WorldWideScience

Sample records for waste heat boiler

  1. Size or check waste heat boilers quickly

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1984-09-01

    Fire tube boilers are widely used to recover energy from waste gas streams commonly found in chemical plants, refineries and power plants. Typical examples are exhaust gases from gas turbines and diesel engines, and effluents from sulfuric acid, nitric acid and hydrogen plants. Generally, they are used for low-pressure steam generation. Typical arrangement of a fire tube boiler is shown. Sizing of waste heat boilers is quite an involved procedure. However, using the method described here one can estimate the performance of the boiler at various load conditions, in addition to designing the heat transfer surface for a given duty. Several advantages are claimed for this approach.

  2. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  3. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  4. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  5. A waste heat boiler concept for co-generation applications on land and at sea

    Energy Technology Data Exchange (ETDEWEB)

    Riet, F. van (Louvain Univ. (Belgium) Clayton Industries (BE))

    1992-02-01

    Heat recovery systems for exhaust gases have been developed for both industrial and marine applications. Clayton Exhaust Gas Boilers are used on cargo ships, chemical carriers, ferries, reefer vessels, gas tankers, rigs, fish processing vessels and a wide range of other types of ship. Generally, an installation consists of a combination of one or more fired steam generators and an exhaust gas steam generator or boiler. This means that the fired unit(s) are in operation whilst the ship is in port and the exhaust gas unit is producing steam whilst the ship is at sea. Typical industrial applications for Waste Heat Recovery Systems are in combination with incinerators, diesel engines, gas turbines, glass furnaces, enamel ovens, stress relieving ovens etc. Clayton Waste Heat Recovery Systems can be applied to waste gases ranging from 200{sup o}C to 1400{sup o}C and rated from 680 kg/h to 59.000 kg/h. (Author).

  6. Determination of Fuel Consumption Indexes of Co-generation Combined Cycle Steam and Gas Units with unfired waste heat boilers

    Directory of Open Access Journals (Sweden)

    S. A. Kachan

    2010-01-01

    Full Text Available The paper presents the developed methodology and the results of determination of fuel consumption indexes of co-generation combined cycle steam and gas units (PGU with unfired waste heat boilers apply to PGU-230 of 3-d co-generation power plant ofMinsk. 

  7. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    Sulphation of metal oxides has an important role in many industrial processes. In different applications sulphation reactions have different aims and characteristics. In the flash smelting process sulphation of oxidic flue dust is a spontaneous and inevitable phenomena, which takes place in the waste heat boiler (WHB) when cooling down hot dust laden off-gases from sulphide smelters. Oxidic dust particles (size 0 - 50 {mu}m) react with O{sub 2} and SO{sub 2} or SO{sub 3} in a certain temperature range (500 - 800 deg C). Sulphation reactions are highly exothermic releasing large amount of heat, which affects the gas cooling and thermal performance of the boiler. Thermodynamics and kinetics of the system have to be known to improve the process and WHB operation. The rate of sulphation is affected by the prevailing conditions (temperature, gas composition) and particle size and microstructure (porosity, surface area). Some metal oxides (CuO) can react readily with SO{sub 2} and O{sub 2} and act as self-catalysts, but others (NiO) require the presence of an external catalyst to enhance the SO{sub 3} formation and sulphation to proceed. Some oxides (NiO) sulphate directly, some (CuO) may form first intermediate phases (basic sulphates) depending on the reaction conditions. Thus, the reaction mechanisms are very complex. The aim of this report was to search information about the factors affecting the dust sulphation reactions and suggested reaction mechanisms and kinetics. Many investigators have studied sulphation thermodynamics and reaction kinetics and mechanisms of macroscopical metal oxide pieces, but only few articles have been published about sulphation of microscopical particles, like dust. All the found microscale studies dealt with sulphation reactions of calcium oxide, which is not present in the flash smelting process, but used as an SO{sub 2} absorbent in the combustion processes. However, also these investigations may give some hints about the sulphation

  8. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  9. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  10. Waste-heat boiler application for the Vresova combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Vicek, Z. [Energoprojekt Praha, Prague (Czechoslovakia)

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  11. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  12. Recover heat from waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1995-09-01

    Using these guidelines, engineers can address critical design problems associated with burning process-waste streams and select cost-effective waste-heat boilers. Incinerating contaminant streams is a win-win situation: (1) complete destruction of pollutant(s) is attained and (2) valuable thermal energy is recovered as steam and returned to process, thus conserving energy. However, recovering thermal energy from incinerated flue-gas streams contains some caveats. This treatment method creates a large high-temperature flue gas from which valuable thermal energy is recovered as saturated or superheated steam. Unfortunately, because a process-waste stream is used as feed, this stream will have variations in contaminant and component concentrations which influence the load on the boiler. Also, burning contaminants may create acid gases which will accelerate corrosion problems for the boiler at elevated temperatures. The following guidelines and checklist clarify the do`s and don`ts when designing waste-heat boilers.

  13. Equipment for using waste heat, particularly from heating boilers, and for ventilating rooms. Geraet zur Abwaermenutzung von insbesondere Heizungskesseln und zur Belueftung von Raeumen

    Energy Technology Data Exchange (ETDEWEB)

    Viessmann, H.

    1984-10-25

    The purpose of the invention is to create simple equipment, by which on the one hand, one can use the heat contained in the stack gases from heating boilers, and on the other hand, by which the ventilation problem of rooms can be solved. In order to solve this problem, a stack gas duct, a fresh air guide duct and a blower are provided. The fresh air is heated to about 35/sup 0/C by the exhaust gas temperature of up to 260/sup 0/C. Other design features regarding the duct runs, an insert in these ducts and duct sealing are explained in 15 patent claims, together with several sketches. (HWJ).

  14. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  15. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  16. International water and steam quality standards for thermal power station drum-type and waste heat recovery boilers with the treatment of boiler water with phosphates and NaOH

    Science.gov (United States)

    Petrova, T. I.; Orlov, K. A.; Dooley, R. B.

    2017-01-01

    One of the ways for improving the operational reliability and economy of thermal power station equipment, including combined-cycle equipment, is to decrease the rates of the corrosion of constructional materials and the formation of scales in the water-steam circuit. These processes can be reduced to a minimum via the use of water with a minimum content of admixtures and the correction treatment of a heat-transfer fluid. The International Association for the Properties of Water and Steam (IAPWS), which unites specialists from every country of the world, has developed water and steam quality standards for power station equipment of different types on the basis of theoretical studies and long-term experience in the operation of power plants in 21 countries. Different water chemistry regimes are currently used at conventional and combined-cycle thermal power stations. This paper describes the conditions for the implementation of water chemistry regimes with the use of sodium salts of phosphoric acid and NaOH for the quality correction of boiler water. Water and steam quality standards and some recommendations for their maintenance under different operational conditions are given for each of the considered water chemistry regimes. The standards are designed for the water-steam circuit of conventional and combined-cycle thermal power stations. It is pointed out that the quality control of a heat-transfer fluid must be especially careful at combined-cycle thermal power stations with frequent startups and shutdowns.

  17. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  18. A Way to Use Waste Heat to Generate Thermoelectric Power

    Directory of Open Access Journals (Sweden)

    Marian Brázdil

    2012-01-01

    Full Text Available In recent years there has been rising interest in thermoelectric generation as a potential source of electric power using waste heat. This paper describes thermoelectric power generation from waste heat from biomass boilers, utilizing generators that can convert heat energy directly to electrical energy. General principles of thermoelectric conversion and future prospects of these applications are discussed.

  19. Combustion of bark and wood waste in the fluidized bed boiler

    Science.gov (United States)

    Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.

    2016-11-01

    In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

  20. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... heating boilers. 52.01-35 Section 52.01-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... fluid heater, and heating boilers. (a) To determine the appropriate part of the regulations where requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc...

  1. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  2. Central heating: fossil-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  3. Solve waste-fuel boiler corrosion problems in procurement

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries (US))

    1991-09-01

    Corrosion is a major problem in boiler plants, particularly in those burning or incinerating waste fuels. There are two basic types of corrosion problems: one due to high temperature--often called cold end corrosion. Components such as superheaters and economizers or air heaters are those which are particularly affected, since they operate in the high and low end of the gas temperature spectrum. In addition, the boiler casing, ductwork and stack are also affected, as they handle corrosive flue gases. This article highlights a few aspects of these problems and will suggest methods to minimize these concerns early in the design stages.

  4. Co-firing of Coal with Biomass and Waste in Full-scale Suspension-fired Boilers

    DEFF Research Database (Denmark)

    Dam-Johansen, Kim; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2013-01-01

    The energy policy in Denmark has for many years focused on lowering the net CO2 emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal...... and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools......-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam...

  5. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level uctuations in the drum....

  6. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...... transfer, circulation in the evaporator circuit and water level fluctuations in the drum....

  7. Needs-driven soot blowing in waste boilers; Behovsstyrd sotblaasning i avfallspannor

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Davidsson, Kent

    2009-09-15

    The increased use of alternative and waste fuels has resulted in an increased number of plants having trouble with fouling and corrosion on boiler banks and superheater tubes. Frequent sootblowing will keep the surfaces relatively clean, but on the other hand, it may erode the tube material. An intelligent sootblowing system will initiate sootblowings on individual tube banks only when needed for that specific tube bank. Such a system depends on the detection of the degree of fouling of specific tube banks. In this project, the conditions for an intelligent sootblowing system at the waste fired boilers in Boraas are investigated from measured flows, temperatures and pressure drop. New thermocouples at the water tubes between the banks of the economiser have been installed and connected to the control and monitoring system of the boiler. From measured temperatures and flows, heat transfer coefficients are calculated and used to detect the fouling on the heat exchangers. A pressure transducer has been altered to measure the pressure over the boiler bank. At the superheaters, the measurements show a significant improvement of the heat transfer coefficients immediately following sootblowing. Thereafter, the heat transfer coefficients decline more slowly, almost linearly. The measurements indicate that the fouling rate is almost same for the two superheaters and do not motivate individual sootblowing sequences of the two superheaters. The pressure drop over the boiler bank was found too insensitive a measure to be used as an indicator for an intelligent sootblowing system, at least in this specific boiler. In the economiser, the decline of calculated heat transfer coefficients showed a relative rate of fouling on individual tube banks. The results show that the fouling rate is significantly higher in the top tube banks, which comes first in the direction of the flue gas, compared to downstream banks. Experiments by sootblowing the top tube bank more frequently than the

  8. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  9. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  10. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  11. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  12. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...... the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  13. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  14. 9 CFR 91.22 - Protection from heat of boilers and engines.

    Science.gov (United States)

    2010-01-01

    ... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  15. Modelling of Boiler Heating Surfaces and Evaporator Circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate...... the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equation systems (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these relatively stiff equation systems. Experimental verication is planned...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  16. Waste-heat steam producing systems: Design elements in chemical engineering processes. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, B.

    1983-12-01

    The author deals with the increasing economic importance of waste-heat boilers which are used in industrial production processes for electricity and/or steam generation. In 'Part 1', published in the preceeding journal no. 11, waste-heat systems were presented for the high-temperature range. In this 'Part 2', the author shows, illustrated by examples, which type of waste-heat boiler is suitable for certain processes, which problems have to be considered, and which solutions have been found.

  17. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  18. Additive for reducing operational problems in waste fired grate boilers; Additiv foer att minska driftproblem vid rostfoerbraenning av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Hermansson, Sven; Liske, Jesper; Larsson, Erik; Jonsson, Torbjoern; Zhao, Dongmei

    2013-09-01

    interface between the steel and the metal oxide. This weakens the adhesion of the oxide to the steel surface and thus increases the corrosion rate. By addition of sewage sludge or sulphur the initial corrosion was decreased on both the low-alloyed steel T22 and the stainless steel 304L; sewage sludge being a little better than sulphur. Qualitatively, the corrosion attack firing SLF was similar to that firing ordinary waste, but the attack was stronger. At material temperatures of 500 deg C and 420 deg C - corresponding to superheaters - alkali chloride corrosion dominated, while at 280 deg C - corresponding to furnace walls - a melt of KCl/ZnCl2 is likely to have accelerated the corrosion. This difference between different material temperatures was especially pronounced in the 'Avfall and the SLF' cases. Higher zinc content in the fuel can therefore increase risk of corrosion. The higher content of iron, lead, copper and zink in the ash from the SLF case corresponds to the content of SLF compared with ordinary waste. Comparing the present tests with similar tests in fludised beds, grate firing resulted in higher deposit rate on the exposed test rings. This can at least partly be attributed to the lack of empty pass in the present grate boiler and to some differences in fuel composition: more chlorine and less sulphur in the waste used in this project. However, the effect of adding sludge was similar but not as strong as in the fluidised bed tests. To summarise, the results show that co-firing SLF with sludge can be advantageous also in a grate-fired boiler. Because of the high heating value of SLF, this combination also makes it possible to add a high fraction of moist sewage sludge.

  19. Agricultural uses of waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Pile, R.S.; Behrends, L.L.; Burns, E.R.; Maddox, J.J.; Madewell, C.E.; Mays, D.A.; Meriwether, J.

    1977-11-16

    A major concern of the Tennessee Valley Authority is to ensure efficient use of Tennessee Valley resources in achieving optimum economic development without degrading the environment. As part of this effort, TVA is exploring many uses for waste heat. Activities to develop ways to use waste heat in agricultural production are described. Primary objectives are to: (1) identify potential agricultural uses of waste heat, (2) develop and test technologies and management criteria for more productive uses, (3) demonstrate technologies in commercial-scale production facilities, and (4) provide technical assistance for commercial application. Waste heat research and development projects under investigation or being planned by TVA independently or cooperatively include: (1) controlled environment greenhouses, (2) biological ecycling of nutrients from livestock manures, (3) soil heating and irrigation, and (4) environmental control for livestock housing. (MHR)

  20. Co-firing of coal with biomass and waste in full-scale suspension-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, Kim; Frandsen, Flemming J.; Jensen, Peter A.; Jensen, Anker D. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of chemical and Biochemical Engineering

    2013-07-01

    The energy policy in Denmark has for many years focused on lowering the net CO{sub 2} emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam cycles with steam temperatures close to 600 C, providing power efficiencies close to 50% (Hein KRG, Sustainable energy supply and environment protection - strategies, resources and technologies. In: Gupta R, Wall T, Hupa M, Wigley F, Tillman D, Frandsen FJ (eds) Proceedings of international conference on impact of fuel quality on power production and the environment, Banff Conference Centre, Banff, Alberta, Canada, 29 Sept-4 Oct, 2008). For 25 years the CHEC (Combustion and Harmful Emission Control) Research Centre at DTU Chemical Engineering, has attained a leading role in research, supporting power producing industry, plant owners and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools. The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This chapter provides an overview of research activities, aiming at increasing biomass shares during co-firing in suspension, conducted in close collaboration with

  1. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - Burning of Hazardous Waste in Boilers and Industrial Furnaces - Federal Register Notice, September 5, 1991

    Science.gov (United States)

    EPA is announcing an administrative stay of the permitting standards for boilers and industrial furnaces adopted pursuant to the Resource Conservation and Recovery Act (56 FR 7206, Feb. 21, 1991) as they apply to coke ovens burning certain hazardous wastes

  2. The heating boiler is never to blame; Der Kessel ist immer unschuldig

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2008-07-01

    In this article, certain prejudices are examined that are often encountered when the performance of so-called 'condensing' gas-fired heating boilers is discussed. The boundary conditions necessary for the condensation of the water vapour in the heating boiler's flue gasses are examined. The hydraulics and the flow and return temperatures of heating systems are discussed - this with reference to obtaining sufficiently low return temperatures for the condensation to occur. The adjustment of heating-water flow in the heating system in general is discussed. Such adjustments in the hydraulics of heating systems can help save a lot of heating energy and also assure that the heating system's circulation pump does not consume too much power. Professionals are quoted as saying that the majority of heating systems have never been properly adjusted hydraulically.

  3. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  4. Size fractionation of waste-to-energy boiler ash enables separation of a coarse fraction with low dioxin concentrations

    DEFF Research Database (Denmark)

    Weidemann, E.; Allegrini, Elisa; Astrup, Thomas Fruergaard

    2016-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD....../F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten...... content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5. kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered...

  5. Economic valuation of heat pumps and electric boilers in the Danish energy system

    DEFF Research Database (Denmark)

    Nielsen, Maria Grønnegaard; Morales González, Juan Miguel; Zugno, Marco

    2016-01-01

    Heat pumps (HP) and electric immersion boilers (EB) have great potential to increase flexibility in energy systems. In parallel, decreasing taxes on electricity-based heat production are creating a more favorable economic environment for the deployment of these units in Denmark. In this paper...... to investigate the effect on market performance of varying capacity and efficiency for these units, as well as of different levels of prices in the electricity market. We find that these parameters substantially affect the profitability of heat pumps and electric boilers, hence, they must be carefully assessed...

  6. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  7. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  8. Burning Efficiency of Liquid Fuel in Heating System with Condensing Boilers

    Directory of Open Access Journals (Sweden)

    Olga Bancea

    2010-01-01

    Full Text Available The paper presents the results of a study concerning the efficiency of a heating installation with a condensing boiler using liquid fuel, equipped with an accumulator and burnt gases separator. The given up heat in the gas separator is taken over and accumulated through a heat pump. The energetic efficiency of the primary heating functioning regime was established at 94% after the measurements and at 95.8% through calculus.

  9. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  10. Research into properties of dust from domestic central heating boiler fired with coal and solid biofuels

    Directory of Open Access Journals (Sweden)

    Konieczyński Jan

    2017-06-01

    Full Text Available The aim of this research was to assess the content and composition of the pollutants emitted by domestic central heating boilers equipped with an automatic underfeed fuel delivery system for the combustion chamber. The comparative research was conducted. It concerned fuel properties, flue gas parameters, contents of dust (fl y ash and gaseous substances polluting the air in the flue gases emitted from a domestic CH boiler burning bituminous coal, pellets from coniferous wood, cereal straw, miscanthus, and sunflower husks, coniferous tree bark, and oats and barley grain. The emission factors for dust and gaseous air pollutants were established as they are helpful to assess the contribution of such boilers in the atmospheric air pollution. When assessing the researched boiler, it was found out that despite the development in design and construction, flue gases contained fly ash with a significant EC content, which affected the air quality.

  11. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  12. A Model for Optimization and Analysis of Energy Flexible Boiler Plants for Building Heating Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J.R.

    1996-05-01

    This doctoral thesis presents a model for optimization and analysis of boiler plants. The model optimizes a boiler plant with respect to the annual total costs or with respect to energy consumption. The optimum solution is identified for a given number of energy carriers and defined characteristics of the heat production units. The number of heat production units and the capacity of units related to each energy carrier or the capacity of units related to the same energy carrier can be found. For a problem comprising large variation during a defined analysis period the model gives the operating costs and energy consumption to be used in an extended optimization. The model can be used to analyse the consequences with respect to costs and energy consumption due to capacity margins and shifts in the boundary conditions. The model is based on a search approach comprising an operational simulator. The simulator is based on a marginal cost method and dynamic programming. The simulation is performed on an hourly basis. A general boiler characteristic representation is maintained by linear energy or cost functions. The heat pump characteristics are represented by tabulated performance and efficiency as function of state and nominal aggregate capacities. The simulation procedure requires a heat load profile on an hourly basis. The problem of the presence of capacity margins in boiler plants is studied for selected cases. The single-boiler, oil-fired plant is very sensitive to the magnitude of the losses present during burner off-time. For a plant comprising two oil-fired burners, the impact of a capacity margin can be dampened by the selected capacity configuration. The present incentive, in Norway, to install an electric element boiler in an oil-fired boiler plant is analysed. 77 refs., 74 figs., 12 tabs.

  13. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    NARCIS (Netherlands)

    Baldi, S.; Le, Q.T.; Holub, O.; Endel, P

    2017-01-01

    Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12%

  14. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  15. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  16. Electronic waste disassembly with industrial waste heat.

    Science.gov (United States)

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  17. Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Berlad, A. L.; Yeh, Y. J.; Salzano, F. J.; Hoppe, R. J.; Batey, J.

    1978-07-01

    On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

  18. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  19. 75 FR 65023 - Notice of Issuance of Final Determination Concerning Certain Heating Boilers

    Science.gov (United States)

    2010-10-21

    ... H119218 Ms. Regina Vargo Greenberg Traurig, LLP 2101 L Street NW, Suite 1000 Washington, D.C. 20037 Re: U.S. Government Procurement; Heating Boilers Dear Ms. Vargo: This is in response to your letter, dated... Canadian supplier, and is assembled in Canada from U.S. origin stainless steel plates and tubes. The burner...

  20. Towards a generic, reliable CFD modelling methodology for waste-fired grate boilers

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko

    the appropriate inlet boundary condition for the freeboard 3D CFD simulation. Additionally, a refined WSGGM (weighted sum of gray gases model) of greater accuracy, completeness and applicability is proposed and implemented into the CFD model via user defined functions (UDF) to better address the impacts......Computational Fluid Dynamics (CFD) is increasingly used in industry for detailed understanding of the combustion process and for appropriate design and optimization of Waste–to–Energy (WtE) plants. In this paper, CFD modelling of waste wood combustion in a 13 MW grate-fired boiler in a WtE plant...... is presented. To reduce the risk of slagging, optimize the temperature control and enhance turbulent mixing, part of the flue gas is recycled into the grate boiler. In the simulation, a 1D in–house bed model is developed to simulate the conversion of the waste wood in the fuel bed on the grate, which provides...

  1. Recovering waste industrial heat efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  2. Radiating heat transfer in the power boiler downtake gas duct when firing high-ash coal

    Energy Technology Data Exchange (ETDEWEB)

    Sudarev, A.V.; Antonovsky, V.I.; Kiselev, O.V.; Sivchikov, S.B. (VTUS-Leningrad Metal Plant-LMZ, Leningrad (USSR))

    1990-01-01

    The experimental study of radiation heat transfer in the downtake gas duct of the pulverized-coal fired steam boiler for 500 MW power unit when firing high-ash (40% ash content) coal from Ekibastuz coal field was carried out by means of the radiometer probe with rotary optical axis. The local values of the combustion product temperature were measured simultaneously in the down-take and the operation parameters for boiler gas and steam ducts were registered. The dependence of the extinction coefficient of combustion products on the radiating layer thickness was obtained. The radiating power, generated in the gas space, remote from the steam superheater and reaching the super heater boundaries, was measured. The heat release coefficients from radiation and heat transfer coefficients, were determined for definite operation conditions of the superheater working. The contribution of the gas space outside the steam superheater into the radiating heat transfer negligible.

  3. MSWI Boiler Ashes: Production and Quality Through the Horizontal Section of a Boiler

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Astrup, Thomas Fruergaard

    of the first phase of a wider study about the solid residues produced at the heat recovery system (boiler) of a waste incineration plant. The characterization was carried out not on the total output of the boiler but on the different solid residues produced at ten different horizontal sections. The aim...

  4. A Novel Modelling Approach for Condensing Boilers Based on Hybrid Dynamical Systems

    NARCIS (Netherlands)

    Satyavada, H.; Baldi, S.

    2016-01-01

    Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to

  5. Waste-heat steam producing systems: Design elements in chemical-engineering processes. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, B.

    1983-11-01

    The author deals with the increasing economic importance of waste-heat boilers which are used in industrial production processes for electricity and/or steam generation. In ''Part I'' of the article waste-heat systems are presented for the high-temperature range, and in ''Part II'' systems for the medium temperature range (''Part II'' will be published in the following ''Issue No. 12''). Illustrated by examples, the author shows which type of waste-heat boilers is suitable for certain processes, which problems have to considered and which solutions have been found.

  6. Technical-and-Economic Efficiency of Draft Enriched with Oxygen in Small-Capacity Heating Boilers

    Directory of Open Access Journals (Sweden)

    P. Ratnikov

    2013-01-01

    Full Text Available Data on complex experimental and theoretical investigations pertaining to efficiency of oxygen-enriched draft in the small-capacity heating boilers as exemplified by the plant HEIZA (HW-S-10/K have been presented in the paper. The paper provides a calculation model of heating processes in heat generator burner (as exemplified by HEIZA plant. Simulation of heating processes in the operational zone has been executed in paper. The experimental data have proved model adequacy. The calculation scheme of the plant will be used in future for determination of power and ecological efficiency of draft enrichment with oxygen.

  7. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  9. ENVIRONMENTAL ASPECTS OF MODERNIZATION OF HIGH POWER WATER-HEATING BOILERS

    Directory of Open Access Journals (Sweden)

    P. M. Glamazdin

    2016-01-01

    Full Text Available Boilers of KVGM and PTVM series are characterized by high values of NOx and CO content in the combustion products. Reduction of NOx and CO content can be achieved by two ways: by installing the condensing heat recovery unit at the boiler outlet and by improving the heat and mass transfer processes in boiler furnaces. Application of the condensing heat recovery units causes pollution of resulting condensate by low-concentration acids. The authors conducted a study in order to determine the effectiveness of the previously applied methods of suppressing the emission of nitrogen oxides in the boilers of these types. Equalization of the temperature field and, consequently, enhancement of heat transfer in the furnace by substitution the used burners by the more advanced ones, the design of which facilitates reduction the emission of nitrogen oxides, were applied to all the upgraded facilities. The studies fulfilled demonstrate that a reduction of NOx emissions in water-heating high power boilers is fairly possible by means of modernization of the latter. The authors have developed the project of the PTVM-30 boiler modernization, which was implemented at a large boiler plant in the city of Vinnitsa (Ukraine. The project included a number of technical solutions. Six burners were replaced by the two ones that were located in the hearth; also the hearth screen was dismantled. At the same time, reducing the total surface area of the heating caused by the exclusion of hearth screen was compensated by filling the locations of the six embrasures of staff burners on the side screens with straightened furnace tubes. Installing the burners separate from the screen made it possible to eliminate the transfer of vibration to the furnace tubes, and – via them – to the boilers setting. Automation provided “associated regulations”. Draught machines were equipped with frequency regulators. During commissioning of the boiler the studies were carried out that

  10. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  11. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  12. Heat production thanks to waste water; Produire de l'energie grace aux eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2009-07-01

    The district heating of a large residential compound in Rheinfelden, Switzerland has been refurbished and extended in order to include new buildings and take advantage of the heat from the municipal waste water treatment plant. The initial system was built in 1976 and delivered heat to 3000 people in 1050 housing units, from three natural gas fired boilers with a total power of 3 MW. In 1993, a study supported by the Swiss Federal Office of Energy identified considerable possible energy savings. Some operational measures were implemented immediately. The recent extension of the district heating to a second residential compound in the neighbourhood increased the heat demand by about 50%. In the course of the planning process it was recognized that waste water from the joint municipal treatment plant of Rheinfelden and Magden - a second city located in the vicinity - has to be cooled by 5 K before being rejected into the Rhine River. This water is now used after filtration as the heat source for two big heat pumps (total 2.5 MW; working fluid: ammonia) supplying the refurbished and extended district heating. Peak heat demand is covered by natural gas boilers (total 9 MW) that can operate alone or in parallel with the heat pumps. Provision has been made to later connect another waste heat source to the district heating network: the municipal skating rink and swimming pool sport facility.

  13. Feasibility study - Lowered bed temperature in Fluidised Bed boilers for waste; Foerstudie - Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik

    2009-01-15

    Waste incineration generally serves two purposes; 1) dispose of waste and 2) generation of heat and power. In the process of power production from waste fuels, the steam temperatures in super heaters are generally limited by the severe fouling and corrosion that occurs at elevated material temperatures, caused by high concentrations of alkali metals and chloride in the flue gas and fly ash. The overall aim of a continuation of present project is to determine if a reduced temperature of the bed zone in a fluidized bed waste incinerator reduces the amount of alkali chlorides in the flue gas. If so, a reduced bed temperature might enable increased steam temperature in super heaters, or, at unchanged steam temperature, improve the lifespan of the super heaters. The results from the project are of interest for plant owners wishing to improve performance of existing plants. The results may also be used to modify the design of future plants by boiler manufacturers. The aim of present pre-study was to determine how far the bed temperature can be reduced in a waste fired fluidized bed boiler in Boraas while maintaining a stable operation with sufficient combustion temperature in the freeboard to fulfil the directives of waste incineration. A continuation of the project will be based on the results from present study. The work is based on experiments at the test boiler. During the present study, no other measurements were performed apart from some sampling of bed material and ashes at different modes of operation. The experiments show that it is possible to alter the air and recycled flue gas in such a manner that the bed temperature is reduced from about 870 deg C to 700 deg C at 100% load and normal fuel mixture, while fulfilling the directive of 850 deg C at 2 seconds. Within normal variations of the fuel properties, however, the bed temperature increases to somewhat above 700 deg C if the fuel turns dry, while it falls below 650 deg C when the fuel turns wet. With

  14. Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.

    2013-01-01

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  15. Expert Meeting. Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-01-01

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  16. Energy analysis of a central domestic hot water heating system equipped with condensing boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, E.; Lazzarin, R.; Piccininni, F. (Bologna Univ. (Italy). Ist. di Fisica); Caliari, R. (Servizio Energia, Provincia Autonoma di Trento (IT))

    1990-01-01

    An experimental study was carried out on a central plant for the heating of domestic hot water for a block of 143 flats and 15 offices. The behaviour of the condensing boilers serving the plant was examined and the energy costs of recirculation and distribution were analysed. Since the losses due to recirculation are of the same order as the useful energy, the influence of the various parameters on the losses has been studied, and some methods of lowering them are proposed. (author).

  17. Release of Corrosive Species above the Grate in a Waste Boiler and the Implication for Improved Electrical Efficiency

    DEFF Research Database (Denmark)

    Bøjer, Martin; Jensen, Peter Arendt; Dam-Johansen, Kim

    2010-01-01

    A relatively low electrical efficiency of 20−25% is obtained in typical west European waste boilers. Ash species released from the grate combustion zone form boiler deposits with high concentrations of Cl, Na, K, Zn, Pb, and S that cause corrosion of superheater tubes at high temperature. The sup......A relatively low electrical efficiency of 20−25% is obtained in typical west European waste boilers. Ash species released from the grate combustion zone form boiler deposits with high concentrations of Cl, Na, K, Zn, Pb, and S that cause corrosion of superheater tubes at high temperature....... The superheater steam temperature has to be limited to around 425 °C, and thereby, the electrical efficiency remains low compared to wood or coal-fired boilers. If a separate part of the flue gas from the grate has a low content of corrosive species, it may be used to superheat steam to a higher temperature......, and thereby, the electrical efficiency of the plant can be increased. In this study, the local temperature, the gas concentrations of CO, CO2, and O2, and the release of the volatile elements Cl, S, Na, K, Pb, Zn, Cu, and Sn were measured above the grate in a waste boiler to investigate if a selected fraction...

  18. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P.; Ifwer, K.; Staalenheim, A.; Montgomery, M.; Hoegberg, J.; Hjoernhede, A.

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  19. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  20. Waste Heat Recapture from Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  1. Use of energy crops for domestic heating with a mural boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan F.; Gonzalez-Garcia, Carmen M.; Ramiro, Antonio; Ganan, Jose [Dpto. de Ingenieria Quimica y Energetica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain); Ayuso, Antonio [Dpto. de Cultivos Intensivos, Servicio de Investigacion y Desarrollo Tecnologico de la Junta de Extremadura, Finca La Orden, 06187, Guadajira (Badajoz) (Spain); Turegano, Joao [Dpto. de Expresion Grafica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz (Spain)

    2006-08-15

    The combustion process of two residues from energy crops in a 12 kW mural boiler for domestic heating was studied. The fuels used were common reed (Arundo donax L.), sorghum (Sorghum bicolor L.) and forest pellet recommended by the boiler manufacturer. A comparison with the combustion process of two industrial residues (tomato residue and almond pruning) and other energy crop (Cynara cardunculus L.) has been established. The experimental tests carried out in 'La Orden' farm on common reed and sorghum cultivation revealed a production of dry biomass of 35 and 30 t/ha, respectively. Previously, the fuels were characterised by means of the higher heating value, proximate and ultimate analyses. The influence of the residue type, fuel mass flow, draught and residues mixture on the combustion parameters has been studied. A TESTO 300 M-I analyzer was employed to determinate the principal parameters of the combustion process (CO{sub 2}, CO, and O{sub 2} contents, fumes temperature, not-burnt gaseous and sensitive heat losses in the fumes, air excess coefficient, flow rate and velocity of the fumes, and efficiency). The behaviour shown by the two studied residues was similar to that of the forest pellet. The boiler efficiencies obtained with the maximum fuel mass flow (100%) and minimum draught (0%) were 84% and 85.3% for reed and sorghum pellets, respectively. The obtained efficiency with the forest pellet was 90.5%. The optimum residue mixture assayed was almond pruning (75%) and sorghum (25%), with a boiler efficiency of 87.2% for a mass flow and draught of 100% and 0%, respectively. (author)

  2. 46 CFR 54.15-15 - Relief devices for unfired steam boilers, evaporators, and heat exchangers (modifies UG-126).

    Science.gov (United States)

    2010-10-01

    ..., and heat exchangers (modifies UG-126). 54.15-15 Section 54.15-15 Shipping COAST GUARD, DEPARTMENT OF... devices for unfired steam boilers, evaporators, and heat exchangers (modifies UG-126). (a) An approved... more than 6 percent above the safety valve setting. (f) A heat exchanger with liquid in the shell and...

  3. Boiler startup under conditions of convective heating of the highly reactive coal dust

    Science.gov (United States)

    Zhuikov, A. V.; Kulagin, V. A.; Baranova, M. P.; Glushkov, D. O.

    2016-12-01

    Experimental research of conditions and characteristics of ignition of the pulverized coal (with a particle size of approximately 80 μm) of different-type brown coals (1B, 2B, and 3B) during convective heating by a heated airflow (at a temperature of 425-600°C and velocity of 1-5 m/s) is carried out. The use of low-inertia thermocouples, a high-speed video camera, and dedicated software has made it possible to determine the minimum oxidizer parameters needed for coal dust ignition, and the approximation dependences of a main characteristic of the process under study―ignition delay time―on the air temperature. Results of experimental studies provide a basis for developing an optimal scheme of the boiler startup without heavy oil, which differs from the known schemes by the relatively low energy consumption for fuel-burning initiation. By example of the BKZ 75-39FB boiler, the economic usefulness of applying the boiler startup without heavy oil is shown. This scheme can be implemented using the proposed ignition burner that functions as a part of the direct system of pulverized-fuel preparation.

  4. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    Small-Scale W912H0-12-C-0059 Organic Rankine Cycle (ORC) Engine /Generator Technology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( SI 5d...same fuel input. This value is used for calculation of Greenhouse Gas (GHG) reductions and economic results. Life cycle economics of the system are...associated with engine and other electric generator systems , waste heat from steam or heat distribution, waste heat from boiler exhausts, and heat

  5. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    Science.gov (United States)

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The production of hot sanitary water by condensing boilers: Analysis of the seasonal experimental results of a central heating plant

    Energy Technology Data Exchange (ETDEWEB)

    Caliari, R.; Cirillo, E.; Lazzarin, R.; Piccininni, F.

    1988-12-01

    The use of condensing boilers in the production of hot sanitary water clearly evidences their advantages, since the highest operating temperatures are only around 60/degree/C. This paper examines performance test results relevant to a central heating plant (serving a residential area in Rovereto, Italy) with 112 kW of thermal power. The analysis reveals the excellent performance characteristics of the condensing boilers and points out the importance of proper management of the recirculation system.

  7. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  8. Potential industrial applications for fluidized-bed waste heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.; Lytton, M.; Rao, C.

    1979-12-01

    Information was developed on potential applications of Fluidized-Bed Waste Heat Recovery Systems (FWHRS) in US industries that will assist the DOE in their decision to plan and participate in a demonstration project of the FWHRS. The study included a review of the literature and personal contacts (via telephone) with industry personnel with the objective to identify a limited number of applications. Technical and economic assessments for specific applications were accomplished by developing generalized design, performance, and cost parameters that could be applied based on selected critical characteristics of each potential application of the FWHR system. Waste energy streams identified included flue gas and off-gas from boilers, furnaces, and kiln. Utilization of the waste energy recovered included electric power generation, preheating combustion air and boiler feedwater, and drying. A course of action is recommended to DOE regarding generic users for demonstration projects.

  9. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    OpenAIRE

    Min Gyung Yu; Yujin Nam

    2016-01-01

    Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant...

  10. Usage of Boiler Unit Exhaust Gas Heat in Contact Heat Exchanger

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2010-01-01

    Full Text Available The paper presents Results of investigations pertaining to operation of a GM-50-14/250 boiler with a contact economizer are given in the paper. The paper reveals influence of contact economizer on fuel economy and reduction of nitrogen oxide discharge.

  11. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    Science.gov (United States)

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  13. Assessment of factors affecting boiler tube lifetime in waste-fired generators: New opportunities for research and technology development

    Energy Technology Data Exchange (ETDEWEB)

    Wright, I.; Krause, H.H. [Battelle, Columbus, OH (United States)

    1996-07-01

    The disposal of municipal solid waste (MSW) is a major problem in numerous communities in the United States. In this country, approximately 195.7 million tons of MSW were produced in 1990 of which 17 percent was recovered for recycling or composting, 16 percent was combusted, and about 67 percent was disposed of in landfills. This paper discusses the combustion of refuse derived fuels and municipal wastes. The corrosion of the alloys used in boilers is described.

  14. Heat pipe radiator. [for spacecraft waste heat rejection

    Science.gov (United States)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  15. Accumulation and subsequent utilization of waste heat

    Science.gov (United States)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  16. Heat pipes for industrial waste heat recovery

    Science.gov (United States)

    Merrigan, M. A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes are investigated. Economic studies of the use of heat pipe based recuperators in industrial furnaces are conducted and payback periods determined as a function of material, fabrication, and installation cost.

  17. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  18. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized......With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly...... vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...

  19. Waste heat rejection from geothermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.

    1978-12-01

    This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

  20. UPEI (University of Prince Edward Island) wood chip boiler to feed second Charlottetown area district heating system

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    A new $4.3 million district heating system will deliver heat to 31 subscribers from UPEI's wood-fired heating plant. The plan is to convert UPEI's own campus-wide heat distribution system from steam to more efficient hot water. The total plant output is 13.7 MW, enough to heat the campus and the 31 subcribers' buildings. During the 1987-88 fiscal year, the more northern part of the system will be completed. A year later the system will be extended south. When finished, the project will displace nearly 2 million l of fuel oil annually with just over 7000 green tonnes of wood chips. Hot water from the UPEI boiler plant travels along each route though buried insulated pipes. At the end of a run, the water reverses direction and returns to the boiler in another insulated pipe. It passes through small cylindrical heat exchangers in each building. Boiler and burner maintenance costs are eliminated. Once the user is familiar with the system, the old boiler and hot water tanks can be removed - making space available for other purposes. District heating is virtually noiseless. Insurance costs go down in many cases when boilers and combustion systems are no longer used. The Island's currently underutilized wood resource will be put to better use. These woodchips are made from wood that has been damaged by budworm and other diseases, or wood that is overmature. The project has sound environmental benefits ranging from reduced sulpher emissions to the possible long-term benefit of eliminating a number of underground fuel storage tanks and their potential for leaks.

  1. Combustion of a fuel mix containing animal waste, industry and household waste in FB-boilers; Foerbraenning av en braenslemix bestaaende av animaliskt avfall, industri- och hushaallsavfall i FB-pannor

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Anita; Herstad Svaerd, Solvie; Moradian, Farzad

    2012-11-01

    The aim of this project is to evaluate how the operation conditions and the combustion chemistry is changed in a Bubbling Fluidized Bed (BFB) Boiler when adding approx. 20 wt-% Biomal into the fuel mixture. The following issues were addressed in the project: 1. How does the new chemical composition of the fuel mix influence bed agglomeration, deposit growth, ash flows, flue gases and particle size distribution? 2. Is it possible to run the boiler at a reduced bed temperature of about 750 deg C due to the increased moisture content originating from the biomal fuel? The project is based on combustion tests in the two Waste to Energy boilers at 20 MWth each owned by Boraas Energy and Environment AB (BEM). Furthermore, results from the Waste Refinery Project 'Reduced bed temperature in FB-boilers burning waste - part II' has been used as reference in some cases. At normal conditions the boilers are run on a fuel mixture containing 80 % sorted industrial waste and 20 % household waste. This fuel mixture consists mainly of paper, plastics and wood. In Boraas the organic part of the household waste is sorted out and used for biogas production. With the addition of biomal, which consists of animal by-products crushed to a pumpable fuel, the chemical composition of the fuel mixture is changed to some extent. The results from the combustion tests shows that biomal influences the chemical fuel composition, but also that there are large variations in the ordinary waste fuel composition as well. The most evident changes with addition of biomal are: 1. Increased moisture. 2. Reduced heat value. 3. Increased amount nitrogen, calcium and phosphorus. 4. Decreased amount lead due to the low concentration in biomal. However, there were no changes in sodium, potassium, sulphur and chlorine, elements important for increased/reduced fuel related problems, derived from biomal. The increase of calcium and phosphorus with biomal derive from bone and the calcium

  2. Thermoelectricity from wasted heat of integrated circuits

    KAUST Repository

    Fahad, Hossain M.

    2012-05-22

    We demonstrate that waste heat from integrated circuits especially computer microprocessors can be recycled as valuable electricity to power up a portion of the circuitry or other important accessories such as on-chip cooling modules, etc. This gives a positive spin to a negative effect of ever increasing heat dissipation associated with increased power consumption aligned with shrinking down trend of transistor dimension. This concept can also be used as an important vehicle for self-powered systemson- chip. We provide theoretical analysis supported by simulation data followed by experimental verification of on-chip thermoelectricity generation from dissipated (otherwise wasted) heat of a microprocessor.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  4. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  5. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  6. Boiler heat pump with an integrated ice storage device. Final report; Heizkessel-Waermepumpe mit integriertem Eisspeicher. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Laxhuber, P.

    2001-03-01

    In the frame of the project boiler heat pump an energy-efficient heating system for space heating and service water is supposed to be developed. The system is a combination consisting of a state-of-the-art condensing value boiler and a thermally driven solid matter sorption heat pump with the natural and environmentally friendly working material pair water/zeolite. A heat exchanger concept has been found during the pre-phase based upon which a cost-effective and highly efficient boiler heat pump appears to be feasible. (orig.) [German] Im Rahmen des Projekts Heizkessel-Waermepumpe soll ein energieeffizientes Heizsystem fuer Raumheizungen und Brauchwasser entwickelt werden. Das System ist eine Kombination aus einem Brennwertkessel des aktuellen Standes der Technik und einer thermisch angetriebenen Feststoff-Sorptionswaermepumpe mit dem natuerlichen und umweltvertraeglichen Arbeitsstoffpaar Wasser/Zeolith. Im Rahmen der vorausgegangenen Vorphase wurde eine Waermetauscherkonzeption gefunden, die eine kostenguenstige und mit hohem Wirkungsgrad arbeitende Heizkessel-Waermepumpe moeglich erscheinen laesst. (orig.)

  7. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    Directory of Open Access Journals (Sweden)

    Kowalczyk Tomasz

    2015-09-01

    Full Text Available The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  8. An experimental investigation to evaluate the heating value of palm oil waste by calorimetry. Paper no. IGEC-1-040

    Energy Technology Data Exchange (ETDEWEB)

    Supeni, E.E.; Megat Mohd, M.H.; Mohd Sapuan, S.; Nor Maria, A.; Ismail, M.Y.; Thoguluva, R.V. [Univ. Putra Malaysia, Dept. of Mechanical and Manufacturing Engineering, Faculty of Engineering, Selangor D.E., (Malaysia)]. E-mail: eris@eng.upm.edu.my; Chuah, T.G. [Univ. Putra Malaysia, Dept. of Chemical and Environmental Engineering, Faculty of Engineering, Selangor D.E., (Malaysia)

    2005-07-01

    A palm oil mill produces palm oil and kernel palm oil as main products and biomass residue (fiber and shell). This excess biomass residue can be used as fuel in boilers to meet energy and process heat demand in the industries. Quality of the palm oil waste (POW) is characterized by low fixed carbon and relatively high moisture content which may affect the heating value (HV). By applying the principle of calorimetry, a bomb calorimeter is utilized to evaluate the heating value of POW. From the experimental results, it is found that higher heating value (HHV) varies with the moisture content (MC) and it is observed as a function of MC. (author)

  9. Improved combustion performance of waste-fired FB-boilers -The influence of the dynamics of the bed on the air-/fuel interaction; Foerbaettrad foerbraenningsprestanda vid avfallsfoerbraenning i FB-pannor -Baeddynamikens inverkan paa luft-/braensleomblandningen

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johanna (Hoegskolan i Boraas (Sweden)); Pallares, David; Thunman, Henrik; Johnsson, Filip (Chalmers (Sweden)); Andersson, Bengt-Aake (E.on/Hoegskolan i Boraas (Sweden)); Victoren, Anders (Metso Power AB (Sweden)); Johansson, Andreas (SP, Boraas (Sweden))

    2010-07-01

    One of the key benefits of fluidized bed combustion is that the bed - through mixing of fuel and air and accumulated heat - facilitates combustion at low stoichiometry and with low emissions. Even so, it is not unusual that waste-fired FB-boilers are operated at 6-8% oxygen that corresponds to 30-40% higher flows of gas than theoretically needed. In addition to that and in comparison to grate furnaces, FB-boiler can cause high pressure drop losses because of the fluidization of the bottom bed, which in turn are associated with high costs for power (fans). This work aims therefore at increasing the knowledge for how the dynamics of the bed affects the air and fuel mixture. Methods to explain and characterize the phenomenon have been derived within this work showing: - Distribution of air in a bed for various cases and the influence of pressure drop, bed height and fluidization velocity - A semi-empiric method to calculate an even bubble distribution - The relation between fluidization and fuel distribution for various fluidization flows and fuels - Dispersion rates for various fuels - Volatilization rates for waste in relation to biomass The result can be useful when optimizing units, for instance through finding as low pressure drops as possible with an even bubble distribution, low risk for sintering and unwanted emissions. The work has thereby reached its ultimate goal of increasing the generic knowledge about waste combustion in FB-boiler

  10. Use of condensing gas boilers in central block heating systems results in greater energy efficiency. Kondenserende gaskedler til blokvarmecentrale kan give hoejere energiudnyttelse

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, B.Aa. (Rendamax Danmark A/S (DK))

    1991-01-01

    The principles of a new Danish commerically produced condenser cooling system for boilers used in central heating systems are explained and illustrated by diagrams. The system, it is claimed, contributes significantly to a higher standard of energy efficiency. (AB).

  11. Boiler water regime

    Science.gov (United States)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  12. Influence of Heat Flux and Friction Coefficient on Thermal Stresses in Risers of Drum Boilers under Dynamic Conditions of Steam Demand

    Directory of Open Access Journals (Sweden)

    M. A. Habib

    2013-01-01

    Full Text Available Boiler swing rate, which is the rate at which the boiler load is changed, has significant influence on the parameters of the boiler operating conditions such as drum water pressure and level, steam quality in the riser tubes, wall temperatures of riser tubes, and the associated thermal stresses. In this paper, the thermal stresses developed in boiler tubes due to elevated rates of heat transfer and friction are presented versus thermal stresses developed in tubes operated under normal conditions. The differential equations comprising the nonlinear model and governing the flow inside the boiler tubes were formulated to study different operational scenarios in terms of resulting dynamic response of critical variables. The experimental results and field data were obtained to validate the present nonlinear dynamic model. The calculations of the heat flux and the allowable steam quality were used to determine the maximum boiler swing rates at different conditions of riser tube of friction factor and heat flux. Diagrams for the influence of friction factor of the boiler tubes and the heat flux, that the tube is subjected to, on the maximum swing rate were examined.

  13. Simulation of heat transfer in combustion chamber waterwall tubes of supercritical steam boilers

    Directory of Open Access Journals (Sweden)

    Grądziel Sławomir

    2016-06-01

    Full Text Available The paper presents the results of numerical computations performed for the furnace chamber waterwalls of a supercritical boiler with a steam output of 2400 × 103 kg/h. A model of distributed parameters is proposed for the waterwall operation simulation. It is based on the solution of equations describing the mass, momentum and energy conservation laws. The aim of the calculations was to determine the distribution of enthalpy, mass flow and fluid pressure in tubes. The balance equations can be brought to a form where on the left-hand side space derivatives, and on the right-hand side – time derivatives are obtained. The time derivatives on the right-hand side were replaced with backward difference quotients. This system of ordinary differential equations was solved using the Runge-Kutta method. The calculation also takes account of the variable thermal load of the chamber along its height. This thermal load distribution is known from the calculations of the heat exchange in the combustion chamber. The calculations were carried out with the zone method.

  14. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  15. Solid waste utilization: incineration with heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Boegly, W.J. Jr.

    1978-04-01

    As a part of the Integrated Community Energy Systems (ICES) Program, Technology Evaluations, this evaluation considers the potential utilization of municipal solid wastes as an energy source by use of incineration with heat recovery. Subjects covered include costs, design data, inputs and outputs, and operational problems. Two generic types of heat recovery incinerators are evaluated. The first type, called a waterwall incinerator, is one in which heat is recovered directly from the furnace using water circulated through tubes imbedded in the furnace walls. This design normally is used for larger installations (>200 tons/day). The second type, a starved-air incinerator is used mainly in smaller sizes (<100 tons/day). Burning is performed in the incinerator, and heat recovery is obtained by the use of heat exchangers on the flue gases from the incinerator. Currently there are not many installations of either type in the United States; however, interest in this form of solid-waste handling appears to be increasing.

  16. Criteria selection for the assessment of Serbian lignites tendency to form deposits on power boilers heat transfer surfaces

    Directory of Open Access Journals (Sweden)

    Mladenović Milica

    2009-01-01

    Full Text Available Based on investigations of ash deposit formation, semi-empirical indicators for slagging and fouling, based on ash chemical composition and its fusion temperature, have been determined. These criteria-indicators, in suggested limits, describe the coals on which they are based (North-American and British well. However, the experience in the thermal power production sector of Serbia shows that their literal application to domestic coals does not produce satisfactory results. This contribution provides an analysis of applicability and the choice of criteria that are suitable for Serbian coals. The focus of the contribution is on coal slagging indicators, since slagging has much heavier consequences on heat transfer inside the steam boiler, and on boiler operation as a whole. The basis for the analysis of chosen criteria comprises of the results of investigations of four coal fields - Kostolac, Kolubara, Kosovo (Serbia, and Ugljevik (Bosnia and Herzegovina.

  17. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  18. Research report for fiscal 1998. Basic research for promoting joint implementation, etc. (master plan for changing district heating boilers, Nizhniy Novgorod province); 1998 nendo chosa hokokusho. Nizhniy Novgorod shu chiiki danboyo boiler tenkan master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The above-named plan aims to reduce greenhouse gas emissions and enhance energy efficiency. The above-named Russian system for supplying heat and hot water is operated by the 51 local governments in the province, with boiler houses sited at 4047 locations. Almost all of them are approximately 30 years old, low in thermal efficiency because of their obsolete design and structure, costly because of their old parts and components wanting repair, and higher in fuel cost than those fired by natural gas. It is indispensable to replace the existing boilers with natural gas-fired boilers, and it is estimated that there are 4511 boilers that require such replacement. When the heat supply business operated by the local governments is modernized, the CO2 gas emission will be reduced by approximately 2.675-million tons/year. As for energy efficiency, it is found that replacement by heavy oil-fired boilers is the highest in terms of the effect of investment. (NEDO)

  19. Modeling and analysis of renewable heat integration into non-domestic buildings - the case of biomass boilers: A whole life asset-supply chain management approach

    OpenAIRE

    Nasiri, Fuzhan; Mafakheri, Fereshteh; Adebanjo, Dotun; Haghighat, Fariborz

    2016-01-01

    This study proposes a whole life asset-supply chain optimization model for integration of biomass boilers into non-domestic (non-residential) buildings, under a renewable heat incentive scheme in the UK. The proposed model aims at identifying the optimal energy generation capacities and schedules for biomass and backup boilers, along with the optimal levels of biomass ordering and storage. The sensitivity of these decisions are then analyzed subject to changes in source, types and pricing of ...

  20. DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH

    OpenAIRE

    Zelený, Zbynĕk; Hrdlička, Jan

    2016-01-01

    Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...

  1. A Novel Modelling Approach for Condensing Boilers Based on Hybrid Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Harish Satyavada

    2016-04-01

    Full Text Available Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to control this equipment. Despite the many approaches to the condensing boiler modeling, the following shortcomings are still not addressed: thermal dynamics are oversimplified with a nonlinear efficiency curve (which is calculated at steady-state; the dry/wet heat exchange is modeled in a fixed proportion. In this work we cover these shortcomings by developing a novel hybrid dynamic model which avoids the static nonlinear efficiency curve and accounts for a time-varying proportion of dry/wet heat exchange. The procedure for deriving the model is described and the efficiency of the resulting condensing boiler is shown.

  2. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...

  3. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  4. Potential of waste heat in Croatian industrial sector

    Directory of Open Access Journals (Sweden)

    Bišćan Davor

    2012-01-01

    Full Text Available Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU and United Nations Framework Convention on Climate Change (UNFCCC. Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed. [Acknoledgment. The authors would like to acknowledge the financial support provided by the UNITY THROUGH KNOWLEDGE FUND (UKF of the Ministry of Science, Education and Sports of the Republic of Croatia and the World Bank, under the Grant Agreement No. 89/11.

  5. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    Science.gov (United States)

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  6. Advanced air/flue gas staging based on CFD modelling for enhanced combustion and burnout in a waste-wood fired boiler

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko

    2017-01-01

    The paper presents the impacts of the jet momentum, position and orientation of air and Recycled Flue Gas (RFG) streams on the performance of a grate-fired boiler burning waste wood via a comprehensive CFD-based parametric study. It is found that the air and RFG jets can be optimized to enhance m...

  7. Electric Boiler and Heat Pump Thermo-Electrical Models for Demand Side Management Analysis in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte; Chen, Zhe

    2013-01-01

    The last fifteen years many European countries have integrated large percentage of renewable energy on their electricity generation mix. In Denmark the 21.3% of the electricity consumed nowadays is produced by the wind, and it has planned to be the 50% by 2025. In order to front future challenges...... as active loads. The models were simulated under different Danish daily domestic hot water and space heating profiles. Results showed that under high heating demand conditions the flexibility of this kind of units may be drastically restricted due to their continuous operation....... on the power system control and operation, created by this unstable way of generation, Demand Side Management turns to be a promising solution. The storage capacity from thermo-electric units, like electric boilers and heat pumps, allows operating them with certain freedom. Hence they can be employed under...

  8. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  9. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  10. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  11. Bottom ash from fluidising bed boilers as filler material in district heating pipe culverts. Chemical and geotechnical characterisation; Pannsand som kringfyllnadsmaterial foer fjaerrvaermeroergravar. Kemisk och geoteknisk karaktaerisering av fluidbaeddsand

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Roger; Rogbeck, Jan; Suer, Pascal

    2004-01-01

    Bottom ashes from fluid bed boilers have been characterised, both geotechnically and chemically, in order to investigate the possibility to use them as filler material in district heating pipe culverts. Bottom ashes from both biofuel boilers and waste boilers are represented in this project. The companies which ashes have been characterised are Sundsvall Energi AB, Sydkraft OestVaerme AB, Sydkraft MaelarVaerme AB, Eskilstuna Miljoe och Energi, Stora Enso Fors, Soederenergi and Fortum Vaerme. A total of ten ashes have been analysed where three ashes originates from Sundsvall Energi AB, two from Sydkraft OestVaerme AB and one from the each of the remaining companies. The chemical analyses have been performed both on fresh ashes and on ashes aged for three months. The geotechnical analyses performed are grain size distribution, packing abilities and permeability. Chemical analyses performed are total content, available content, leaching tests (leaching both by shaking method and column procedure) and organic analyses (PAH, EOX, TOC, dioxin and fenol). The geotechnical analyses show that the ashes fulfils the demands that are put on the filler material used in district heating pipe culverts. When using the ashes in applications, light compaction should be performed due to the risk of crushing the material which may cause an increased amount of fine material. The leachability of fine material is larger than for coarse material. The ashes are relatively insensitive to precipitation. Bio fuel based bottom ashes have a lower content of environmental affecting substances than waste fuel based ashes. This is also shown in the leaching analyses. The leaching water from fresh ashes contains a higher concentration of leachable components than aged ashes. When aged the pH in the ashes decreases due to carbon uptake and hydration and this makes metals as Pb, Cu, Cr and Zn less mobile. On the other hand, an increase in leachability of Sb, Mo and SO{sub 4} is shown when the ashes

  12. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  13. Estimation of efficiency of the heat supply system based on a boiler house and a wind turbine in the northern environment

    Science.gov (United States)

    Bezhan, A. V.; Minin, V. A.

    2017-03-01

    This article describes a methodological approach to defining indoor air temperature in buildings heated by a power supply unit consisting of a boiler house and a wind-driven power plant (WDPP). We discuss a heating option for a residential building in the windy conditions of Murmansk city. We proved that, during the periods of strong wind, a WDPP can partially or fully satisfy the heat demand and sometimes even create a surplus of energy. During low wind weather, almost all loads are handled by the boiler house. We considered a possibility to accumulate the surplus energy obtained from a WDPP during strong wind by increasing the temperature in the whole building up to 25°C and further using the accumulated heat during the lowwind period when indoor air temperature may fall below 20°C. This allows saving organic fuel in the boiler house. We demonstrated how indoor air temperature in the building may change throughout the year when using the surplus energy from the WDPP due to thermal storage capacitance of the building. We also provided the results of study, showing favorable energy-related effects of using a WDPP along with the boiler house. It was determined that engaging a WDPP in fulfilling the diagram of heating loads promotes the decrease in the boiler house's contribution to heat supply by 30 to 50%, and using the surplus energy from the WDPP and thermal storage capacitance of the building allows reducing the contribution of the boiler house by 5-15% more in certain months.

  14. Understand boiler performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (United States))

    1994-08-01

    An understanding of the major differences in performance characteristics of steam generators is essential to better use and integrate them into plant steam systems. Process and cogeneration plants widely use gas- or oil-fired packaged steam generators and gas-turbine-exhaust, heat-recovery steam generators to meet steam demands. The most important differences are efficiency versus load characteristics, gas/steam temperature profiles and partial load behavior. Also, steaming in the economizer is a concern at low steam flows for HRSGs, but not for packaged boilers. The paper describes packaged boilers, how emissions impact design of packaged boilers, completely water-cooled furnace, superheater design, packaged boiler performance characteristics, heat-recovery steam generators, and basic differences between HRSGs and packaged boilers.

  15. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  16. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    Science.gov (United States)

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    , ... Keywords: Solid waste combustion, Solid waste management, Calorific ... energy accessibility for sustainable energy for all ... similar to fossil fuel electric generation systems [5]. ..... [15] Coskun, C., Oktay, Z. and Iten, N., A New Approach.

  18. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  19. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-02-01

    Full Text Available Recently, the Korean government has been carrying out projects to construct several large scale horticulture facilities. However, it is difficult for an energy supply to operate stably and economically with only a conventional fossil fuel boiler system. For this reason, several unused energy sources have become attractive and it was found that power plant waste heat has the greatest potential for application in this scenario. In this study, we performed a feasibility assessment of power plant waste heat as an energy source for horticulture facilities. As a result, it was confirmed that there was a sufficient amount of energy potential for the use of waste heat to supply energy to the assumed area. In Dangjin, an horticultural area of 500 ha could be constructed by utilizing 20% of the energy reserves. In Hadong, a horticulture facility can be set up to be 260 ha with 7.4% of the energy reserves. In Youngdong, an assumed area of 65 ha could be built utilizing about 19% of the energy reserves. Furthermore, the payback period was calculated in order to evaluate the economic feasibility compared with a conventional system. The initial investment costs can be recovered by the approximately 83% reduction in the annual operating costs.

  20. Simulation of heat transfer in combustion chamber waterwall tubes of supercritical steam boilers

    OpenAIRE

    Grądziel Sławomir; Majewski Karol

    2016-01-01

    The paper presents the results of numerical computations performed for the furnace chamber waterwalls of a supercritical boiler with a steam output of 2400 × 103 kg/h. A model of distributed parameters is proposed for the waterwall operation simulation. It is based on the solution of equations describing the mass, momentum and energy conservation laws. The aim of the calculations was to determine the distribution of enthalpy, mass flow and fluid pressure in tubes. The balance equations can be...

  1. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    Science.gov (United States)

    2012-07-01

    the applicable range is ensured by the availability of servomechanisms with three torque levels. Utilization on boilers with air blowers controlled by...of oil fired systems, of soot formation in the exhaust. Finally, the sensor characteristics and placement must be selected to ensure adequate response...elimination of soot and sulfur which could contaminate the sensors, and an apparatus to maintain stable environmental conditions. Some of the components

  2. Protective Coatings in the Power Boilers Used to Incinerate Waste – Fuel Characteristics of Waste as the Source of Energy

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available A general characteristics of waste management was presented. Municipal waste was characterised and its fuel properties were provided. Numerous thermal processes of waste utilisation were described such as an incinerating process, free-oxygen technology - pyrolysis, technology with oxygen deficiency - gasification and the plasma technology.

  3. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  4. Increased combustion stability in modulating biomass boilers for district heating systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zethraeus, Bjoern; Olsson, Pernilla; Gummesson, Martin [Vaexjoe Univ. (Sweden). Dep. of Bioenergy Technology

    2002-04-01

    The ultimate aim of the development work performed at ITN was to provide a tool for the boiler designer, a tool to make good estimates as to the environmental performance of different boiler designs. In the longer perspective, such a predictive model may also be developed into a process control system predictor and thus improve boiler control with respect to dynamic mixing imperfections. To fulfil this aim there also has to be available a sufficiently fast measurement technique and part of ITN's work aimed at demonstrating that by digital methods may the time resolution of measured data be improved. The main deliverables from ITN were planned to be: A description of an algorithm to improve the time resolution of measured data by aid of digital back-calculation to provide measurement data with a time resolution comparable to the computational model with the lowest possible demands on measurement frequency. A transportable computer code to describe the dynamic behaviour of biomass-fired boilers with respect to hydrocarbon-, CO- and NO{sub x}-emissions. The program should be able to predict the distribution of concentrations of these gas components in a reasonably short computing time. An algorithm based on the use of Fourier transforms has been derived and tested of-line. Provided the gas analysis sampling system has a time constant r for its low-pass characteristic, even noisy signals may be reconstructed into time constant {tau}/2 if a clever filter is used to improve the signal/noise ratio. Further improvement is theoretically possible - but seems not realistic in practical cases. A computer code has been produced in MATLAB, a code that reproduces the dynamic mixing behaviour of realistic boilers. The most fundamental assumptions for the code have not been thoroughly verified but a number of comparisons have been made to different boilers and seem to indicate that the predictions are qualitatively correct. The code is based on a constant flow of fuel

  5. Waste water heat recovery appliance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  6. Heat of Hydration of Low Activity Cementitious Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Nasol, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  7. Waste heat recovery. Bottoming cycle alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Paanu, T.; Niemi, S.; Rantanen, P.

    2012-07-01

    Based on its high efficiency, the diesel engine is the leading power source for several heavy-duty applications, such as marine installations, electricity production, on-road trucks and buses, and various off-road machines. Inherently, the high efficiency means low carbon dioxide (CO{sub 2}) emissions. Still today, one of the global challenges over the whole energy field is to further reduce greenhouse gas emissions to combat climate change, including the reduction of the CO{sub 2} emissions. This can be achieved by increasing the energy efficiency and energy savings, and by finding renewable options instead of conventional fossil energy sources. In this respect, the diesel engine provides a good starting point with a potential to achieve substantial improvements both in energy efficiency and emissions reduction. (FCEP 2010) Within the ongoing large Finnish research program Future Combustion Engine Power Plant (FCEP), one of the work packages concentrates on the energy efficiency of internal combustion engines. Technologies related to the improvement of energy efficiency are developed. The engine itself, waste heat recovery (WHR) systems, or power conversion are investigated. This study was part of the FCEP research program and focused particularly on the waste heat recovery systems with a target to find feasible solutions to increase the electricity production of diesel and gas engine driven power plants. At the same time, energy efficiency is improved, decreasing CO{sub 2} emissions. Diesel engines, due to their high combustion temperature and pressure, provide an energy conversion technology that is more efficient than any other thermal power device. Especially within the medium-speed range, large diesel and gas engines can reach electrical efficiencies of more than 45%. Nevertheless, the environmental concerns and increasing fuel prices push for continuous improvement in the energy efficiency. The WHR systems are seen as one of the most promising technologies

  8. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    expressed as shown in Figure 1 in the form: ṁ ṁ. 4. Table1: Average components of household solid waste generated per person per day. Components. Mass(kg). Food waste. 0.281. Plastic/rubber. 0.031. Paper ..... “Biomass Gasification for Hydrogen Production”. International Journal of Hydrogen Energy, Vol. 36,. 2011, pp ...

  9. Dynamic model of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T.

    1996-12-31

    In this study, a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid is presented. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The present research is a part of a study on the unsteady dynamics of an organic Rankine cycle power plant and it will be a part of a dynamic process model. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The boiler was divided into elements. The values of the thermodynamic properties and mass flows were calculated in the nodes that connect the elements. Dynamic behaviour was limited to the process fluid and tube wall, and the heat source was regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater were treated in a special way that takes into account a flexible change from one part to the other. The model consists of the calculation of the steady state initial distribution of the variables in the nodes, and the calculation of these nodal values in a dynamic state. The initial state of the boiler was received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid

  10. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  11. Development of heat pumps to replace boilers in individual housing. Institutional strategies and the replies of customers

    Energy Technology Data Exchange (ETDEWEB)

    Masson, G.; Mathieu, S.; Weis, P. (Centre ESTA, 75 - Paris (France))

    1984-05-01

    The study summarized in this article was carried-out in two areas - the northern Ile de France region (near Paris) and the Touraine region (near Tours). It shows the local diversity of networks and the role of wholesalers and fuel merchants. The fuel merchants and the heating installators both feel threatened by any increase of electricity in heating systems but at the same time they see the heat pump replacing boilers as a means not to entirely eliminate fuel-fed heating. Various stages in this evolution are worth mentioning - in 1978-79 the ''Perche I'' operation consisted in testing 150 heat pumps among selected users; in 1980-81 in the framework of the ''Perche 2'' operation 1,000 installators were encouraged to install a pump in their own homes to familiarize them with this equipment and to make them publicity agents for the heat pump. The first operation aimed at the general public was launched in 1981 and was accompagnied by a major advertising campaign; this operation named ''Perche I''. The second part of this study is devoted to the attitude of custumers. The author does not quote statistics concerning customers but does try to group all the information available in this field. An attempt was also made to discover the diversity of attitudes concerning the heat pump which is after all a special kind of product. The decision to purchase the choice of equipment its use and opinions concerning this experiment are all examined.

  12. Opportunities for direct-contact waste heat recuperators for industrial heat recovery

    Science.gov (United States)

    Richlen, S. L.; Semler, T. T.

    The potential industrial applications of the direct-contact waste heat recuperator (DCWHR) for the 353 K to 672 K temperature range were identified. The DCWHR increases the heat transfer area per unit volume over typical heat exchangers, and holds promise for latent heat recovery from waste streams. Results show that, for selected industrial waste heat sources, the production of hot process water by direct-contact heat exchange can be economically accomplished for waste heat (hot gas) streams at 478 K to 672 K with greater than 4.72 cu m/sec exhaust. Additionally, a DCWHR is particularly recommended for particulate-laden exhaust streams where scrubbing is already required by environmental consideration; the recovered heat becomes a factor in reducing the negative cash flow attributable to the use of scrubbing equipment. Incentives and obstacles to early market penetration of the technology are recognized.

  13. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  14. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    OpenAIRE

    Cho, Chung-Won; Lee, Ho-Seong; Won, Jong-Phil; Lee, Moo-Yeon

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volum...

  15. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    is optimized to utilize the maximum waste heat recovery. The Genetic algorithm and fmincon active-set algorithm are used to optimize the design and operation parameters for the two steam cycles. The optimization aims to find the theoretically optimal combination of the pressure levels and pinch......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two...

  16. Wood wastes (biomass) supplying the central heating system of a housing project. Final report. Zentralbeheizung einer Siedlung mit Holzabfaellen (Biomasse). Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heubrandner, P.; Schaup, P.; Streicher, W.

    1985-01-01

    Around 1980 a group of 21 young families joined to found the 'Wohnprojekt Thal' association. The housing project aimed at establishing a common residential quarter representing the members' idea and meeting the requirements of a housing area and economic heat supply. Buildings were erected in Thal which is located about 10 km northwest of Graz. The central heating system was chosen to be consisting of a top water heating system and central boiler for the processing of domestic biomass (barks and wood wastes). The final report points out the notably positive experiences gained with respect to the project's efficiency and economy.

  17. A study of the applicability of a straw-fired batch boiler as a heat source for a small-scale cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2016-12-01

    Full Text Available Straw-fired batch boilers, due to their relatively simple structure and low operating costs, are an excellent source of heat for a wide range of applications. A concept prototype of a cogeneration system with a straw-fired batch boiler was developed. The basic assumptions were based on the principles of the Rankine Cycle and the Organic Rankine Cycle systems with certain design modifications. Using the prototype design of a system that collects high-temperature heat from the boiler, studies were performed. The studies involved an analysis of the flue gas temperature distribution in the area of the oil exchanger, a comparison of the instantaneous power of the boiler’s water and oil circuits for different modes of operation, as well as an analysis of the flue gas. In the proposed system configuration where the electricity production supplements heat generation, the power in the oil circuit may be maintained at a constant level of approx. 20-30 kW. This is possible provided that an automatic fuel supply system is applied. Assuming that the efficiency of the electricity generation system is not less than 10%, it will be possible to generate 2-3 kW of electricity. This value will be sufficient, for an on-site operation of the boiler.

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  19. Open absorption heat pump for waste heat utilization in the forest industry. A study of technical and economic potential; Oeppen absorptionsvaermepump foer uppgradering av spillvaerme fraan skogsindustrin. Studie av teknisk och ekonomisk potential

    Energy Technology Data Exchange (ETDEWEB)

    Westermark, Mats; Vidlund, Anna

    2006-02-15

    Waste heat from the forest industry is mainly humid air or humid flue gases with somewhat too low dew point for direct use as district heating or for other qualified purposes. Upgrading of the temperature by heat pumps is thus often necessary for the full use of the waste heat. This study evaluates an open absorption heat, based on hygroscopic condensation. The hygroscopic condenser has the potential to replace mechanical heat pumps or conventional absorption heat pumps (based on lithium bromide) for the upgrading of heat from humid gases. The goal for the project is to evaluate technology and potential for an open absorption heat pump for heat recovery from humid gases in the forest industry. In an open heat pump the humid gas is brought in direct contact with the hygroscopic liquid (whereas a conventional heat pump uses an intermediate circuit with evaporation of water in the evaporator). The direct contact makes it possible to recover the heat at a higher temperature than the dew point of the humid gas without the use of evaporator. The target group for the study is the forest industry and its suppliers of technology and knowledge. The study has been carried out in cooperation with representatives from the forest industry and from suppliers of equipment. The study shows that the forest industry has good potential to upgrade waste heat from humid air to district heating. The waste heat can be extracted from various humid gases such as exit air from paper machines, wood driers, green liquid quenchers and flue gases from soda boilers, mesa kilns, bark-fired boilers and gas engines. Hygroscopic condensation is considered to give economic and environmental advantages compared to conventional absorption heat pumps due to much less consumption of driving heat. An interesting special case is the regeneration of the hygroscopic medium by direct contact with hot flue gases and for this application a patent application has been filed. Upgrading of waste heat to process

  20. Thermoelectric harvesting of low temperature natural/waste heat

    Science.gov (United States)

    Rowe, David Michael

    2012-06-01

    Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.

  1. RESEARCH OF EFFICIENCY OF WALL-MOUNTED BOILERS WITH SEALED CHAMBERS USED AS FLAT HEATING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel Aleksandrovich

    2012-12-01

    the heating system analysis and to define the area of application of various systems of heat supply. The principal decision based on the basis of the above analysis is the decision to install an independent or a centralized system of heat supply.

  2. Reduced Bed Temperature in FB-Boilers Burning Waste - part II; Saenkt baeddtemperatur i FB-pannor foer avfallsfoerbraenning - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Pettersson, Anita; Claesson, Frida; Johansson, Andreas; Gunnarsson, Anders; Gyllenhammar, Marianne; Victoren, Anders; Gustafsson, Goeran

    2010-07-01

    This project focuses on evaluating whether lowered bed temperature in FB-boilers for waste combustion gives operational benefits, such as reduced fouling in the convection pass. If so, this mode of operation could reduce the number of unplanned boiler outages, reduce the need for soot blowing, and extend the lifetime of the superheaters at unaltered steam temperature. The project is based on full-scale experiments performed at Ryaverket in Boraas. The plant has two waste-fired 20 MW{sub t} FB-boilers. The study is based on a comparison between operational data and measurement results from two different operating conditions of the boilers. In addition to the data that normally are logged by the control system, samples of fuel, ashes, particles, and deposits were taken and subsequently analyzed. The structure of the bed ash was altered by lowering the bed temperature. Under normal boiler operation, the bed ash contains many small agglomerates that disappeared when the bed temperature was lowered. Due to this, the sand consumption of the plant could be reduced by roughly 25 %. At lowered bed temperature, the concentration of chlorine increased in the bed ash and in the recycled sand while it decreased in the ashes from the cyclone and fabric filter. The concentration of HCl in the flue gas increased as the bed temperature was lowered. This is considered a consequence of less chlorine forming alkali chlorides. Moreover, the particle measurements showed that the amount of submicron particles decreased during lowered bed temperature, which also is an indication of less alkali chlorides in the flue gas. The deposit probes showed an approximate 20 % reduction of the fouling rate when the bed temperature was lowered from 876 to 714 deg C. The chlorine content also decreased in the deposits. For the deposit probes at 500 deg C, (corresponds to a steam temperature of 465 deg C) significant amounts of KCl were found in the deposits, even when the bed temperature was lowered

  3. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  4. Performance and Reliability of Exhaust Gas Waste Heat Recovery Units

    Science.gov (United States)

    2014-09-01

    Khalil, Zohir, and Farid (2010) investigated heat transfer related to swirling and non- swirling flows through sudden pipe expansions at constant pumping... swirl in air flow in a tube for a concentric double- pipe heat exchanger. The use of a snail entrance feature increased the Nusselt number in the...exhaust gas WHRU. 14. SUBJECT TERMS waste heat recovery, heat recovery performance, swirling flow , pressure drop penalty, temperature

  5. Identification of existing waste heat recovery and process improvement technologies

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  6. A steam loop for materials testing at 600 C in a biomass and waste fired boiler. Results of corrosion testing

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Lundberg, Mats [Sandvik Materials Technology, Sandviken (Sweden)

    2010-07-01

    A steam loop for corrosion testing was constructed in Esshete 1250 and attached to one of the superheaters in a 100 MWth bubbling fluidised bed (BFB) boiler. The loop raised the final steam temperature to about 600 C at 140 bar. A number of different test materials were welded into the loop for evaluation at low temperature (500 C steam) and high temperature (600 C steam). Their wall thicknesses were measured with a high resolution ultrasonic probe before and after exposure. A number of sections were examined metallographically after exposure. The steam loop was in service for one firing season (about 5500 h) and the fuel mixture was initially a biomass mix co-firing with 15% coal. However halfway through the firing season the coal was replaced with 15% packaging waste containing plastic and aluminium. The latter mixture (biomass and waste) was highly corrosive and accounted for most of the corrosion. The alloys with the highest Ni and Cr contents, Haynes 230, AC 66 and HR11N, showed negligible steam-side corrosion. The 11% chromium steel X20 and the nickel-base alloy HR11N were not tested at the higher steam temperature because of strength considerations. Regarding fireside corrosion at 500 C steam the alloys with the best corrosion resistance were Haynes 230, HR11N, AC 66 and HR3C followed by Esshete 1250 and TP247HFG. The corrosion rate of X20 was unacceptably high and is totally unsuitable for this fuel mix. At 600 C Haynes 230 showed the lowest corrosion rates, followed by TP 347 HFG, HR3C, AC66, and Esshete 1250. Large amounts of internal corrosion were seen. (orig.)

  7. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Jansson, S.

    2014-01-01

    characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements...

  8. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  9. Investigations of waste heat recovery from bulk milk cooler

    Directory of Open Access Journals (Sweden)

    S.N. Sapali

    2014-11-01

    Full Text Available Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recovered to improve the energy efficiency of plant. The waste heat is utilized to heat the water which is used to clean the milk processing equipments thus saving thermal or electrical energy used to heat the water separately. Shell and coil type heat exchanger is designed and used to recover the waste heat during condensation process. Heat rejected in condensation process consists of superheat and latent heat of the refrigerant. In this work, attempt has been made to recover complete superheat along with part of latent heat which is a present research issue. The results show that complete superheat and 35% of latent heat is recovered. Heat recovery rate is measured for various mass flow rates. Water is flowing on shell side and refrigerant through tubes. The effectiveness of the heat exchanger is determined and the results achieved are presented in this paper. Significant improvements have been achieved and COP of the system is increased from 3 to 4.8.

  10. Experiences from measurements on combined solar heating and biomass-fired boilers; Erfaringer fra maalinger paa kombinerede solvarme- og biobraendselsanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Overgaard, L.L.; Ellehauge, K.; Saebye, A.

    2000-05-01

    The 12 inspected Danish systems represent both well-designed and well-functioning small Solar and Biomass systems as well as poor system designs. Some of the faults experienced were oversized and undersized components and insufficient insulation. Also, there were several examples of stop-gab solutions resulting in very complicated systems with a lot of piping connections, great heat losses and a great risk of making operation mistakes. Monitoring of three of the systems over a period of almost a year have shown great differences with regard to operation conditions, heat losses from installations, solar contributions, solar gains as well as number of days the biomass boilers can be turned of each year. In general the solar gains of the three systems were not very large. Generally, there is a need for better overall solutions with components adjusted to the actual demands and boundary conditions. As a part of the project such a new system with one storage tank only has been developed - inspired by already gained experience. The work carried out in this project is the first step on the way to better Solar and Biomass system designs in Denmark, but there is still a lot of work to be done. (EHS)

  11. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    Energy Technology Data Exchange (ETDEWEB)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  12. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2006-05-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

  13. Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Wan Adibah Wan Mahari

    2016-09-01

    Full Text Available This study investigated the use of microwave pyrolysis as a recovery method for waste shipping oil. The influence of different process temperatures on the yield and composition of the pyrolysis products was investigated. The use of microwave heating provided a fast heating rate (40 °C/min to heat the waste oil at 600 °C. The waste oil was pyrolyzed and decomposed to form products dominated by pyrolysis oil (up to 66 wt. % and smaller amounts of pyrolysis gases (24 wt. % and char residue (10 wt. %. The pyrolysis oil contained light C9–C30 hydrocarbons and was detected to have a calorific value of 47–48 MJ/kg which is close to those traditional liquid fuels derived from fossil fuel. The results show that microwave pyrolysis of waste shipping oil generated an oil product that could be used as a potential fuel.

  14. Steam boiler technology

    Energy Technology Data Exchange (ETDEWEB)

    Teir, S.

    2003-07-01

    This book is the published version of the e-book with the same name. The interactive lecture slides, which accompany most chapters, exist only in the online version and on the attached CD-Rom. The Steam Boiler Technology e-book is the main course book for the course on steam boiler technology provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The steam boiler technology e-Book is provided by the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. The book covers the basics and the history of steam generation, modern boilers types and applications, steam/water circulation design, feedwater and steam systems components, heat exchangers in steam boilers, boiler calculations, thermal design of heat exchangers. The chapters of the second edition have been corrected based on reader and reviewer comments, and four new chapters have been added. The user interface of the electronic version has also been updated. The password for the online book will be changed once a year. If you have problems accessing the online book, or need a new password, please contact sebastian.teir@hut.fi.

  15. Using waste oil to heat a greenhouse

    Science.gov (United States)

    Marla Schwartz

    2009-01-01

    During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...

  16. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  17. Clean heating with wood. An electrostatic separator reduces particulate matter emissions from biomass boilers; Sauber heizen mit Holz. Ein elektrostatischer Abscheider senkt die Feinstaub-Emissionen von Biomassekesseln

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2016-08-01

    Despite considerable advances in firing technology, harmful particulate matter is produced when wood is combusted. Electrostatic precipitators, however, filter up to 90 per cent of particulate emissions from biomass boilers. These therefore enable wood burners to use a wider range of fuel and still meet the tightened requirements of Germany's 1st Ordinance on the Implementation of the Federal Immission Control Act. The major advantage: Both new and old heating plants can benefit from the new system.

  18. The wood-energy. Wood-energy: self-feeding boilers; Le bois-energie. Bois-energie: chaufferies a alimentation automatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Today the wood-energy accounts a global consumption of 8 to 10 million tep (tons petroleum equivalent). 120000 tep is devoted to the ternary collective heating. More than 350 self-feeding boilers, implementing these last 15 years, are supplied with various resources: wood industry wastes, slashed wood. This guide presents informations and recommendations necessary to the implementing of a self-feeding boiler and brings concrete answers to the wood heating developers. (A.L.B.)

  19. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Åmand, Lars-Erik [Chalmers University of Technology, Department of Energy and Environment, Gothenburg (Sweden); Kassman, Håkan, E-mail: hakan.kassman@vattenfall.com [Vattenfall Research and Development AB, Nyköping (Sweden)

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS

  20. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    , and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  1. Concept of Heat Recovery from Exhaust Gases

    Science.gov (United States)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  2. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    OpenAIRE

    Y. Baradey; M. N. A. Hawlader; Ahmad Faris Ismail; Meftah Hrairi

    2015-01-01

    Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to rec...

  3. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process......Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...

  4. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE II REPORT, SEPT.1998-JULY 1999.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.YAGER,K.A.BLANKENHORN,D.(KEYSPAN R AND D INITIATIVE)

    1999-08-01

    Based upon the previous Phase I research program aimed at looking for ways of recycling the KeySpan-generated wastes, such as waste water treatment sludge (WWTS) and bottom ash (BA), into the potentially useful cementitious materials called chemically bonded cement (CBC) materials, the emphasis of this Phase II program done at Brookhaven National Laboratory, in a period of September 1998 through July 1999, was directed towards the two major subjects: One was to assess the technical feasibility of WWTS-based CBC material for use as Pb-exchange adsorbent (PEA) which remediates Pb-contaminated soils in the field; and the other was related to the establishment of the optimum-packaging storage system of dry BA-based CBC components that make it a promising matrix material for the steam-cured concrete products containing sand and coarse aggregate. To achieve the goal of the first subject, a small-scale field demonstration test was carried out. Using the PEA material consisting of 30 wt% WWTS, 13 wt% Type I cement and 57 wt% water, the PES slurry was prepared using a rotary shear concrete mixer, and then poured on the Pb-contaminated soil. The PEA-to-soil ratio by weight was a factor of 2.0. The placed PEA slurry was blended with soil using hand mixing tools such as claws and shovels. The wettability of soils with the PEA was very good, thereby facilitating the soil-PEA mix procedures. A very promising result was obtained from this field test; in fact, the mount of Pb leached out from the 25-day-aged PEA-treated soil specimen was only 0.74 mg/l, meeting the requirement for EPA safe regulation of < 5 mg/l. In contrast, a large amount (26.4 mg/l) of Pb was detected from the untreated soil of the same age. Thus, this finding demonstrated that the WWTS-based CBC has a potential for use as PEA material. Regarding the second subject, the dry-packed storage system consisting of 68.7 wt% BA, 13.0 wt% calcium aluminate cement (CAC), 13.0 wt% Type I portland cement and 5.3 wt

  5. A Review on Electroactive Polymers for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ewa Kolasińska

    2016-06-01

    Full Text Available This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers.

  6. Flue gas cleaning for co-combustion of waste in biomass boilers 10-25 MW; Roekgasrening vid samfoerbraenning i biobraenslepannor i storleken 10-25 MW

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Larsson, Sara [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2003-11-01

    Incineration of waste fuel in existing biomass boilers in the power range 10-25 MW is not very common in Sweden today. With increasing waste streams it will be interesting to use such fuel also in these types of boilers. This report gives a description of which regulations you have to comply with when you start to burn waste fuel, the increasing costs it will bring, and different types of flue gas cleaning equipment that are available. For existing boilers the EC-directive for incineration of waste will have to be implemented from 2005. Newly built boilers have to implement the directive from the start. The new requirements that have to be met for co-combustion plants are: The flue gas has to have a temperature of 850 deg C or more for at least two seconds in the combustion chamber. Exceptions can be allowed, but then the emission limit for CO for waste combustion must be met. The emission limit will then be 50 mg/Nm{sup 3} at 11 % O{sub 2}. Exceptions can be allowed for fluid-bed combustion if 100 mg/Nm{sup 3} at 11 % O{sub 2} as a hourly average can be met. There has to be a fuel handling system that automatically stops the waste flow if the temperature drops below 850 deg C, or when any of the emission limit values are exceeded. Some operating parameters have to be measured continuously. Emission limit values for dust, TOC, HCl, HF, SO{sub 2}, NO{sub x}, CO, metals, dioxins and furans. Increased documentation, reporting and control. This report has been focusing on how to meet the regulations on emissions to air. Following conclusions have been drawn: To avoid exceeding the limit value for dust emission a bag filter or an electric precipitator will be needed. Multi-cyclones are not enough. If the limit value for dust is met, the limit value of metals will also be met. To avoid exceeding the limit value for chloride a flue gas condenser/scrubbing tower or a dry flue gas cleaning system is needed, if the waste fuel is not very low in chloride. With a low sulphur

  7. Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities

    Science.gov (United States)

    Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia

    2017-02-01

    Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.

  8. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  9. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  10. Residential Heat Supply by Waste-Heat Re-Use: Sources, Supply Potential and Demand Coverage—A Case Study

    Directory of Open Access Journals (Sweden)

    Wolfgang Loibl

    2017-02-01

    Full Text Available This paper deals with climate change mitigation and addresses waste heat reuse as a measure which is until now considered only to a limited extent. The City of Vienna serves as a case study to explore potentials to improve the urban heat supply using waste heat as an additional energy source. As no observation data about waste heat and detailed heating demand is available, this data is derived from proxy data for estimating waste heat reuse potential and residential heating demand patterns. Heat requirements for manufacturing and service provision is explored and, based on the distribution of the companies within the city, mapped as waste heat sources. Employees per company serves as proxy data to allocate the heat volume. Waste heat share and temperature ranges is reviewed from literature. Heating demand is mapped based on floor space of the buildings by age class and building type. Merging supply and demand maps allows to quantify the residential heating demand coverage through local waste heat in the potential supply areas within different distance ranges and housing density classes. In high density housing areas, only a small share of the demand can be covered by waste heat supply even within 250 m distance from sources due to few companies which could provide waste heat. In medium to low density housing areas in Vienna’s outer districts with more industry, a higher share of residential heating demand near the sources can be covered by waste heat within a 250 m distance. Within a 500 m distance, around half of the residential heating demand can be covered only in low density housing areas near the waste heat sources.

  11. ECONOMIC ANALYSIS OF REQUIRED HEAT ENERGY FOR A RESIDENCE BY USING CONDENSING AND CONVENTIONAL COMBI BOILER

    Directory of Open Access Journals (Sweden)

    Muhammed Arslan Omar

    2016-06-01

    Full Text Available In this study, a comparison and economic analysis of energy required for heating and hot water by condensing and conventional combi for a family was performed. After determining the energy for the family the cost of consumption energy calculated which was supplied by each two types of combi. It was determined that using of condensing combi will provide the average 15,6% energy savings to family. Furthermore, the average 40% impairment of the exhaust gas temperature of condensing combi than conventional combi causes the reduction of emissions rate and decrease the global warming. Reduction of emissions is extremely important in terms of air pollution. Compared to a conventional combi the initial investment of a condensing combi is high, but due to usage of latent heat of water vapor in the exhaust gas the payback period is short, and therefore the cost difference could be ignored. This study emphasizes that, usage of the condensing combies which are compulsory in European Union countries, will contribute the family budgets and national economy.

  12. Effect of building structure and of space heating installation on furnace/boiler retrofit effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Zawacki, T.S.; Cole, J.T.; Huang, V.; Macriss, R.A.

    1983-01-01

    Analyses of how building structure and other factors influence retrofit performance were carried out through analytical investigations and measurements in homes. A data base of 65 sites was established from screening 2600 sites of the SHEIP effort, an earlier furnace retrofit program of the US gas industry. A comprehensive list of operative factors linking retrofit effectiveness to structural and installation factors was developed and used. The results showed vent dampers were most effective in homes with heated basements and full communication between the furnace and the home, reducing consumption for space heating 10% to 15%. Homes modified by the full derate procedure conserved quantities of energy, and these savings are proportional to the installation factors (level of input derate, furnace steady-state efficiency, and level of vent restriction). Semiempirical relationships were developed to estimate retrofit effectiveness based on easily measured or observed parameters. Both the H-FLAME and SPACE-FI models were shown to provide reasonable estimates of measured energy consumption for homes equipped with furnaces that were retrofit-modified by either of the above approaches.

  13. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  14. Heat Transfer Characteristics of Calcined Petroleum Coke in Waste Heat Recovery Process

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2016-01-01

    Full Text Available This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79, equivalent heat conductivity coefficient (0.9 to 1.1, and equivalent specific heat (0.9 to 1.1. The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distribution of calcined petroleum coke, the calcined petroleum coke temperature at heat exchanger outlet, the average heat transfer coefficient, and the heat recovery efficiency were studied. It can also be used in deriving much needed data for heat exchanger designs when employed in industry.

  15. Utilization of waste heat from aluminium electrolytic cell

    Science.gov (United States)

    Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian

    2017-12-01

    During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.

  16. Technical and economic aspects of waste heat utilization

    Directory of Open Access Journals (Sweden)

    Smolen Slavomir

    2007-01-01

    Full Text Available The main aim of the following presentation is the comparison and evaluation of the conditions for waste heat utilization in Germany and in Poland. This paper presents synthetically the results of economic analysis of the different technical variants. The employment of heat pumps and other heat transformers, respectively, can reduce the energy consumption, but using of those technical possibilities depends mainly on the economic aspects. The main parameters of the financial calculations were the energy and equipment costs but beyond it a number of other factors were also considered and compared, for example calculation interests, profit tax level and similar. Four different technical alternatives were analyzed, it is using of absorption heat pump, compression heat pump, heat transformer (absorption, and a special combined system with gas motor to drive of heat pump compressor. The capital value as main result of the investigations is in Poland generally lower because of relatively high investment cost and lower energy prices compared to the situation in Germany and West Europe. The basis for the presented comparative analysis was an industrial project in Germany which effected in development of concepts for waste heat using. .

  17. Heat-exchanger needs for recovering waste heat in the glass-making industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.L.; Kulkarni, A.K.

    1983-02-01

    The state of the art of waste heat recovery technology in the glass-making industry is assessed. Fouling and corrosion glass furnace regenerators are reviewed. Heat recovery from the exhaust gases leaving the brick checkers regenerator of a soda lime glass furnace is addressed. Research and development needs that will advance the use of secondary heat recovery in the glass industry are identified. (LEW)

  18. ORC for electricity production in district heating plants. Experience of biomass fired boilers with electricity production based on ORC; ORC foer elproduktion i vaermeverk. Erfarenheter fraan biobraensleeldade pannor med ORC-baserad elproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2007-12-15

    The ORC (Organic Rankine Cycle) technology is an option for the production of electricity in heat production plants with steam boilers. Traditionally, the ORC technology has been used mainly in geothermal applications. However, during the last five years, it has become of interest also in bioenergy plants with electricity production in the 0,5-2 MW{sub e} range. Among others in Austria and Germany a number of plants have been installed during the first decade of the 2100th century. Today (2007), about 70 biomass based ORC plants are in operation in Europe. About 30 more plants are under installation and commissioning. In total, around 100 plants will be operating in the near future. In today's biomass fuelled ORC type CHP plants, the ORC circuit is driven by the energy in the flue gases from a biomass fuelled furnace. Via a thermal oil boiler, the energy is transferred to the ORC circuit. The ORC circuit is connected to the district heating net for cooling. Due to the fact that the ORC circuit is connected to 300 deg C flue gas, as compared to the 1990's waste water based ORC plants, an electrical yield of nearly 20% net is obtained in the ORC circuit. The overall electrical yield based on biomass is almost 16%. In the report, operational experience from a number of plants is reported. The economic advantage of the technology is discussed. In conclusion, the ORC technology is more economical than conventional steam turbine technology in the 0,5-2 MW{sub e} range. The calculated investment for a 2 MW{sub e} ORC based CHP plant is 40 kSEK/kW{sub e}, which is considerably lower than for a conventional steam turbine based CHP plant

  19. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  20. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  1. RTG Waste Heat System for the Cassini Propulsion Module

    Science.gov (United States)

    Mireles, V.; Stultz, J.

    1994-01-01

    This paper describes the thermal design for the propulsion module subsystem (PMS), and presents the results from the radioisotope thermoelectric generator (RTG) waste heat thermal test, and it summarizes the adjustment techniques and their relative effectiveness; it also shows the resulting predicted PMS flight temperatures relative to the requirements.

  2. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids....../or selected. This dissertation focuses on the chemical product and process systems used for waste heat recovery. Here, chemical products are working fluids, which are under continuous development and screening to fulfill regulatory environmental protection and safe operation requirements. Furthermore......, for the recovery of low-grade waste heat, new fluids and processes are needed to make the recovery technically and economically feasible. As the chemical product is influential in the design of the process system, the design of novel chemical products must be considered with the process system. Currently, state...

  3. Tests with blast furnace slag as bed material in a 12 MW waste fired BFB boiler; Fullskalefoersoek med Hyttsand som baeddmaterial i 12 MW avfallseldad BFB-panna

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders; Oehman, Marcus

    2004-11-01

    A full-scale trial has been performed at Saeverstaverket twin 12 MWth BFB boilers in Bollnaes using Hyttsand (a proprietary blast furnace slag) as bed material. The purpose has been to investigate if Hyttsand can be used as bed material in FB boilers for difficult types of fuels. Used fuel has been municipal waste, recovered wood fuel and different types of bio fuels. The test period was 19 days and nearly 100 tons of Hyttsand was used. The most important conclusions are: Good fluidisation can be achieved with Hyttsand as bed material. Hyttsand can fluidise without any changes in boiler settings. Hyttsand can also be mixed with Baskarpsand (a natural sand with over 90% SiO{sub 2}) and used as bed material without any negative changes to the boiler performance. Bed material make-up rate is reduced with up to 30 % when using Hyttsand compared to using Baskarpsand. Other conclusions are: Bed temperature increased slightly and bed temperature deviation decreased. Emissions was in general not affected, however emissions of SO{sub 2} increased slightly. More deposit containing more sulphur was formed on superheater surfaces when using Hyttsand. The increased amount of sulphur when using Hyttsand could be an effect of higher content of sulphur in the fuel or, which is more likely, that sulphur is released from Hyttsand and forms gaseous sulphurous gases. No significant change in produced amounts of fly-, cyclone- or bottom ash. Hyttsand and Baskarpsand had both similar coatings on their particles and similar agglomeration tendencies. There have been some start-up problems during the trials, including two more severe boiler disturbances, but most of these disturbances can be explained and avoided in the future. Previous investigations in laboratory scale using Hyttsand as bed material when firing different bio fuels have shown the advantage of Hyttsand with its higher resistance against a chemical reaction with alkali in the fuel ash compared to conventional bed materials

  4. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  5. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration.

  6. Advanced modelling and testing of a 13 MWth waste wood-fired grate boiler with recycled flue gas

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko

    2016-01-01

    are also investigated. The temperature profiles at different ports in the furnace are measured to shed some light on the flow and combustion characteristics in the boiler and also to collect some in-flame data for modelling validation. The overall modelling strategy, the new sub-models and the use...

  7. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Ilona [BCS, Inc., Laurel, MD (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States); Davidson, Amber [BCS, Inc., Laurel, MD (United States)

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  8. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  9. Thermodynamic Analysis of a Waste Heat Driven Vuilleumier Cycle Heat Pump

    Directory of Open Access Journals (Sweden)

    Yingbai Xie

    2015-03-01

    Full Text Available A Vuilleumier (VM cycle heat pump is a closed gas cycle driven by heat energy. It has the highest performance among all known heat driven technologies. In this paper, two thermodynamic analyses, including energy and exergy analysis, are carried out to evaluate the application of a VM cycle heat pump for waste heat utilization. For a prototype VM cycle heat pump, equations for theoretical and actual cycles are established. Under the given conditions, the exergy efficiency for the theoretical cycle is 0.23 compared to 0.15 for the actual cycle. This is due to losses taking place in the actual cycle. Reheat losses and flow friction losses account for almost 83% of the total losses. Investigation of the effect of heat source temperature, cycle pressure and speed on the exergy efficiency indicate that the low temperature waste heat is a suitable heat source for a VM cycle heat pump. The selected cycle pressure should be higher than 100 MPa, and 200–300 rpm is the optimum speed.

  10. Charcoal/LPG cooker, oven, and boiler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.F.

    1995-06-22

    An insulated hot plate cooker that conserves heat in the exhaust of burning charcoal or domestic gas (LPG) and redirects said heat to do additional cooking, or baking, barbecuing, food preservation by drying, toasting, etc., and then redirecting exhaust heat from this compartment to a boiler that produces boil water, coffee, tea, etc.; thus, an energy-saving multi-purpose cooker with oven and boiler that has 80% efficiency. Combustion chamber of cooker is well ventilated and needs no fan or blower. Boiler has good heat conducting exhaust pipes that are submerged in water, and heat in the exhaust is extracted by the pipe to heat the surrounding water. (author) figs.

  11. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  12. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  13. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-01-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  14. Cogeneration from glass furnace waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  15. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  16. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  17. Performance Analysis of Waste Heat Driven Pressurized Adsorption Chiller

    KAUST Repository

    LOH, Wai Soong

    2010-01-01

    This article presents the transient modeling and performance of waste heat driven pressurized adsorption chillers for refrigeration at subzero applications. This innovative adsorption chiller employs pitch-based activated carbon of type Maxsorb III (adsorbent) with refrigerant R134a as the adsorbent-adsorbate pair. It consists of an evaporator, a condenser and two adsorber/desorber beds, and it utilizes a low-grade heat source to power the batch-operated cycle. The ranges of heat source temperatures are between 55 to 90°C whilst the cooling water temperature needed to reject heat is at 30°C. A parametric analysis is presented in the study where the effects of inlet temperature, adsorption/desorption cycle time and switching time on the system performance are reported in terms of cooling capacity and coefficient of performance. © 2010 by JSME.

  18. EMISSIONS FROM CO-COMBUSTION OF COAL AND MUNICIPAL SOLID WASTE IN DOMESTIC CENTRAL HEATING BOILER

    Directory of Open Access Journals (Sweden)

    Ewelina Maria Cieślik

    2017-04-01

    The results were analyzed in terms of combustion efficiency, emissions of major pollutants (NOx, CO, SO2 and fly ash with adsorbed of PAHs on its surface. The average concentration of emitted particulate matter was 764 mg m-3, and CO - 1944, SO2 - 1256 NOx - 555 mg m-3 (STP, 3% O2, dry gas. The flue gases contain fly ash, with a significant carbon content EC (average 31% and a high proportion of PM10 and PM2.5 - respectively 100 and 75% by volume.

  19. EMISSION AND TRENDS IN RECLAIMING WASTE HEAT IN INDUSTRIAL INSTALATIONS

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis of waste heat emission in a typical industrial installation. On the basis of the process monitoring system, periodic analyses of fumes composition, installation process manual and the conducted measurements of the heat fluxes from individual sources emitting heat on the way of natural convection from the devices’ coats and forced convection in the fumes flux were calculated. According to the authors the heat of temperature 140–155 °C and surface power density 860–970 W/m2 emitted by devices’ covers can be reclaimed in ORC techniques, Peltier’s modules and the systems realising Stirling cycle. Part of the waste heat included in fumes, which makes c.a. 76% of the total emission from the installation, should be returned to the process of fuel oxidation, what will reduce the emission by c.a. 18% and the volume of consumed fuel by c.a. 25 m3 CH4/h, according to the presented calculations.

  20. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...... to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated...

  1. Transporting industrial waste heat. The potential of using the existing sewer system.

    NARCIS (Netherlands)

    Niphuis, Sander

    2013-01-01

    SUMMARY The industry in the Netherlands consumes large amounts of energy for the production of heat. After the industrial processes, a substantial share of this heat is degraded to waste heat. In general, this waste heat is just being discharged to surro

  2. Opportunities for Waste Heat Recovery at Contingency Bases

    Science.gov (United States)

    2016-04-01

    Environment 40(3):353-366. Aladayleh, Wail, and Ali Alahmer. 2015. Recovery of exhaust waste heat for ICE using the beta type Stirling engine . J.of...ASP Director. The work was performed by the Energy Branch (CF-E) of the Facilities Divi- sion (CF), U.S. Army Engineer Research and Development Center... engines , micro gas turbines, Rankine cycle engines , Stirling engines , and fuel cells. The level of development or “maturity” of these technologies varies

  3. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  4. Waste heat usage in sludge incineration; Abwaermenutzung Schlammverbrennung. ARA Basel

    Energy Technology Data Exchange (ETDEWEB)

    Fath, H.

    2001-07-01

    This preliminary report for the Swiss Federal Office of Energy (SFOE) discusses the results of measurements made on a sewage-sludge incineration plant in Basle, Switzerland, that was fitted with heat recovery apparatus in 1999. A comparison is made between the energy balance of the incineration installation before and after its modification. The values for waste-heat recovery that were measured - normalised to enable the comparison - are presented. The use of the heat recovered for local heating purposes and for feeding into Basle's district heating system is described. The reasons for the discrepancy between the energy quantities that were initially expected and those actually attained are discussed: Increased in-house heating requirements and losses caused for unexpected reasons (partial drying of the flue gasses of one of the ovens to prevent corrosion) are quoted as causes for the discrepancy. The authors also note that the emergency cooler previously used before the heat-recovery system was added is no longer needed.

  5. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  6. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-03-01

    Full Text Available The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volume flow rate of the coolant water of the electrical devices. Heating capacity, compressor work, and heating COP were measured; their behaviors with regard to the parameters were observed. Experimental results showed that heating COP increased with decrease of outdoor temperature, from 20.0 °C to 0 °C, and it observed to be 3.0 in the case of 0 °C outdoor temperature. The observed characteristics of the heating COP suggest that the heat pump is applicable as the cabin heater of an electric vehicle, which is limited by short driving range.

  7. A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2017-03-01

    Full Text Available The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K and 111-240 W/(m2K, for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.

  8. Flexible thermoelectric device to harvest waste heat from the laptop

    Science.gov (United States)

    Salhi, Imane; Belhora, Fouad; Hajjaji, Abdelowahed; Jay, Jacques; Boughaleb, Yahia

    2017-05-01

    Recovering waste heat from integrated circuits of a laptop using thermoelectricity effects seems to be an appropriate process to enhance its efficiency. Thermoelectricity, as an energy harvesting process, helps to gain on both sides: financially as it reduces the energy consumption and environmentally as it minimizes the carbon footprint. This paper presents a flexible thermoelectric generator module which is developed to harvest waste heat of the laptop to power up some external loads. First, a theoretical analysis of the system is provided where both thermal and electrical models are exposed. Second, an estimation of the power density harvested by only one thermoelectric leg is given. This estimation can reach 0.01 µW/cm2 and it is confirmed by a numerical simulation based on the finite element method. Afterwards, this power density is improved to become 0.4 µW/cm2 by adding a heat sink in the cold side showing that the thermal resistances of the air and of the heat sink play a crucial role in transferring the temperature gradient to the thermoelectric (TE) material. Finally, it is indicated that the power harvested can be enough to power up portion of the circuitry or other important micro-accessories by using numerous thermoelectric modules.

  9. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.

    2015-05-01

    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  10. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    OpenAIRE

    Wail Aladayleh; Ali Alahmer

    2015-01-01

    This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively....

  11. Feasibility of drying system using waste heat as the heating source

    Science.gov (United States)

    Xie, M. N.; Shi, Y. L.; Chen, L. X.

    2016-08-01

    In this study, a wastewater heat pump system was proposed and its thermal performance was analyzed. The proposed system includes two evaporators: an air-source evaporator and a water-source evaporator. The air-source evaporator absorbs heat from the moist hot air which exhaust from the drying oven. The water-source evaporator absorbs heat from the waste water, while the waste water recovers heat from the mechanical energy, which was produced by cutting and polishing in stone production. The thermodynamic model was developed to evaluate the performance of the proposed system. The energetic analysis was carried out to investigate the influences of the temperature of fresh air. The results show significantly higher energy efficiency, compact-sized and energy-saving compared with the system which uses air as the heat source. Among the seven of alternative refrigerants (R152a, R123, R1234yf, R1234ze, R600a, R22 and R600) investigated, R123 was suggested to be used in this heat pump for its high heating efficiency, inflammable, very low ODP(Ozone Depletion Potential) and GWP(Global warming potential).

  12. A heating system for piglets in farrowing house using waste heat from biogas engine

    Directory of Open Access Journals (Sweden)

    Payungsak Junyusen

    2008-12-01

    Full Text Available The aim of this study is to design and test a heating system for piglets in farrowing house by utilising the waste heat from a biogas engine as a heat source. The study was separated into three parts: the study on the biogas combined heat and power plant, the investigation on the properties of the heat panel, and the installation and testing of the heating system. From the experiment, the condition producing 60 kW of electrical power was a proper one, in which electrical efficiency and specific fuel consumption were 14% and 1.22 m3/kWh respectively. Generating both electricity and heat increased the overall efficiency to 37.7% and decreased the specific fuel consumption to 0.45 m3/kWh. The heat panel, which was made of a plastic material, had a thermal conductivity of 0.58 W/mC and the maximum compressive force and operating pressure of 8.1 kN and 0.35 bar respectively. The surface temperature of the panel was dependent on the inlet water temperature. When hot water of 44C was supplied into the farrowing house with room temperature of 26C, the average surface temperature was 33C. The developed heating system could provide heat for 4.3 farrowing houses. The payback period of this project was 2.5 years.

  13. Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source

    Directory of Open Access Journals (Sweden)

    Ali Kahraman

    2009-08-01

    Full Text Available In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values of 20 °C, 30 °C and 40 °C. Inlet and outlet water temperatures of the evaporator and condenser, water flow rates in the evaporator and condenser circuits, pressures at the compressor inlet and outlet and power consumption of the system were measured. The heating coefficients of performance were calculated based on the measurements. It was found that the maximum temperature in the energy storage tank was about 50.6 °C. For the heat source temperatures of 20 °C, 30 °C and 40 °C, the heating coefficients of the performance of the system became 3.36, 3.43 and 3.69, respectively, 6 min. after the start time of the experiments and then they were decreased to 1.87, 1.83 and 1.77 with increasing water temperature in the condenser tank. The mean uncertainty value of the measurement parameters was found to be about ±2.47%. Finally, for the purpose of meeting hot water need as well as floor heating system requirements, it is seen that energy quality level of a waste low grade temperature heat source can be increased by using a heat pump system.

  14. Application and design of an economizer for waste heat recovery in a cogeneration plant

    Directory of Open Access Journals (Sweden)

    Martić Igor I.

    2016-01-01

    Full Text Available Energy increase cost has required its more effective use. However, many industrial heating processes generate waste energy. Use of waste-heat recovery systems decreases energy consumption. This paper presents case study of waste heat recovering of the exhaust flue gas in a 1415 kWe cogeneration plant. This waste heat can be recovered by installing an economizer to heat the condensed and fresh water in thermal degasification unit and reduce steam use for maintaining the temperature of 105˚C for oxygen removal. Design methodology of economizer is presented.

  15. Thermodynamic and kinetic studies of dioxin formation and emissions from power boilers burning salt-laden wood waste

    Energy Technology Data Exchange (ETDEWEB)

    Duo, W.; Leclerc, D. [Pulp and Paper Research Institute of Canada (Paprican) (Canada)

    2004-09-15

    Wikstrom et al. investigated PCDD/F formation in the combustion of an artificial fuel with PVC or CaCl{sub 2} added. They found no correlation between the levels of dioxin formation and the fuel chlorine content. However, Yasuhara et al. observed increases in dioxin formation with the NaCl content when impregnated newspapers were incinerated. In power boilers burning salt-laden hog fuel, the chlorine is introduced mainly as NaCl. To our knowledge, high temperature salt chemistry and its influence on dioxin formation in combustion and thermal processes have not been thoroughly studied. A thermodynamic analysis of the salt chemistry will be provided in this paper. Though largely empirical, most of the kinetic models developed to describe PCDD/F formation rates are complicated, containing 8 - 12 parameters that need to be estimated. Everaert and Baeyens reported a very simple correlation between stack PCDD/F emissions and the electrostatic precipitator (ESP) temperature: log(PCDD/F){sub T} = (0.016T - 3.001). Although this correlation cannot quantitatively predict dioxin emissions measured on the Canadian west coastal power boilers burning salt-laden hog fuel, the effect of ESP temperature given in the correlation agrees qualitatively. In this work, we will attempt to develop a semi-empirical model based upon both thermodynamic analysis and kinetic considerations.

  16. Energy recovery from waste incineration: assessing the importance of district heating networks.

    Science.gov (United States)

    Fruergaard, T; Christensen, T H; Astrup, T

    2010-07-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1GJ of waste heat delivered substitutes for 1GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO(2) accounts showed significantly different results: waste incineration in one network caused a CO(2) saving of 48 kg CO(2)/GJ energy input while in the other network a load of 43 kg CO(2)/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Fouling-the silent heat transfer thief

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1992-10-01

    Boilers or heat recovery steam generators perform efficiently under clean conditions. Their performance is significantly affected by fouling either on the tube or gas side whether it is a fire tube or water tube exchanger. In addition to reduced duty, steam side cleanliness impacts the tube wall temperature leading to its overheating and failure in the long run. This paper reports that good water chemistry is an easy, efficient way to reduce the effects of steam-side fouling on boiler performance and tube wall temperature. Water tube waste heat recovery boilers will be used as examples. The concept applies to fired water tube or fire tube boilers and heat recovery steam generators also.

  18. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  19. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    Science.gov (United States)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  20. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    Science.gov (United States)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  1. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  2. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  3. Waste heat recovery in a coffee roasting plant

    Energy Technology Data Exchange (ETDEWEB)

    Monte, M. De; Padoano, E.; Pozzetto, D. [Via A Valerio, Trieste (Italy). Dept. of Energetics

    2003-06-01

    The paper presents the possibility of introducing, in the event of substitution of an old plant, the recovery of heat produced during the roasting process of coffee. During the analysis, thermo and fluid dynamic operating parameters of the present plant were defined also with the support of an experimental measuring campaign. Energy recovery possibilities were then evaluated, and a possible plant solution was examined taking into consideration its economic feasibility. The case study is also interesting because the methodology used for the analysis can be generally applied to production plants, which have hot air exhaust emissions. Waste heat recovery is an important topic, not only for its economic benefits, but also for its environmental outcomes and resource saving. (author)

  4. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  5. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  6. Industrial applications study. Volume IV. Industrial plant surveys. Final report. [Waste heat recovery and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som; Steigelmann, William H.; Gajanana, Birur C.; Agarwal, Anil P.; Klock, Lawrence M.; Henderson, James M.; Calobrisi, Gary; Hedman, Bruce A.; Koluch, Michael; Biancardi, Frank; Bass, Robert; Landerman, Abraham; Peters, George; Limaye, Dilip; Price, Jeffrey; Farr, Janet

    1977-01-01

    An initial evaluation of the waste heat recovery and utilization potential in the manufacturing portion of the industrial sector is presented. The scope of this initial phase addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, the methodology and approaches for data gathering and assessment were established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. This study represents an important first step in the evaluation of waste heat recovery potential.

  7. The Analysis of Heat Exchangers Geometry in Thermoelectric Generators for Waste Heat Utilization

    Directory of Open Access Journals (Sweden)

    Borcuch Marcin

    2016-01-01

    Full Text Available The paper presents results of the analysis and comparison of the hot-side heat exchangers (HHXs dedicated for the thermoelectric generators (TEGs. Efficient operation of TEG depends on, i.a. proper design of the HHX. Six geometries of the heat exchangers’ cross-section have been investigated and analysed in view of heat transfer effectiveness (ηTH and pressure drop (ΔP. As an assumption, useful heat exchange surface has been set up as 2400 cm2, maintaining heat exchanger (HX length as 30 cm, which is enough for the placement of the 32 thermoelectric modules able to generate at least 160 W of the electrical power. The source of waste heat are flue gases, in the analysis approximate as an air. Cold-side heat exchanger (CHX has been simplified and calculated as a water flow around the casing of the HHX to achieve comparable results. As a base, circular profile has been presented. Numerical calculations provide results suggesting which shape is most suitable for specified application. Results could be the first guidelines for selecting and designing the HX for the TEG. Further investigation will focus on optimization of the chosen HX in view of increasing ηTH and minimizing ΔP.

  8. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hui; Gong, Weiliang, E-mail: gongw@vsl.cua.edu; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.

    2014-08-15

    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results.

  9. Biomass boiler conversion potential in the eastern United States

    Science.gov (United States)

    Charles D. Ray; Li Ma; Thomas Wilson; Daniel Wilson; Lew McCreery; Janice K. Wiedenbeck

    2013-01-01

    The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes. This paper characterizes the commercial and industrial boilers in...

  10. The comparative analysis of heat transfer efficiency in the conditions of formation of ash deposits in the boiler furnaces, with taking into account the crystallization of slag during combustion of coal and water-coal fuel

    Science.gov (United States)

    Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.

    2017-11-01

    The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

  11. Laboratory tests on heat treatment of ballast water using engine waste heat.

    Science.gov (United States)

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2017-05-07

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  12. Desain Compact Heat Exchanger Tipe Fin And Tube Sebagai Alat Pendingin Motor Pada Boiler Feed Pump. Studi Kasus Pada Sebuah Perusahaan Pembangkit Tenaga Listrik

    Directory of Open Access Journals (Sweden)

    Luki Apriliasari

    2013-09-01

    Full Text Available Motor listrik penggerak boiler feed pump harus bekerja secara kontinyu, dan hanya boleh mati pada saat dilakukan maintenance, apabila tidak diberikan pendinginan maka akan terjadi overheating dan menyebabkan kerusakan pada motor. Hal ini sering terjadi di PLTU, motor listrik hanya didinginkan dengan dialiri udara bebas. System ini memiliki keterbatasan yaitu kotoran yang terkandung di udara bisa menempel di dinding motor, justru menyebabkan panas dalam motor tidak keluar dengan maksimal. Untuk mengatasi keterbatasan tersebut, maka diusulkan suatu metode pendinginan yaitu dengan mendesain heat exchanger tipe compact (fin and tube. Data – data operasi diambil dari suatu perusahaan pembangkit tenaga listrik yang dijadikan obyek study. Perhitungan desain heat exchanger dengan metode ∆TLMTD. Setelah mendapat dimensi yang sesuai dengan panas yang akan didinginkan, maka dilakukan analisa performansi yaitu nilai effectiveness terhadap perubahan beban. Hasil yang didapatkan dari penyelesaian study kasus ini adalah dimensi compact heat exchanger yang memiliki spesifikasi sesuai surface 7.75-5/8T dari Kays and London dengan panjang fin 1 meter, lebar fin 0,3 m, dan panjang tube 1 meter. Hasil analisa performansi (effectiveness terhadap variasi beban yaitu semakin tinggi pembebanan maka nilai effectiveness juga semakin tinggi.

  13. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-11-01

    Full Text Available In this paper, two cases of heat exchangers (HEXs which previously were used in exhaust of internal combustion engines (ICEs are modeled numerically to recover the exhaust waste heat. It is tried to find the best viscous model to obtain the results with more accordance by experimental results. One of the HEXs is used in a compression ignition (CI engine with water as cold fluid and other is used in a spark ignition (SI engine with a mixture of 50% water and 50% ethylene glycol as cold fluid. As a main outcome, SST k–ω and RNG k–ε are suitable viscous models for these kinds of problems. Also, effect sizes and numbers of fins on recovered heat amount are investigated in various engine loads and speeds.

  14. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  15. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  16. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  17. Capturing the Invisible Resource. Analysis of Waste Heat Potential in Chinese Industry and Policy Options for Waste Heat to Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    This study analyzed the theoretical maximum potential and practical potential of waste heat in the cement, iron, and steel, and glass sectors in China, based on thermal energy modeling, expert interviews, and literature reviews.

  18. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    Science.gov (United States)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  19. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  20. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  1. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.; De Jager, B.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  2. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  3. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    Science.gov (United States)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Analysis of results obtained using the automatic chemical control of the quality of the water heat carrier in the drum boiler of the Ivanovo CHP-3 power plant

    Science.gov (United States)

    Larin, A. B.; Kolegov, A. V.

    2012-10-01

    Results of industrial tests of the new method used for the automatic chemical control of the quality of boiler water of the drum-type power boiler ( P d = 13.8 MPa) are described. The possibility of using an H-cationite column for measuring the electric conductivity of an H-cationized sample of boiler water over a long period of time is shown.

  5. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  6. Influence of Compressor Station Waste-Heat Recovery Section on Operational Efficiency of Gas Turbine Drive with Isobaric Heat Supply and Regenerative Heat Utilization

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The possibility to utilize existing secondary energy resources for heat supply of an industrial enterprise has been proposed on the basis of the analysis on operation of compressor stations of a cross-country gas pipe-line. The paper considers an influence of waste heat recovery section on operational efficiency of gas turbine drive with regenerative heat utilization.

  7. Waste heat potentials in the drying section of the paper machine in Umka Cardboard Mill

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2011-01-01

    Full Text Available Paper production is one of the most energy intensive industrial processes. The use of waste heat is very important for energy efficiency improvement in paper industry. This paper deals with methods for calculation of potentials of waste heat generated in paper/board production process. For that purpose, the material and heat balance of the cardboard machine at Umka Cardboard Mill has been determined. Field measurements were conducted in order to define the unknown values of process parameters used for calculation in the balance equations and modelling. The focus was given to the cardboard drying section, which consumes most of the energy supplied to the machine. Additional aim of the work presented in the paper was to evaluate the specific energy consumption and the thermal efficiency of all individual energy units within the machine’s drying section. The results indicate two main sources of waste heat: waste heat released to the atmosphere with the discharge air from the present waste heat recovery system (14,380 kW; and waste heat released into the hall from the machine and extracted by the hall ventilation system (4,430 kW. Waste heat from both sources is characterized by fairly low temperatures 58-75ºС and fairly high moisture content (30-40 g/kg. The waste heat can be partly utilized for preheating the fresh air in cardboard drying process, saving up to 13% of steam consumption. The specific heat consumption and specific steam consumption (consumption per tonne of produced cardboard of the machine was 1,490 kWh/t and 1.4 t/t, respectively. The thermal efficiency of drying section and coating drying section was 55.6% and 33.6%, respectively. All these figures imply necessity for further waste heat utilization with the aim of improving the efficiency of energy use.

  8. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  9. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  10. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    OpenAIRE

    Mirko Grljušić; Vladimir Medica; Nikola Račić

    2014-01-01

    The goal of this research is to study a cogeneration plant for combined heat & power (CHP) production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC) is selected. All the ship heat requirements ...

  11. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    Energy Technology Data Exchange (ETDEWEB)

    Saeid Ghamaty

    2005-07-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  12. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  13. ORC case studies. Electricity production in biomass fired district heating plant or from waste heat in pulp mill; ORC-fallstudier. Elproduktion i biobraensleeldat vaermeverk eller fraan spillvaerme i massabruk

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2009-11-15

    In this report electricity yields and costs of electricity production is discussed two case studies. The first case is a district heating application with an ORC connected to a biomass fuelled oven. The second case is a waste heat application an ORC module connected to waste water from a pulp and paper plant. In the case study an ORC based biomass fuelled cogeneration plant is installed in the district heating net of a medium size Swedish municipality, Aelmhult. The plant consists of a biomass fuelled oven, a thermal oil boiler for heat transfer from flue gas to ORC cycle, and an ORC unit which is cooled by the district heating net. At full load the plant produces 9,6 MW heat and 2,2 MW (net) electricity. The plant has a split cycle ORC system. In the split cycle heat is transferred in two separate thermal oil circuits. In the main thermal oil circuit, operating at 250-3000 C, heat is transferred from the flue gas to the ORC unit. The second thermal oil circuit, operating at 130-250 deg C, transferers additional heat to the ORC unit. This heat is utilised for pre-heating in the ORC cycle, thus increasing the electricity yield by 10% compared to the yield of a single cycle system. The ORC unit has a maximum electricity yield of 2,3 MW gross and 2,2 MW net, based on district heating temperatures of 600 C for district heating return flow and 900 C for forward flow. The plant will be in operation 8300 h per year. Of this 3000 h is full load and the remaining time part load. The yearly heat production will be 53 GWh. The yearly electricity production will be 12 GWh net, which corresponds to a mean electricity yield of 1,4 MW net. With a yearly electricity production of 12 GWh net, the cost of produced electricity is 1,04 SEK/kWh. When the income from sold green certificates for biomass based electricity is deducted, the cost is reduced by circa 0,30 SEK/kWh.Normally, a biomass fuelled cogeneration plant, using wet biomass, would be equipped with flue gas condensation

  14. Extension of weighted sum of gray gas data to mathematical simulation of radiative heat transfer in a boiler with gas-soot media.

    Science.gov (United States)

    Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman

    2014-01-01

    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  15. Extension of Weighted Sum of Gray Gas Data to Mathematical Simulation of Radiative Heat Transfer in a Boiler with Gas-Soot Media

    Directory of Open Access Journals (Sweden)

    Samira Gharehkhani

    2014-01-01

    Full Text Available In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  16. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  17. Technical and Economical Analysis of Regulation Methods for Intermediate Steam Over-Heating in Gas and Fuel Oil Boilers

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2006-01-01

    Full Text Available Various methods for temperature regulation of intermediate steam over-heating have been investigated. The most economical method, namely, smoke gas recirculation with regular water sprinkling from ПВД-8 drain has been selected in the paper.

  18. Compliance Testing of Grissom AFB Central Heating Plant Coal-Fired Boilers 3, 4, and 5, Grissom AFB, Indiana

    Science.gov (United States)

    1989-06-01

    Occupational and Environmental Health Laboratory (AFSC) Human Systems Division Brooks Air Force Base, Texas 78235-5501 89 8 28 48 UNCLASSIFIED SE(t"cr...mmBtu/hr after which the 0.1. Figure 2 may be used to estimate emmission limit for each newer facility allowable emissions. will be 0.1 Ib/mmBtu heat

  19. The study of the mobile compressor unit heat losses recovery system waste heat exchanger thermal insulation types influence on the operational efficiency

    Science.gov (United States)

    Yusha, V. L.; Chernov, G. I.; Kalashnikov, A. M.

    2017-08-01

    The paper examines the mobile compressor unit (MCU) heat losses recovery system waste heat exchanger prototype external thermal insulation types influence on the operational efficiency. The study is conducted by means of the numerical method through the modellingof the heat exchange processes carried out in the waste heat exchanger in ANSUS. Thermaflex, mineral wool, penofol, water and air were applied as the heat exchanger external insulation. The study results showed the waste heat exchanger external thermal insulationexistence or absence to have a significant impact on the heat exchanger operational efficiency.

  20. Flow distribution control characteristics in marine gas turbine waste-heat recovery system. Phase 2: Flow distribution control in waste-heat steam generators

    Science.gov (United States)

    Kuo, S. C.; Shu, H. T.

    1982-07-01

    The effect of flow distribution control on the design and performance of marine gas turbine waste heat steam generators was investigated. Major design requirements and critical problems associated with a waste heat steam generator were reviewed, and an existing two dimensional heat exchanger model based on the compact heat exchanger design criteria and the relaxation approach was modified and updated to estimate the waste heat steam generator performance at any inlet gas flow distribution. Performance estimates were made of the steam generator using uniform velocity distribution, and also actual flow distribution data available (at the diffuser inlet) with and without flow distribution controls, all at design and off design operating conditions of the gas turbine engine. Results indicate that the exit steam temperatures of the baseline waste heat steam generator with and without flow distribution controls would be 725 F and 450 F, respectively, for a constant design flow ratio of 7.9 lb/sec, and for a constant exit temperature of 700 F, the water flow rates would be 8.1 lb/sec and 6.6 lb/sec, respectively.

  1. The capture and conversion of low grade waste heat in pyrometallurgical operations

    Energy Technology Data Exchange (ETDEWEB)

    Mucciardi, F.; Razavinia, N. [McGill Univ., Montreal, PQ (Canada). Dept. of Metals and Materials Engineering

    2008-07-01

    Although most metallurgical and chemical processing facilities produce large quantities of low grade, waste heat, little effort has been made to recover some of this energy. This paper reported on a study aimed at increasing the efficiency of energy usage by capturing some of the waste heat in off-gas process streams and then converting this heat to a valuable energy form such as electricity. The paper described several possibilities of how low grade energy could be captured, concentrated and converted to a valuable form such as electricity. Specifically, it discussed the Rankine cycle, the Stirling engine, the Peltier cell, the solar-Stirling engine combination, and the McGill heat pipe-Stirling engine combination. The paper also discussed heat pipe technology with particular reference to heat pipe theory and new developments in heat pipe technology. The redesign of the McGill heat pipe was also presented. The paper described the capture of low grade energy and its conversion with a Stirling engine. An experimental program was also presented which involved the research of the capture and concentration of low grade waste heat in a laboratory simulator to demonstrate and quantify the capture and concentration of low grade waste heat. The paper described the laboratory simulator and the laboratory studies. An alternative to the Stirling engine was provided which involved energy storage of low grade heat from the sun. 16 refs., 11 figs.

  2. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  3. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    Science.gov (United States)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  4. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  5. Apparatus and method of controlling the thermal performance of an oxygen-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand A.; Kang, Shin G.; Kenney, James R.; Edberg, Carl D.

    2017-09-05

    Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.

  6. Efficient recovery and upgrading of waste heat from humid air in the forest industry. Pre-feasibility study; Energieffektivisering inom skogsindustrin genom spillvaermeaatervinning fraan vaatluft. Foerprojektering och loensamhetsbedoemning av anlaeggningsalternativ

    Energy Technology Data Exchange (ETDEWEB)

    Ingman, Daniel; Gustafsson, Maria; Westermark, Mats

    2007-12-15

    Within the pulp and paper and saw mill industries there are large quantities of waste heat in the form of moist air or humid flue gases. The temperature and dew point are generally too low for the streams to be useful as process heat. Waste heat can be recovered from humid gas streams e.g. outgoing gas from paper machines, lumber dryers, green liquor flash tanks, flue gases from power and recovery boilers, lime kilns etc. In general, this waste heat is available around 50-65 deg C. One way to utilise the heat on a higher temperature level is by means of heat pumping. The present project studies the possibility to use a recently developed absorption heat pump technology for upgrading waste heat to district heating or process steam. Via direct contact between the absorbent and humid gas stream, the moisture is condensed in the absorbent and the latent heat simultaneously increases the liquid's temperature. A number of process solutions have been calculated in terms of technical and economic performance. The process can be designed for production of hot water or process steam from upgraded waste heat. The end product is indirectly governed be the selection of absorbent or working medium. Investigated absorbents are solutions of potassium formate, sodium hydroxide and phosphoric acid, of which the former two have been included in the techno-economic calculations. The upgraded heat can either save costs by replacing primary fuel or result in increased revenues by exporting produced heat. Internally, the produced heat often replaces oil or electricity on the margin. The choice of regeneration method for the used and diluted absorbent is governed by the mill's energy situation. Industries with large waste heat resources, high value on process steam and use of heat on district heat level, waste heat driven regeneration is advisable. Industries with similar value on MP and LP steam should use back-pressure regeneration with MP steam for optimum cost and energy

  7. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  8. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  9. Optimization of a waste heat utilization network in an eco-industrial park

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Song Hwa; Kim, Sang Hun; Yoon, Sung-Geun; Park, Sunwon [Department of Chemical and Bio-molecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea)

    2010-06-15

    Development of an eco-industrial park (EIP) has drawn attention as a promising approach seeking for the mutual benefit to the economy and environment. In recent years, the reduction of energy consumption has become a global necessity due to the high oil price and environmental regulations. In order to find energy strategies in an EIP, a framework to investigate waste heat of an industrial complex was proposed. A mathematical model was developed to synthesize a waste heat utilization network, including nearby companies and communities. A case study of an existing petro-chemical complex in Yeosu, South Korea showed that the total energy cost and the amount of waste heat of the region can be reduced by more than 88% and 82% from the present values, respectively, applying the suggested waste heat utilization networks. (author)

  10. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  11. Conformable Thermoelectric Device for Waste Heat Scavenging in Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions stand to benefit from reliable means to conserve energy that is otherwise given off as waste heat. Thermoelectric generators have...

  12. Catalytic Decomposition of Gaseous Byproducts from Heat Melt Waste Compaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, a Heat Melt Compaction System is under...

  13. Demand for waste as fuel in the swedish district heating sector: a production function approach.

    Science.gov (United States)

    Furtenback, Orjan

    2009-01-01

    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  14. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  15. DESIGN, MODELING, AND FABRICATION OF THERMOELECTRIC GENERATOR FOR WASTE HEAT RECOVERY IN LOCAL PROCESS INDUSTRY

    OpenAIRE

    Ngendahayo, Aimable

    2017-01-01

    Master's thesis Renewable Energy ENE500 - University of Agder 2017 The waste heat from energy company consumption sectors, when rejected into atmosphere, are useless and it contributes to global warming. Nowadays industrial activities and energy sectors (power stations, oil refineries, coke ovens, etc.) are the most energy consuming sectors worldwide and, consequently, the responsible for the release of large quantities of industrial waste heat to the environment by means of hot exhaust ga...

  16. Investigation of the flow, combustion, heat-transfer and emissions from a 609MW utility tangentially fired pulverized-coal boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Caillat, Sébastien; Harion, Jean-Luc.

    2002-01-01

    A numerical approach is given to investigate the performance of a 609 MW tangentially fired pulverized-coal boiler, with emphasis on formation mechanism of gas flow deviation and uneven wall temperature in crossover pass and on NOx emission. To achieve this purpose and obtain a reliable solution...... are reliable. These conclusions can be used to guide the design and operation of boilers of similar types....

  17. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  18. 5 case studies : boiler system increases availability of hot water in CAP REIT apartment buildings while saving energy : electric-to-gas retrofit drives down energy costs and improves building performance : Novitherm heat reflector panels saves 28 per cent in heating costs for apartment building : Novitherm heat reflector panel installation with system adjustment saves 33.2 per cent in energy costs : natural gas conversion saves over $315,000 a year for condominium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    These 5 case studies presented the details of new systems and retrofits conducted by Enbridge Gas Distribution and its partners to improve the energy efficiency of various public and residential buildings. System retrofits included the installation of boiler system installed to address tenant demands on the domestic hot water systems of properties purchased purchased by the CAP REIT organization. The comprehensive program used to address the problems included replacement of the systems with high efficiency heating boilers designed to integrate space, hot water, ramp, and pool heat. A centralized controller included setback control, trend-following processors, and the isolation of heating equipment. The second case study described an electric-to-gas conversion of a make-up air unit and boiler system at an all-electric apartment building. The system was designed to address excessive air handling and water heating costs. The gas conversion included new heating and hot water boilers, as well as a number of efficiency upgrades. The third and fourth case study described the installation of Novitherm heat reflector panels at apartment buildings in Toronto. The fifth case study described a natural gas conversion project conducted at a luxury condominium. Energy savings for all 5 projects were presented. 9 figs.

  19. Wind Turbine Waste Heat Recovery—A Short-Term Heat Loss Forecasting Approach

    Directory of Open Access Journals (Sweden)

    George Xydis

    2015-07-01

    Full Text Available The transition from the era of massive renewable energy deployment to the era of cheaper energy needed has made scientists and developers more careful with respect to energy planning compared with a few years ago. The focus is—and will be—placed on retrofitting and on extracting the maximum amount of locally generated energy. The question is not only how much energy can be generated, but also what kind of energy and how it can be utilized efficiently. The waste heat coming from wind farms (WFs when in operation—which until now was wasted—was thoroughly studied. A short-term forecasting methodology that can provide the operator with a better view of the expected heat losses is presented. The majority of mechanical (due to friction and electro-thermal (i.e., generator losses takes place at the nacelle while a smaller part of this thermal source is located near the foundation of the wind turbine (WT where the power electronics and the transformers are usually located. That thermal load can be easily collected via a working fluid and then be transported to the nearest local community or nearby agricultural or small scale industrial units using the necessary piping.

  20. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262-284/MWh for batteries and $172-254/MWh for Compressed Air Energy Storage.

  1. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  2. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  3. Parametric Analyses of Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    TRUITT, J.B.

    2000-06-05

    The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined.

  4. physico-chemical properties and energy potential of wood wastes

    African Journals Online (AJOL)

    user

    transportation fuels by using several technologies available such as direct combustion, gasification and pyrolysis [9]. Combustion with energy recovery involves the burning of wood wastes and transferring the heat produced to water for the purpose of generating steam in boiler super-heater tubes. The steam may be used to.

  5. Nigerian Wood Waste: A Potential Resource for Economic ...

    African Journals Online (AJOL)

    ADOWIE PERE

    These technologies include combustion, gasification and pyrolysis. Combustion technology involves recovering energy from wood waste through the production of steam in boiler super-heater tubes. The steam may be used to generate electricity in a steam turbine generator or sold directly for commercial or process heat.

  6. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, Gerard

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that

  7. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments

    Science.gov (United States)

    Jeanloz, R.

    2015-12-01

    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre

  8. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  9. Description of emission control using fluidized-bed, heat-exchange technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  10. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  11. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  12. Heat recovery equipment for engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-04-01

    The recovery and use of waste heat from prime movers is an important consideration for evaluating an on-site power system, since it is the basic factor that makes possible a substantial increase in fuel-use efficiency. The equipment usually employed to recover waste heat can be categorized as: (a) shell-and-tube type heat exchangers, (b) radiator-type heat exchangers, (c) exhaust gas boilers for the generation of pressurized hot water and/or steam, (d) steam separators, and (e) combined packaged units for ebulliently cooled internal combustion piston engines. The functional requirements and cost considerations involved in applying these devices for the recovery of waste heat from various types of prime-movers considered for application in the ICES Systems Engineering Program are examined.

  13. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    Science.gov (United States)

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-02

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  14. Experimental validation of a dynamic waste heat recovery system model for control purposes

    NARCIS (Netherlands)

    Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.

    2013-01-01

    This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for

  15. Sun Coke heat recovery coke technology at Indiana Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.N. [Sun Coke Company (USA). Operations

    1999-12-01

    Sun Coke heat recovery coke technology was fully established for the first time at Indiana Harbor Coke Company, East Chicago, Indiana (USA). The plant supplies continuous heat to waste heat boilers which provide steam for a 94 MW turbine generator whilst producing 1,350,00 NT per year of metallurgical coke. The paper briefly describes the development of the technology and discusses specific design aspects of the Indiana Harbor plant. 3 refs., 2 figs., 2 tabs.

  16. Tank waste remediation system heat stress control program report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  17. The thermoelectric generators use for waste heat utilization from conventional power plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Full Text Available On the base of available data, it is estimated that the industrial approx. 20-50% of the energy is removed into the atmosphere as waste heat include in the form of hot flue gases, cooling water, the heat losses from the equipment hot surfaces or heated products. However, according to the data from the US market in 2010, in the form of waste heat is emitted more than 96 · 106 TJ annually (2.7 · 1010 MWh, means more than 57% of the produced energy. According to statistics, currently the energy production in the US amounts to approx. 26% of the world's energy production. Assuming the same indicators, the total annual amount of waste heat in the scale of the world equals 370 · 106 TJ (10.4 · 1010 MWh. One of the ways to increase the energy efficiency of manufacturing processes and reducing energy consumption and negative impacts to the environment is the use of waste energy [1,2,3] In this work it was investigated the possibilities of the waste heat utilization from conventional thermal power plant using thermoelectric generators, the operation of which is based on the Seebeck effect.

  18. Computer monitoring and optimization of the steam boiler performance

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  19. The measurement of heat loss with use of a thermal imaging system

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2011-01-01

    Full Text Available The aim of this work was to verify the method of determining the heat loss of boiler by using of thermal infrared camera. Waste sawdust and wood shavings from the manufacturing of wooden furniture has been used as fuel in considered boiler with an installed heat output of 130 kW. The temperature distribution on the shell of the boiler has been discovered by using of infrared thermal camera, subsequently heat loss caused by radiation and convection has been calculated. For calculating of heat loss caused by radiation Stefan-Boltzmann Law has been used, for calculating of heat loss caused by convection three approaches have been used, Mc Adams, Michijev’s and King‘s. The results of the different approaches have been compared between themselves and the mean heat loss.

  20. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  1. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  2. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  3. Evaluation the microwave heating of spinel crystals in high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  4. Vapor Jet Ejector Used to Generate Free Waste Heat Driven Cooling in Military Environmental Cooling Units

    Science.gov (United States)

    2012-07-01

    2164, Page 1 International Refrigeration and Air Conditioning Conference at Purdue, July 16-19, 2012 Vapor Jet Ejector Used to Generate Free...heat driven vapor jet ejector cooling cycle is a very promising approach to produce ‘free’ cooling by utilizing low-grade energy sources. The...mechanism behind ejector -based waste heat cooling is very different from absorption or adsorption cooling technologies that are also aimed at producing heat

  5. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    Science.gov (United States)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  6. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  7. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  8. Utilizing waste heat from metal industry for drying of organic waste

    OpenAIRE

    Dobric, Sasa

    2014-01-01

    Growing generation of organic waste is a real problem all over the world. This is specifically expressed in the developed countries because the amounts of the waste are larger. Therefore, it implies problem connected with organic waste disposal. In the modern society it is prohibited to dump the waste on landfills. It was necessary to find the solution how to deal with this situation.One of the options is delivering of the organic waste to the burning facilities. In this way it is possible to...

  9. A new mobilized energy storage system for waste heat recovery: Case study in Aerla, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Weilong Wang; Jinyue Yan; Dahlquist, Erik (Maelardalen Univ., Vaesteraas (Sweden)). E-mail: weilong.wang@mdh.se; Jenny Nystroem (Eskilstuna Energi och Miljoe AB, Eskilstuna (Sweden))

    2009-07-01

    This paper introduces a new mobilized thermal energy storage (M-TES) for the recovery of industrial waste heat for distributed heat supply to the distributed users which have not been connected to the district heating network. In the M-TES system, phase-change materials (PCM) are used as the energy storage and carrier to transport the waste heat from the industrial site to the end users by a lorry. A technical feasibility and economic viability of M-TES has been conducted with the comparison of the district heating system as a reference. Thermal performance and cost impacts by different PCM materials have been analyzed compared, aiming at determining the optimum operation conditions. A case study is investigated by utilizing the waste heat from a combine heat and power (CHP) plant for the distributed users which are located at over 30 kilometers away from the plant. The results show that the M-TES may offer a competitive solution compared to building or extending the existing district heating network

  10. Increase of energy efficiency in proportional adjusting of flow rate in the boiler circuit

    Directory of Open Access Journals (Sweden)

    Artamonov Pavel A.

    2017-01-01

    Full Text Available The article presents the results of theoretical studies in the field of the boiler circuit operating modes for the boiler rooms operating by the independent heat supply scheme. The 3D model of a boiler circuit for a boiler room with 3 MW rated output was developed, based on which there was made an estimation of the boiler pump performance indicators. There is proposed a method for reducing energy costs for the operation of the pumping equipment of the boiler circuit.

  11. Water Boiler Change-Over in Mini-TPP Mode

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2011-01-01

    Full Text Available The paper considers water boiler modernization by its change-over in mini-TPP mode with an expansion tank and a heating turbine of small capacity.  A software complex permitting to evaluate competitive ability of such water boiler modernization in comparison with a cogeneration plant.

  12. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... through M of this part. Any words or terms not defined in this section or elsewhere in this part shall be...) For service water heating in buildings but does not meet the definition of “hot water supply boiler” in this part. Condensing boiler means a commercial packaged boiler that condenses part of the water...

  13. Computer monitoring and optimization of the steam boiler performance

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  14. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  15. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality

    OpenAIRE

    Soares, Micaela A. R.; Quina, Margarida M. J.; Rosa M. Quinta-Ferreira

    2013-01-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporati...

  16. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  17. Deposit Shedding in Biomass-fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    Ash deposition on boiler surfaces is a major problem encountered during biomass combustion. Ash deposition adversely influences the boiler efficiency, may corrode heat transfer surfaces, and may even completely block flue gas channels in severe cases, causing expensive unscheduled boiler shutdown...

  18. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  19. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  20. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  1. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  2. Plastic waste depolymerization as a source of energetic heating oils

    Directory of Open Access Journals (Sweden)

    Wołosiewicz-Głąb Marta

    2017-01-01

    Full Text Available In the past years there has been an increase in production and consumption of plastics, which are widely used in many areas of life. Waste generated from this material are a challenge for the whole of society, regardless of awareness of sustainable development and its technological progress. Still the method of disposal of plastic waste are focused mainly on their storage and incineration, not using energy contained there. In this paper technology for plastic waste depolymerization with characteristics of fuel oil resulting in the process, as an alternative to traditional energy carriers such as: coal, fine coal or coke used in households will be presented. Oil has a high calorific value and no doubt could replace traditional solutions which use conventional energy sources. Furthermore, the fuel resulting from this process is sulfur-free and chemically pure. The paper presents the installation for plastics waste depolymerization used in selected Polish Institute of Plastics Processing, along with the ability to use the main thermocatalytic transformation product.

  3. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2016-01-01

    Full Text Available Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recovery of waste heat is also alternative fuels co-firing in cement kilns [1], [2]. In the cement sector interest in fitting-usable waste energy is growing in order to achieve high rates of savings and hence the financial benefits, as well as the environment ones [3]. In the process of cement production is lost irretrievably lot of energy and reduction of these losses on a global scale gives a visible saving of consumed fuel. The aim of this study is to investigate the possibility of waste heat use in Rudniki Cement Plant near to Czestochowa. After analyzing of all waste heat sources will be analyzed the heat emitted by radiation from the surface of the rotary kiln at the relevant facility. On the basis of thermal-flow calculations the most favorable radiative heat exchanger will be designed. The calculations based on available measurements provided by the cement plant, a thermal power of the heat exchanger, the heat exchange surface, the geometry of the heat exchanger, and other important parameters will be established. In addition the preliminary calculations of hydraulic losses and set directions for further work will be carried out. Direct benefits observed with the introduction of the broader heat recovery technology, is a significant increase in energy efficiency of the industrial process, which is reflected in the reduction of energy consumption and costs. Indirectly it leads to a reduction of pollution and energy consumption.

  4. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density energy for factories, markets, and related use, was noted in cities with a population density of 2000 to 4000 persons (km(2))(-1). Several incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  5. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  6. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  7. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  8. Use of waste heat from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1978-01-01

    The paper details the Department of Energy (DOE) program concerning utilization of power plant reject heat conducted by the Oak Ridge National Laboratory (ORNL). A brief description of the historical development of the program is given and results of recent studies are outlined to indicate the scope of present efforts. A description of a DOE-sponsored project assessing uses for reject heat from the Vermont Yankee Nuclear Station is also given.

  9. Sophisticated plant engineering. New construction of a decoupling station. Waste heat is utilized for district heating; Anspruchsvoller Anlagenbau. Neubau einer Auskoppelstation. Abwaerme wird fuer Fernwaerme genutzt

    Energy Technology Data Exchange (ETDEWEB)

    Kulbatzki, Katrin [HSE Technik GmbH und Co. KG, Darmstadt (Germany)

    2012-07-15

    During a construction period of approximately six months, HSE Technik GmbH (Darmstadt, Federal Republic of Germany) has set up a complete district heating decoupling station with the associated equipment, piping as well as instrumentation and control technology for the waste incineration plant in Hamm (Westphalia) and put into operation. Thus, additionally to power generation the waste heat from combustion processes is utilized for district heating.

  10. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  11. Recovery of exhaust waste heat for a hybrid car using steam turbine

    Science.gov (United States)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  12. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  13. Direct contact, binary fluid geothermal boiler

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  14. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  15. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  16. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  17. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  18. An innovative thermal management concept of waste heat utilization in space

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M.K. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-12-31

    This paper presents an innovative thermal management concept that utilizes the waste heat of electronics to meet both the heater power budget and the thermal requirements of the Far Ultraviolet Spectroscopic Explorer (FUSE) payload during the phase-B study at NASA Goddard Space Flight Center. The phase-B study included trade studies of different orbits. This paper is concerned with the highly elliptical orbit. The total heat dissipation of the electronics is 177.4 W, all at the mid-section of a 3.9-m tall graphite epoxy structure. The innovative thermal management concept uses constant conductance heat pipes to transport the waste heat to interior cold plates which radiate to the structure and aft end of the baffle tubes. It provides uniform temperature to the structure. Variable conductance heat pipes transport the excess waste heat to external radiators to maintain the structure at a constant temperature. This design minimizes the heater power for the graphite epoxy structure and reduces the heater power for the mirrors. The total heater power required at Sun angles in the 45{degree} to 105{degree} range is 58.5 W at a 45{degree} sun angle, 46 W at 90{degree} and 30.4 W at 105{degree}. The optical performance of the payload is optimum at these sun angles. It also provides temperature stability to the structure during science observation at sun angles of 20{degree} to 45{degree} and 105{degree} to 137{degree} when no heater power is available.

  19. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (Voc) and short circuit current (Isc) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO2/Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  20. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  1. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  2. Data that warms: Waste heat, infrastructural convergence and the computation traffic commodity

    Directory of Open Access Journals (Sweden)

    Julia Velkova

    2016-12-01

    Full Text Available This article explores the ways in which data centre operators are currently reconfiguring the systems of energy and heat supply in European capitals, replacing conventional forms of heating with data-driven heat production, and becoming important energy suppliers. Taking as an empirical object the heat generated from server halls, the article traces the expanding phenomenon of ‘waste heat recycling’ and charts the ways in which data centre operators in Stockholm and Paris direct waste heat through metropolitan district heating systems and urban homes, and valorise it. Drawing on new materialisms, infrastructure studies and classical theory of production and destruction of value in capitalism, the article outlines two modes in which this process happens, namely infrastructural convergence and decentralisation of the data centre. These modes arguably help data centre operators convert big data from a source of value online into a raw material that needs to flow in the network irrespective of meaning. In this conversion process, the article argues, a new commodity is in a process of formation, that of computation traffic. Altogether data-driven heat production is suggested to raise the importance of certain data processing nodes in Northern Europe, simultaneously intervening in the global politics of access, while neutralising external criticism towards big data by making urban life literally dependent on power from data streams.

  3. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  4. Waste-heat usage in agricultural biogas installations; Abwaermenutzung in landwirtschaftlichen Biogasanlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gutzwiller, S.

    2009-01-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the use of the heat generated in agricultural biogas installations. The author notes that a considerable amount of excess heat is available after internal use and heating requirements of the farm have been met. The article deals with the potential offered by this heat and its possible uses. The methods used in the study are discussed and the boundary conditions for the operation of agricultural biogas installations are examined. The costs incurred when providing an infrastructure for the use, storage and transport of the waste heat are looked at. An economical review of the costs involved in the use of the heat is made and compared with reference systems based on oil-fired heating systems and a number of cold generation systems based on various technologies. Also, electrical power generation using the Organic Rankine Cycle and Kalina processes is looked at. Finally, the various possible uses of the waste heat are evaluated.

  5. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  6. Waste Tyres as Heat Sink to Reduce the Driveway Surface Temperatures in Malaysia

    Directory of Open Access Journals (Sweden)

    Aniza Abdul Aziz

    2013-12-01

    Full Text Available The development of roads and driveways are on the rise as automobiles are now a necessity to all. This excessive development with its requirements increased the urban heat temperature and the generation of waste tyres. Waste tyre management has therefore been taken seriously by developed countries and since the European directive to ban used tyre products and whole tire disposal from landfill in 2003 and 2006 respectively, many researchers have looked for alternative ways to use the waste tyre. In Malaysia, The Smart and Cool Home Developer attempted to develop an eco-house by utilising waste tyre as the foundation for the driveway and claimed that the buried tyres act as a heat sink for the concrete and reduce the surface temperature of the driveway. Hence investigations were conducted on two sample houses to investigate this phenomenon. Findings from this pilot study show that waste tyres do act as a heat sink to the concrete driveways which affect the ambient temperature and relative humidity of the immediate surroundings.

  7. Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2018-01-01

    The operating principle of condensing boilers is based on exploiting heat from flue gases to pre-heat cold water at the inlet of the boiler: by condensing into liquid form, flue gases recover their latent heat of vaporization, leading to 10–12% increased efficiency with respect to traditional

  8. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Robert L.

    2005-04-20

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  9. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  10. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; Jager, B. de; Willems, F.P.T.

    2016-01-01

    This paper presents an integrated energy and emission management strategy, called Integrated Power- train Control(IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO – NOx 2 trade-off by minimizing the operational costs associated with

  11. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...

  12. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  13. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  14. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Science.gov (United States)

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  15. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles

    OpenAIRE

    Alshammari, F.; Karvountzis-Kontakiotis, A; Pesiridis, A

    2016-01-01

    Although state-of-the-art, heavy duty diesel engines of today can reach peak thermal efficiencies of approximately 45%, still most of the fuel energy is transformed into wasted heat in the internal combustion process. Recovering this wasted energy could increase the overall thermal efficiency of the engine as well as reduce the exhaust gas emissions. Compared to other Waste Heat Recovery (WHR) technologies, Organic Rankine Cycle (ORC) systems are regarded favourably due to their relative simp...

  16. Emissions from Power Plant and Industrial Boiler Sector

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides hourly data on SO2, NOx, and CO2 emissions; gross load, steam load, and heat input; from electricity generation units and industrial boilers from...

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  18. Influence of wick properties in a vertical LHP on remove waste heat from electronic equipment

    Science.gov (United States)

    Smitka, Martin; Nemec, Patrik; Malcho, Milan

    2014-08-01

    The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work is to develop porous wick of sintered nickel powder with different grain sizes. These porous wicks were used in LHP and there were performed a series of measurements to remove waste heat from the insulated gate bipolar transistor (IGBT).

  19. Feasibility of waste heat recovery concepts for geothermal refrigeration and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.

    1986-01-01

    This paper presents the qualitative feasibility of two waste heat recovery concepts for geothermal refrigeration and air conditioning. The high temperature available at shallow depths of abandoned or dry wells in oil fields and the natural gas which is being flared without any use near oil producing wells, can be used as heat input for vapour absorption cooling systems. Depending upon the quantity and quality of low grade heat from these sources, conventional refrigerant-absorbent combinations, e.g. water-lithium bromide and ammonia-water may be used for refrigeration and air conditioning purposes in the basic vapour absorption systems.

  20. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-12-02

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat sources, from either the renewable or the exhaust gases, and having almost no major moving parts. We present an AD cycle for seawater desalination due to its unique ability to integrate higher water production yields with the existing desalination methods such as reverse osmosis (RO), multi-stage flashing (MSF) and multi-effect distillation (MED), etc. The hybrid cycles exploit the thermodynamic synergy between processes, leading to significant enhancement of the systems\\' performance ratio (PR). In this paper, we demonstrate experimentally the synergetic effect between the AD and MED cycles that results in quantum improvement in water production. The unique feature is in the internal latent heat recovery from the condenser unit of AD to the top-brine stage of MED, resulting in a combined, or simply termed as MEAD, cycle that requires no additional heat input other than the regeneration of an adsorbent. The batch-operated cycles are simple to implement and require low maintenance when compared with conventional desalination methods. Together, they offer a low energy and environmentally friendly desalination solution that addresses the major issues of the water-energy-environment nexus. © 2016 The Royal Society of Chemistry.

  1. Physical properties of heat-treated rattan waste binderless particleboard

    Science.gov (United States)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  2. Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

    Directory of Open Access Journals (Sweden)

    Marco Nesarajah

    2017-06-01

    Full Text Available With the increasing interest in energy efficiency and resource protection, waste heat recovery processes have gained importance. Thereby, one possibility is the conversion of the heat energy into electrical energy by thermoelectric generators. Here, a thermoelectric energy harvesting system is developed to convert the waste heat from exhaust pipes, which are very often used to transport the heat, e.g., in automobiles, in industrial facilities or in heating systems. That is why a mockup of a heating is built-up, and the developed energy harvesting system is attached. To build-up this system, a model-based development process is used. The setup of the developed energy harvesting system is very flexible to test different variants and an optimized system can be found in order to increase the energy yield for concrete application examples. A corresponding simulation model is also presented, based on previously developed libraries in Modelica®/Dymola®. In the end, it can be shown—with measurement and simulation results—that a thermoelectric energy harvesting system on the exhaust pipe of a heating system delivers extra energy and thus delivers a contribution for a more efficient usage of the inserted primary energy carrier.

  3. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    Science.gov (United States)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  4. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    Energy Technology Data Exchange (ETDEWEB)

    Jurns, John M. [European Spallation Source ESS AB, P.O. Box 176, 221 00 Lund (Sweden); Bäck, Harald [Sweco Industry AB, P.O. Box 286, 201 22 Malmö (Sweden); Gierow, Martin [Lunds Energikoncernen AB, P.O. Box 25, 221 00 Lund (Sweden)

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  5. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  6. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  7. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... to minimize the size of the heat exchanger area. Later on the ORC unit was successfully installed on board, and it has been working uninterruptedly since, demonstrating the matureness of the ORC technology for maritime applications. During the onboard testing, additional measuring devices were installed...

  8. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    are not easily satisfied by conventional thermoelectric materials. Not only they must possess a sufficient thermoelectric performance, they should also be stable at high temperatures, nontoxic and low-cost comprising elements, and must be also able to be processed and shaped cheaply. Oxides are among......A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materials...... the strongest candidate materials for this purpose. In this review, the progress in the development of two representative p- and n-type novel oxide materials based on Ca3Co4O9 and doped-ZnO is presented. Thermoelectric modules built up from these oxides were fabricated, tested at high temperatures, and compared...

  9. EFFECT OF DIFFERENT HEAT EXCHANGERS ON THE WASTE-HEAT DRIVEN THERMOACOUSTIC ENGINE

    Directory of Open Access Journals (Sweden)

    DAVID W. Y. KHOO

    2016-01-01

    Full Text Available To enhance the efficiency of the SCORE thermoacoustic engine, it is important to investigate the heat transfer between the bulge or theconvolution and the regenerator. Heat transfer due to convection has greatinfluence on performance of the thermoacoustic engine. The total heat transfer from the bulge or the convolution to the first few layers of the regenerator is mainly due to convection and radiation. In this paper, the two modes of heat transfers, convection and radiation are under investigation numerically. The main objective of the present study is to find an ideal shape of the bulge which transports heat from the cooking stove to regenerator. Four different designs of the bulge are proposed in this work. Numerical method FluentTM CFD modelling with surface to surface (S2S radiation method is chosen to study the radiation effect. The main challenge in the development of the models of such system is to simulate the coupled heat transfer effect and the temperature gradient across both the bulge and porous media surfaces. The results show a very limited amount of heat transfer by convection on all the bulge simulated cases, with a dominant radiative heat transfer over the convective heat transfer while convection was found to be dominant in the convolution simulated case. By looking at the heat fluxes solely, convolution design is recommended to improve the engine performance as it possesses higher total heat flux comparatively but most of it was found to be by convection rather than radiation. The results were validated analytically in a recent accepted paper and found to be in good agreement. To accurately predict the heat transfer in the model, conduction must also be included in future studies as well.

  10. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mac Dougall, James [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, and pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.

  11. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  12. The usage of waste heat recovery units with improved heat engineering rates: theory and experimental research

    Science.gov (United States)

    Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia

    2017-10-01

    Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.

  13. Waste-Heat-to-Power Market in the U.S., Heat is Power Annual Meeting (Presentation) – August 15, 2012

    Science.gov (United States)

    This presentation provides information about the EPA CHP Partnership, including an overview of the Partnership's tools and resources, and policy support. The presentation also describes the potential of Waste Heat to Power (WHP) systems.

  14. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  15. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  16. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  17. Calculation of Efficiencies of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2015-05-01

    Full Text Available The aim of this research was to investigate the possibility of a combined heat & power (CHP plant, using the waste heat from a Suezmax-size oil tanker’s main engine, to meet all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency, combined with a supercritical Organic Rankine cycle (ORC system, was selected to supply the auxiliary power, using R245fa or R123 as the working fluid. The system analysis showed that such a plant can meet all heat and electrical power requirements at full load, with the need to burn only a small amount of supplementary fuel in a heat recovery steam generator (HRSG when the main engine operates at part load. Therefore, it is possible to increase the overall thermal efficiency of the ship’s power plant by more than 5% when the main engine operates at 65% or more of its specified maximum continuous rating (SMCR.

  18. Study on interim storage system to utilize waste heat from spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori [Tokyo Inst. of Tech. (Japan); Kurokawa, Hideaki; Kamiyama, Yoshinori; Yamanaka, Tsuneyasu

    1997-12-31

    Spent fuels amounting to about 30 tons a year are generated by a 1,000MWe-class light water reactor (LWR). However, the whole amount of spent fuels generated by LWRs cannot be reprocessed. From the viewpoint of energy resources, it is believed in Japan that fast breeder reactors will be introduced as commercial power reactors in the future. In that time, it admits of no doubt that the spent fuel will be a valuable energy resource. It is, therefore, an urgent problem in Japan to establish interim storage systems of spent fuels for LWRs to continue smoothly in operation. In this work, the spent fuel is treated not as unwanted waste but as a heat source. At first, various kinds of interim storage systems of spent fuel are examined from the viewpoint of the utilization of the waste heat, and a pool storage system is dealt with. Next, the possibility of the utilization of the waste heat are examined. Finally, a concept of the interim storage plant, which supplies the heat to a green house where flowers with high value added such as orchids are cultivated, is proposed as a demonstration plant. (author)

  19. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M$, corresponding to a payback time of approximately 4.5 years. The total weight...... that the once-trough single pressure steam cycle has a combined cycle thermal efficiency of 40.8% and net present value of 13.5 M$. The total weight of the steam Rankine cycle is estimated to be around 170 ton....

  20. Experimental study on waste heat recovery from an IC engine using thermoelectric technology

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh C.

    2011-01-01

    Full Text Available A major part of the heat supplied in an IC engine is not realized as work output, but dumped into the atmosphere as waste heat. If this waste heat energy is tapped and converted into usable energy, the overall efficiency of the engine can be improved. The percentage of energy rejected to the environment through exhaust gas which can be potentially recovered is approximately 30-40% of the energy supplied by the fuel depending on engine load. Thermoelectric modules (TEM which are used as Thermoelectric generators (TEG are solid state devices that are used to convert thermal energy from a temperature gradient to electrical energy and it works on basic principle of Seebeck effect. This paper demonstrates the potential of thermoelectric generation. A detailed experimental work was carried to study the performance of TEG under various engine operating conditions. A heat exchanger with 18 TEG modules was designed and tested in the engine test rig. Thermoelectric modules were selected according to the temperature difference between exhaust gases side and the engine coolant side. Various designs of the heat exchangers were modeled using CAD and analysis was done using a CFD code which is commercially available to study the flow & heat transfer characteristics. From the simulated results it was found that rectangular shaped heat exchanger met our requirements and also satisfied the space and weight constraint. A rectangular heat exchanger was fabricated and the thermo electric modules were incorporated on the heat exchanger for performance analysis. The study also revealed that energy can be tapped efficiently from the engine exhaust and in near future TEG can reduce the size of the alternator or eliminate them in automobiles.

  1. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  2. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...

  3. Boiler circulation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1998-01-01

    Natural circulation water tube and fire tube boilers are widely used in the chemical process industry. These are preferred to forced-circulation boilers where a circulation pump ensures flow of a steam/water mixture through the tubes. In addition to being an operating expense, a pump failure can have serious consequences in such systems. The motive force driving the steam/water mixture through the tubes (water tube boilers) or over tubes (fire tube boilers) in natural-circulation systems is the difference in density between cooler water in the downcomer circuits and the steam/water mixture in the riser tubes. This flow must be adequate to cool the tubes and prevent overheating. This article explains how circulation ratio or the ratio of steam/water mixture to steam flow may be evaluated.

  4. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  5. EXPERIENCES OF POLISH MECHANICAL HEAT TREATMENT TECHNOLOGY APPLIED TO MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Jurand Damian Bień

    2017-08-01

    Full Text Available In Poland and in several EU countries, the processing of mixed municipal waste is based on waste treatment in mechanical and biological installations and thermal processing plants. The experience gained from the operation of these installations, particularly in the aspect of material recycling, what is important in an aspect of the circular economy formulation is not satisfactory. To think about a high level of reuse and recycling of municipal waste, which is expected to be at least 65% by 2030, efforts to improve waste quality are needed. Certainly, one of the solution is a selective collection of waste at source, but here it is important to say that it should be conducted at a real high level. How costly it is, many countries already know. In search of other methods the UK countries are turning their attention to mechanical heat treatment technology. In Poland there is one such installation so the idea of this paper is discuss issues connected with it. The practical experience of operating of this installations shows so far that the process gives an ability to match good process parameters to a variable input. The very good quality of secondary raw materials obtained in the process has a higher attractiveness to the final consumer. Also levels of recycling for the four fractions of waste, such as: paper, metals, plastics and glass are high and exceeds significantly factors achieved in the process of mechanical and biological treatment.

  6. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaojing

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  7. ARK-o-hol community experiment group: a cooperatively operated greenhouse heated with low-grade waste heat from an adjacent alcohol distillation plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    In order to prove that low-grade waste heat (from an alcohol distillation plant, in this case) could successfully be transported and recycled, a 28' x 60' greenhouse was designed and constructed adjacent to and connected by plumbing with an operating alcohol distillation plant. Hot water in the return lines of heat exchangers in the distillation column of the alcohol plant was emptied into a 20' x 20' in ground heat storage tank within the greenhouse. This heated water was then circulated throughout the greenhouse by means of 7' x 10' floor plates (surplus reefer heat exchangers). The heat-storage tank, drawing its heat from the distillation column waste-heat, in addition to daytime solar gain, maintained a temperature of 62 to 65 degrees by day, dropping to 60 degrees at night, provided the greenhouse with an average of 60,000 Btu's per hour of nighttime usable heat. The greenhouse was operated throughout the winter 1982/1983 which had unpredictable temperatures climbing to 85 degrees, followed immediately by a week of 18 degrees. In April 1983, 18,500 tomato plants and more than 5000 other vegetables and house plants, were ready for harvest, although no supplemental heater was used, the only heat being distillation plant waste heat and daytime solar gain.

  8. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    Science.gov (United States)

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland.

    Science.gov (United States)

    Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M

    2013-12-01

    For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  11. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  12. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  13. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  14. Overall modelling of circulating fluidised bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Grausam, M.; Linzer, W. [Technische Univ., Vienna (Austria). Inst. fuer Technische Waermelehre; Loeffler, G.; Winter, F.; Hofbauer, H. [Technische Univ., Vienna (Austria). Inst. for Chemical Engineering, Fuel and Environmental Technology

    1999-07-01

    In the following an engineering simulation program for CFB-boilers is presented, which has been developed during the last years at ITW. Some parts of the model have been designed during a cooperation of different departments of TU. As a result the NO{sub x}/N{sub 2}O-model, which will be described more detailed in the following, was contributed from the Institute for Chemical Engineering. Studies about secondary air injection (and mixing) where done from the Institute of Fluid Dynamics and Heat Transfer. The main purposes of the simulator are the calculation of composition and size distribution of the boiler's inventory material, the determination of the heat flows at the heat exchanger surfaces installed to the furnace and the determination of flue gas composition, where especially the nitrogen compounds and SO{sub 2} are considered. (orig.)

  15. Heat and mass transfer through spiral tubes in absorber of absorption heat pump system for waste heat recovery

    Directory of Open Access Journals (Sweden)

    Yoshinori Itaya

    2017-06-01

    Full Text Available Heat and mass transfer of a LiBr/water absorption heat pump system (AHP was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream. The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work. The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube.

  16. Evaporators for mobile waste heat recovery systems; Verdampfer zur Abwaermenutzung im Fahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    Ambros, Peter; Fezer, Axel; Necker, Harald [Thesys GmbH, Kirchentellinsfurt (Germany); Orso,Jochen [Thesys GmbH, Kirchentellinsfurt (Germany); Hochschule Reutlingen (Germany)

    2011-01-15

    Thesys develops evaporators for waste heat recovery systems for mobile and stationary applications. These evaporators utilize the enthalpy availability of hot exhaust gas both in the cooled exhaust gas recirculation duct as well as in the main exhaust gas for example in the muffler. At present there are three different designs for evaporators under development. Prototype measurements have already partially proved their function and performance. (orig.)

  17. Working fluids selection for fishing boats waste heat powered organic Rankine-vapor compression ice maker

    Science.gov (United States)

    Bu, Xianbiao; Wang, Lingbao; Li, Huashan

    2014-10-01

    To utilize waste heat from fishing boats, an organic Rankine cycle/vapor compression cycle system was employed for ice making and a thermodynamic model was developed. Six working fluids were selected and compared in order to identify suitable working fluids which may yield high system efficiencies. The calculated results show that R600a is most suitable working fluid through comprehensive comparison of efficiency, size parameter, pressure ratio, coefficient of performance, system pressure and safety.

  18. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  19. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions.

    Science.gov (United States)

    Thakur, Savant S; Swiderski, Kristy; Ryall, James G; Lynch, Gordon S

    2018-01-19

    Duchenne muscular dystrophy is the most common and severe of the muscular dystrophies, a group of inherited myopathies caused by different genetic mutations leading to aberrant expression or complete absence of cytoskeletal proteins. Dystrophic muscles are prone to injury, and regenerate poorly after damage. Remorseless cycles of muscle fibre breakdown and incomplete repair lead to progressive and severe muscle wasting, weakness and premature death. Many other conditions are similarly characterized by muscle wasting, including sarcopenia, cancer cachexia, sepsis, denervation, burns, and chronic obstructive pulmonary disease. Muscle trauma and loss of mass and physical capacity can significantly compromise quality of life for patients. Exercise and nutritional interventions are unlikely to halt or reverse the conditions, and strategies promoting muscle anabolism have limited clinical acceptance. Heat shock proteins (HSPs) are molecular chaperones that help proteins fold back to their original conformation and restore function. Since many muscle wasting conditions have pathophysiologies where inflammation, atrophy and weakness are indicated, increasing HSP expression in skeletal muscle may have therapeutic potential. This review will provide evidence supporting HSP induction for muscular dystrophy and other muscle wasting conditions.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  20. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  1. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the ASME..., and stamped in accordance with section IV of the ASME Boiler and Pressure Vessel Code (incorporated by...

  2. A review on waste heat recovery from exhaust in the ceramics industry

    Science.gov (United States)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  3. A method for mapping the motion and temperature history of fuel particles in grate boilers and waste incinerators - stage 1; Metod foer kartlaeggning av braenslepartiklars roerelse och temperaturhistorik i rosterpannor/avfallsugnar - etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Blom, Elisabeth; Hald Pedersen, Niels; Moritz, Anders; Maardsjoe, Olle; Oskarsson, Jan; Petersson, Mats

    2000-04-01

    radiation hazards connected to the proposed methods. Use of the methods requires authorization by the radiation protection agency. However, this is not believed to be a problem, although the radioactive isotopes must only be handled by authorized persons. It should be emphasised that the planned use do not mean that persons are exposed to radiation of any health-related significance whatsoever. Action plans for near-accident scenarios are described, which mean that no risks for persons and/or the plant should arise. In contrast, the risks for limited access to the boiler or shutdown during 10-14 days in case of near-accident must be assessed in each case. The assessment of the proposed methods leads to the conclusion that the technical possibilities to use the methods are realistic. Validation trials are therefore proposed to be conducted on a biomass boiler and on a waste incinerator. The prerequisites for these trials, a proposed validation program as well as a preliminary time schedule, is finally given.

  4. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...

  5. Evaluation of selected advanced heat exchangers for waste heat recuperation of high temperature streams

    Science.gov (United States)

    Bliem, C. J.; Kochan, R.; Mittl, J. C.; Piscitella, R. R.; Schafer, J.; Synder, A.; Wiggins, D.; Zabriskie, J. N.

    1984-02-01

    The design, functional and cost requirements for high-temperature, heat recovery systems (recuperators) and describes the state-of-the-art systems, emerging industrial technologies and new concepts developed by EG and G Idaho, Inc. are discussed. All systems/concepts are then evaluated and compared with respect to corrosion/durability, fouling, performance, operation and maintenance, and economics.

  6. Using solar heat to enhance waste-heat use; Solarthermische Abwaermenutzung; Aufwertung von Abwaerme mittels Solarthermie zur Erzeugung hochwertiger Prozessenergie - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [BMG Engineering AG, Schlieren (Switzerland); Luzzi, A.; Marty, H. [HSR, Hochschule fuer Technik, SPF Institut fuer Solartechnik, Rapperswil (Switzerland)

    2008-12-15

    This final report for Swiss Federal Office of Energy (SFOE) presents the work done in a project involving the use of solar heat to enhance the use of waste heat at a chemical plant in Nyon, Switzerland. On the basis of a study carried out in 2006/2007, which looked at the reduction of process energy demand of a production site where an agent is produced in batch operation, possibilities for the recovery of waste heat were identified. The relatively low temperatures of the existing waste heat flows have, however, complicated its efficient use. This reflects a problem with waste heat use in industrial processes that can often be observed. Due to the sunny location in Nyon, a concept using solar energy to increase the temperature level of this waste heat has been developed. The objective of this analysis was the technical and economical assessment of such an installation and its transferability to other sites. Variants are presented and their economic viability is discussed.

  7. Waste not, want not : Talisman's use of waste heat good for the environment and the bottom line

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2010-10-15

    This article discussed a small-scale waste heat recovery unit (WHRU) that Talisman Energy Inc. introduced to its Bigstone natural gas plant near Fox Creek, Alberta. The unit has reduced carbon dioxide emissions along with fuel consumption and costs. The WHRU unit transfers heat produced by gas turbine compressors and uses it to heat liquids needed for processing natural gas. The project was devised and implemented after the company successfully developed a large-scale co-generation plant at its sour gas plant in Alberta. This co-generation plant reduces carbon dioxide emissions by 23,000 tonnes annually, lessens the plant's fuel gas consumption by 1 million cubic feet a day, produces 10 megawatts of electrical power, and allows the plant to continue operations when the main power grid experiences interruptions. In contrast, the Bigstone project is a small-scale application. At the start, the WHRU at Bigstone reduced fuel gas requirements by 300,000 cubic feet per day (a savings of 15 percent) and carbon dioxide emissions by 4,500 tonnes per year. The system had yet to reach its full capacity. A stabilizer for condensate was then added to the system, doubling the environmental benefit of the project. Small-scale co-generation projects can be difficult to make economic, but they have greater applicability at existing gas plants in Alberta than large-scale projects. 1 fig.

  8. Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis

    Directory of Open Access Journals (Sweden)

    Nugroho Agung Pambudi

    2017-09-01

    Full Text Available This research aims to evaluate the performance of a fluidized bed boiler in an ethanol production plant through exergy and irreversibility analysis. The study also includes the optimization of the pre-heater and the deaerator in order to improve the system efficiency. Operational data from the ethanol production plant was collected between 2015 and early 2016. The total exergy derived from the fuel was determined to be 7783 kJ/s, while the exergy efficiency of the system was found to be 26.19%, with 2214 kJ/s used in steam production, while 71.55% was lost to component irreversibility and waste heat from the pre-heater. The exergy efficiencies of individual components of the system such as the boiler, deaerator, and pre-heater were found to be 25.82%, 40.13%, and 2.617%, respectively, with the pre-heater having the lowest efficiency. Thus, the pre-heater has the highest potential to significantly improve the efficiency of the boiler system. The optimization of the pre-heater shows that a rise in temperature in the outlet of the pre-heater positively affects the exergy efficiency of the deaerator.

  9. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment

  10. Improvement of steam temperature control in supercritical once thru boilers

    OpenAIRE

    黒石, 卓司; 藤川, 卓爾

    2009-01-01

     New steam temperature control logic for supercritical once thru boilers was developed from the view point of simplicity similar to that of the conventional sub-critical drum type boilers. Water wall outlet steam temperature can be controlled more easily due to larger specific heat capacity of steam than super heater outlet steam temperature. By dividing temperature control into two parts, one at water wall outlet by fuel flow and the other at SH(super heater) outlet by SH spray flow, boiler ...

  11. The effect of heat fluxes on ammonia emission from swine waste lagoon based on neural network analyses

    Science.gov (United States)

    Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...

  12. Post-combustion of solvent vapour by an internal combustion engine (piston engine). Design and construction of a post-combustion plant for solvent vapour/air mixtures based on an internal combustion engine and using heat recovered from textile dryers and dye waste. Final report; Nachverbrennung von Loesemitteldampf mit Hilfe einer Verbrennungskraftmaschine (Kolbenmotor). Auslegung und Bau einer Nachverbrennung fuer Loesemitteldampf/Luftgemische mit Hilfe einer Verbrennungskraftmaschine unter Beruecksichtigung von Waermerueckgewinnung aus Textiltrocknern und Faerbereiabwasser. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lisson, W.R.; Michel, B.; Stadler, F.H.

    1993-06-01

    In 1981 a medium-sized textile company commissioned an energy concept for making energy economies. The study pursued the aim of achieving an efficient supply and utilisation of energy including thermal utilisation of solvent residues from production and of waste heat. The following concept was elaborated: Construction of a new block-type thermal power station; retrofitting of a steam boiler as a waste heat boiler for wet steam raising; retention of the existing superheated-steam generators and steam turbine; thermal utilisation in the block-type thermal power station and superheated steam generators of air/solvent mixtures resulting from production; recirculation of waste heat. (BWI) [Deutsch] Mit dem Ziel der Energieeinsparung wurde 1981 von einem mittelstaendischen Textilunternehmen ein Energiekonzept in Auftrag gegeben. Die Studie hatte die Ziele, eine rationelle Energieversorgung und eine sparsame Energieverwendung bei gleichzeitiger thermischer Verwertung von Loesemittelrueckstaenden aus der Produktion und Nutzung der Abwaerme zu erreichen. Es wurde folgendes Konzept erarbeitet: Neubau einer BHKW-Anlage, Umbau eines Dampfkessels als Abhitzekessel zur Sattdampferzeugung, Beibehaltung der vorhandenen Heissdampferzeuger und der Dampfturbine, thermische Verwertung der in der Produktion anfallenden Luft-Loesemittel-Gemische im BHKW und in den Heissdampfzeugern, Integration der Abwaerme in den Betrieb. (BWI)

  13. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  14. Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers

    Directory of Open Access Journals (Sweden)

    Deepa Mudgal

    2014-01-01

    Full Text Available Incinerators are widely used to burn the municipal waste, biowaste, wood, straw, and biomedical waste. Combustion of these types of waste results in generation of chlorides of sodium and potassium which may attack the metallic part of the incinerator. In biofuel-fired boilers, similar type of highly corrosive environment is present. Attempt has been made to review the corrosion problems and their solutions as per the available literature.

  15. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  16. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  17. Microbial Characterization Space Solid Wastes Treated with a Heat Melt Compactor

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2012-01-01

    The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all

  18. Optimization of Biodiesel Production from Waste Cooking Oil Using Waste Eggshell as a Base Catalyst under a Microwave Heating System

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2018-02-01

    Full Text Available This paper intends to explore the most affordable and environmentally friendly method for the synthesis of biodiesel. Substitute fuel is presently a significant topic all over the world, attributable to the efforts of reducing global warming, which is the result arising from the combustion of petroleum or petrol diesel fuel. Due to its advantages of being renewable and environmentally friendly, biodiesel production has the potential to become the major substitute of petrol diesel fuel. Biodiesel is non-toxic, biodegradable, is produced from renewable sources, and contributes a small amount of greenhouse gas (e.g., CO2 and SO2 emissions to the atmosphere. Research has established that one of the key obstacles to the commercialization of biodiesel is the high price of biodiesel production due to the shortage of suitable raw materials. However, waste-cooking-oil (WCO is one of the most cost-effective sources of biodiesel synthesis, and can practically minimize the raw material cost. The research was carried out to produce biodiesel from waste cooking oil in order to reduce the cost, waste, and pollution associated with biodiesel production. The application of a microwave heating system towards enhancing the production of biodiesel from waste cooking oil has been given little consideration in the preceding research, particularly with the application of eggshell as a heterogeneous catalyst. However, the tentative results in this study show significant performance in terms of biodiesel production, as follows: (1 the increasing of the reaction time from 120 to 165 min considerably increased the biodiesel production, which declined with a further rise to 210 min; (2 the results of this study reveal that a methanol-to-oil molar ratio of nine is appropriate and can be used for the best production of biodiesel; (3 the production of biodiesel in this study demonstrated a significant increase in response to the further increasing of power; (4 a 120 min

  19. Analisa Kadar Silika Pada Air Umpan Ketel Dan Air Boiler Dengan Alat Lovibond Di Pks PT. Perkebunan Nusantara IV Dolok Ilir

    OpenAIRE

    Simamora, Evi Novita F.

    2016-01-01

    Analysis was performed on a silica content of boiler feed water and boiler water at the PKS PT. PTPN IV Dolok Ilir. Samples taken from the boiler feed water tank heated while the boiler water sample taken from the heating pipes in the boiler drum. Silica content in the sample is determined by comparison with a reagent Ammonium molybdat, HCL 1: 1, and oxalic acid. The determinations were performed over a period of 18 to 27 February 2015. The results showed that the silica content of boiler fee...

  20. Waste incineration within the Swedish district heating systems - Sub-Project 4; Avfallsfoerbraenning inom Sveriges fjaerrvaermesystem - Delprojekt 4 inom projektet Perspektiv paa framtida avfallsbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Maarten; Holmstroem; David

    2012-07-01

    Waste incineration within the Swedish district heating systems is one of the five sub-projects within the project Perspectives on sustainable waste treatment. The goal of this project is to evaluate the economic potential for waste incineration in the Swedish district heating systems. With the current expansion of incineration, we may relatively soon reach an upper limit for what is demanded by the Swedish district heating systems. How much more waste incineration that is economically attractive to build is of great importance for the development of the Swedish waste system, not least for the alternatives to incineration as for example biogas production. With continued rising quantities of waste and stagnant demand for waste incineration from the district heating systems, today's surplus of treatment capacity may change the market picture for other waste treatment options. How much more waste incineration requested and how quickly the market reaches this level is studied in this project.

  1. Techno-economic assessment of boiler feed water production by membrane distillation with reuse of thermal waste energy from cooling water

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Leerdam, R.C. van; Medevoort, J. van; Tongeren, W.G.J.M. van; Verhasselt, B.; Verelst, L.; Vermeersch, M.; Corbisier, D.

    2015-01-01

    The European KIC-Climate project Water and Energy for Climate Change (WE4CC) aims at the technical demonstration, business case evaluation and implementation of new value chains for the production of high-quality water using low-grade thermal waste energy from cooling water. A typical large-scale

  2. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  3. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)

    1998-12-31

    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  4. Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6

  5. Performance of working-fluid mixtures in an ORC-CHP system for different heat demand segments

    OpenAIRE

    Oyewunmi, OA; Kirmse, CJW; Pantaleo, AM; Markides, C.

    2016-01-01

    Organic Rankine cycle (ORC) power systems are being increasingly deployed for waste heat recovery and conversion to power in several industrial settings. In the present paper, we investigate the use of working-fluid mixtures in ORC systems operating in combined heat and power mode (ORC-CHP) with shaft power provided by the expander/turbine and heating provided by the cooling-water exiting the condenser. The waste-heat source is a flue gas stream from a refinery boiler with a mass flow rate of...

  6. CONVERSION OF BOILER-HOUSES IN MINI-THERMAL POWER STATIONS

    Directory of Open Access Journals (Sweden)

    V. A. Sednin

    2005-01-01

    Full Text Available One of the methods that makes it possible to increase operational efficiency of heat supply  systems is development of power-and-heat generation on the basis of boiler houses of small and average power. The paper gives main prerequisites for selection of variants and power of power-and-heat generation (cogeneration installations on the basis of gas-piston engines which are to be used at heating boiler houses.

  7. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  8. Survey of potentials for exploitation of waste heat from norwegian industry; Potensialstudie for utnyttelse av spillvarme fra norsk industri

    Energy Technology Data Exchange (ETDEWEB)

    Sollesnes, Geir; Helgerud, Hans Even

    2009-07-01

    Norsk Energi and NEPAS has mapped sources and elucidated possibilities for exploitation of waste heat from Norwegian industry. These industries are examined: food industry, wood processing industry, cement- and Leca, chemical, aluminium and ferro-alloy in addition to some other heavy energy user companies and the biggest waste incineration plants. A simplified 'guide' which can be used for a first evaluation whether exploitation of waste heat might be technical/ practical possible and profitable or not. Relevant technologies are described. The report point out four areas which should be prioritized for technology development. Barriers for exploitation of waste heat from industry are set up and incentives for increased usage are pointed out. (AG). 6 refs., 34 figs., 3 tabs

  9. The self powered boiler; La chaudiere auto-alimentee

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomeus, P.; Van Pijkeren, G.; Helmerhorst, T.; Hegge, R. [Gasunie Research Groningen (Netherlands)

    2000-07-01

    As a next step to even smaller cogeneration units a self powered boiler has been developed. Over the last decades society has become totally dependent on electricity, and without electricity there is no light, no (tele)communication and even the doorbell will not work. Even more important is that the heating systems in houses also stop functioning when a power failure occurs. In the past, with atmospheric burners and convective systems, the heating system was independent of electricity. Nowadays, electricity is needed for controls, electronic ignition, fan assisted burners and circulation pumps. Moreover heating boilers equipped with thermoelectric generators will need less primary energy, while they generates their own electricity at a high efficiency. So it contributes on a reduction of CO{sub 2} emissions. Gasunie Research developed a prototype self powered boiler equipped with thermoelectric generator modules. This boiler can operate without connection to the electrical grid. As of now, 20 of these boilers have been built and installed in central heating systems. During the heating season 1999-2000, the long term behaviour of the thermoelectric modules will be tested. (authors)

  10. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  11. Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating

    Directory of Open Access Journals (Sweden)

    Chunyuan Ma

    2012-08-01

    Full Text Available This paper describes a kinetic study of the decomposition of waste printed circuit boards (WPCB under conventional and microwave-induced pyrolysis conditions. We discuss the heating rates and the influence of the pyrolysis on the thermal decomposition kinetics of WPCB. We find that the thermal degradation of WPCB in a controlled conventional thermogravimetric analyzer (TGA occurred in the temperature range of 300 °C–600 °C, where the main pyrolysis of organic matter takes place along with an expulsion of volumetric volatiles. The corresponding activation energy is decreased from 267 kJ/mol to 168 kJ/mol with increased heating rates from 20 °C/min to 50 °C/min. Similarly, the process of microwave-induced pyrolysis of WPCB material manifests in only one stage, judging by experiments with a microwave power of 700 W. Here, the activation energy is determined to be only 49 kJ/mol, much lower than that found in a conventional TGA subject to a similar heating rate. The low activation energy found in microwave-induced pyrolysis suggests that the adoption of microwave technology for the disposal of WPCB material and even for waste electronic and electrical equipment (WEEE could be an attractive option.

  12. Reduction of soot blower steam in recovery boiler. Kaishu boiler soot blower joki no setsugen

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, H. (Oji Papaer Co. Ltd., Tokyo (Japan))

    1991-02-04

    An atrempt was made on reducing soot blower steam in a recovery boiler used in a paper mill. A recovery boiler uses as its fuel the black liquor generated in the process of making pulp out of boiling wood chips. The boiler generates steam from heat of burning organic materials contained in the black liquor, and on the one hand, recovers chemicals contained in the black liquor. The boiler, generating an abundance of soda dust, requires operation of a soot blower, which consumes very large amount of steam. Reviews were given on the temperature reduction control, and the setting of 280 {degree} C at an injection pressure of 30 kg/cm {sup 2} was lowered to 260 {degree} C. An acceleration of the soot blow speed was attempted. An excess blowing by the soot blower was stopped when the boiler {prime} s main steam pressure has risen. For the soot blower effect which is still excessive after having been modified for the acceleration, the injection steam pressure was reduced. As a result, the steam was saved by 27%, and an annual energy saving effect equivalent to 24.261 million yen was obtained.

  13. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine

    Science.gov (United States)

    Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro

    2017-05-01

    In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.

  14. Determination of heating value of industrial waste for the formulation of alternative fuels

    Directory of Open Access Journals (Sweden)

    Bouabid G.

    2013-09-01

    Full Text Available The use of alternative fuels has become increasingly widespread. They are basically designed based on industrial waste so that they can substitute fossil fuels which start to become scarce. Alternative fuels must meet some criteria, namely an important calorific content, minimum humidity and ash content. When it comes to combustion, the most interesting parameter is the calorific value which represents the thermal energy released during combustion. The experiments that were conducted showed that the calorific value is influenced by other parameters namely moisture and ash content. It was therefore necessary to study the behavior of the heating value in terms of these two parameters in order to establish a relationship that is used to describe the behavior. This is expected to allow a simulation of the calorific value of a mixture of various industrial waste.

  15. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  16. Activation, decay heat, and waste classification studies of the European DEMO concept

    Science.gov (United States)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  17. Efficient and environment-friendly waste heat utilisation. The Ingolstadt example; Abwaerme effizient und umweltschonend nutzen. Waermeverbund Ingolstadt

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, Matthias [Stadtwerke Ingolstadt (Germany)

    2011-10-15

    Waste heat utilisation in Ingolstadt dates back 34 years. With the integration of the Petroplus refinery, the district heating grid of the town was expanded significantly. The first expansion stage was terminated in late June 2011; the expected heat supply is in the range of 300 GWh/a. This will reduce CO2 emissions by 35,000 tpa. Some unexpected problems were encountered during the expansion work.

  18. Heat recovery-based refrigeration and heating in an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Ochsner, E.

    1987-12-01

    Facing the withdrawal of both a license for the use of tap water for cooling purposes and a license for the discharge of hot cooling water into a nearby brook an industrial plant resorted to a mechanical refrigerator of the heat recovery type. The project was to provide for mechanical refrigeration with the help of cold storage systems, heat recovery with the help of thermal energy storage systems, compressor waste heat utilization, the replacement of boilers, and the limited use of steam for production purposes only. Pictures help to explain the cooling water load (cooling zone, tempers, air conditioners), the refrigerators (cold brine), ice storage systems (CRYOGEL), the generation of heat (refrigerator waste heat utilization), and the hot water system. Reference is made to first operational results. (HWJ).

  19. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  20. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  1. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    Science.gov (United States)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  2. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  3. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  4. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  5. Data for modern boilers used in co-combustion; Moderna panndata inom samfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Ola [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-04-01

    This project is a survey and a description of today's technical status and future development trends in the field of co-combustion. The survey is done from an energy production company's point of view and two technical questions have been studied; the possibilities for high steam data and the possibilities for a wide load range. These parameters are limited by the corrosive properties of the fuel and the environmental requirements in the EU directive for combustion of waste. In the report following issues are discussed: Examples of and experiences from co-combustion plants and plants that combust problematic fuels and have high steam data. A future prospect of high steam data in co-combustion plants by the usage of modern technical solutions and a description of these solutions. Important research and development results from combustion of problematic fuels in combination with high steam data. Choice of firing technology, boiler design and auxiliary systems and its affection on the load range in a boiler for co-combustion. A literature survey has been done to get the latest results from combustion of problematic fuels. Then a number of interesting plants have been identified and facts about them have been collected by contacts with plant owners, suppliers and professional researchers and also through publications. The report shows that Sweden, Finland and Denmark are in the front line of using high steam data for co-combustion of biomass and waste fuels. There are/have been problems with superheater corrosion in many of these plants but a number of ways how to handle high steam data have been identified: Adjust the fuel mix or add additives; Use high alloy materials; Consider the final super heater as a part that is worn out by time; Place the final super heater in the particle loop seal/sand locker; Use an external separate fired super heater; Gasification and then co-combustion of the pyrolysis gas in a conventional existing boiler; Place the

  6. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

  7. Thermomagnetic conversion of low-grade waste heat into electrical power

    Science.gov (United States)

    El Achkar, G.; Dianoux, A.; Kheiri, A.; Maillet, D.; Mazet, T.; Colasson, S.; Feidt, M.; Rado, C.; Servant, F.; Paul-Boncour, V.

    2016-09-01

    A theoretical study relying on the thermal modelling of a Curie wheel, used for the conversion of low-grade waste heat into electrical power, is presented in this paper. It allows understanding the thermal behaviour of a Curie wheel operating in steady state in order to optimise its design. To this end, a stationary one-dimensional analytical thermal model, based on a Lagrangian approach, was developed. It allows determining the local distribution over time of the temperature in the magnetocaloric material exposed to a periodic sinusoidal heat source. Thanks to this model, the effects of different parameters (nature of the magnetocaloric material, nature and temperature of the fluid) were highlighted and studied.

  8. Online monitoring of boiler rapping gears. Specific targets; Online-Monitoring von Kesselklopfwerken. Konkrete Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, Alfred; Koller, Felix Bruno [Hitachi Zosen Inova AG, Zurich (Switzerland). Research and Development

    2013-03-01

    The boiler rapping gear from Hitachi Zosen Inova AG (Zurich, Switzerland) is in operation since September 2012. This boiler rapping gear shows that a continuous monitoring of the rapping gear function as well as the automatic induction of correcting measures within a running operation are possible inducing positive results. The three mechanisms of control are: measurement of the pressure loss and outlet temperature, monitoring of the thermal process in the vessel, verification of the functionality of the boiler rapping gear. The verification of the functionality of the boiler rapping gear is the early indicator for the necessary maintenance work for the prolongation of the boiler operating period. Operators of waste incinerators may generate more efficiency from their investment by using boiler rapping gears.

  9. EFFICIENCY OF MULTI-MODULE SOLAR COLLECTORS AS A PREFIX TO A BOILER

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-12-01

    Full Text Available Influencing factors on thermal and economic efficiency of the combined of heat supply installation are established. Constructive circuits of solar heat supply "prefix" interaction with boiler installation are worked out. Mathematical models of heat exchange processes in elements of combined heat supply system with the account solar engineering characteristics are developed. The techniques of analysis of efficiency of multi-modular system of solar collectors with compulsory circulation for water heating boiler allowing calculating of efficiency factor; heat removal factor and heat transfer factor with the account of construction and operation conditions of alternative heat supply system are presented.

  10. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  11. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    Science.gov (United States)

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  12. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  13. FY 1999 report on the potential survey of implementation of a model project on cement sintering waste heat (preheater and clinker cooler) recovery power generation facilities in the Philippines; 1999 nendo chosa hokokusho. Firipin ni okeru cemento shosei hainetsu (Pre heater oyobi kurin ka kura) kaishu hatsuden setsubi model jigyo jisshi kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of conserving energy and reducing greenhouse effect gas emissions, investigational study was made of the power generation using the waste heat recovered from cement plants in the Philippines. At cement producing plants, approximately 30% of the energy being consumed in the cement sintering process is released into the air. In this project, this heat energy is recovered by boiler and used for power generation. The equipment to be introduced is exhaust heat recovery boiler, steam turbine/generator and the other accessory equipment. The potential survey for implementation of this project was conducted for Trans-Asia Power Generation Corp. (TAP), subsidiary of HI Cement Corp., Solid Cement Corp. and Apo Cement Corp. The results of the investigational study indicated that Solid Cement Corp. was the most suitable in aspects of technology and others. Top management of the CEMEX group also intended to regard Solid Cement Corp. as a company for implementing the project. As a result of the discussion, however, the company expressed their negative opinion about the participation in the project. The situation of materialization of the model project became very difficult. (NEDO)

  14. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  15. Retrospective dosimetry: Dose evaluation using unheated and heated quartz from a radioactive waste storage building

    DEFF Research Database (Denmark)

    Jain, M.; Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particu......In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites...... and particularly in nuclear installations. These materials contain natural dosemeters Such as quartz. which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of Co-60 and Cs......-137 has been investigated. Dose-depth profiles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose...

  16. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been......A comprehensive set of sub-models has been developed addressing the local arrival rates of ash at heat transfer surfaces, the propensity for the ash to stick upon impact and the influence from the deposit on heat transfer properties. The model development was motivated by the severe deposit...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...

  17. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Laatikainen-Luntama, J. [VTT Energy, Espoo (Finland). Energy Production Technologies] [and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  18. Finite element analysis on the thermoelectric generator for the waste heat recovery of solar application

    Science.gov (United States)

    Zulkifli, Muhammad Nubli; Ilias, Izzudin; Abas, Amir; Muhamad, Wan Mansor Wan

    2017-09-01

    Thermoelectric generator (TEG) is the solid state device that converts the thermal gradient into electrical energy. TEG is widely used as the renewable energy source especially for the electronic equipment that operates with the small amount of electrical power. In the present analysis, the finite element analysis (FEA) using ANSYS is conducted on a model of the TEG attached with the aluminium, Al plate on the hot side of the TEG. This simple construction of TEG model was built in order to be used in the waste heat recovery of solar application. It was shown that the changes of the area and thickness of the Al plate increased the temperature gradient between hot and cold sides of TEG. This directly increase the voltage produced by the TEG based on the Seeback effect. The increase of the thermal gradient due to the increment of thickness and width of Al plate might be because of the increase of thermal resistance of Al plate. This finding provides a valuable data in design process to build a good TEG attached with Al plate for the waste heat recovery of solar application.

  19. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

    Science.gov (United States)

    Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.

    2017-05-01

    Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.

  20. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  1. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Olli; Watkins, Gary [Department of Forest Products Technology, Helsinki University of Technology TKK, P.O. Box 6300, FI-02015 Espoo (Finland); Nurmesniemi, Hannu [Stora Enso Oyj, Veitsiluoto Mill, FI-94830 Kemi (Finland); Poeykioe, Risto [City of Kemi, Valtakatu 26, FI-94100 Kemi (Finland)

    2009-07-15

    In this study, the physical and chemical properties of bottom ash and fly ash originating from the co-combustion of biomass-derived fuels (i.e. wood chips, sawdust, bark, and peat) from a 32 MW fluidized bed boiler at a municipal district heating plant were investigated. Silicate minerals were predominant in the bottom ash and calcium minerals in the fly ash, with most of the inorganic nutrients and heavy metals being enriched in the fly ash. The enrichment factors for heavy metals in the fly ash varied between 0.2 for silicon and 16.3 for lead, and for plant nutrients, between 1.5 for phosphorous and 108 for potassium. However, all heavy metal concentrations in both the bottom ash and fly ash were significantly lower than the current Finnish limit for maximum allowable heavy metal concentrations for forest fertilizers, which came into force in March 2007. According to the particle size distribution, the mass loadings of heavy metals in the fly ash were more than 90% contributed by the smallest particle size fraction lower than 0.074 mm. In the bottom ash, between 83.6 and 91.9% of the mass loadings of heavy metals were contributed by the particle size fraction between 0.5 and 2.0 mm. (author)

  2. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  3. The prospects for incineration of municipal solid waste in Russia in order to produce heat and electric power

    Science.gov (United States)

    Baskakov, A. P.

    2014-04-01

    The article presents the results of the low-temperature pyrolysis of the main components of municipal solid waste (MSW): wood, products of wood processing (paper, cardboard, fabrics, etc.), various plastics, rubber, as well as of a representative sample of MSW. A waste-to-energy plant is described, at which municipal solid waste is subjected to the pyrolysis, and then pyrolysis products are incinerated in a slagging-bottom furnace. The paper presents an analysis of the operation of a modern waste-to-energy plant equipped with a wet scrubber, with a high-degree recovery of the heat of exhaust gases by means of a heat pump, and with evaporation cooling of glowing slag in a tank filled with water. Chemical treatment of water circulating in the system makes it possible to convert heavy metals and other hazardous substances into the insoluble form and then to remove them.

  4. Penentuan pH dan Alkalinitas Pada Air UmpanBoiler Di PTPN III PKS Aek Nabara Selatan

    OpenAIRE

    Sabrina, Meutia

    2016-01-01

    The boiler is a vessel containing water where the water is continuous diupkan and forms of heating steam coming from the kitchen fire. Therefore, the use of boiler water must always be in control to match the standard. If the pH and alkalinity levels high, it can cause corrosion, crust on the inner wall of the boiler which can cause damage to the boiler and reduce the quality of steam produced.Air stuffing used for boiler use water reservoirs cottage En Anêm were taken for three days. Analysi...

  5. Open-cycle heat pumps for industrial waste-heat utilization. Project technical report, May 12, 1980-October 10, 1980. Phase I. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Open-Cycle Industrial Process Heat Pumps (IPHP) are potentially a cost-effective method of utilizing an industrial plant's waste heat. The objective of Phase I of the work was to determine the feasibility of an open-cycle industrial process heat pump. This was accomplished by the evaluation of four potential sites for the installation of open-cycle industrial process heat pump equipment. While it was the original plan to evaluate only three sites, the need for a fourth site became apparent upon completion of studies of the Amstar applications. On the basis of initial screening, it was decided to concentrate on the large waste stream at General Electric's NORYL facility (Selkirk, NY) and a smaller waste stream at the Schoeller Paper Company (Pulaski, NY). These two sites provided opportunities to exploit the features of the open-cyle IPHP without major site constraints. Site studies were conducted to obtain process information such as flow rates, process temperatures, dynamic behavior of the process streams, process control functions, and capacity/time schedules. Information relating to structure and utilities, floor loadings, physical space constraints, electric service, piping runs between equipment location, and waste water tapping points was gathered. These data were analyzed and resulted in the selection of two applications with acceptable thermodynamic performance.

  6. Survey of industrial coal conversion equipment capabilities: heat recovery and utilization. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Gambill, W. R.; Reed, W. R.

    1978-07-01

    A scoping survey of the capabilities of industrial heat recovery equipment was conducted to determine their adaptability to proposed coal-conversion complexes. Major categories of heat exchangers included shell-and-tube, periodic-flow and rotary regenerators, heat pipe arrays, direct phase contactors, and steam and organic Rankine cycles for power generation from waste heat. Primary applications encompassed feed-effluent and other process stream interchangers, combustion air preheaters, and heat recovery steam generators (waste heat boiler-superheaters). It is concluded that the single area providing the greatest potential for extending US industrial heat-recovery equipment capabilities as related to coal-conversion processes is a research, development, and testing program to acquire more physical-property and heat-transfer data and more-reliable design correlations.

  7. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  8. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  9. Demonstration of high temperature thermoelectric waste heat recovery from exhaust gases of a combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Trottmann, Matthias; Weidenkaff, Anke; Populoh, Sascha; Brunko, Oliver; Veziridis, Angelika; Bach, Christian; Cabalzar, Urs [Empa, Duebendorf (Switzerland)

    2011-07-01

    The energy efficiency of passenger cars becomes increasingly important due to a growing awareness in terms of climate change and shortages of resources associated with rising fuel prices. In addition to the efforts towards the optimization of the engine's internal efficiency, waste heat recovery is the main objective. In this respect, thermoelectric (TE) devices seem to be suited as heat recuperation systems. Thermoelectric generators allow for direct transformation of thermal into electrical energy. In order to thoroughly investigate this type of recovery system a TE demonstrator was mounted on the muffler of a VW Touran and tested. The waste heat of the exhaust gas was converted into electricity with a conversion rate of {proportional_to}. 3.5%. The limiting factor was the low thermal stability of the commercial modules used in this pre-study to elaborate reference values. Thermoelectric modules based on sustainable and temperature-stable materials are being developed to improve the measured values. A thermoelectric test generator with perovskite-type oxide modules was constructed confirm the function and stability at elevated temperatures. Despite all the advantages of this material class, the TE performance is still to be improved. A quantitative measure of a material's TE performance is the temperature-independent Figure of Merit ZT. ZT increases with decreasing thermal and increasing electrical conductivity. An approach to thermal conductivity reduction is nanostructuring of the material. The Ultrasonic Spray Combustion (USC) technique allows to produce powders with a grain size on the nanoscale and was tested in this study. (orig.)

  10. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  11. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  13. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    . The methodology is applied to recover the waste heat from the SGT-500 gas turbine installed on the Draugen off-shore oil and gas platform in the North Sea. Results suggest two optimal working fluids, i.e. acetone and cyclopentane. Thermal efficiency and net present value are higher for cyclopentane than...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  14. Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat

    Science.gov (United States)

    Yamanaka, H.; Nakagawa, M.

    2013-04-01

    Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.

  15. Condensing of steam in flue gas using a heat pump system in relation to a wood chip fired boiler. Roeggaskondensering med varmepumpe paa flisfyrede kedelanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, B.; Evald, A.; Vogel, G.; Bisgaard, C.

    1989-10-15

    The aim of this report is to describe existing methods for condensing steam water in flue gas in relation to combustion of forest biomas, and to describe the implementation of a plant for condensing of water in flue gas on an existing installation for combustion of wood chips. Condensing of water in flue gas, is specially interesting, because of the high content of water in forest biomas. The actual installation for the condensing of water is special, because it include a heat pump system. In this system the inlet air is humidified and heated in a heat exchanger by the flue gas. This system makes it possible to condense approximately all the water in the flue gas. It is shown, that an installation for condensing of steam water in flue gas is an advantage from an economic point of view; the pay back period for the investment will be about three years. Measurements on the installation has shown that the implementation of a plant for condensing the water in the flue gas reduces the pollution from the flue gas of approximately 85% for the emission of particles and approximately 25% for the emission of Co{sub 2} and NO{sub x}. (author).

  16. Thermoelectric generator systems for waste heat usage in diesel electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Heghmanns, Alexander; Schimke, Robert; Beitelschmidt, Michael [Technische Univ. Dresden (Germany). Inst. fuer Festkoerpermechanik (IFKM); Geradts, Karlheinz [Bombardier Transportation (Switzerland) AG, Zuerich (Switzerland)

    2012-11-01

    It is widely known, that the main part of the life cycle costs of diesel electric locomotives are the consumption costs for diesel fuel. On top of that the rising awareness of politics and society for environment protection and rising prices for energy shift that topic into the focus. One possibility to lower the fuel consumption is to recover the exhaust waste heat of the combustion engine. This can be achieved by converting the energy of the exhaust into mechanical energy (e.g. Steam Expander) or into electrical energy by a thermoelectric generator (TEG). Using a high power TEG in a diesel electric locomotive is advantageous because of the electrified powertrain. That means there is a considerably high demand of electric power in almost all driving states. The challenge is to develop a system with a sufficient efficiency in order to achieve a short return of investment period. Up to now some TEG system prototypes have been developed for automotive applications. For example a combination of a TEG with the EGR, where cooling of the exhaust gas is necessary, proved to be promising. But because of the low temperature gradient in the EGR the output power is very limited. In future automotive systems the TEG could be integrated directly into the exhaust tract which leads to high temperature gradients and promises a higher power output. The challenge is to develop an efficient TEG material and a system which withstands the mechanical stress caused by the thermal cycles. For diesel electric locomotives a relatively good efficiency can be achieved by using a heat transfer oil circuit as intermediary heat carrier instead of integrating the TEG directly into the exhaust tract. This offers the advantage of using the better heat transfer between exhaust and oil compared to the heat transfer directly from exhaust to the TEG. Therefore a high power can be transmitted. Furthermore it is possible to collect the waste heat of secondary heat sources like the brake resistor. Another

  17. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  18. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  19. How to measure low-pressure steam boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Katrakis, J.T. (Katrakis and Associates, Chicago, IL (United States)); Zawacki, T.S. (Phillips Engineering, St. Joseph, MI (United States))

    1993-09-01

    Low-pressure central steam systems are the predominant type of space heating system in pre-World War II multifamily housing throughout the northern urban areas of the US. In Chicago alone, over 300,000 low to middle income residences are heated in this manner. Heating costs in these buildings are frequently over 50% higher than for buildings with newer hot water or forced air systems. High costs are a major cause of the precarious financial picture of these older low to moderate income buildings. Efforts to address this problem include research aimed at identifying effective and affordable ways of enhancing the efficiency of the heating systems in these buildings. The boilers are one major area where efficiency improvements are possible. These buildings use intermediate-sized low-pressure steam boilers that are also commonly found in commercial, institutional and small industrial applications for space and process water heating. As a group, their performance is the least well documented among all the heating plant technologies. Ranging in input capacity from 300,000 Btu per hour to 4,000,000 Btu per hour (87.9 kW to 1,172 kW), they are too small to warrant the cost of installing and maintaining standard commercially available steam metering equipment. Yet, they are larger than the heating plants that are subject to the federally-mandated AFUE testing. As part of the research to improve the efficiency of these heating systems, it was necessary to develop simple and affordable methods to measure the seasonal efficiency of low-pressure steam boilers in buildings. As reported in this article two methods were developed to measure the in-situ seasonal efficiency of these boilers: a benchmark method based on ANSI standards for measuring the flue and jacket losses; and a simplified method, the Time-to-Make-Steam (TTMS) method that is easy to apply and appropriate for low-pressure steam boilers.

  20. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... recovery. Included in the solution domain are 109 fluids in sub and supercritical processes, and the process is adapted to the properties of the individual fluid. The efficiency losses caused by imposing process constraints are investigated to help propose a suitable process layout. Hydrocarbon dry type...