaion HP20 as adsorbents and eluting with 96% ethanol at 50 °C a powdered yellow-light brown product with 50% phenolic content, expressed as gallic acid equivalents, was obtained. The radical scavenging capacity of one gram of product was equivalent to 2–3 g of Trolox.

  15. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    Science.gov (United States)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  16. Recovery of essential nutrients from municipal solid waste - Impact of waste management infrastructure and governance aspects

    NARCIS (Netherlands)

    Zabaleta, Imanol; Rodic-Wiersma, Ljiljana

    2015-01-01

    Every year 120-140. million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which a

  17. Recovery of essential nutrients from municipal solid waste - Impact of waste management infrastructure and governance aspects

    NARCIS (Netherlands)

    Zabaleta, Imanol; Rodic-Wiersma, Ljiljana

    2015-01-01

    Every year 120-140. million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which

  18. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    OpenAIRE

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  19. 用于车辆尾气热能回收的热电材料和热喷涂工艺(英文)%Thermoelectric Materials and Thermal Spray Process for Vehicle Waste Heat Recovery

    Institute of Scientific and Technical Information of China (English)

    左磊美国; 付高升; 于良耀

    2016-01-01

    With the global concerns on energy and environmental issues, various approaches of energy harvesting have been explored. As a solid state energy generator, Thermoelectric Generators (TEGs) can convert the temperature gradients to electrical voltage, thus recovery the energy from vehicle exhaust heat and increase overal efifciency. Recently a new industry-scalable thermal spray process has been extended for the integrated manufacturing of thermoelectric generators on the exhaust pipes directly. This paper is to provide a timely review of the state-of-the-art on thermoelectric materials and thermal spray fabrication process for the applications of vehicle exhaust heat recovery. They can also be used for energy harvesting in the power plants, manufacturing processing, and many others.%随着全球能源和环境保护问题的日益突出,人们在探索各种各样的能量回收方法。作为一种固态能量产生装置,热电发电装置能将温差转化为电压,从而实现车辆尾气废热的能量回收、提高总体能量利用效率。最近,出现一种新型可产业拓展的热喷涂工艺,可以用于热电发电装置的集成制造,直接用在排气管上。本文对应用于车辆尾气废热回收的热电材料和热喷涂工艺流程的前沿技术进行了综述。它们也可以用于热电厂、制造过程和其他场合的能量回收。

  20. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  1. Protein recovery from dairy industry wastes with aerobic biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, A.D.; Mitra, R.I.; Hawkes, H.A.

    1982-01-01

    Experiments were carried out to improve the economics of effluent treatment by the recovery of single cell protein. Field observations showed that acidic strong wastes, such as those from the dairy industry, produced a predominantly fungal biomass. Mixtures of dairy waste and domestic sewage did not produce fungal films. The most common fungi isolated were Fusarium and Geotrichum, but the species was affected by local conditions, i.e. creamery, yoghurt, milk or cheese wastes and the load to the plant. Batch culture was used to determine the growth requirements of Fusarium and Geotrichum and continuous culture, on vertical and horizontal fixed films, to determine growth and sloughing at different organic loads. The fungi grew well on acidic strong wastes which would discourage other organisms. A 1 cubic metre/hour pilot plant was built to treat the wastes from cheese, butter and cream production. The plant was run at pH 4-5 and at between 5 and 10 kg of BOD/day/cubic metres. BOD removal was between 30 and 50% and biomass production between 0.1 and 0.5 kg of dry solids/day. The filamentous fungal growth was separated from the tower effluent by an inclined screen. The amino acid content of the product was similar to other single-cell protein. Feeding trials are being carried out. (Refs. 14).

  2. Natural vegetation recovery on waste dump in opencast coalmine area

    Institute of Scientific and Technical Information of China (English)

    CHENG Jian-long; LU Zhao-hua

    2005-01-01

    The changes of vegetation compositions, plant species diversity, species important value and succession of plant community were studied on waste dumps in Haizhou opencast coalmine which is located in the west of Liaoning Province, China (41°41(-42°56( N, 121°1(-122°56(E). Four kinds of terraces with different ages (5, 10, 20 and 40 years) were selected for investigation of plants. Total of 63 species of natural colonized plants were recorded on the waste dump and they belong to 23 families. The main families were Compositae (15 species), Fabaceae (11 species) and Leguminosae (8 species), which accounted for 54.0% of total species and play an important role in natural vegetation recovery in waste dump area. The dominant species on 5-, 10-, 20-, 40-year-old terraces were Tribulus terrestris + Echinochloa hispidula + Salsola collina, Echinochloa hispidula + Artemisia sieversiana + Artemisia scoparia, Echinochloa hispidula + Clinelymus dahuricus + Artemisia scoparia + Artemisia sieversiana + Melilotus officinalis, Clinelymus dahuricus+Phragmites communis + Echinochloa hispidula+ Setaria viridis, respectively. According to the important value of species calculated. It is determined that Tribulus terrestris can act as pioneer species on waste dump and Clinelymus dahuricus, Phragmites communis and Echinochloah hispidula are important dominant species in vegetation restoration in Haizhou opencast coalmine. The study results can provide scientific basis for selecting and disposing appropriately plant species and rehabilitating vegetation on waste dumps of coalmine.

  3. Inverse Estimation of Temperature Profiles in Landfills Using Heat Recovery Fluids Measurements

    Directory of Open Access Journals (Sweden)

    C. Solisio

    2012-01-01

    Full Text Available In addition to leachate and gas emission analysis, temperature variations in municipal solid waste landfills are routinely monitored for safety and health reasons, such as the increased production of biogas or the danger of spontaneous combustion phenomena if the temperature exceeds 70–75°C. The increasing constraints on greenhouse gas emissions and the convenience of fuel and heat recovery have helped develop a global approach to landfills' operation and maintenance, generally referred to as bioreactor landfill management. The heat recovery piping we are presently designing can be a significant part of this approach. The heat gained by a fluid circulated in a closed network through the landfill is transferred to an external heat exchanger or used directly as warm water. Additionally, it can help reduce landfill temperature levels and control biogas generation. Since the pipes diameter is large enough to allow for a radial temperature gradient, this information can be used for an inverse estimation of the temperature profile in the landfill which constitutes the boundary conditions of the resulting heat transfer problem. In this paper, we describe an algorithm for regularising the resulting ill-posed free boundary estimation problem using sampled data of the heat recovery fluid on exiting the landfill.

  4. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2016-01-01

    Full Text Available Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recovery of waste heat is also alternative fuels co-firing in cement kilns [1], [2]. In the cement sector interest in fitting-usable waste energy is growing in order to achieve high rates of savings and hence the financial benefits, as well as the environment ones [3]. In the process of cement production is lost irretrievably lot of energy and reduction of these losses on a global scale gives a visible saving of consumed fuel. The aim of this study is to investigate the possibility of waste heat use in Rudniki Cement Plant near to Czestochowa. After analyzing of all waste heat sources will be analyzed the heat emitted by radiation from the surface of the rotary kiln at the relevant facility. On the basis of thermal-flow calculations the most favorable radiative heat exchanger will be designed. The calculations based on available measurements provided by the cement plant, a thermal power of the heat exchanger, the heat exchange surface, the geometry of the heat exchanger, and other important parameters will be established. In addition the preliminary calculations of hydraulic losses and set directions for further work will be carried out. Direct benefits observed with the introduction of the broader heat recovery technology, is a significant increase in energy efficiency of the industrial process, which is reflected in the reduction of energy consumption and costs. Indirectly it leads to a reduction of pollution and energy consumption.

  5. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    Science.gov (United States)

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  6. High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature

    Directory of Open Access Journals (Sweden)

    Yuki Ueda

    2009-11-01

    Full Text Available This paper presents the performance of an advanced cascading adsorption cycle that utilizes a driven heat source temperature between 90–130 ºC. The cycle consists of four beds that contain silica gel as an adsorber fill. Two of the beds work in a single stage cycle that is driven by an external heat source, while the other two beds work in a mass recovery cycle that is driven by waste heat of sensible and adsorption heat of the high temperature cycle. The performances, in terms of the coefficient of performance (COP and the specific cooling power (SCP, are compared with conventional cascading-without-mass-recovery and single-stage cycles. The paper also presents the effect of the adsorbent mass on performance. The results show that the proposed cycle with mass recovery produces as high of a COP as the COP that is produced by the conventional cascading cycle. However, it produces a lower SCP than that of the single-stage cycle.

  7. Modelling the heat stress and the recovery of bacterial spores.

    Science.gov (United States)

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  8. RESPONSE SURFACE METHODOLOGY ANALYSIS OF POLYPHENOL RECOVERY FROM ARTICHOKE WASTE

    Directory of Open Access Journals (Sweden)

    Antonio Zuorro

    2014-01-01

    Full Text Available Large amounts of a solid waste consisting mainly of outer bracts and stems are produced from the industrial processing of artichokes. In this study, the recovery of polyphenols from the two waste components was investigated. Extraction experiments were carried outby an environmentally friendly procedure using aqueous ethanol as solvent. The total polyphenol content, expressed as mg of GAE per g of dry weight, was 10.23±0.68 mg/g for bracts and 16.36±0.85 mg/g for stems. To evaluate the effect of Temperature (T, Extraction time (E and liquid-to-solid Ratio (R on the extraction yields, a central composite design coupled with response surface methodology was used. Under the best conditions (T = 50°C, E = 110.4 min and R = 20 mL g-1, extraction yields between 90 and 93% were obtained. Statistical analysis of the data showed that E was the most influential factor, followed by T and R. Simplified polynomial models were developed to describe the effect of individual factors and their interactions on the extraction yield of polyphenols. Overall, the results of this study support the potential of using artichoke waste as a source of natural phenolic antioxidants and give useful directions on how to improve recovery by proper selection of extraction conditions.

  9. Natural Ventilation with Heat Recovery: A Biomimetic Concept

    Directory of Open Access Journals (Sweden)

    Zulfikar A. Adamu

    2015-05-01

    Full Text Available In temperate countries, heat recovery is often desirable through mechanical ventilation with heat recovery (MVHR. Drawbacks of MVHR include use of electric power and complex ducting, while alternative passive heat recovery systems in the form of roof or chimney-based solutions are limited to low rise buildings. This paper describes a biomimetic concept for natural ventilation with heat recovery (NVHR. The NVHR system mimics the process of water/mineral extraction from urine in the Loop of Henle (part of human kidney. Simulations on a facade-integrated Chamber successfully imitated the geometry and behaviour of the Loop of Henle (LoH. Using a space measuring 12 m2 in area and assuming two heat densities of 18.75 W/m2 (single occupancy or 30 W/m2 (double occupancy, the maximum indoor temperatures achievable are up to 19.3 °C and 22.3 °C respectively. These come with mean relative ventilation rates of 0.92 air changes per hour (ACH or 10.7 L·s−1 and 0.92 ACH (11.55 L·s−1, respectively, for the month of January. With active heating and single occupant, the LoH Chamber consumes between 65.7% and 72.1% of the annual heating energy required by a similar naturally ventilated space without heat recovery. The LoH Chamber could operate as stand-alone indoor cabinet, benefitting refurbishment of buildings and evading constraints of complicated ducting, external aesthetic or building age.

  10. Absorption type water chiller fired directly by waste heat

    Science.gov (United States)

    Sauer, K. L.; Kalwar, K.

    1982-08-01

    The direct use of waste heat as heating element in a water chiller of the absorption type was studied. The chilled water is used as cooling element in the industrial process, producing the waste heat or for conditioning the workplace or further located places. The heat source is gaseous or liquid. The cooling capacity is in the range from 10 to 120 kW. After reviewing the different absorption systems, LiBr/H20 proved to be the most suitable. The process retained for experimenting was the manufacturing of synthetic materials polymer industry and was tested in two different factories. It is proved that the use of absorption type water chillers is practicable with an efficiency of 10% to 25% of the waste heat energy, but that the existing chillers need extensive conversion for obtaining economical operation when using a low temperature heating source.

  11. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    OpenAIRE

    Moo-Yeon Lee; Jong-Phil Won; Chung-Won Cho; Ho-Seong Lee

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volum...

  12. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.

    Science.gov (United States)

    Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L

    2017-02-01

    Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Chen, Miao; Shao, Li-Ming; He, Pin-Jing

    2012-12-01

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO(2)-eq t(-1) rw. Within all process stages, the emission of fossil CO(2) from the combustion of MSW was the main contributor (111-254 kg CO(2)-eq t(-1) rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO(2)-eq t(-1) rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  14. Thermodynamic Analysis of a Waste Heat Driven Vuilleumier Cycle Heat Pump

    OpenAIRE

    Yingbai Xie; Xuejie Sun

    2015-01-01

    A Vuilleumier (VM) cycle heat pump is a closed gas cycle driven by heat energy. It has the highest performance among all known heat driven technologies. In this paper, two thermodynamic analyses, including energy and exergy analysis, are carried out to evaluate the application of a VM cycle heat pump for waste heat utilization. For a prototype VM cycle heat pump, equations for theoretical and actual cycles are established. Under the given conditions, the exergy efficiency for the theoretical ...

  15. Olive oil waste waters: Controlled fermentation and materials recovery

    Energy Technology Data Exchange (ETDEWEB)

    Federici, F.; Montedoro, G.F.; Pozzi, V. (Tuscia Univ., Viterbo (Italy). Detp. di Agrobiologia e Agrochimica Perugia Univ. (Italy). Ist. di Industrie Agrarie UNIECO s.c.r.l., Reggio Emilia (Italy))

    Land and water pollution due to waste water and oils deriving from the processing of olives to produce oil represents a serious environmental problem for Spain, Italy and Greece. This paper reports and discusses the results (time dependent enzyme activity) of performance tests on an innovative fermentation process to be used in olive oil waste water anaerobic digestion. An outline is then given of a demonstration depolymerization/materials recovery (including polyphenols, enzymes, etc.) process scheme based on the the tested fermentation method. The fermentation process tests involved the use of an albidus yeast in an Applikon bench scale experimental device. Process parameters were varied to determine optimum fermentation conditions. The European Communities sponsored one cubic meter/day demonstration plant utilizes a preliminary treatment process based on the use of gelatin, bentonite and polyclar.

  16. Chemical waste treatment and recovery laboratory: an alternative for industrial waste of southern Minas Gerais

    Directory of Open Access Journals (Sweden)

    Luciano Tavares da Costa

    2015-06-01

    Full Text Available This manuscript consisted to obtain data, such as costs, equipments and investments necessary for the implementation of a Waste Treatment and Recovery Laboratory at UNIFAL-MG, campus II in Alfenas. In order to give support for the implementation and operation of this laboratory, in a way to guarantee a sustainable investment from the economic point of view, the EVTE was applied. This work was performed following the steps: identification and quantification of the wastes, EVTE elaboration, draft of the physical laboratory architecture and the analysis of the potential financial resources. It was verified that the implementation and management of the Chemical Waste Treatment Laboratory get to support an initial waste volume of 372 L/month and 3.5 kg/month of inorganic salts, beyond other industrial wastes from the neighborhood region. The implementation and maintenance of this laboratory are economic viable depending on the treated, recovered and recycled waste volume as well as on the provided service for the industry client. It is necessary to highlight the environmental benefits, especially due to the chemical waste disposal reduction, the academic formation opportunity and the social awareness promoted by the action of the laboratory. It can be add on the principle related to the Sustainable Logistic Plan in the Federal Public Administration.JEL-Code | Q01; QR3; L65.

  17. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  18. Chemical dehumidification and heat recovery: Open-cycle heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.A.; Piccininni, F. (Padua Univ. (Italy). Ist. di Fisica Tecnica)

    1992-02-01

    This article examines an open-cycle heat pump based on a stacked column working with an absorbing solution. The column treats both the expelled air and the fumes generated by the combustion of the methane feeding the solution regenerator. The system is quite easy: it consists of a stacked column, a regenerator with its condenser and four heat exchangers. A simulation - based on a 12kW charge with a 1000 kg/h air exchange - proved that it is possible to obtain an REP higher than 1.5.

  19. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  20. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.

    Science.gov (United States)

    Boesch, Michael E; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-01

    A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.