WorldWideScience

Sample records for waste glasses effect

  1. Effective Utilisation of Waste Glass in Concrete

    Directory of Open Access Journals (Sweden)

    Sameer Shaikh

    2015-12-01

    Full Text Available Glass is a widely used product throughout the world; it is versatile, durable and reliable. The uses of glass ranges drastically, therefore waste glass is discarded, stockpiled or land filled. About million tons of waste glass is generated and around large percent of this glass is disposed of in landfills. This pattern has influenced environmental organizations to pressure the professional community to lower the amount of glass being discarded as well as find use to the non-recycled glass in new applications. In relation, the recycling of waste glass as a component in concrete gives waste glass a sustainable alternative to land filling and therefore makes it economically viable.The proposed study of utilising waste glass powder(GLP in concrete as partial replacement of cement as well as the use of crushed glass particles(CGP retained on 1.18mm & 2.36mm IS sieve as a partial replacement to sand, which offers important benefits related to strength of concrete as well as it is eco-friendly. Recycling of mixed-colour waste glass possesses major problems for municipalities, and this problem can be greatly eliminated by re-using waste glass as sand/cement replacement in concrete. Moreover, re-using waste materials in construction can reduce the demand on the sources of primary materials.In this project the attempts have been made to partially replace the cement as well as sand by waste glass powder and crushed glass particles with equal combination by 5% interval up to 20% replacement and observe its effect on the strength of concrete after 7 days and 28 days of curing.

  2. Temperature effects on waste glass performance

    Energy Technology Data Exchange (ETDEWEB)

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab.

  3. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  4. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Science.gov (United States)

    Liu, Shuhua; Wang, Shu; Tang, Wan; Hu, Ningning; Wei, Jianpeng

    2015-01-01

    Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP) on alkali-silica reaction (ASR) expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk. PMID:28793603

  5. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  6. Solubility effects in waste-glass/demineralized-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  7. Effect of Na2O on aqueous dissolution of nuclear waste glasses

    Science.gov (United States)

    Farooqi, Rahmat Ullah; Hrma, Pavel

    2017-04-01

    Sodium oxide is present in the majority of commercial and waste glasses as a viscosity-reducing component. In some nuclear waste glasses, its source is the waste itself. As such, it can limit the waste loading because of its deleterious effect on the resistance of the glass to attack by aqueous media. The maximum tolerable content of Na2O in glass depends on the presence and concentration of components that interact with it. To assess the acceptability limits of Na2O in the composition region of nuclear waste glasses, we formulated 11 baseline compositions by varying the content of oxides of Si, B, Al, Ca, Zr, and Li. In each of these compositions, we varied the Na2O fraction from 8-16 mass% to 23-30 mass%. To each of 146 glasses thus formulated, we applied the seven-day Product Consistency Test (PCT) to determine normalized B and Na releases (ri, where i ≡ B or Na). Fitting approximation functions ln(ri/gm-2) = Σbijgj to ri data (gj is the j-th component mass fraction and bij the corresponding component coefficient), we showed that the rB (and, consequently, the initial glass alteration rate) was proportional to the glass component mass fractions in the order Al2O3role that PCT data may play in understanding the evolution of the glass alteration process is discussed.

  8. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  9. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  10. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    Science.gov (United States)

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  11. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  12. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  13. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.

  14. Durability of SRP Waste Glass - Effects of Pressure and Formation of Surface Layers

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G.

    2001-10-17

    This report discusses results of an assessment of pressure at anticipated storage temperature on the chemical durability of Savannah River Plant waste glass. Surface interactions were also examined and corrosion mechanisms discussed.

  15. Rhenium volatilization in waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Pierce, David A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hrma, Pavel, E-mail: pavel.hrma@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland, WA 99352 (United States)

    2015-09-15

    Highlights: • Re did not volatilize from a HLW feed until 1000 °C. • Re began to volatilize from LAW feeds at ∼600 °C. • The vigorous foaming and generation of gases from salts enhanced Re evaporation in LAW feeds. • The HLW glass with less foaming and salts is a promising medium for Tc immobilization. - Abstract: We investigated volatilization of rhenium (Re), sulfur, cesium, and iodine during the course of conversion of high-level waste melter feed to glass and compared the results for Re volatilization with those in low-activity waste borosilicate glasses. Whereas Re did not volatilize from high-level waste feed heated at 5 K min{sup −1} until 1000 °C, it began to volatilize from low-activity waste borosilicate glass feeds at ∼600 °C, a temperature ∼200 °C below the onset temperature of evaporation from pure KReO{sub 4}. Below 800 °C, perrhenate evaporation in low-activity waste melter feeds was enhanced by vigorous foaming and generation of gases from molten salts as they reacted with the glass-forming constituents. At high temperatures, when the glass-forming phase was consolidated, perrhenates were transported to the top surface of glass melt in bubbles, typically together with sulfates and halides. Based on the results of this study (to be considered preliminary at this stage), the high-level waste glass with less foaming and salts appears a promising medium for technetium immobilization.

  16. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  17. Effect of temperature on the fracture-surface energy of a waste disposal glass

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, I.C.I.; Martin, D.M.

    1982-02-01

    The work-of-fracture of a glass frit designed for nuclear waste disposal was measured at six temperatures, ranging from 298 to 680 K. The fracture-surface energy and toughness went through a minimum at 580 K. Elastic moduli were measured by determining mechanical resonance frequencies. 16 refs.

  18. The effect of hydrothermal hot-pressing parameters on the fabrication of porous ceramics using waste glass

    Science.gov (United States)

    Matamoros-Veloza, Z.; Yanagisawa, K.; Rendón-Angeles, J. C.; Oishi, S.

    2004-04-01

    The effect of varying hydrothermal hot-pressing (HHP) parameters on the expansion of waste glass powder was investigated by conventional heat treatment. Glass ceramic porous materials were prepared by hydrothermal hot pressing under standard conditions at 200 °C, for 2 h at a constant uniaxial pressure of 20 MPa, while varying experimental variables such as glass particle size, water content, reaction interval, temperature and heating rate. SEM investigation showed the presence of a new glass phase, which incorporated water in its structure. The degree of reactivity attainable between glass particles and water seems to control the expansion process during heating of HHP glass compacts. It was found that the expansion process is independent of experimental parameters such as reaction time, temperature and heating rate, but does depend on the particle size and water content. During the heat treatment, the glass foaming process was preceded by decomposition of the new glass phase in the HHP compacts. A minimum apparent density of 0.40 g cm-3 was obtained on specimens prepared with low water content (5 wt%) and medium particle size (39-45 µm). X-ray diffraction patterns of the expanded glasses revealed the formation of SiO2 (agr-cristobalite and quartz) and CaSiO3 (wollastonite).

  19. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  20. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  1. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  2. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  3. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  4. Study of Bond Characteristics of Reinforced Waste Glass Aggregate Concrete

    Science.gov (United States)

    Rajagopalan, P.; Balaji, V.; Unnikrishnan, N.; Jainul Haq, T.; Bhuvaneshwari, P.

    2017-07-01

    The conformity of properties of waste glass aggregate with conventional aggregate was found out. Nine cubes (150mm x 150mm x 150mm) were cast out of which three were used for control concrete, three were fully replaced with waste glass as coarse aggregate, three were partially replaced(50%) with waste glass as fine aggregate. Six cylinders (150mm x 300mm) were cast out of which two for control concrete, two cylinders with coarse aggregate fully replaced with waste glass aggregate(WGA) and remaining two cylinders with partially replaced (50%) fine aggregate with waste glass aggregate. Cured specimens were subjected to compression and split-tensile test to ascertain the characteristic compressive strength and split tensile strength. Since the surface of the coarse aggregate plays a significant role in bonding of the rebar in reinforced concrete, pull-out test on both control and Waste Glass Aggregate (WGA) cube specimens (150mm x 150mm with 20mm diameter steel rods) were conducted. Scanning Electron Microscopy (SEM) analysis has been done for better understanding of bonding properties in waste glass fine aggregate(WGFA) and waste glass coarse aggregate(WGCA) concrete. Comparison of the results with that of control specimens showed that waste glass could be effectively used as aggregates in reinforced concrete construction.

  5. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z. [and others

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  6. The effect of high-level waste glass composition on spinel liquidus temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Riley, Brian J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-11-15

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.

  7. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics.

    Science.gov (United States)

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando

    2013-07-30

    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    Science.gov (United States)

    Thien, Bruno M. J.; Godon, Nicole; Ballestero, Anthony; Gin, Stéphane; Ayral, André

    2012-08-01

    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 °C, surface/volume ratio (S/V) = 55 cm-1) with and without addition of Mg2+ in the solution. "Mg-free" AVM glasses were also leached in initially pure water (50 °C, 200 cm-1) with and without addition of Mg2+ in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg2+. The addition of Mg2+ in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na+. The addition of Mg2+ in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water thanks to the incorporation of Mg and Ca within the gel.

  9. Effects of Waste Glass (WG on the Strength Characteristics of Cement Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    I.A.Ikara

    2015-11-01

    Full Text Available The study investigates the suitability of using waste glass (WG as admixture to cement stabilized black cotton soil (BCS for roads, fills and embankment. The soil was classified as A-7-5 and CH according to the American Association of State Highway and Transport Officials (AASHTO and the Unified Soil Classification System (USCS Classifications. Chemical analysis revealed that WG is rich in main oxides such as Silicon Oxide (69.2, Aluminium Oxide (2.29, Iron Oxide (1.57, Calcium Oxide (15.1 and Sodium Oxide (8.75. The soil was stabilized with 0, 2, 4, 6 and 8% cement and 0, 5 10, 15 and 20% WG by weight of the dry soil. Laboratory tests were carried out using the Standard Proctor (SP compactive efforts, California Bearing Ratio (CBR, Unconfined Compressive Strength (UCS, and compaction characteristics tests to evaluate the effectiveness of WG on Ordinary Portland cement (OPC stabilized BCS. The results obtained showed a decrease in the plasticity index (PI, liquid limit (LL, plastic limit (PL and increase Maximum Dry Density (MDD with increase in WG content in all cement proportions used and as compared to the values obtained for the natural soil. The peak 7 days UCS values of 1152kN/m2 was obtained at 8% OPC and 20% WG. Similarly, highest CBR value of 53.8% was obtained at an optimum blend of 8% OPC/20%WG. The results indicate that there is a potential in the use of WG as admixture to strengthen Black cotton soils.

  10. Phase Stability Determinations of DWPF Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  11. Storage and disposal of radioactive waste as glass in canisters

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

  12. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  13. Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200{degrees}C (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.; Schweiger, M.J. [and others

    1996-02-01

    Increasing the melting temperature of HLW glass allows an increase of waste loading (thus reducing product volume) and the production of more durable glasses at a faster melting rate. However, HLW glasses that melt at high temperatures differ in composition from glasses formulated for low temperature ({approximately}1150{degree}C). Consequently, the composition of high-temperature glasses falls in a region previously not well tested or understood. This report represents a preliminary study of property/composition relationships of high-temperature Hanford HLW glasses using a one-component-at-a-time change approach. A test matrix has been designed to explore a composition region expected for high-temperature high-waste loading HLW glasses to be produced at Hanford. This matrix was designed by varying several key components (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, Bi{sub 2}O{sub 3}, P{sub 2}O{sub 5}, UO{sub 2}, TiO{sub 2}, Cr{sub 2}O{sub 3}, and others) starting from a glass based on a Hanford HLW all-blend waste. Glasses were fabricated and tested for viscosity, glass transition temperature, electrical conductivity, crystallinity, liquidus temperature, and PCT release. The effect of individual components on glass properties was assessed using first- and second- order empirical models. The first-order component effects were compared with those from low-temperature HLW glasses.

  14. Compositional threshold for nuclear waste glass durability

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Rahmatullah; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2013-07-01

    The issue of major concern with the waste form, such as glass, is its chemical durability, I. e., the resistance to corrosion by aqueous media. A number of standard durability tests have been established for waste glasses, among which the product consistency test was selected as a criterion of HLW glass acceptability for the repository subsequently, a large PCT database has been collected containing over 1000 glasses. Such a database allows the development of models that relate PCT releases to glass is a strong function of composition, these models are used to formulate acceptable glasses in which the waste loading is maximized. Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, I. e. these which are sufficiently durable, from 'bad' glasses of a low durability. According to Populate al., transition region between durable and less durable glasses lies around 2a m{sup -2} as determined by the 7-day PCT normalized B release. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region. Our study is focused on the corrosion behavior of SiO{sub 2} - B{sub 2}O{sub 3} - Na{sub 2}O - Al{sub 2}O{sub 3} - Colleagues composition region. In particular, we try to identify the durability threshold separating durable from nondurable glasses in the composition space. So far we have explored the elemental releases of Na and B measured with the 7-day PCT.

  15. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al2O3, Cr2O3, SO3 and Na2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.

  16. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  17. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  18. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  19. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Scales, Charlie R.; Maddrell, Ewan R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom); Hobbs, Jeff [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)

    2013-07-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  20. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  1. Control of radioactive waste-glass melters: Part 3, Glass electrical stability

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Propst, R C; Plodinec, M J

    1988-01-01

    Pilot waste-glass melter operations have indicated a tendency for noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Changes in melter geometry are being considered in Japan, Germany, and the United States to permit draining of the noble metals to reduce their effects. Physical modeling of melter electrical patterns, electrode/waste-glass electrochemistry, and non-linear electrical behavior have been evaluated for typical waste-glass. Major melter design changes should not be necessary for the US Department of Energy's Defense Waste Processing Facility (DWPF). Top electrodes will not be significantly affected. Minor alterations in melter design, monitoring of electrical characteristics, and adjustment of bottom electrode currents can provide protection from shorting if noble metals accumulate. 31 refs., 4 figs., 4 tabs.

  2. Experimental design of a waste glass study

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150{degrees}C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases.

  3. Standard test method for determining liquidus temperature of immobilized waste glasses and simulated waste glasses

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These practices cover procedures for determining the liquidus temperature (TL) of nuclear waste, mixed nuclear waste, simulated nuclear waste, or hazardous waste glass in the temperature range from 600°C to 1600°C. This method differs from Practice C829 in that it employs additional methods to determine TL. TL is useful in waste glass plant operation, glass formulation, and melter design to determine the minimum temperature that must be maintained in a waste glass melt to make sure that crystallization does not occur or is below a particular constraint, for example, 1 volume % crystallinity or T1%. As of now, many institutions studying waste and simulated waste vitrification are not in agreement regarding this constraint (1). 1.2 Three methods are included, differing in (1) the type of equipment available to the analyst (that is, type of furnace and characterization equipment), (2) the quantity of glass available to the analyst, (3) the precision and accuracy desired for the measurement, and (4) candi...

  4. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  5. DWPF waste glass Product Composition Control System

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  6. Construction utilization of foamed waste glass

    Institute of Scientific and Technical Information of China (English)

    Jiang LU; Katsutada ONITSUKA

    2004-01-01

    Foamed waste glass(FWG) material is newly developed for the purpose to utilize the waste glassware andother waste glass. FWG has a multi-porous structure that consists of continuous or discontinuous voids. Hencelightweight but considerable stiffness can be achieved. In the present study, the manufacture and engineeringproperties of FWG are introduced first. Then, the utilizations of FWG are investigated in laboratory tests and fieldtests. Some case studies on design and construction work are also reported here. Through these studies we knowthat the discontinuous void material can be utilized as a lightweight fill material, ground improvement material andlightweight aggregate for concrete. On the other hand, the continuous void material can be used as water holdingmaterial for the greening of ground slope and rooftop, and as clarification material for water.

  7. Naturally occurring glasses: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Haaker, R.F.

    1979-04-01

    Volcanic glasses are very often altered by weathering and leaching and recrystallize to their fine-grained equivalents (rhyolites, felsites). The oldest volcanic glasses are dated at 40 million years before the present, but the majority are much younger. Devitrification textures was produced experimentally; and hydration rates for volcanic glasses were determined as a function of composition, temperature, and climate. Presence of water and temperature are the most important rate controlling variables. Even material that may still be described as glassy often exhibits evidence of alteration and recrystallization. Of the volcanic glasses that are preserved in the geologic record, it would be rare to describe such a glass as pristine. Despite the common alteration and recrystallization effects observed in volcanic glasses, glasses formed as a result of impact, tektites and lunar glasses, may occur in substantially unaltered form. In the case of tektites, their resistance to alteration is a result of their high SiO/sub 2/ content and low alkali content. Lunar glasses have been preserved for hundreds of millions of years because they exist in an environment with a low oxygen fugacity and an extremely low water vapor partial presssure. Thus one might expect glasses of particular compositions or in specific types of environment to be stable for long periods of time. These conclusions are applied to radioactive waste disposal over several time periods (0-30h, 30h-20y, 20-200y).

  8. Naturally occurring glasses: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Haaker, R.F.

    1979-04-01

    Volcanic glasses are very often altered by weathering and leaching and recrystallize to their fine-grained equivalents (rhyolites, felsites). The oldest volcanic glasses are dated at 40 million years before the present, but the majority are much younger. Devitrification textures was produced experimentally; and hydration rates for volcanic glasses were determined as a function of composition, temperature, and climate. Presence of water and temperature are the most important rate controlling variables. Even material that may still be described as glassy often exhibits evidence of alteration and recrystallization. Of the volcanic glasses that are preserved in the geologic record, it would be rare to describe such a glass as pristine. Despite the common alteration and recrystallization effects observed in volcanic glasses, glasses formed as a result of impact, tektites and lunar glasses, may occur in substantially unaltered form. In the case of tektites, their resistance to alteration is a result of their high SiO/sub 2/ content and low alkali content. Lunar glasses have been preserved for hundreds of millions of years because they exist in an environment with a low oxygen fugacity and an extremely low water vapor partial presssure. Thus one might expect glasses of particular compositions or in specific types of environment to be stable for long periods of time. These conclusions are applied to radioactive waste disposal over several time periods (0-30h, 30h-20y, 20-200y).

  9. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  10. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  11. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Science.gov (United States)

    Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd

    The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.

  12. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    Science.gov (United States)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  13. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    Science.gov (United States)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  14. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  15. Thermal properties of simulated Hanford waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington USA; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington USA; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington USA; Canfield, Nathan L. [Pacific Northwest National Laboratory, Richland Washington USA; Rönnebro, Ewa C. E. [Pacific Northwest National Laboratory, Richland Washington USA; Vienna, John D. [Pacific Northwest National Laboratory, Richland Washington USA; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington

    2017-03-20

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flash diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.

  16. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J., E-mail: James.Neeway@pnnl.gov [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Schumacher, Stéphan [ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry (France); Grambow, Bernd [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France)

    2015-04-15

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3–7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing {sup 32}Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, K{sub d}, of 900 mL/g.

  17. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  18. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  19. Mechanical Properties and Solidiifed Mechanism of Tailings Mortar with Waste Glass

    Institute of Scientific and Technical Information of China (English)

    NING Baokuan; XU Jingwen; CHEN Sili

    2015-01-01

    In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on, mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province. The experimental results show that adding waste glass particles can improve the grain size distribution of tailings. The effect is proportional to the content. The compressive strength of tailings mortar has increased signiifcantly. The ifneness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder, but the compressive strength of the mixture has gradually enhanced with the increase of the dosage. Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity, which can act hydration with tailings, at the same time glass powder also, plays a role in ifne aggregate iflling. Therefore, all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.

  20. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  1. Canonical correlation of waste glass compositions and durability, including pH

    Energy Technology Data Exchange (ETDEWEB)

    Oeksoy, D.; Pye, L.D. (Alfred Univ., NY (United States)); Bickford, D.F.; Ramsey, W.G. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  2. Canonical correlation of waste glass compositions and durability, including pH

    Energy Technology Data Exchange (ETDEWEB)

    Oeksoy, D.; Pye, L.D. [Alfred Univ., NY (United States); Bickford, D.F.; Ramsey, W.G. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-05-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  3. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  4. Using of borosilicate glass waste as a cement additive

    Science.gov (United States)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  5. Glass binder development for a glass-bonded sodalite ceramic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materials made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.

  6. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  7. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    Science.gov (United States)

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill.

  8. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250[degree]C. The nine major oxide components were SiO[sub 2], B[sub 2]O[sub 3], Li[sub 2]O, Na[sub 2]O, CaO, MgO, Fe[sub 2]O[sub 3], Al[sub 2]O[sub 3], and ZrO[sub 2]. The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150[degree]C. Least squares regression was used to obtain component coefficients for all the models.

  9. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  10. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    Energy Technology Data Exchange (ETDEWEB)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  11. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  12. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  13. Recycling and Utilization of Waste Glass Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Feng Yan-chao

    2016-01-01

    Full Text Available This paper mainly introduced the recovery method, classification and comprehensive utilization process of waste glass fiber reinforced plastics (GFRP. Among the current methods of utilization, the physical method is most promising. After pre-processing of waste GFRP, the short glass fiber can be used in gypsum block to improve the anti-cracking and operation performance of the material; waste GFRP powder can be used in plastic fiber reinforced manhole covers to increase the mechanical strength, and the products conformed to JC 1009-2006. Based on these studies, we also point out some problems concerning the utilization of waste glass fiber reinforced plastics.

  14. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua, E-mail: nzhangh@aliyun.com [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); China Institute of Atomic Energy, P.O. Box 275-93, 102413 Beijing (China); Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-07-15

    Highlights: • Spinel crystallization incorporates ZnO from base glass, displacing Mg and Ni. • Raman spectroscopy demonstrates significant impact on glass structure by addition of ZnO to base glass. • Addition of ZnO reduces glass dissolution rate at early time periods (up to 28 days). - Abstract: Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na{sub 2}O/Li{sub 2}O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn{sub 0.60}Ni{sub 0.20}Mg{sub 0.20})(Cr{sub 1.37}Fe{sub 0.63})O{sub 4}. The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q{sup 3} species, which we attribute to Si–O–Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na{sub 2}O/Li{sub 2}O base glass up to 28 days, due to

  15. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  16. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  17. Glass waste forms for heat-generating Cs{sup +} and Sr{sup 2+} wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Heo, Jong [POSTECH, Pohang (Korea, Republic of); Park, Hwan Seo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Pyro-processing is one of the promising recycling technologies for spent nuclear fuel (SNF) from Light Water Reactors (LWR) in Korea. This processing is able to separate radioactive waste nuclei and reduce heat loading in storage site by extraction of heat generating radioactive nuclei. In this study, we used alumino-borosilicate glasses for the immobilization of Cs{sub 2}O and SrO wastes. Glasses were prepared and their important properties including chemical durability were analyzed. In addition, heat generation and its effect on thermal stability of glasses was examined. Glass waste forms that contain heat-generating Cs{sup +} and Sr{sup 2+} from pyro-processing were synthesized. Basic properties of glasses such as densities, linear expansion coefficients and glass-transition temperatures were similar to those of industrial radioactive waste glass. Analysis on the heat load simulation under the failure of the cooling system indicated that maximum temperature inside the canisters are well below the glass-transition temperature of each glass.

  18. [Disposal of waste glass in sanitary departments: a sample survey in the Lazio region].

    Science.gov (United States)

    Del Sole, A; Fonda, A

    2004-01-01

    As a result of Italian law, DPR 15/7/2003 n. 254, about hospital waste, and given that little has been written about recycling waste glass in hospitals, a survey of 28 health departments in Lazio was performed. The objectives were: to estimate the mean quantity of clear vitreous waste in one year, to estimate how vitreous waste is administered, to estimate the extent of the use of plastic instead of glass, to analyse the costs and benefits of glass use and/or plastic use and to evaluate staff training about hospital waste disposal. The average production of clear vitreous waste was 0.28 kilogram per day per hospital bed occupied. (This would be the theoretical maximum quantity of glass to be recycled). Among the 28 departments studied, 82% separated waste products but only 36% disposed of glass in accordance with the law. The estimated possible savings on glass phleboclysis in 2002 year were 35,000 euro. Staff training could avoid this conspicuous waste of money. Fifteen departments also used plastic phleboclysis; of these, in 2 departments plastic waste is separated in the wards, but unfortunately this material is later disposed of in the bins for general solid urban waste. The other thirteen hospitals dispose of waste plastic as infectious material. Using glass phleboclysis instead of plastic phleboclysis would save about 680,000 euros per year. The disposal of glass waste material in practice was not found to follow the principles taught in the training courses. Theoretic data about glass production, estimated in this survey, refers only to clear glass and it is an underestimate of that of all glass used in departments. The quantity of glass actually recycled has been about 0.14 kilogram per day per hospital bed occupied and thus only 50% of the theoretical quantity (0.28 kilogram per day per hospital bed occupied). This percentage could be improved by effective training. Ideally, the disposal of waste glass would follow the legal requirements and be monitored

  19. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  20. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested.

  1. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  2. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  3. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  4. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  5. Development of Crystal-Tolerant High-Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

    2010-12-17

    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ≤10-μm crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation

  6. Effects of ionization on silicate glasses. [Silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  7. Deccan Traps-associated obsidian glass: a nuclear waste containment

    National Research Council Canada - National Science Library

    Nishi Rani; J. P. Shrivastava; R. K. Bajpai

    2013-01-01

    Alteration of obsidian collected from Osham Hill, Gujarat after treatment under hydrothermal-like conditions is compared with the naturally altered obsidian for its assessment as a nuclear waste glass...

  8. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    O' Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  9. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    characteristics of the waste form more predictable/flexible. However, in the future, the glass phase still needs to be accurately characterized to determine the effects of waste loading and additives on the glass structure. Initial investigations show a borosilicate glass phase rich in silica. Second, the normalized concentrations of elements leached from the waste form during static leach testing were all below 0.6 g/L after 28d at 90 C, by the Product Consistency Test (PCT), method B. These normalized concentrations are on par with durable waste glasses such as the Low-Activity Reference Material (LRM) glass. The release rates for the crystalline phases (oxyapatite and powellite) appear to be lower (more durable) than the glass phase based on the relatively low release rates of Mo, Ca, and Ln found in the crystalline phases compared to Na and B that are mainly observed in the glass phase. However, further static leach testing on individual crystalline phases is needed to confirm this statement. Third, Ion irradiation and In situ TEM observations suggest that these crystalline phases (such as oxyapatite, ln-borosilicate, and powellite) in silicate based glass ceramic waste forms exhibit stability to 1000 years at anticipated doses (2 x 10{sup 10}-2 x 10{sup 11} Gy). This is adequate for the short lived isotopes in the waste, which lead to a maximum cumulative dose of {approx}7 x 10{sup 9} Gy, reached after {approx}100 yrs, beyond which the dose contributions are negligible. The cumulate dose calculations are based on a glass-ceramic at WL = 50 mass%, where the fuel has a burn-up of 51GWd/MTIHM, immobilized after 5 yr decay from reactor discharge.

  10. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...

  11. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  12. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  13. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  14. Production of a High-Level Waste Glass from Hanford Waste Samples

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

  15. Experimental design and process analysis for acidic leaching of metal-rich glass wastes.

    Science.gov (United States)

    Tuncuk, A; Ciftci, H; Akcil, A; Ognyanova, A; Vegliò, F

    2010-05-01

    The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.

  16. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  17. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Science.gov (United States)

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  18. Long-term modeling of glass waste in portland cement- and clay-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  19. Iron Phosphate Glass-Containing Hanford Waste Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, Michael J.; Kim, Dong-Sang

    2011-08-01

    Resolution of the nation’s high level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron phosphate-based glass with a selected waste composition that is high in sulfates (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis as related to the implementation of phosphate-based glasses for Hanford low activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, and Mo-Sci Corporation.

  20. Iron Phosphate Glass-Containing Hanford Waste Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

  1. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  2. Structural control of the stability of nuclear waste glasses

    Science.gov (United States)

    Calas, G.; Galoisy, L.; Cormier, L.; Bergeron, B.; Jollivet, P.

    2009-05-01

    Vitrification of liquid high-level radioactive waste in borosilicate glasses has received a great attention in several countries. The fundamental properties of the waste forms are their chemical and mechanical durability. We present an overview of the local structure of inactive analogs of the French nuclear glass, using structural information obtained by a combination of X-ray absorption Fine Structure (XAFS) and Wide Angle X-ray Scattering (WAXS). We will first contrast several classes of elements, such as Zr, Mo or Zn, which give nuclear glasses peculiar positive or adverse properties for the industrial process: enhanced chemical stability, phase separation, crystal nucleation and separation. These properties may be rationalized using Pauling rules, familiar to Mineralogists, as other properties are correctly modelled in simplified glass compositions using molecular dynamics. We will also point out the importance of the melt-to-glass transition and the consequence of the glass structural properties on the resistance of glassy matrices to irradiation. Glass alteration affects the long-term stability of the glass. It is characterized by an amorphous (glass)-amorphous (gel) transformation. Depending on alteration conditions, alteration layers may have or not a protective character, which will influence radionuclide retention over time. We will present the structural modification of the surface chemistry of the glass monoliths during short-term experiments and the evolution towards a gel, which forms progressively at the expense of the glass. The protective character of the gel, observed during glass leaching under near-saturated conditions, will be rationalized by its structural properties.

  3. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Science.gov (United States)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  4. Composite materials based on wastes of flat glass processing.

    Science.gov (United States)

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  5. Sulfur polymer cement as a low-level waste glass matrix encapsulant

    Energy Technology Data Exchange (ETDEWEB)

    Sliva, P.; Peng, Y.B.; Peeler, D.K. [and others

    1996-01-01

    Sulfur polymer cement (SPC) is being considered as a matrix encapsulant for the Hanford low-level (activity) waste glass. SPC is an elemental sulfur polymer-stabilized thermoplastic that is fluid at 120 {degrees}C to 140{degrees}C. The candidate process would encapsulate the waste glass by mixing the glass cullet with the SPC and casting it into the container. As the primary barrier to groundwater and a key factor in controlling the local environment of the disposal system after it has been compromised, SPC plays a key role in the waste form`s long-term performance assessment. Work in fiscal year 1995 targeted several technical areas of matrix encapsulation involving SPC. A literature review was performed to evaluate potential matrix-encapsulant materials. The dissolution and corrosion behavior of SPC under static conditions was determined as a function of temperature, pH, and sample surface area/solution volume. Preliminary dynamic flow-through testing was performed. SPC formulation and properties were investigated, including controlled crystallization, phase formation, modifying polymer effects on crystallization, and SPC processibility. The interface between SPC and simulated LLW glass was examined. Interfacial chemistry and stability, the effect of water on the glass/SPC interface, and the effect of molten sulfur on the glass surface chemistry were established. Preliminary scoping experiments, involving SPC`s Tc gettering capabilities were performed. Compressive strengths of SPC and SPC/glass composites, both before and after lifetime radiation dose exposure, were determined.

  6. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength.

  7. COMBINED RETENTION OF MOLYBDENUM AND SULFUR IN SIMULATED HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2009-10-16

    This study was undertaken to investigate the effect of elevated sulfate and molybdenum concentrations in nuclear waste glasses. A matrix of 24 glasses was developed and the glasses were tested for acceptability based on visual observations, canister centerline-cooled heat treatments, and chemical composition analysis. Results from the chemical analysis of the rinse water from each sample were used to confirm the presence of SO{sup 2-}{sub 4} and MoO{sub 3} on the surface of glasses as well as other components which might form water soluble compounds with the excess sulfur and molybdenum. A simple, linear model was developed to show acceptable concentrations of SO{sub 4}{sup 2-} and MoO{sub 3} in an example waste glass composition. This model was constructed for scoping studies only and is not ready for implementation in support of actual waste vitrification. Several other factors must be considered in determining the limits of sulfate and molybdenum concentrations in the waste vitrification process, including but not limited to, impacts on refractory and melter component corrosion, effects on the melter off-gas system, and impacts on the chemical durability and crystallization of the glass product.

  8. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  9. Development and characterization of charcoal filled glass-composite materials made from SLS waste glass

    Science.gov (United States)

    Mustafa, Zaleha; Ismail, Mohd Ikwan; Juoi, Jariah Mohd; Shamsudin, Zurina; Rosli, Zulkifli M.; Fadzullah, Siti Hajar Sheikh Md; Othman, Radzali

    2015-07-01

    Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass, ball clay and charcoal powder at various carbon content, of 1wt. % C, 5wt.% C and 10 wt.% C, fired to temperature of 850 °C as an alternative method for land site disposal method as well as effort for recycling waster glass. The effect of charcoal powder on the porosity, water absorption and hardness properties were studied. Phase analysis studies revealed the present of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the composite prepared from the mixture of 84 wt.% SLS, 1 wt.% of charcoal and 15 wt.% ball clay containing average pore size of 10 µm has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 0.76 %, lowest porosity percentage of 1.76 %, highest 4.6 GPa for Vickers Microhardness.

  10. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0{sub 2},B{sub 2}O{sub 3},A1{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O,Li{sub 2}O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  11. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0[sub 2],B[sub 2]O[sub 3],A1[sub 2]O[sub 3], Fe[sub 2]O[sub 3], ZrO[sub 2], Na[sub 2]O,Li[sub 2]O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  12. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  13. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  14. THE IMPACT OF KINETICS ON NEPHELINE FORMATION IN NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.

    2011-03-07

    Sixteen glass compositions were selected to study the potential impacts of the kinetics of nepheline formation in high-level nuclear waste (HLW) glass. The chosen compositions encompassed a relatively large nepheline discriminator (ND) range, 0.40-0.66, and included a relatively broad range, and amount of, constituents including high aluminum and high boron concentrations. All glasses were fabricated in the laboratory and subsequently exposed to six different cooling treatments. The cooling treatments consisted of three 'stepped' profiles and their corresponding 'smooth' profiles. Included in the cooling treatment was the Defense Waste Processing Facility (DWPF) canister centerline cooling (CCC) profile in addition to a 'faster' and a 'slower' total cooling line. After quenching and heat treating, x-ray diffraction confirmed the type and amount of any resultant crystallization. The target compositions were shown to be consistent with the measured compositions. Two quenched glasses and several treated glasses exhibited minor amounts of spinel and spinel-like phases. Nepheline was not observed in any of the quenched glasses but was observed in many of the treated glasses. The amount of nepheline ranged from approximately 2wt% to 30wt% for samples cooled over shorter times and longer times respectively. Differences were observed in the amount of nepheline crystallization after smooth and stepped cooling and increased with total cooling time. In some glasses, nepheline crystallization appeared to be directly proportional to total cooling time while the total amount of nepheline crystallization varied, suggesting that the nepheline crystallization rate was independent of (or at least faster than) cooling rate but, varied depending on the glass composition. On the contrary, in another glass, nepheline crystallization appeared to be inversely proportional to cooling rate. The high alumina glasses, predicted to form nepheline

  15. Process for Converting Waste Glass Fiber into Value Added Products, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, Raymond T.

    2005-12-31

    Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is

  16. Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes

    Science.gov (United States)

    Ezz-Eldin, F. M.

    2001-10-01

    This paper discusses the leaching behavior of simulated high-level-waste cabal glass (CaO-B 2O 3-Al 2O 3) as a bulk specimen. During leach tests, the glass is immersed in either deionized water or in groundwater for up to 57 days at 70°C. Based on the results, mechanisms observed with the leaching of the glass in deionized water or groundwater are discussed. Three factors, i.e., time of immersion, type of leaching solution and irradiation effect, are extensively studied. The corrosion was found to be linear with time in the limit of investigation (1-57 days) but with different rates depending on the type of solution and glass composition. Effects of γ-irradiation on the glass together with groundwater were found to decrease the glass durability. The evolution of the damage on mechanical and physical properties of the glass before and after leaching or irradiation was also discussed. The addition of waste oxide changes the properties of the glass matrix, so the influence of the guest oxides on the properties of host materials is also discussed.

  17. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan; Kim, Dong-Sang; Tucker, Abigail E.; Schweiger, Michael J.; Kruger, Albert A.

    2015-10-01

    Volatile loss of radioactive 99Tc to offgas is a concern with processing the low-activity waste (LAW) at Hanford site. We investigated the partitioning and incorporation of Re (a nonradioactive surrogate for 99Tc) into the glass melt during crucible melting of two simulated LAW feeds that resulted in a large difference in 99mTc/Re retention in glass from the small-scale melter tests. Each feed was prepared from a simulated liquid LAW and chemical and mineral additives (boric acid, silica sand, etc.). The as-mixed slurry feeds were dried at 105°C and heated to 600–1100°C at 5 K/min. The dried feeds and heat treated samples were leached with deionized water for 10 min at room temperature followed by 24-h leaching at 80°C. Chemical compositions of the resulting solutions and insoluble solids were analyzed. Volume expansion measurement and X-ray diffraction were performed on dried feeds and heat treated samples to characterize the progress of feed-to-glass conversion reactions. It was found that the incorporation of Re into glass melt virtually completed during the major feed-to-glass conversion reactions were going on at ≤ 700°C. The present results suggest that the different composition of the salt phase is responsible for the large difference in Re incorporation into glass melt during early stages of glass melting at ≤ 700°C. Additional studies with modified and simplified feeds are underway to understand the details on how the different salt composition affects the Re incorporation.

  18. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  19. Mixture experiment techniques for reducing the number of components applied for modeling waste glass sodium release

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.; Redgate, T. [Pacific Northwest National Lab., Richland, WA (United States). Statistics Group

    1997-12-01

    Statistical mixture experiment techniques were applied to a waste glass data set to investigate the effects of the glass components on Product Consistency Test (PCT) sodium release (NR) and to develop a model for PCT NR as a function of the component proportions. The mixture experiment techniques indicate that the waste glass system can be reduced from nine to four components for purposes of modeling PCT NR. Empirical mixture models containing four first-order terms and one or two second-order terms fit the data quite well, and can be used to predict the NR of any glass composition in the model domain. The mixture experiment techniques produce a better model in less time than required by another approach.

  20. The influence of waste variability on the properties and phase stability of the West Valley reference glass

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, D.; Joseph, I.; Mathur, A.; Capozzi, C.; Armstrong, S.; Pye, L.D. [West Valley Nuclear Services Co., Inc., West Valley, NY (United States)

    1987-09-01

    A year long study of the effects of waste variability on properties and phase stability of the West Valley reference glass has been conducted. Viscosity, electrical conductivity, glass transition temperature, density, and liquidus temperature have been measured for a series of glasses where the weight fraction of Al{sub 2}0{sub 3}, Fe{sub 2}0{sub 3}, NiO, MnO{sub 2}, Cr{sub 2}O{sub 3}, and P{sub 2}0{sub 5}, was varied systematically around the reference glass composition. A computer program for predicting melt viscosity has been developed. A preliminary Time-Temperature-Transformation diagram was also determined for the reference composition. It is concluded that the system, ``Glass Formers-Zeolite-Waste Mix,`` is a forgiving one in the sense that considerable variation of waste composition can be tolerated without substantially affecting the melting and phase behavior of the reference glass.

  1. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses; Influence du dopage par certains elements de transition sur les effets d'irradiation dans des verres d'interet nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Florent, Olivier

    2006-06-15

    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then {beta} irradiated at different doses up to 10{sup 9} Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe{sup 3+} reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe{sup 3+} amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h{sup 0}/e-) consuming equilibrium. He{sup +} and Kr{sup 3+} ions and {gamma} irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  2. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization; Efectos de la radiacion alfa en la dureza y tenacidad de un vidrio borosilicato utilizado para inmovilizacion de residuos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1999-11-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction {sup 10} B(n,{alpha}){sup 7} Li, where the {sup 10} B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author) 11 refs., 6 figs., 2 tabs.

  3. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  4. Dilute condition corrosion behavior of glass-ceramic waste form

    Science.gov (United States)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; Zhu, Zihua; Olszta, Matthew J.; Tang, Ming

    2016-12-01

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).

  5. Proceedings of Symposium on Utilization of Waste Glass in Secondary Products

    Science.gov (United States)

    1973-01-01

    Papers are reported which were presented at the conference on waste glass recovery and re-use in secondary products. The uses considered include: road surfacing, asphaltic concretes, road construction, terrazzo, cement concrete, pozzolan, glass wool, glass-polymer composites, and tiles. Problems of recycling glass in remote areas, and the economics and markets for secondary glass products are discussed.

  6. Mixture models versus free energy of hydration models for waste glass durability

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.; Redgate, T.; Masuga, P.

    1996-03-01

    Two approaches for modeling high-level waste glass durability as a function of glass composition are compared. The mixture approach utilizes first-order mixture (FOM) or second-order mixture (SOM) polynomials in composition, whereas the free energy of hydration (FEH) approach assumes durability is linearly related to the FEH of glass. Both approaches fit their models to data using least squares regression. The mixture and FEH approaches are used to model glass durability as a function of glass composition for several simulated waste glass data sets. The resulting FEH and FOM model coefficients and goodness-of-fit statistics are compared, both within and across data sets. The goodness-of-fit statistics show that the FOM model fits/predicts durability in each data set better (sometimes much better) than the FEH model. Considerable differences also exist between some FEH and FOM model component coefficients for each of the data sets. These differences are due to the mixture approach having a greater flexibility to account for the effect of a glass component depending on the level and range of the component and on the levels of other glass components. The mixture approach can also account for higher-order (e.g., curvilinear or interactive) effects of components, whereas the FEH approach cannot. SOM models were developed for three of the data sets, and are shown to improve on the corresponding FOM models. Thus, the mixture approach has much more flexibility than the FEH approach for approximating the relationship between glass composition and durability for various glass composition regions.

  7. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-04-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  8. An approach to thermochemical modeling of nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Beahm, E.C. [Oak Ridge National Lab., TN (United States); Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)

    1998-11-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses.

  9. Augmenting a Waste Glass Mixture Experiment Study with Additional Glass Components and Experimental Runs

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Cooley, Scott K.(BATTELLE (PACIFIC NW LAB)); Peeler, David K.(Savannah River Technology Center); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Edwards, Tommy B.(Savannah River Technology Center)

    2002-01-01

    A glass composition variation study (CVS) for high-level waste (HLW) stored in Idaho is being statistically designed and performed in phases over several years. The purpose of the CVS is to investigate and model how HLW-glass properties depend on glass composition. The resulting glass property-composition models will be used to develop desirable glass formulations and for other purposes. Phases 1 and 2 of the CVS have been completed and are briefly described. This paper focuses on the CVS Phase 3 experimental design, which was chosen to augment the Phase 1 and 2 data with additional data points, as well as to account for additional glass components not studied in Phases 1 and/or 2. In total, 16 glass components were varied in the Phase 3 experimental design. The paper describes how these Phase 3 experimental design augmentation challenges were addressed using the previous data, preliminary property-composition models, and statistical mixture experiment and optimal experimental design methods and software.

  10. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  11. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail: hashemib@shirazu.ac.ir

    2014-04-01

    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  12. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  13. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  14. Using quartzofeldspathic waste to obtain foamed glass material

    Directory of Open Access Journals (Sweden)

    O.V. Kazmina

    2016-03-01

    Full Text Available The present paper proposes a method for the processing of mine refuse non-ferrous metal ore in the production of foamed glass. The subject of this research is a low-temperature frit synthesis (<900 °C, allowing for the high-temperature glass melting process to be avoided. The technology for the production of frit without complete melting of the batch and without using glass-making units offers a considerable reduction in energy consumption and air pollution. It was found that material samples obtained with a density of up to 250 kg/m3 are of rigidity (up to 1.7 MPa in comparison with the conventional foamed glass (1 MPa. This increased rigidity was due to the presence of crystalline phase particles in its interpore partition of less than 2 µm in size. Material with a density of 300 kg/cm3 is recommended for thermal insulation for the industrial and construction sectors. At densities above 300 kg/cm3 and a strength of 2.5 MPa, the purpose becomes heat-insulating construction material. The proposed method for obtaining a porous material from waste widens our choice of raw materials for foamed glass, whilst saving resources and energy.

  15. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo(6+) to Mo(5+) during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  16. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  17. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-24

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer

  18. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  19. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    Science.gov (United States)

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  20. In situ testing of waste glass in clay

    Energy Technology Data Exchange (ETDEWEB)

    Van Iseghem, P.Ph. [SCK/CEN, Mol (Belgium)

    1994-12-31

    The actual status of an in-situ test programme exposing different waste glass samples directly to Boom clay is reviewed. Corrosion test tubes have been retrieved after residence for 5 years at 16{degrees}C, 2 years at 90{degrees}, and 5 years at 170{degrees}C. The corrosion is interpreted in terms of mass loss, surface analysis by SEM and profiling by EPMA and SIMS. At 16{degrees}C, glasses dissolve about 0.02-0.08 {mu}m per year. At higher temperature dissolution is more than two orders of magnitude larger. A good agreement is obtained between the mass losses and the surface analyses. The advantages and limitations of the Belgian in-situ tests are compared with the conclusions of an international expert group.

  1. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and

  2. Process for Converting Waste Glass Fiber into Value Added Products, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, Raymond T.

    2005-12-31

    Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is

  3. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  4. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    William j. Weber; Lumin Wang; Jonathan Icenhower

    2004-07-09

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials.

  5. Characteristics of borosilicate waste glass form for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    Basic data, required for the design and the performance assessment of a repository of HLW, suchas the chemical composition and the characteristics of the borosilicate waste glass have been identified according to the burn-ups of spent PWR fuels. The diemnsion of waste canister is 430mm in diameter and 1135mm in length, and the canister should hold less than 2kwatts of heat from their decay of radionuclides contained in the HLW. Based on the reprocessing of 5 years-cooled spent fuel, one canister could hold about 11.5wt.% and 10.8wt.% of oxidized HLW corresponding to their burn-ups of 45,000MWD/MTU and 55,000MWD/MTU, respectively. These waste forms have been recommanded as the reference waste forms of HLW. The characteristics of these wastes as a function of decay time been evaluated. However, after a specific waste form and a specific site for the disposal would be selected, the characteristics of the waste should be reevaluated under the consideration of solidification period, loaded waste, storage condition and duration, site circumstances for the repository system and its performance assessment.

  6. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  7. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  8. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L.

    1997-10-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. It is important to understand the mechanism by which alteration phases affect glass corrosion behavior and the glass dissolution rate to reliably predict whether or not similar effects will occur in a disposal environment and the impact of phase formation on the long-term performance of waste glass. While solid state transformation of a glass to thermodynamically more stable phases in kinetically prohibitive, contact by water provides an energetically favorable pathway for this transformation to occur by a dissolution-reprecipitation mechanism. The kinetics of the transformation depends on the dissolution kinetics of the glass and the precipitation kinetics of the alteration phases. The rates of these two processes are linked primarily through the solution activity of orthosilicic acid (and perhaps also that of an aluminum-bearing species).

  9. Production of glass-ceramics from sewage sludge and waste glass

    Science.gov (United States)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  10. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  11. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity.

  12. Development of a glass polymer composite sewer pipe from waste glass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rayfiel, R.; Kukacka, L.E.

    1980-02-01

    A range of polymer-aggregate composites for applications in industry which appear to be economically attractive and contribute to energy conservation were developed at BNL. Waste glass is the aggregate in one such material, which is called glass-polymer-composite (GPC). This report assays the economics and durability of GPC in piping for storm drains and sewers. The properties of the pipe are compared statistically with the requirements of industrial specifications. These establish the raw materials requirements. The capital and operating costs for producing pipe are then estimated. Using published sales values for competing materials, the return on investment is calculated for two cases. The ultimate energy requirement of the raw materials in GPC is compared with the corresponding requirement for vitrified clay pipe. The strengths of GPC, reinforced concrete, vitrified clay and asbestos cement pipe are compared after extended exposure to various media. The status of process and product development is reviewed and recommendations are made for future work.

  13. Letter report: Minor component study for low-level radioactive waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

  14. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  15. Fabrication and physical characteristics of new glasses from wastes of limestone and phosphorite rocks

    Indian Academy of Sciences (India)

    YASSER B SADDEEK; K A ALY; RABIE S FARAG; M A M UOSIF; K H S SHAABAN

    2016-12-01

    In this work, new glasses were synthesized from wastes of limestone and phosphate rocks besides commercial borax. The glasses were characterized by FTIR, DTA, ultrasonic techniques and UV spectroscopy. It was found that the concentration of both CaO and P$_2$O$_5$ increases and the concentrations of B$_2$O$_3$ and Na$_2$O decrease as the content of phosphate rocks increases. Variation of the contents of the different oxides affects the concentration of the structural units constituting the glass, which was indicated by the behaviour of the fraction N$_4$ of BO$_4$ units in the borate matrix. The density and the refractive index of the glasses decrease as the CaO and P$_2$O$_5$ contents increase, which was attributed to the increase of [BO$_3$] structural units. On the other hand, the physical parameterssuch as the ultrasonic velocity, the elastic moduli, the optical bandgap and the optical polarizability increased, which was attributed to the higher coordination number of CaO$_6$ compared with the coordination of borate structuralunits and to the former effect of P$_2$O$_5$. As a result, a polymerization of the total co-ordination number of the glass, crosslink density and connectivity within the glass network will occur.

  16. High-Level waste glass dissolution in simulated internal waste package environments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V.; Pan, Y.M. [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio (United States)

    2000-07-01

    The rate of radionuclide release as a result of leaching of high-level radioactive waste (HLW) glass is important to the performance of engineered barriers. The modified product consistency test (PCT), with regular leachant exchanges, was used to determine the leaching rate of simulated HLW glasses (West Valley Demonstration Project Reference 6 and Defense Waste Processing Facility Blend 1) in aqueous solutions of FeCl{sub 2} and FeCl{sub 3} at 90 EC. These conditions were selected to simulate an internal waste package (WP) environment containing steel corrosion products and oxidized by radiolysis. Substantially higher initial B and alkali release rates, approximately a factor of 50 to 70 times greater than those in deionized water, were measured in 0.25 M FeCl{sub 3} solutions. The initial leaching rate for B and alkali was found to be pH-dependent and decreased as the leachate pH was increased. While the leach rate for Si did not show any significant change in the pH range studied, the leach rate for Al showed a minimum. The minimum in the leach rate of Al occurred at different pH values. The study indicates that elements in the glass matrix are released incongruently. (authors)

  17. Antibacterial effects of glass ionomers.

    Science.gov (United States)

    DeSchepper, E J; White, R R; von der Lehr, W

    1989-04-01

    Glass ionomer cements have been shown to possess antimicrobial activity. Proposed mechanisms of action include acidity and fluoride. It was the purpose of this study to determine the antimicrobial effect of 11 glass ionomer cements, their individual powder and liquid components and one resin-bonded liner containing high fluoride ionomer glass against Streptococcus mutans #6715. The role of fluoride and pH in the antibacterial activity was also studied. Using agar diffusion assay methodology, the following results were obtained. All of the glass ionomer cements were inhibitory against S. mutans. The antibacterial cements and slurries that were tested for fluoride, released the ion in excess of reported minimum inhibitory values. The antimicrobial activity of the liquid components, that were tested for the effects of pH changes, was totally lost when the pH was adjusted to 5. The resin bonded liner was inactive against S. mutans and did not release inhibitory concentrations of fluoride. These results indicate that freshly-mixed glass ionomer cements are antimicrobial against S. mutans and that the mechanism of action is probably a function of both fluoride and pH although additional factors may be involved.

  18. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  19. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  20. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  1. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

    2014-05-31

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  2. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

    2014-05-31

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  3. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  4. Commercial high-level-waste management: options and economics. A comparative analysis of the ceramic and glass waste forms

    Energy Technology Data Exchange (ETDEWEB)

    McKisson, R.L.; Grantham, L.F.; Guon, J.; Recht, H.L.

    1983-02-25

    Results of an estimate of the waste management costs of the commercial high-level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20-year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. The estimated total cost (capital and operating) of the management in the ceramic form is $2.0 billion, and that of the glass form is $4.0 billion. Waste loading and waste form density are the driving factors in that the low-waste loading (25%) and relatively low density (3.1 g/cm/sup 3/) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/) characteristic of the glass form requires several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 g/cm/sup 3/. The minimum-cost ceramic waste form has a 60 wt. % waste loading of commercial high-level waste and requires 25 years storage before emplacement in basalt with delayed backfill. Because of the process flexibility allowed by the availability of the high-waste loading of the ceramic form, the intermediate-level liquid waste stream can be mixed with the high-level liquid waste stream and economically processed and emplaced. The cost is greater by $0.3 billion than that of the best high-level liquid waste handling process sequence ($2.3 billion vs $2.0 billion), but this difference is less than the cost of the separate disposal of the intermediate-level liquid waste.

  5. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations

  6. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel R.

    2016-10-01

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% higher for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.

  7. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  8. Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions

    Science.gov (United States)

    Kong, Linggen; Zhang, Yingjie; Karatchevtseva, Inna

    2017-10-01

    Glass-Y2Ti2O7 pyrochlore was fabricated by sintering the mixture of glass precursor powder and (YTi)-composite which was prepared by a soft chemistry route. X-ray diffraction and Raman spectroscopy confirmed that the phase pure pyrochlore was crystallized in-situ in amorphous glass matrix at 1200 °C with dwelling time over 1 h. Pyrochlore was formed in glass matrix with cooling rate ∼0.1-40 °C/min, and independent of addition of alkali/alkaline earth fluorides. Glass matrix was able to accommodate/dissolve small amounts of impurities and the mean pyrochlore particle size was between 1 and 2 μm in glass observed by scanning electron microscopy.

  9. Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process.

    Science.gov (United States)

    Lv, Jianfang; Yang, Hongying; Jin, Zhenan; Ma, Zhiyuan; Song, Yan

    2016-11-01

    A novel and effective process for extracting lead from the hazardous waste Cathode Ray Tubes (CRT) funnel glass is presented. The technological breakthrough of this process is introducing the discarded CRT funnel glass to traditional lead smelting. In this study, the influences of amount of carbon addition, calcium-silicate ratio, temperature, holding time and funnel glass addition on lead extraction efficiency were investigated to determine the optimal operational parameters. With a glass addition of less than 30wt%, a high extraction yield of 97.5% of lead from the mixture of funnel glass and lead slag was successfully obtained by controlling the C/PbO molar ratio, CaO/SiO2 ratio, temperature, treatment time at 0.9, 0.8, 1200°C, 60min, respectively. The main crystalline phases of the residues were calcium silicate slag, and an amorphous glass phase appears at a glass addition more than 30wt%. Thermodynamic calculation shows that the proportion of liquid phase in the slag first increased and then decreased, when the addition of glass is increased, while the viscosity of the slag exhibited a continuous decrease. Thus, based on all the results, it is concluded that the process proposed in this paper is an effective and promising approach for reutilization of obsolete CRT funnel glass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W. [School of Materials Science and Engineering, Tongji Univ., Shanghai, SH (China); Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D. [Univ. of Missouri-Rolla (United States). Graduate Center for Materials Research

    2004-10-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr{sub 2}O{sub 3}, have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10{sup -9} g/(cm{sup 2} . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of <0.1 g/(m{sup 2} . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr{sub 2}O{sub 3} in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr{sub 2}O{sub 3} that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr{sub 2}O{sub 3} which is at least three times larger than that for borosilicate glasses. (orig.)

  11. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Kerisit, Sebastien N.; Liu, Jia; Zhang, Jiandong; Zhu, Zihua; Riley, Brian J.; Ryan, Joseph V.

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG), glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.

  12. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  13. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  14. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

  15. Ensuring Longevity: Ancient Glasses Help Predict Durability of Vitrified Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jamie L.; McCloy, John S.; Ryan, Joseph V.; Kruger, Albert A.

    2016-05-01

    How does glass alter with time? For the last hundred years this has been an important question to the fields of object conservation and archeology to ensure the preservation of glass artifacts. This same question is part of the development and assessment of durable glass waste forms for the immobilization of nuclear wastes. Researchers have developed experiments ranging from simple to highly sophisticated to answer this question, and, as a result, have gained significant insight into the mechanisms that drive glass alteration. However, the gathered data have been predominately applicable to only short-term alteration times, i.e. over the course of decades. What has remained elusive is the long-term mechanisms of glass alteration[1]. These mechanisms are of particular interest to the international nuclear waste glass community as they strive to ensure that vitrified products will be durable for thousands to tens of thousands of years. For the last thirty years this community has been working to fill this research gap by partnering with archeologists, museum curators, and geologists to identify hundred to million-year old glass analogues that have altered in environments representative of those expected at potential nuclear waste disposal sites. The process of identifying a waste glass relevant analogue is challenging as it requires scientists to relate data collected from short-term laboratory experiments to observations made from long-term analogues and extensive geochemical modeling.

  16. Modelling aqueous corrosion of nuclear waste phosphate glass

    Science.gov (United States)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  17. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  18. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  19. First-order model for durability of Hanford waste glasses as a function of composition

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.; Piepel, G.F.; Schweiger, M.J.; Smith, D.E.

    1992-04-01

    Two standard chemical durability tests, the static leach test MCC-1 and product consistency test PCT, were conducted on simulated borosilicate glasses that encompass the expected range of compositions to be produced in the Hanford Waste Vitrification Plant (HWVP). A first-order empirical model was fitted to the data from each test method. The results indicate that glass durability is increased by addition of Al{sub 2}O{sub 3}, moderately increased by addition of ZrO{sub 2} and SiO{sub 2}, and decreased by addition of Li{sub 2}O, Na{sub 2}O, B{sub 2}O{sub 3}, and MgO. Addition of Fe{sub 2}O{sub 3} and CaO produce an indifferent or reducing effect on durability according to the test method. This behavior and a statistically significant lack of fit are attributed to the effects of multiple chemical reactions occurring during glass-water interaction. Liquid-liquid immiscibility is suspected to be responsible for extremely low durability of some glasses.

  20. IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-01-11

    This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

  1. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  2. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  3. Elaboration of new ceramic composites containing glass fibre production wastes

    Directory of Open Access Journals (Sweden)

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  4. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  5. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  6. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  7. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peeler, D. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, D. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, G. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, M. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.

  8. High metal reactivity and environmental risks at a site contaminated by glass waste.

    Science.gov (United States)

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment.

  9. A statistical approach for identifying nuclear waste glass compositions that will meet quality and processability requirements

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.

    1990-09-01

    Borosilicate glass provides a solid, stable medium for the disposal of high-level radioactive wastes resulting from the production of nuclear materials for United States defense needs. The glass must satisfy various quality and processability requirements on properties such as chemical durability, viscosity, and electrical conductivity. These properties depend on the composition of the waste glass, which will vary during production due to variations in nuclear waste composition and variations in the glass-making process. This paper discusses the experimentally-based statistical approach being used in the Hanford Waste Vitrification Plant (HWVP) Composition Variability Study (CVS). The overall goal of the CVS is to identify the composition region of potential HWVP waste glasses that satisfy with high confidence the applicable quality and processability requirements. This is being accomplished by melting and obtaining property data for simulated nuclear waste glasses of various compositions, and then statistically developing models and other tools needed to meet the goal. 6 refs., 1 fig., 5 tabs.

  10. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  11. Solid waste reclamation and recycling: Glass. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning techniques and management of waste glass recycling. The design and evaluation of glass collection and sorting systems are discussed. The use of recycled products in construction materials, glass fiber reinforced plastics, and soil stabilization is examined. References also cover environmental aspects, government programs, and product marketing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  13. INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Johnson, F.; Edwards, T.

    2010-11-23

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the 95% confidence intervals. Overall, the results of this study show a reasonable ability to incorporate the anticipated SCIX streams into DWPF-type glass compositions with TiO{sub 2} concentrations of 4-5 wt % in glass.

  14. Minor component study for simulated high-level nuclear waste glasses (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  15. Redox-Dependent Solubility of Technetium in Low Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; Mccloy, John S.

    2014-03-01

    The solubility of technetium was measured in a Hanford low activity waste glass simulant. The simulant glass was melted, quenched and pulverized to make a stock of powdered glass. A series of glass samples were prepared using the powdered glass and varying amounts of solid potassium pertechnetate. Samples were melted at 1000°C in sealed fused quartz ampoules. After cooling, the bulk glass and the salt phase above the glass (when present) were sampled for physical and chemical characterization. Technetium was found in the bulk glass up to 2000 ppm (using the glass as prepared) and 3000 ppm (using slightly reducing conditions). The chemical form of technetium obtained by x-ray absorption near edge spectroscopy can be mainly assigned to isolated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Solid crystals of pertechnetate salts were found in the salt cake layer that formed at the top of some glasses during the melt.

  16. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M.

    2014-02-27

    observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and

  17. An international initiative on long-term behavior of high-level nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Gin, Stephane [CEA Marcoule DTCD SECM LCLT, Bagnols/Ceze (France); Abdelouas, Abdessalam [SUBATECH, Nantes (France); Criscenti, Louise J. [Sandia National Laboratories, Albuquerque, NM (United States); Ebert, W. L. [Argonne National Laboratory (ANL), Argonne, IL (United States); Ferrand, Karine [SCK·CEN, Mol (Belgium); Geisler, Thorsten [Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Harrison, Mike T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Inagaki, Yaohiro [Kyushu Univ. (Japan). Dept. Appl. Quantum Physics and Nuclear Engineering; Mitsui, Seiichiro [Japan Atomic Energy Agency, Ibaraki (Japan); Mueller, Karl T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental and Molecular Science Lab.; Marra, James C. [Savannah River National Laboratory, Aiken, SC (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States); Pierce, Eric M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schofield, James M. [AMEC, Harwell Oxford (United Kingdom); Steefel, Carl I. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-06-01

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  18. An international initiative on long-term behavior of high-level nuclear waste glass

    Directory of Open Access Journals (Sweden)

    S. Gin

    2013-06-01

    Full Text Available Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

  19. Immobilization of Technetium Waste from Pyro-processing Using Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Pyo, Jae-Young; Lee, Cheong-Won [POSTECH, Pohang (Korea, Republic of); Yang, Jae-Hwan; Park, Hwan-Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Vitrification of Tc wastes has been challenging because of the low solubility in the silicate glass and high volatility in the melting process. In previous studies, the measured solubility of Tc and Re was ⁓ 3000 ppm at 1000 .deg. C in low activity waste (LAW) glass. And retention of Tc has been reported within 12 - 77% during the borosilicate vitrification process. Tellurite glasses have been studied for halide waste immobilization due to low melting temperatures (Tm= 600-800 .deg. C) and flexibility of network with foreign ions. Tellurite glasses offered higher halide retention than borosilicate glasses. The structure of pure tellurite (TeO{sub 2}) consists of TeO{sub 4} trigonal bipyramids (tbp), but TeO{sub 4} units are converted to TeO{sub 3} trigonal pyramids (tp) having non-bridging oxygen (NBO) as the modifiers added. Objectives of this study are to investigate the tellurite glasses for Tc immobilization using Re as a surrogate. Retention and waste loading of Re were analyzed during the vitrification process of tellurite glass. We investigated local structures of Re ions in glasses by Raman and X-ray absorption spectroscopies. The tellurite glass was investigated to immobilize the Ca(TcO{sub 4}){sub 2}, surrogated by Ca(ReO{sub 4}){sub 2}. The average of Re retention in tellurite glass was 86%. The 7-day PCT results were satisfied with U.S requirement up to 9 mass% of Ca(ReO{sub 4}){sub 2} content. Re in the tellurite glass exists +7 oxidation state and was coordinated with 4 oxygen.

  20. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass

  1. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass

  2. Fabrication of artificial gemstones from glasses: From waste to jewelry

    Science.gov (United States)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  3. Vitrified hillforts as anthropogenic analogues for nuclear waste glasses - project planning and initiation

    Energy Technology Data Exchange (ETDEWEB)

    Sjoblom, Rolf; Weaver, Jamie L.; Peeler, David K.; Mccloy, John S.; Kruger, Albert A.; Ogenhall, E.; Hjarthner-Jolder, E.

    2016-09-27

    Nuclear waste must be deposited in such a manner that it does not cause significant impact on the environment or human health. In some cases, the integrity of the repositories will need to sustain for tens to hundreds of thousands of years. In order to ensure such containment, nuclear waste is frequently converted into a very durable glass. It is fundamentally difficult, however, to assure the validity of such containment based on short-term tests alone. To date, some anthropogenic and natural volcanic glasses have been investigated for this purpose. However, glasses produced by ancient cultures for the purpose of joining rocks in stonewalls have not yet been utilized in spite of the fact that they might offer significant insight into the long-term durability of glasses in natural environments. Therefore, a project is being initiated with the scope of obtaining samples and characterizing their environment, as well as to investigate them using a suite of advanced materials characterization techniques. It will be analysed how the hillfort glasses may have been prepared, and to what extent they have altered under in-situ conditions. The ultimate goals are to obtain a better understanding of the alteration behaviour of nuclear waste glasses and its compositional dependence, and thus to improve and validate models for nuclear waste glass corrosion. The paper deals with project planning and initiation, and also presents some early findings on fusion of amphibolite and on the process for joining the granite stones in the hillfort walls.

  4. Evaluation the microwave heating of spinel crystals in high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Washington, A. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  5. Parametric effects on glass reaction in the unsaturated test method

    Energy Technology Data Exchange (ETDEWEB)

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur.

  6. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS MELT RATE ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Marra, J.

    2011-01-19

    A collaborative study has been established under the U.S. Department of Energy (DOE) Office of Environmental Management International Program between the Savannah River National Laboratory (SRNL) and the V. G. Khlopin Radium Institute (KRI) in St. Petersburg, Russia, to investigate potential improvements in melt rate via chemical additions to the glass frit. Researchers at KRI suggested a methodology for selecting frit additives based on empirical coefficients for optimization of glass melting available in the Russian literature. Using these coefficients, KRI identified B{sub 2}O{sub 3}, CuO, and MnO as frit additives that were likely to improve melt rate without having adverse effects on crystallization of the glass or its chemical durability. The results of the melt rate testing in the SMK melter showed that the slurry feed rate (used as a gauge of melt rate) could be significantly increased when MnO or CuO were added to Frit 550 with the SMR-2 sludge. The feed rates increased by about 27% when MnO was added to the frit and by about 26% when CuO was added to the frit, as compared to earlier results for Frit 550 alone. The impact of adding additional B{sub 2}O{sub 3} to the frit was minor when added with CuO. The additional B{sub 2}O{sub 3} showed a more significant, 39% improvement in melt rate when added with MnO. The additional B{sub 2}O{sub 3} also reduced the viscosity of the glasses during pouring. Samples of the glasses from the melt rate testing characterized at SRNL showed that there were no significant impacts on crystallization of the glasses. All of the glasses had very good chemical durability. Chemical composition measurements showed that the frit additives were present in concentrations below the targeted values in some of the glasses. Therefore, it is possible that higher concentrations of these additives may further improve melt rate, although the impacts of higher concentrations of these components on crystallization and durability would need to

  7. Interaction study between nuclear waste-glass melt and ceramic melter bellow liner materials

    Science.gov (United States)

    Sengupta, Pranesh

    2011-04-01

    Identification of proper materials for plant scale vitrification furnaces, engaged in immobilization of high level nuclear waste has always been a great challenge. Fast degradation of pour spout materials very often cause problem towards smooth pouring of waste-glass melt in canister and damages bellow kept in between. The present experimental study describes the various reaction products that form due to interaction between waste-glass melt and potential bellow liner materials such as copper, stainless steel and nickel based Superalloys (Alloy 690, 625). The results indicate that copper based material has lesser tendency to form adherent glassy layer.

  8. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater

  9. Settling of Spinel in a High-Level Waste Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Schill, Pert; Nemec, Lubomir

    2002-01-18

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150?C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel (a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occur in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  10. Settling of Spinel in A High-Level Waste Glass Melter

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  11. Glasses obtained from industrial wastes; Vidros obtidos a partir de residuos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Curso de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil). Tecnologia em Ceramica

    2009-07-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO{sub 3} (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  12. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout

  13. XPS and ion beam scattering studies of leaching in simulated waste glass containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D.P.; Pronko, P.P.; Marcuso, T.L.M.; Lam, D.J.; Paulikas, A.P.

    1980-01-01

    Glass samples (consisting of 2 mole % UO/sub 3/ dissolved in a number of complex borosilicate simulated waste glasses including Battelle 76-68) were leached for varying times in distilled water at 75/sup 0/C. The glass surfaces were examined before and after leaching using x-ray photoemission spectroscopy and back-scattered ion beam profiling. Leached samples showed enhanced surface layer concentrations of several elements including uranium, titanium, zinc, iron and rare earths. An experiment involving the leaching of two glasses in the same vessel showed that the uranium surface enhancement is probably not due to redeposition from solution.

  14. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Muller, I. S. [The Catholic University of America, Washington, DC (United States); Pegg, I. L. [The Catholic University of America, Washington, DC (United States); Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States); Carranza, Isidro [The Catholic University of America, Washington, DC (United States); Hight, Kenneth [The Catholic University of America, Washington, DC (United States); Lai, Shan-Tao T. [The Catholic University of America, Washington, DC (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States); Bazemore, Gina [The Catholic University of America, Washington, DC (United States); Cecil, Richard [The Catholic University of America, Washington, DC (United States); Kruger, Albert A. [The Catholic University of America, Washington, DC (United States)

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  15. Radiation effects in nuclear waste materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J.; Corrales, L.R. [Pacific Northwest National Lab., Richland, WA (US); Birtcher, R.C. [Argonne National Lab., IL (US); Nastasi, M. [Los Alamos National Lab., NM (US)

    1998-06-01

    'The objective of this multidisciplinary, multi-institutional research effort is to develop a fundamental understanding of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels. The goal is to provide the underpinning science and models necessary to assess the performance of glasses and ceramics designed for the immobilization and disposal of high-level tank waste, plutonium residues, excess weapons plutonium, and other highly radioactive waste streams. A variety of experimental and computer simulation methods are employed in this effort. In general, research on glasses focuses on the electronic excitations due to ionizing radiation emitted from beta decay, since this is currently thought to be the principal mechanism for deleterious radiation effects in nuclear waste glasses. Research on ceramics focuses on defects and structural changes induced by the elastic interactions between alpha-decay particles and the atoms in the structure. Radiation effects can lead to changes in physical and chemical properties that may significantly impact long-term performance of nuclear waste materials. The current lack of fundamental understanding of radiation effects in nuclear waste materials makes it impossible to extrapolate the limited existing data bases to larger doses, lower dose rates, different temperature regimes, and different glass compositions or ceramic structures. This report summarizes work after almost 2 years of a 3-year project. Work to date has resulted in 9 publications. Highlights of the research over the past year are presented.'

  16. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  17. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  18. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    Science.gov (United States)

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.

  19. Glass ceramic of high hardness and fracture toughness developed from iron-rich wastes

    Institute of Scientific and Technical Information of China (English)

    Weixin HAN

    2009-01-01

    A study has been carried out on the feasibility of using high iron content wastes, gen-erated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in different proportions with soda-lime glass cullet and sand. The devitrification of the parent glasses produced from the different mixtures was investigated using differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The mechanical properties of the glass-ceramic were assessed by hardness and indentation fracture toughness measurement. A glass ce-ramic with mixture of 60 wt pct iron-rich wastes, 25 wt pct sand, and 15 wt pct glass cullet exhibited the best combination of properties, namely, hardness 7.9 GPa and fracture toughness 3.75 MPa.m1/2, for the sake of containing magnetite in marked dendritic morphology. These new hard glass ceramics are candidate materials for wear resistant tiles and paving for heavy industrial floors.

  20. A Study of the Closed-Loop Supply Chain Coordination on Waste Glass Bottles Recycling

    Directory of Open Access Journals (Sweden)

    Wenxue Ran

    2016-01-01

    Full Text Available The recycling of waste products can sharply save manufacturing cost and improve the economic efficiency and corporate-reputation. It also has a great effect on the environment and resources protection. In the management of the closed-loop supply chain, the recycling of waste products and decision-making on pricing often directly affect the supply and demand of products and the operation efficiency of supply chain. Therefore, first we take waste glass bottles as an example and establish a mathematical model to solve the profit of manufacturers and retailers solely. Then, we analyzed whole supply chain profit under a dual-channel recycling condition which is directly recycled by consumers or by retailers. Finally, we concluded that no matter what product’s price, quality, profit, or operational efficiency of supply chain is, the overall recycling is better than the single node recycling model. Based on the analysis, we developed a new model to coordinate the profit of manufacturers and retailers in the supply chain with revenue-sharing contract. A numerical study shows that this approach is applicable and effective.

  1. Effect of composition on peraluminous glass properties: An application to HLW containment

    Science.gov (United States)

    Piovesan, V.; Bardez-Giboire, I.; Perret, D.; Montouillout, V.; Pellerin, N.

    2017-01-01

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO2 - Al2O3 - B2O3 - Na2O - Li2O - CaO - La2O3 system, defined by an excess of aluminum ions Al3+ in comparison with modifier elements such as Na+, Li+ or Ca2+. To understand the effect of composition on physical properties of glasses (viscosity, density, Tg), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties.

  2. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.

    Science.gov (United States)

    Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M

    2016-09-21

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5-(B2O3)10-(Na2O)15-(CaO)15-(MoO3)2.5 and (SiO2)57.3-(B2O3)20-(Na2O)6.8-(Li2O)13.4-(MoO3)2.5, were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.

  3. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    Science.gov (United States)

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  4. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  5. High-level nuclear waste borosilicate glass: A compendium of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J. (Argonne National Lab., IL (United States)); Sproull, J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bourcier, W.L. (Lawrence Livermore National Lab., CA (United States)); McGrail, B.P. (Battelle Pacific Northwest Lab., Richland, WA (United States))

    1992-01-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized.

  6. High-level nuclear waste borosilicate glass: A compendium of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C.; Bates, J.K.; Ebert, W.L.; Feng, X.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Sproull, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States); McGrail, B.P. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1992-12-01

    With the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided. Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized.

  7. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana.

    Science.gov (United States)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia; Fei-Baffoe, Bernard; Mensah, Moses Y

    2015-12-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47 kg/person/day, which translates into about 12,710 tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318 kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096 kg/person/day. Inert and miscellaneous waste was 0.055 kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72 kg/person/day. Metropolises generated higher waste (average 0.63 kg/person/day) than the municipalities (0.40 kg/person/day) and the least in the districts (0.28 kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was

  8. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems.

    Science.gov (United States)

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-01

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.

  9. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  10. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers.

    Science.gov (United States)

    Novais, Rui M; Ascensão, G; Seabra, M P; Labrincha, J A

    2016-06-01

    Nowadays the stunning volume of generated wastes, the exhaustion of raw materials, and the disturbing greenhouse gases emission levels show that a paradigm shift is mandatory. In this context, the possibility of using wastes instead of virgin raw materials can mitigate the environmental problems related to wastes, while reducing the consumption of the Earth's natural resources. This innovative work reports the incorporation of unexplored waste glass coming from end-of-life fluorescent lamps into geopolymers. The influence of the waste glass incorporation level, NaOH molarity and curing conditions on the microstructure, physical and mechanical properties of the geopolymers was evaluated. Results demonstrate that curing conditions are the most influential factor on the geopolymer characteristics, while the NaOH molarity is less important. Geopolymers containing 37.5% (wt) waste glass were successfully produced, showing compressive strength of 14MPa (after 28days of curing), suggesting the possibility of their use in non-structural applications. Porous waste-based geopolymers for novel applications were also fabricated.

  11. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  12. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  13. Determination of the Structure of Vitrified Hydroceramic/CBC Waste Form Glasses Manufactured from DOE Reprocessing Waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheetz, B.E.; White, W. B.; Chesleigh, M.; Portanova, A.; Olanrewaju, J.

    2005-05-31

    The selection of a glass-making option for the solidification of nuclear waste has dominated DOE waste form programs since the early 1980's. Both West Valley and Savannah River are routinely manufacturing glass logs from the high level waste inventory in tank sludges. However, for some wastes, direct conversion to glass is clearly not the optimum strategy for immobilization. INEEL, for example, has approximately 4400 m{sup 3} of calcined high level waste with an activity that produces approximately 45 watts/m{sup 3}, a rather low concentration of radioactive constituents. For these wastes, there is value in seeking alternatives to glass. An alternative approach has been developed and the efficacy of the process demonstrated that offers a significant savings in both human health and safety exposures and also a lower cost relative to the vitrification option. The alternative approach utilizes the intrinsic chemical reactivity of the highly alkaline waste with the addition of aluminosilicate admixtures in the appropriate proportions to form zeolites. The process is one in which a chemically bonded ceramic is produced. The driving force for reaction is derived from the chemical system itself at very modest temperatures and yet forms predominantly crystalline phases. Because the chemically bonded ceramic requires an aqueous medium to serve as a vehicle for the chemical reaction, the proposed zeolite-containing waste form can more adequately be described as a hydroceramic. The hydrated crystalline materials are then subject to hot isostatic pressing (HIP) which partially melts the material to form a glass ceramic. The scientific advantages of the hydroceramic/CBC approach are: (1) Low temperature processing; (2) High waste loading and thus only modest volumetric bulking from the addition of admixtures; (3) Ability to immobilize sodium; (4) Ability to handle low levels of nitrate (2-3% NO{sub 3}{sup -}); (5) The flexibility of a vitrifiable waste; and (6) A process

  14. STABILIZING GLASS BONDED WASTE FORMS CONTAINING FISSION PRODUCTS SEPARATED FROM SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Bateman; Charles W. Solbrig

    2008-07-01

    A model has been developed to represent the stresses developed when a molten, glass-bonded brittle cylinder (used to store nuclear material) is cooled from high temperature to working temperature. Large diameter solid cylinders are formed by heating glass or glass-bonded mixtures (mixed with nuclear waste) to high temperature (915°C). These cylinders must be cooled as the final step in preparing them for storage. Fast cooling time is desirable for production; however, if cooling is too fast, the cylinder can crack into many pieces. To demonstrate the capability of the model, cooling rate cracking data were obtained on small diameter (7.8 cm diameter) glass-only cylinders. The model and experimental data were combined to determine the critical cooling rate which separates the non-cracking stable glass region from the cracked, non-stable glass regime. Although the data have been obtained so far only on small glass-only cylinders, the data and model were used to extrapolate the critical-cooling rates for large diameter ceramic waste form (CWF) cylinders. The extrapolation estimates long term cooling requirements. While a 52-cm diameter cylinder (EBR-II-waste size) can be cooled to 100°C in 70 hours without cracking, a 181.5-cm diameter cylinder (LWR waste size) requires 35 days to cool to 100°C. These cooling times are long enough that verification of these estimates are required so additional experiments are planned on both glass only and CWF material.

  15. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    Science.gov (United States)

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  16. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  17. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  18. Overview of chemical modeling of nuclear waste glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs.

  19. Round-robin testing of a reference glass for low-activity waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L.; Wolf, S. F.

    1999-12-06

    A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

  20. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  1. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    Science.gov (United States)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-01

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re2O7. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO4- were to be encapsulated in a Tc-sodalite prior to vitrification.

  2. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  3. Investigation of possibility for stabilization and valorization of electric ARC furnace dust and glass from electronic waste

    Directory of Open Access Journals (Sweden)

    Ranitović M.

    2014-01-01

    Full Text Available This paper presents investigation of possibility for electric arc furnace dust (EAFD and electronic waste (e-waste valorization trough stabilization process, in order to achieve concurrent management of these two serious ecological problems. EAFD is an ineviTab. waste material coming from the electric arc furnace steel production process, classified as a hazardous waste. Furthermore, it is well known that residual materials generated in the ewaste recycling process, like LCD (Liquid crystal displays waste glass, are not suiTab. for landfill or incineration. In this study, these two materials were used for investigation of possibility for their valorization in ceramic industry. Thus, an innovative synergy of waste streams from metallurgical and e-waste recycling industry is presented. Investigation included a complex characterization of raw materials and their mixtures, using chemical methods, optical microscopy, scanning electron microscopy, as well as methods for determining the physical and mechanical properties. Based on these results, it was found that material suiTab. for use in ceramics industry as a partial substituent of quartzite and fluxing components can be produced. Besides solving the environmental problem related to EAFD and LCD disposal, by replacement of raw materials certain economic effects can be achieved. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  4. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)); Vienna, John D.(BATTELLE (PACIFIC NW LAB)); Crum, Jarrod V.(BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F.(BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Robert W. Smith; David W. Shoesmith

    2000-01-01

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  5. Metallurgical use of glass fractions from waste electric and electronic equipment (WEEE).

    Science.gov (United States)

    Mostaghel, Sina; Samuelsson, Caisa

    2010-01-01

    Within the European Union, it is estimated that between 8 and 9 million tons of waste electric and electronic equipment (WEEE) arises annually, of which television sets and computers account for an important part. Traditionally, Cathode Ray Tubes (CRT) have been used for TVs and computer monitors, but are rapidly being replaced by flat-screen technology. Only part of the discarded CRT glass is being recycled. Primary smelters use large amounts of silica flux to form iron-silicate slag, and can, in most cases, tolerate lead input. Use of discarded CRT glass in copper smelting is a potential alternative for utilization of the glass. The mineralogical composition of a slag sampled during ordinary slag praxis has been compared with that of a mixture of slag and CRT glass when re-melted and slowly cooled. Slag (iron-silicate slag) from Boliden Mineral AB, Sweden, was used for the experiments. Slag and glass have been mixed in various proportions: pure slag, pure glass, 90% slag-10% glass and 65% slag-35% glass, and heated in an inert atmosphere up to 1400 degrees C in a Netzsch Thermal Analysis (TA) instrument. The re-melted material has been analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to determine changes in mineralogical composition after mixing with glass. The results show that the main mineralogical component of the slag is fayalite; the CRT glass is amorphous. The main crystalline phases of the slag do not change with addition of glass. An amorphous phase appears when the addition of glass is increased, which gives the sample a different structure.

  6. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  7. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    Energy Technology Data Exchange (ETDEWEB)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  8. WASTE LOADING ENHANCEMENTS FOR HANFORD LAW GLASSES VLS-10R1790-1 FINAL REPORT REV 0 12/1/2010

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MULLER IS; JOSEPH I; MATLACK KS; GAN H; PEGG IL

    2010-12-28

    improvements have been tested at VSL including increasing the waste loading, increasing the processing temperature, and increasing the fraction of the sulfur in the feed that is partitioned to the off-gas (in the event that a decision is made to break the present WTP recycle loop). These approaches successfully demonstrated increases in glass production rates and significant increases in sulfate incorporation at the nominal melter operating temperature of 1150 C and at slightly higher than nominal glass processing temperatures. Subsequent tests demonstrated further enhancement of glass formulations for all of the LAW waste envelopes, thereby reducing the amount of glass to be produced by the WTP for the same amount of waste processed. The next phase of testing determined the applicability of these improvements over the expected range of sodium and sulfur concentrations for Hanford LAW. This approach was subsequently applied to an even wider range of LAW wastes types, including those with high potassium concentration. The feasibility of formulating higher waste loading glasses using SnO{sub 2} and V{sub 2}O{sub 5} in place of Fe{sub 2}O{sub 3} and TiO{sub 2} as glass former additives was also evaluated. The present report provides data from investigation of the effects of magnesium content (up to {approx}10 wt%) on LAW glass properties and from work to identify improved high waste loading glass formulations that meets all processing and product quality requirements for two waste compositions. The scope of testing is detailed in the Test Plan for this work. A glass composition previously developed and tested at VSL for LAW from tank AN-105 (LAWA187) was varied by substituting Mg for other glass former additives such as Ca, B and Si in an attempt to formulate a glass with improved properties, such as higher waste loading and greater sulfur tolerance. The results were used to reformulate another glass (ORPLG9) developed for LAW from tank AP-101 that contains high concentrations of

  9. Surface layers on a borosilicate nuclear waste glass corroded in MgCl 2 solution

    Science.gov (United States)

    Abdelouas, Abdesselam; Crovisier, Jean-Louis; Lutze, Werner; Grambow, Bernd; Dran, Jean-Claude; Müller, Regina

    1997-01-01

    Surface layers on the French borosilicate nuclear waste glass, R7T7, corroded in MgCl 2 solution were studied to determine the composition, structure and stability of crystalline phases. The characteristics of the phases constituting the surface layer varied with the parameter {S}/{V} × t , the glass surface area ( S) to solution volume ( V) ratio, times time ( t). At low {S}/{V} × t values (intermediate {S}/{V} × t value (2800 d/m; 5.5 y) the surface layer contained hydrotalcite-, chlorite- and saponite-type phases. At the highest {S}/{V} × t value (10 7 d/m; 463 d) the major phases were saponite, powellite, barite and cerianite solid solutions. About 95% of the uranium and > 98% of the neodymium released from the glass were precipitated in the surface layer. In the 463 day experiment, 86% of the neodymium in the surface layer was in solid solution with powellite, the rest with saponite. Uranium was contained exclusively in saponite. High {S}/{V} ratios, typical of disposal conditions for vitrified high-level radioactive waste, favor retention of actinides in fairly insoluble corrosion products. Observation of similar corrosion products on natural glasses as on nuclear waste glasses lend support to the hypothesis that the host phases for actinides observed in the laboratory are stable over geological periods of time.

  10. Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability

    Science.gov (United States)

    Hopf, J.; Kerisit, S. N.; Angeli, F.; Charpentier, T.; Icenhower, J. P.; McGrail, B. P.; Windisch, C. F.; Burton, S. D.; Pierce, E. M.

    2016-05-01

    Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O-Al2O3-B2O3-HfO2-SiO2 system (e.g., Na/[Al + B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si

  11. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  12. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  13. An investigation of waste glass-based geopolymers supplemented with alumina

    Science.gov (United States)

    Christiansen, Mary U.

    An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. 39 Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine

  14. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvements are needed to meet chemical durability requirements.

  15. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Science.gov (United States)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  16. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Rodriguez, Carmen P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Huckleberry, Adam R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Owen, Antoinette T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-08-28

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T{sub L}) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr){sub 2}O{sub 4}]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T{sub L} of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~14.9 +- 1 nm/s determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  17. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  18. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  19. Effects of Gravity on ZBLAN Glass Crystallization

    Science.gov (United States)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  20. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

  1. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-12-31

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

  2. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  3. Glasses for immobilization of low- and intermediate-level radioactive waste

    Science.gov (United States)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant

  4. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ≈ 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ≈ 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  5. Ancient Glass: A Literature Search and its Role in Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Pierce, Eric M.

    2010-07-01

    When developing a performance assessment model for the long-term disposal of immobilized low-activity waste (ILAW) glass, it is desirable to determine the durability of glass forms over very long periods of time. However, testing is limited to short time spans, so experiments are performed under conditions that accelerate the key geochemical processes that control weathering. Verification that models currently being used can reliably calculate the long term behavior ILAW glass is a key component of the overall PA strategy. Therefore, Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to evaluate alternative strategies that can be used for PA source term model validation. One viable alternative strategy is the use of independent experimental data from archaeological studies of ancient or natural glass contained in the literature. These results represent a potential independent experiment that date back to approximately 3600 years ago or 1600 before the current era (bce) in the case of ancient glass and 106 years or older in the case of natural glass. The results of this literature review suggest that additional experimental data may be needed before the result from archaeological studies can be used as a tool for model validation of glass weathering and more specifically disposal facility performance. This is largely because none of the existing data set contains all of the information required to conduct PA source term calculations. For example, in many cases the sediments surrounding the glass was not collected and analyzed; therefore having the data required to compare computer simulations of concentration flux is not possible. This type of information is important to understanding the element release profile from the glass to the surrounding environment and provides a metric that can be used to calibrate source term models. Although useful, the available literature sources do not contain the required information

  6. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gin, Stephane [CEA Marcoule, DTCD SECM, Bagnols-sur-Ceze (France); Inagaki, Yaohiro [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoda (Japan)

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  7. Exploration and Modeling of Structural changes in Waste Glass Under Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Carlos; Ryan, Joseph; Strachan, Denis

    2013-11-10

    Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of

  8. Characterization of Wollastonite Glass-ceramics Made from Waste Glass and Coal Fly Ash

    Institute of Scientific and Technical Information of China (English)

    Soon-Do Yoon; Jong-Un Lee; Jeong-Hwan Lee; Yeon-Hum Yun; Wang-Jung Yoon

    2013-01-01

    The crystallization behavior of wollastonite glass-ceramics was investigated by means of X-ray diffraction (XRD)analysis and surface morphological observations,and the chemical compositions were evaluated by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS).Various heat treatment temperatures (850,900,950,1000 and 1050 ℃) were used to obtain glass-ceramics of the ideal wollastonite crystal phase as well as optimum mechanical properties and chemical durability.From XRD,FE-SEM and EDS,the crystallization of acicular crystal phase in the matrix was achieved at heat treatment temperature of 1000 and 1050 ℃,and wollastonite (CaSiO3) was found in the acicular type main crystal phase in the glass-ceramics.Various properties,such as density,compressive strength,bending strength and chemical durability were also examined.The mechanical properties of glass-ceramics obtained at the heat treatment temperature of 1000 and 1050 ℃ were superior to those obtained at the heat treatment temperature of 850 ℃.

  9. Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.

    1995-12-31

    This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

  10. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.

    Science.gov (United States)

    Topçu, Ilker Bekir; Boğa, Ahmet Raif; Bilir, Turhan

    2008-01-01

    Use of waste glass or glass cullet (GC) as concrete aggregate is becoming more widespread each day because of the increase in resource efficiency. Recycling of wastes is very important for sustainable development. When glass is used as aggregate in concrete or mortar, expansions and internal stresses occur due to an alkali-silica reaction (ASR). Furthermore, rapid loss in durability is generally observed due to extreme crack formation and an increase in permeability. It is necessary to use some kind of chemical or mineral admixture to reduce crack formation. In this study, mortar bars are produced by using three different colors of glass in four different quantities as fine aggregate by weight, and the effects of these glass aggregates on ASR are investigated, corresponding to ASTM C 1260. Additionally, in order to reduce the expansions of mortars, 10% and 20% fly ash (FA) as mineral admixture and 1% and 2% Li(2)CO(3) as chemical admixture are incorporated by weight in the cement and their effects on expansion are examined. It is observed that among white (WG), green (GG) and brown glass (BG) aggregates, WG aggregate causes the greatest expansion. In addition, expansion increases with an increase in amount of glass. According to the test results, it is seen that over 20% FA and 2% Li(2)CO(3) replacements are required to produce mortars which have expansion values below the 0.2% critical value when exposed to ASR. However, usages of these admixtures reduce expansions occurring because of ASR.

  11. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.

  12. Fracture toughness measurements on a glass bonded sodalite high-level waste form.

    Energy Technology Data Exchange (ETDEWEB)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O' Holleran, T. P.

    1999-05-19

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies.

  13. Materials for Tc Capture to Increase Tc Retention in Glass Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A.; Hrma, Pavel R.; Kruger, Albert A.

    2016-04-01

    99Technetium is a long-lived fission product found in the tank waste at the Hanford site in Washington State. In its heptavalent species, it is volatile at the temperatures used in Hanford Tank Waste Treatment and Immobilization Plant vitrification melters, and thus is challenging to incorporate into waste glass. In order to decrease volatility and thereby increase retention, technetium can be converted into more thermally stable species. Several mineral phases, such as spinel, are able to incorporate tetravalent technetium in a chemically durable and thermally stable lattice, and these hosts may promote the decreased volatility that is desired. In order to be usefully implemented, there must be a synthetic rout to these phases that is compatible with both technetium chemistry and current Hanford Tank Waste Treatment and Immobilization Plant design. Synthetic routes for spinel and other potential host phases are examined.

  14. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    Science.gov (United States)

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  15. Editorial Board Indexed in Current Issue Coming Issue Archives Submission » Contact Us Incorporation of Nuclear Wastes in LIP and Uranium Containing LIP Glasses.

    Directory of Open Access Journals (Sweden)

    A. Ghosh

    2014-03-01

    Full Text Available Glasses in lead-iron phosphate (LIP system loaded with simulated nuclear waste, were melted in the temperature range750-950oC. Some of the LIP glasses were mixed with uranium salt. The pH determinations of the leachate solution at normal temperature show some interesting trends. Leaching study of these glasses with a maximum time period of 300 hrs. were conducted under Soxhlet distillation condition with distilled water. Weight losses and residual activities by ‘Radiotracer technique’ were followed with respect to cumulative time period of leaching. For some LIP-glass samples containing uranium the leach rates as calculated from BET surface area measurements. They were in the range 8.2 x 10–4 to 1.8 x 10–3 g.m-2.hr-1 at 90°C. DTA endotherms occur at ~400oC and ~900oC for the LIP glasses. FTIR studies show absorptions at ~532, ~1025, ~1620-1640, ~2365 and ~3440-3490 cm–1. SEM of some selected glasses was reported. The variation of different properties was explained in terms of the changes in the ionic potentials of the different modifier ions. The model structure of glasses has been considered taking the dual role of and as glass formers/ modifiers which ultimately has an effect on the chemical durability of these glasses.

  16. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  17. Characterization of high level nuclear waste glass samples following extended melter idling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  18. Characterization of high level nuclear waste glass samples following extended melter idling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-16

    The Savannah River Site Defense Waste Processing Facility (DWPF) melter was recently idled with glass remaining in the melt pool and riser for approximately three months. This situation presented a unique opportunity to collect and analyze glass samples since outages of this duration are uncommon. The objective of this study was to obtain insight into the potential for crystal formation in the glass resulting from an extended idling period. The results will be used to support development of a crystal-tolerant approach for operation of the high-level waste melter at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Two glass pour stream samples were collected from DWPF when the melter was restarted after idling for three months. The samples did not contain crystallization that was detectible by X-ray diffraction. Electron microscopy identified occasional spinel and noble metal crystals of no practical significance. Occasional platinum particles were observed by microscopy as an artifact of the sample collection method. Reduction/oxidation measurements showed that the pour stream glasses were fully oxidized, which was expected after the extended idling period. Chemical analysis of the pour stream glasses revealed slight differences in the concentrations of some oxides relative to analyses of the melter feed composition prior to the idling period. While these differences may be within the analytical error of the laboratories, the trends indicate that there may have been some amount of volatility associated with some of the glass components, and that there may have been interaction of the glass with the refractory components of the melter. These changes in composition, although small, can be attributed to the idling of the melter for an extended period. The changes in glass composition resulted in a 70-100 °C increase in the predicted spinel liquidus temperature (TL) for the pour stream glass samples relative to the analysis of the melter feed prior to

  19. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-10-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression.

  20. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  1. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO{sub 2}, hollandite, glass SON68); Effet de l'irradiation (alpha, gamma) sur l'alteration des matrices de dechets nucleaires de hautes activites (UO{sub 2}, hollandite, verre SON68)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T

    2007-06-15

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO{sub 2} to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO{sub 2} colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO{sub 2} matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H{sub 2}O{sub 2} (product resulting from water radiolysis) increased the dissolution rate of UO{sub 2} to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  2. Standard practices for dissolving glass containing radioactive and mixed waste for chemical and radiochemical analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These practices cover techniques suitable for dissolving glass samples that may contain nuclear wastes. These techniques used together or independently will produce solutions that can be analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), radiochemical methods and wet chemical techniques for major components, minor components and radionuclides. 1.2 One of the fusion practices and the microwave practice can be used in hot cells and shielded hoods after modification to meet local operational requirements. 1.3 The user of these practices must follow radiation protection guidelines in place for their specific laboratories. 1.4 Additional information relating to safety is included in the text. 1.5 The dissolution techniques described in these practices can be used for quality control of the feed materials and the product of plants vitrifying nuclear waste materials in glass. 1.6 These pr...

  3. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  4. An autostereoscopic display (3D without glasses) suitable for telerobotic radioactive waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Eichenlaub, J.B. [Dimension Technologies, Inc., Rochester, NY (United States)

    1995-11-01

    An autostereoscopic video display ideal for telerobotic operations is described. The display creates stereoscopic images using input from two cameras in such a way that the observer does not have to wear special glasses or other headgear to see the images, and can also see the images f rom across a wide area. The display is being used in nuclear waste remediation and other telerobotic applications.

  5. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  6. A new Energy Saving method of manufacturing ceramic products from waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an

  7. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    Science.gov (United States)

    Kato, S.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-03-01

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbOn units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  8. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  9. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials

    OpenAIRE

    Haleh Kazemi Yazdi; Richard van Noort; Mona Mansouri

    2016-01-01

    Statement of the Problem: The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness. Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Materials and Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm...

  10. Anti-biofilm Effect of Glass Ionomer Cements Incorporated with Chlorhexidine and Bioaetive Glass

    Institute of Scientific and Technical Information of China (English)

    HUANG Xueqing; YANG Tiantian; ZHAO Suling; HUANG Cui; DU Xijin

    2012-01-01

    The effect of glass ionomer cement and resin-modified glass ionomer cement incorporated with chlorhexidine and bioactive glass on antimicrobial activity and physicochemical properties were investigated.The experimental results showed that groups incorporated with 1% chlorhexidine exhibited a significant reduction of optical density values of the bacterial suspension and increased the degradation of Streptococcus mutans biofilm.However,groups incorporated with 10% bioactive glass did not affect the optical density values and the biofilm formation.The mechanical properties of the materials and the polymerization were not influenced by the addition of chlorhexidine.Nevertheless,the compressive strength was lower when the materials were incorporated with bioactive glass.It can be concluded that glass ionomer cements incorporated with chlorhexidine can maintain its mechanical properties as well as reduce early S mutans biofilm formation.Controlled release/sustained release technology may be required to optimize the antibacterial activity of glass ionomer cements incorporated with bioactive glass.

  11. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different degre

  12. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  13. GLASS COMPOSITION AND SOLUTION SPECIATION EFFECTS ON STAGE III DISSOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Carlo G; Trivelpiece, Cory L; Rice, Jarret A

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  14. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  15. Effect of ZnO and CaO on Alkali Borosilicate Glass Waste-form Immobilizing Simulated Mixed HLW%ZnO 和 CaO对模拟高放废液硅酸盐玻璃固化体性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    张华; N.C.Hyatt; J.R.Stevens; R.Hand

    2015-01-01

    针对有些高放废液含有较多Fe、Cr、Ni过渡金属元素,在玻璃固化工艺过程中易于形成晶体,导致熔融玻璃体的黏度增加、化学稳定性变差以及工艺过程中易出现出料口堵塞等问题,研究了废物包容量为15%和20%、添加ZnO (5.6%)和CaO (1.75%)的配方对形成的4种玻璃固化体的物理性能(密度、硬度、断裂韧性)、化学性能(产品一致性测试和蒸汽腐蚀测试)和结构(X射线衍射析晶分析、拉曼光谱分析)的影响。研究分析显示,提高废物包容量至20%以及添加ZnO和CaO均可促进硼硅酸盐玻璃固化体网络结构的稳定性和化学稳定性,并增强玻璃体的密度,提高硬度;但玻璃固化体的高温黏度升高,断裂韧性下降。%Since the transit metals ,such as Fe ,Cr and Ni ,contained in some kinds of mixed HLW ,can likely to form crystal ,increase the melt viscosity ,destroy the chemi‐cal durability and block the discharge port .T he results obtained from investigating four glass waste‐forms ,including the alkali borosilicate glass matrix and alkali borosilicate glass matrix doped with 5.6% ZnO and 1.75% CaO in base matrixes ,immobilizing the simulated mixed HLW with 15% and 20% waste loadings aiming to determinate the effect of ZnO on the alkali borosilicate glass chemical durability with waste loading increasing ,were presented in this paper .Glass samples were characterized with XRD and Raman spectroscopy .The chemical durability was investigated using the standard protocols PCT and VHT .The XRD analysis results show that spinel crystal appears and grows in glass samples at the waste loading in 20% without ZnO addition and waste loading in 15% and 20% added ZnO .T he Raman spectroscopy analysis results indicate that ZnO and CaO can enhance the glass network connective ,and the chemical durability test results display that the addition of ZnO and CaO can improve the short term

  16. The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-11-23

    As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at several different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.

  17. Sulfur incorporation in high level nuclear waste glass: A S K-edge XAFS investigation

    Science.gov (United States)

    Brendebach, B.; Denecke, M. A.; Roth, G.; Weisenburger, S.

    2009-11-01

    We perform X-ray absorption fine structure (XAFS) spectroscopy measurements at the sulfur K-edge to elucidate the electronic and geometric bonding of sulfur atoms in borosilicate glass used for the vitrification of high level radioactive liquid waste. The sulfur is incorporated as sulfate, most probably as sodium sulfate, which can be deduced from the X-ray absorption near edge structure (XANES) by fingerprint comparison with reference compounds. This finding is backed up by Raman spectroscopy investigation. In the extended XAFS data, no second shell beyond the first oxygen layer is visible. We argue that this is due to the sulfate being present as small clusters located into voids of the borosilicate network. Hence, destructive interference of the variable surrounding prohibits the presence of higher shell signals. The knowledge of the sulfur bonding characteristics is essential for further optimization of the glass composition and to balance the requirements of the process and glass quality parameters, viscosity and electrical resistivity on one side, waste loading and sulfur uptake on the other side.

  18. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulations and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution

  19. Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; Saslow, Sarah; Kim, Dong-Sang; Schweiger, Michael J.; Soderquist, Chuck Z.; Bowden, Mark E.; Lukens, Wayne W.; Kruger, Albert A.

    2017-11-01

    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc was partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.

  20. Recycling of iron foundry sand and glass waste as raw material for production of whiteware.

    Science.gov (United States)

    Bragança, Saulo R; Vicenzi, Juliane; Guerino, Kareline; Bergmann, Carlos P

    2006-02-01

    The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.

  1. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    Science.gov (United States)

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  2. Modeling relations between the composition and properties of French light water reactor waste containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghaleb, D.; Dussossoy, J.L.; Fillet, C.; Pacaud, F.; Jacquet-Francillon, N.

    1994-12-31

    Models have been developed to calculate the density, molten-state viscosity and initial corrosion rate according to the chemical composition of glass formulations used to vitrify high-level fission product solutions from reprocessed light water reactor fuel. Developed from other published work, these models have been adapted to allow for the effects of platinoid (Ru, Pd, Rh) inclusions on the molten glass rheology. (authors). 15 refs., 10 figs., 1 tab.

  3. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2016-11-01

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.

  4. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, David K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States)

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  5. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.

  6. Perceptual effects of overlapping curved glass

    NARCIS (Netherlands)

    Cruz, P.J.S.; Veer, F.A.; Carvalho, P.L.L.

    2010-01-01

    The application of glass in contemporary architecture explores perceptual phenomenon that intentionally change the way we experience space. SANAA'S recent work uses glass in a radical way, proposing a renewed approach to transparency. The Toledo Glass Pavilion, with most spaces defined by glass

  7. Perceptual effects of overlapping curved glass

    NARCIS (Netherlands)

    Cruz, P.J.S.; Veer, F.A.; Carvalho, P.L.L.

    2010-01-01

    The application of glass in contemporary architecture explores perceptual phenomenon that intentionally change the way we experience space. SANAA'S recent work uses glass in a radical way, proposing a renewed approach to transparency. The Toledo Glass Pavilion, with most spaces defined by glass wall

  8. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminants of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).

  9. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-01

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5 – (B2O3)10 – (Na2O)15 – (CaO)15 – (MoO3)2.5 and (SiO2)57.3 – (B2O3)20 – (Na2O)6.8 – (Li2O)13.4 – (MoO3)2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations. K.K. was supported through the Impact Studentship scheme at UCL co-funded by the IHI Corporation and UCL. P.V.S. thanks the Royal Society, which supported preliminary work on this project, and the Laboratory Directed Research and Development program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

  10. Climate accounting for waste management, Phase I and II. Summary: Phase 1: Glass Packaging, Metal packaging, paper, cardboard, plastic and wet organic waste. Phase 2: Wood waste and residual waste from households; Klimaregnskap for avfallshaandtering, Fase I og II. Sammendrag: Fase 1: Glassemballasje, metallemballasje, papir, papp, plastemballasje og vaatorganisk avfall. Fase 2: Treavfall og restavfall fra husholdninger

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche; Modahl, Ingunn Saur; Lyng, Kari-Anne

    2009-09-15

    Background. On the basis of an increased focus on emissions of greenhouse gases in general, Waste Norway wanted to prepare a climate accounting for waste management in Norway. Oestfoldforskning was engaged to undertake the project. The aim of the project has been to develop a model for the calculation of net greenhouse gas emissions from different waste types of waste glass containers, metal containers, paper, cardboard, plastic, wet organic waste, wood waste and residual waste. The model is based on life cycle methodology and is used to calculate the net greenhouse gas emissions per kg of waste for the various waste management options and waste types, as well as to calculate the net greenhouse gas emissions for waste management for including waste types and quantities of 2006. There is an emphasis on developing a model so that municipalities / waste companies or regions can develop their own climate accounting for waste management in their region, based on site-specific conditions associated with types and amounts of waste, transport distances, type of treatment, exploitation and use of waste generated energy etc. The model can also be used as the basis for the preparation of useful documentation as the basis for information about waste systems utility in general, and as a basis for strategic reviews for Waste Norway and the waste sector in particular. Conclusions: The main conclusions from the project can be summarized as follows: 1. The results of the study clearly shows that to consider only one environmental indicator is too narrow approach to form the basis for decision making for selection of waste management solutions. 2. Net greenhouse gas emissions for waste management varies greatly, both between the different types of waste and treatment methods which are reviewed. The main results of the ranking of management methods in relation to the net greenhouse effect associated with the waste types and treatment methods are as follows: Recycling of materials

  11. Biological effects of drilling wastes

    Energy Technology Data Exchange (ETDEWEB)

    Cranford, P. J. [Department of Fisheries and Oceans, Dartmouth, NS (Canada). Bedford Inst. of Oceanography

    2000-07-01

    An argument is made for the point of view that economic realities require that a sustainable fishery must co-exist with the offshore petroleum industry, and therefore to sustain the fishery comprehensive studies are needed to identify and minimize the impact of operational drilling wastes on fishery resources. Moreover, laboratory and field studies indicate that operational drilling platforms impact on fisheries at great distances, therefore studies should not be limited to the immediate vicinity of drilling sites. Studies on long-term exposure of resident organisms to low level contaminants and the chronic lethal and sublethal biological effects of production drilling wastes must be conducted under environmentally relevant conditions to ensure the validity of the results. Studies at the Bedford Institute of Oceanography on sea scallops (Placopecten magellanicus) shows them to be highly sensitive to impacts from drilling wastes. Results of these studies, integrated with toxicity data and information on the distribution and transport of drilling wastes have been used by regulatory agencies and industrial interests to develop scientifically sound and justifiable regulations. They also led to the development of practical, sensitive and cost-effective technologies that use resident resource species to detect environmental impacts at offshore production sites. 1 fig.

  12. Enhancement effect of pre-reacted glass on strength of glass-ionomer cement.

    Science.gov (United States)

    Monmaturapoj, Naruporn; Soodsawang, Wiwaporn; Tanodekaew, Siriporn

    2012-02-03

    In this paper, we report on the enhanced strength of glass ionomer cement (GIC) by using the process of pre acid-base reaction and spray drying in glass preparation. The pre acid-base reaction was induced by prior mixing of the glass powder with poly(alkenoic acid). The weight ratios of glass powder to poly(alkenoic acid) were varied to investigate the extent of the pre acid-base reaction of the glass. The effect of the spray drying process which produced spherical glass particles on cement strength was also studied and discussed. The results show that adding 2%-wt of poly(alkenoic acid) liquid in the pre-reacted step improved cement strength. GICs prepared using a mixture of pre-reacted glass with both spherical and irregular powders at 60:40 by weight exhibited the highest compressive strength at 138.64±7.73 MPa. It was concluded that glass ionomer cements containing pre-reacted glass with mixed glass morphology using both spherical and irregular forms are promising as restorative dental materials with improved mechanical properties and handling characteristics.

  13. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  14. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass.

    Science.gov (United States)

    Marcial, José; Chun, Jaehun; Hrma, Pavel; Schweiger, Michael

    2014-10-21

    Nuclear-waste melter feeds are slurry mixtures of wastes with glass-forming and glass-modifying additives (unless prefabricated frits are used), which are converted to molten glass in a continuous electrical glass-melting furnace. The feeds gradually become continuous glass-forming melts. Initially, the melts contain dissolving refractory feed constituents that are suspended together with numerous gas bubbles. Eventually, the bubbles escape, and the melts homogenize and equilibrate. Knowledge of various physicochemical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion that occurs during melting. We studied the melter feed viscosity during heating and correlated it with the volume fractions of dissolving quartz (SiO2) particles and the gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between the logarithm of viscosity and the volume fractions of suspended phases.

  15. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria e...

  16. Utilization of TiO2 deposited on glass plates for removal of metals from aqueous wastes

    Science.gov (United States)

    Hilmi; Luong; Nguyen

    1999-02-01

    Glass plates coated with TiO2 were used in a photocatalytic process to collect mercury, lead, copper and cadmium from aqueous solutions containing individual metals and mixtures. Stripping voltammetry, verified to achieve 1-10 ppb detection limits, was used to show that individual metals at concentrations of 1000 to 5200 ppb were reduced to undetectable levels in 3 to 55 min. Capillary electrophoresis (CE) with 8-hydroxyquinoline-5-sulfonic acid as complexing agent was used when appropriate, since it could quantitate all four metals under study in one run although it was less sensitive. It was demonstrated that 100 mL solutions containing 10 ppm of each of the four metals could be treated with a 10 cm2 TiO2-coated plate to leave undetectable metal concentrations in one hour. Stripping voltammetry using carbon electrodes coated with mercury films was estimated to generate daily about 1.1 L of aqueous waste containing 0.1 ppm of each metal. The results indicate the feasibility of assembling an apparatus capable of treating the waste generated by stripping voltammetry to render the latter suitable for routine on-site analyses without environmental concern. Data were also obtained to show the effectiveness in treating silver containing solutions, indicating suitability of the photocatalytic process in treating photographic processing wastes.

  17. Effect of glass and polyacid preparations on the strength of glass ionomer cements for dental applications

    Directory of Open Access Journals (Sweden)

    Naruporn Monmaturapoj

    2009-08-01

    Full Text Available Glass ionomer cements (GICs, widely used as restorative materials in dentistry, are principally composed of fluoroaluminosilicateglass powder combined with a water-soluble polyacid. The investigation of new glass compositions and polyacid components are very important to improve the mechanical properties of these cements. The objective of this work was to prepare glass ionomers and polyacids for the use as GICs. The effects of spherical bodies, Al2O3:SiO2 ratios, replacing CaO by SrO, and ZrO2 adding in glass powder in combination with the variation of acidic copolymer concentration on the compressive strength were investigated and discussed.

  18. The determination of the Fe sup 2+ /Fe sup 3+ ratio in simulated nuclear waste glass by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). In this facility, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Therefore, the development of a rapid and reliable analytical method for the determination of the redox equilibrium is of considerable interest. Redox has been determined by measuring the ratio of ferrous to ferric ions in the glass melt. Two analytical techniques for glass redox measurement have been investigated for the DWPF: Mossbauer Spectroscopy which may be subject to interferences from the radiation in actual waste, and a rapid and simple chemical dissolution/spectrophotometric technique. Comparisons of these techniques have been made at several laboratories including Clemson University. In the study attached, the determination of the redox ratio by Ion Chromatography (IC) was investigated as a potential new technology. Clemson University performed IC analyses on the same glasses as previously examined by wet chemical and Mossbauer techniques. Results from all three techniques were highly correlated and IC was reported to be a promising new technology for redox measurement. 19 refs., 19 figs., 5 tabs.

  19. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.; Schweiger, Michael J.

    2014-10-21

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles, gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.

  20. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  1. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  2. Model for the conversion of nuclear waste melter feed to glass

    Science.gov (United States)

    Pokorny, Richard; Hrma, Pavel

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the melt, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  3. Model for the conversion of nuclear waste melter feed to glass

    Energy Technology Data Exchange (ETDEWEB)

    Pokorny, Richard [Inst. of Chemical Technology Prague (Czech Republic). Dept. of Chemical Engineering; Hrma, Pavel R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pohang Univ. of Science and Technology, Pohang (Korea, Republic of). Division of Advanced Nuclear Engineering

    2014-02-01

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the feed, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  4. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  5. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  6. Compression Molding of Chemical/Thermal Resistant Composite Materials Using Wastes of Glass Fiber Reinforced PTFE and Carbon Fiber

    OpenAIRE

    Kimura, Teruo

    2013-01-01

    This report proposed the compression molding method of chemical/thermal resistant composite materials reinforced by the carbon fiber extracted from CFRP waste and the waste of glass fiber coated by PTFE. The FEP resin was used for the matrix material. The contents of carbon fiber and FEP resin were varied in the experiments, and the machanical properties of composite materials were discussed in detail. As a result, the bending strength and modulus increased with increasing the content of carb...

  7. Hydrothermal synthesis of lithium silicate (Li2SiO3) from waste glass: a preliminary study

    OpenAIRE

    Coleman, Nichola J.; HURT, Andrew P.; Raza, Atiya

    2015-01-01

    Current environmental directives to conserve resources and to divert waste streams have generated significant interest in mineral recycling. In this respect, this preliminary study has demonstrated that lithium metasilicate can be prepared by hydrothermal reaction between waste container glass and lithium hydroxide solutions at 100 °C. Minor proportions of calcium hydroxide, calcite, lithium carbonate and tobermorite were also produced during the reaction. Percentage crystallinity and proport...

  8. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study.

  9. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    Energy Technology Data Exchange (ETDEWEB)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  10. Synthesis of silica gel from waste glass bottles and its application for the reduction of free fatty acid (FFA) on waste cooking oil

    Science.gov (United States)

    Sudjarwo, Wisnu Arfian A.; Bee, Mei Magdayanti F.

    2017-06-01

    Synthesis of silica gel from waste glass bottles was conducted with aims to characterize the product and to analyze its application forthe reduction of free fatty acid (FFA) on waste cooking oil. Silica source taken from waste glass bottles was synthesized into silica gel by using the sol-gel method. Several types of silica gel were produced with three different weight ratios of waste glass and sodium hydroxide as an extractor. They were: 1:1, 1:2, and 1:3. The results indicated that synthesized silica possessed morphology innano-sizedranging from 85 nm to 459 nm. Adsorption performance was investigated by a batch system atthe temperature between 70°C and 110°C by a range of 10°C in an hour. Analysis of the adsorption characteristic showed that the highest efficiency value of FFA reduction of 91% was obtained by silica gel with ratiosof 1:1 (SG 1) and 1:3 (SG 3). Their performances were also followed by the decline of the refractive index and the density of waste cooking oil.

  11. Effectiveness of waste management in Mataram City

    Science.gov (United States)

    Widayanti, B. H.; Hirsan, F. P.; Kurniawan, A.

    2017-06-01

    Mataram city as National Activity Center (NAC) led to increased of activity that occurs in this region. This condition impacted the increasing of population and the amount of waste. The amount of waste in Mataram City currently reaches 1,444 m3/day and that has been transported by the Sanitation Department as much as 1,033.82 m3 or 71.59%. This research aims to analyze the effectiveness of community-based waste or waste management. The method that was used is quantitative descriptive analysis of waste heaps and analysis of waste management. The results of the analysis of waste heaps is that in the next 10 years (2026) the amount of waste will reach 2,019 m3/day. By using the analysis of waste management, if there are 25 units machines today and 48 waste management groups are effectively utilized, then 948 m3 amount of waste could be processed in a day or as much as 65.65% of the waste is managed by the community. So that, in order to get over this waste problems, collaboration between government and the community in Mataram City is needed.

  12. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  13. Tank waste remediation system phase I high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  14. Radioactive waste processing: Borosilicate glasses and synthetic rocks. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The biliography contains citations concerning radioactive waste processing and disposal by incorporation in borosilicate glasses and synthetic rock materials. Formulations, leach tests and evaluations, melting characteristics, phase determinations, scaled-up processes, and process variables are considered. The Synroc process, and general preparation and evaluation studies are also included. Waste vitrification in materials other than borosilicates and synthetic rocks, and waste fixation using cements and bitumens are discussed in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Use of waste crushed glass for the production of hot-mix asphalt

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2016-08-01

    Full Text Available presents the development and evaluation of a new asphalt concrete mix that utilizes a sustainable crushed glass as a replacement material of a natural aggregate. The ultimate goal is to produce a cost-effective asphalt wearing course with comparative...

  16. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  17. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO2 containing glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-01

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO2, Na2O, Li2O and Fe2O3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).

  18. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 2, Additional appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. The status of the CDB is summarized in Volume I of this report. Volume II contains appendices that present data from the data base and an evaluation of glass durability models applied to the data base.

  19. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Science.gov (United States)

    Kim, Miae; Heo, Jong

    2015-12-01

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca2Nd8-xCex(SiO4)6O2] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca-silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca-silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10-6 g m-2 for Ce ion and 2.19·10-6 g m-2 for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing.

  20. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2016-09-06

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry.

  1. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Benino, Y; Nanba, T [Graduate School of Environmental Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan); Sakida, S, E-mail: benino@cc.okayama-u.ac.jp [Environmental Management Center, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan)

    2011-03-15

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbO{sub n} units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  2. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G. [Washington River Protection Solutions, Richland, WA (United States)

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  3. Leaching of actinides and technetium from simulated high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.; Harvey, C.O.; Turcotte, R.P.

    1979-08-01

    Leach tests were conducted using a modified version of the IAEA procedure to study the behavior of glass waste-solution interactions. Release rates were determined for Tc, U, Np, Pu, Am, Cm, and Si in the following solutions: WIPP B salt brine, NaCl (287 g/l), NaCl (1.76 g/1), CaCl/sub 2/ (1.66 g/l), NaHCO/sub 3/ (2.52 g/l), and deionized water. The leach rates for all elements decreased an order of magnitude from their initial values during the first 20 to 30 days leaching time. The sodium bicarbonate solution produced the highest elemental release rates, while the saturated salt brine and deionized water in general gave the lowest release. Technetium has the highest initial release of all elements studied. The technetium release rates, however, decreased by over four orders of magnitude in 150 days of leaching time. In the prepared glass, technetium was phase separated, concentrating on internal pore surfaces. Neptunium, in all cases except CaCl/sub 2/ solution, shows the highest actinide release rate. In general, curium and uranium have the lowest release rates. The range of actinide release rates is from 10/sup -5/ to 10/sup -8/ g/cm/sup 2//day. 25 figures, 7 tables.

  4. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol

    2005-10-10

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  5. Effect of host glass matrix on structural and optical behavior of glass-ceramic nanocomposite scintillators

    Science.gov (United States)

    Brooke Barta, M.; Nadler, Jason H.; Kang, Zhitao; Wagner, Brent K.; Rosson, Robert; Kahn, Bernd

    2013-12-01

    Composite scintillator systems have received increased attention in recent years due to their promise for merging the radioisotope discrimination capabilities of single crystal scintillators with the high throughput scanning capabilities of portal monitors. However, producing the high light yield required for good energy resolution has proven challenging as scintillation photons are often scattered by variations in refractive index and agglomerated scintillator crystals within the composite. This investigation sought to mitigate these common problems by using glass-ceramic nanocomposite materials systems in which nanoscale scintillating crystallites are precipitated in a controlled manner from a transparent glass matrix. Precipitating crystallites in situ precludes nanoparticle agglomeration, and limiting crystallite size to 50 nm or less mitigates the effect of refractive index mismatch between the crystals and host glass. Cerium-doped gadolinium bromide (GdBr3(Ce)) scintillating crystals were incorporated into sodium-aluminosilicate (NAS) and alumino-borosilicate (ABS) host glass matrices, and the resulting glass-ceramic structures and luminescence behavior were characterized. The as-cast glass from the ABS system displayed a highly ordered microstructure that produced the highest luminescence intensity (light yield) of the samples studied. However, heat treating to form the glass-ceramic precipitated rare-earth oxide crystallites rather than rare-earth halides. This degraded light yield relative to the unaged sample.

  6. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  7. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  8. The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Langowski, M.H.

    1996-02-01

    Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

  9. Effect of Crushed Glass Cullet Sizes on Physical and Mechanical Properties of Red Clay Bricks

    Directory of Open Access Journals (Sweden)

    Patricia Ponce Peña

    2016-01-01

    Full Text Available This study reports the effect of clear waste glass from bottles added on 20 to 30 wt.% and variable particle size (<500, <300, and <212 μm, into clay mixtures for the handmade brick manufacturing process. The bricks were manufactured with mixtures of clay, crushed glass, and water in different proportions, homogenized, casted in wooden molds, air-dried at room temperature for 72 h, and sintered at 1000°C for 12 h. Total shrinkage, water absorption, compressive strength, microstructure, and phase composition are discussed with respect to glass content and its particle size. The results indicate that increasing the content of glass and decreasing its particle size enhanced significantly the brick properties of water absorption and compressive strength by up to 18.5% and 6.8 MPa, for bricks with 30 wt% and particle size lower than 212 μm. It is proposed that decreasing the glass particle size its surface area increases allowing easier melting of glass by lower energy consumption, reducing porosity and enhancing brick properties.

  10. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...... spectroscopies to obtain insights into the structural and topological features of these glasses, and hence into the mixed alkaline earth effect. We demonstrate that the mixed alkaline earth effect manifests itself as a maximum in the amount of bonded tetrahedral units and as a minimum in liquid fragility index...

  11. Perceptions of the Glass Ceiling Effect in Community Colleges

    Science.gov (United States)

    Myers, Cheryl E.

    2010-01-01

    The purpose of this study was to determine the existence of a glass ceiling effect within community colleges by examining faculty, staff and administrator's perceptions of a glass ceiling as it relates to the advancement of women at their institutions. This was done by using a cross-sectional survey administered electronically to faculty, staff…

  12. Perceptions of the Glass Ceiling Effect in Community Colleges

    Science.gov (United States)

    Myers, Cheryl E.

    2010-01-01

    The purpose of this study was to determine the existence of a glass ceiling effect within community colleges by examining faculty, staff and administrator's perceptions of a glass ceiling as it relates to the advancement of women at their institutions. This was done by using a cross-sectional survey administered electronically to faculty, staff…

  13. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  14. Chemical durability and structural analysis of PbO–B{sub 2}O{sub 3} glasses and testing for simulated radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Cem [Ege University Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Bengisu, Murat [Izmir University of Economics, Department of Industrial Design, Sakarya Cad., No. 156, 35330 Balcova, Izmir (Turkey); Erenturk, Sema Akyil, E-mail: erenturk@itu.edu.tr [Istanbul Technical University, Energy Institute, 34469 Maslak, Istanbul (Turkey)

    2014-02-01

    Graphical abstract: Secondary electron SEM images of lead borate glass including 80 mol% PbO before (top) and after chemical durability tests (bottom) - Abstract: Lead borate based glass formulations with high chemical durability and lower melting temperatures compared to the currently used glasses were developed as candidates for the vitrification of radioactive waste. Properties including chemical durability, glass transformation temperature, and melting temperature were analyzed. The chemical durability of PbO–B{sub 2}O{sub 3} glasses with PbO contents ranging from 30 to 80 mol% was determined. An average dissolution rate of 0.2 g m{sup −2} day{sup −1} was obtained for the composition 80PbO⋅20B{sub 2}O{sub 3}. These glasses were studied under simulation conditions and showed good potential as a vitrification matrix for radioactive waste management. Clear vitrified waste products containing up to 30 mol% SrO and 25 mol% Cs{sub 2}O could be obtained. Leaching rates are about hundred times higher in low PbO glasses compared to high PbO glasses. These results are encouraging since they open up new horizons in the development of low melting temperature lead borate glass for waste immobilization applications.

  15. INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; FENG Z; GAN H; PEGG IL

    2009-11-05

    Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

  16. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass-ceramic fabricated using soda-lime-silica waste glass

    Science.gov (United States)

    Abbasi, M.; Hashemi, B.; Shokrollahi, H.

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass-ceramic prepared through the solid-state reaction method using soda-lime-silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5-20 wt% strontium hexaferrite to bioactive glass-ceramics, the ferrimagnetic bioactive glass-ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed.

  17. Assessing the effectiveness of Denmark's waste tax

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    1998-01-01

    By the mid-l980s, Denmark had a serious waste disposal problem: Its per capita generation of waste was among the highest in Europe and rising; it was running out of landfill space, with Copenhagen set to exhaust its landfill capacity in a short time; and there was a great deal of concern about air...... pollution from incinerators. Denmark responded to this situation by adopting a comprehensive waste management policy that included an innovative tax on waste designed to promote the reuse and recycling of many types of waste. Now that the tax has been in place for a decade, there is enough data to assess...... its effectiveness. Such an assessment has implications that extend far beyond Denmark. To date, six other countries in Europe (Austria, Belgium, Finland, France, the Netherlands, and the United Kingdom) have adopted waste taxes at the national level, and two others (Norway and Sweden) are considering...

  18. Inorganic wastes in manufacturing of glass-ceramics. Slurry of phosphorous fertilizer production and oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovsky, A.V.; Mendez-Nonell, J.; Escalante-Garcia, J.I.; Pech-Canul, M.I.; Vargas-Gutierrez, G. [Department of Engineering Ceramics of CINVESTAV-IPN, Unidad Saltillo-Monterrey, km 13.5, Apartado Postal 663, CP 25000, Saltillo, Coahuila (Mexico); Gorokhovsky, V.A.; Mescheryakov, D.V. [Department of Building Materials of Saratov State Technical University, Saratov (Russian Federation)

    2001-11-01

    The use of bicomponent raw material mixtures of industrial wastes to produce pyroxene glass ceramics was investigated. It is shown that oil shale ash from heat power stations can promote the production of crystalline phases and the slurry from phosphorous fertilizer production can provide sufficient concentration of nucleating agents. Mechanical and chemical properties, as well as the structure and crystallization mechanism were characterized. An increase of phosphorous oxide and fluorine concentrations leads to a change of the crystallization mechanism.

  19. Foaming of waste cathode ray tube panel glass via CaCO3

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    of a TV. In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high quality foam glass from the recycled lead-free glass. We study the influence of foaming...... parameters on the characteristics of foam. CRT panel glass was crushed, milled and sieved below 63 m. CaCO3 was used as a foaming agent and was mixed with glass powders by means of a planetary ball mill. Preliminary results show that milling conditions and particle size have a major influence on the foaming...... process and resulting density of samples. We investigate the influence of foaming agent concentration on the foaming process, foam density, foam porosity and homogeneity. We demonstrate how milling and foaming conditions affect the foam properties for different amounts of CaCO3. A minimum in the density...

  20. Effective waste control; Doeltreffend afvalsturen

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, E.

    2002-10-04

    Options to realize targets within the Dutch policy for waste management are discussed, focusing on (1) using waste as an energy source as much as possible to realize the Kyoto target, and (2) not dumping waste that can be burnt. [Dutch] In dit onderzoek wordt aangegeven hoe een aantal doelen van het Nederlandse afvalbeleid behaald kan worden. Het gaat daarbij zowel om de wens zoveel mogelijk afval te gebruiken als energiebron in het kader van de Kyoto-doelstelling als om het beleidsuitgangspunt brandbaar afval niet te storten.

  1. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  2. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Science.gov (United States)

    Wołkowycki, Grzegorz

    2016-03-01

    The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators' matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  3. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass.

    Science.gov (United States)

    Sodagari, Maysam; Wang, Hua; Newby, Bi-min Zhang; Ju, Lu-Kwang

    2013-03-01

    Bacterial attachment on solid surfaces has various implications in environmental, industrial and medical applications. In this study, the effects of rhamnolipid biosurfactants on initial attachment of bacteria on hydrophilic glass and hydrophobic octadecyltrichlorosilane (OTS) modified glass were evaluated under continuous-flow conditions. The bacteria investigated were three Gram-negative species Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli, and two Gram-positive species Staphylcoccus epidermidis and Bacillus subtilis. Rhamnolipids, at 10 and 200 mg/l, significantly reduced the attachment of all but S. epidermidis on both glass and OTS-modified glass. For S. epidermidis rhamnolipids reduced the attachment on OTS-modified glass but not on glass. Studies were further done to identify the mechanism(s) by which rhamnolipids reduced the cell attachment. The following potential properties of rhamnolipids were investigated: inhibition of microbial growth, change of cell surface hydrophobicity, easier detachment of cells already attached to substratum, and modification of substratum surface properties. Results showed that rhamnolipids were ineffective for the latter two effects. Rhamnolipids, up to 200mg/l, inhibited the growth of B. subtilis, S. epidermidis and P. aeruginosa PAO1 but not the growth of E. coli, P. putida and P. aeruginosa E0340. Also, rhamnolipids tended to increase the hydrophobicity of P. aeruginosa PAO1 and E. coli, decrease the hydrophobicity of P. putida and S. epidermidis, and have no clear effect on the hydrophobicity of B. subtillis. These trends however did not correlate with the observed trend of cell attachment reduction. The responsible mechanism(s) remained unknown.

  4. Surface effects on the crystallization of ritonavir glass.

    Science.gov (United States)

    Kawakami, Kohsaku

    2015-01-01

    In our previous study, initiation time of crystallization was shown to be basically expressed as a function of only the reduced temperature, which was a ratio of storage and glass transition temperatures. This conclusion was obtained using quenched glasses with minimized surface area stored under a dried atmosphere. In this study, the surface effects on the crystallization were investigated using freeze-dried ritonavir (RTV) glass. Although quenched RTV glass exhibited exceptionally long initiation time, the initiation was accelerated by using the freeze-dried glasses. Storage of the samples under humid conditions further accelerated the crystallization. These surface effects eliminated the energetic barrier for nucleation, and the RTV glass exhibited universal initiation time. In contrast, subsequent crystal growth was slower for the freeze-dried glasses relative to the quenched one, presumably because of less condensed and porous structures that would suppress molecular cooperativity. Storage under a humid atmosphere also appeared to inhibit the crystal growth, presumably because of disruption of the molecular network by water. These findings support the existence of the universal initiation time for crystallization and indicated the importance of surface effects in crystallization behavior. Also, the suppression of crystal growth because of the void structure and incorporation of water molecules were indicated.

  5. Expanded High-Level Waste Glass Property Data Development: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  6. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    Science.gov (United States)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  7. Is the glass half full or half empty? How to reverse the effect of glass elongation on the volume poured.

    Directory of Open Access Journals (Sweden)

    Simone R Caljouw

    Full Text Available To reduce the volume of drinks and the risk of overconsumption, health professionals recommend the use of tall skinny instead of short wide glasses. Yet the results of the present study contradict this health advice. Participants who generously filled up a glass with lemonade served 9% more in tall narrow compared with short wide glasses (p<0.05. In addition, when pouring a small amount (i.e., a shot, participants poured 3% more in a short wide than in a tall narrow glass (p<0.05. Elongation may bias the perceived volume that is poured but also the perceived volume of the free space in the glass. We hypothesised that shifting attention from the bottom to the brim of the glass when filling it close to capacity might reverse the glass elongation effect on the quantity poured. This hypothesis was tested, by investigating two pouring tasks that differed in the required focus of attention. When the instruction was to match a reference volume, participants poured more liquid in the short wide compared with the tall narrow glass (p<0.05. The effect of glass elongation on poured volume was the opposite when the instruction was to leave space in the glasses for the reference volume. It seems likely that task and individual factors affect the pourer's viewing strategy and thus may determine the direction of the glass elongation effect on the volume poured.

  8. Glass fabrication and analysis literature review and method selection for WTP waste feed qualification

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) safety basis, technical basis, and design by assuring waste acceptance requirements are met for each staged waste feed Campaign prior to transfer from the Hanford Tank Farm to the WTP.

  9. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    Science.gov (United States)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  10. Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass.

    Science.gov (United States)

    Lu, Rixin; Ma, En; Xu, Zhenming

    2012-12-01

    Liquid crystal display (LCD) glass mainly consists of polarizing film, liquid crystal and glass substrate. Removing and recovering the liquid crystal and films from the LCD glass effectively has important significance for recovering the other parts. This study proposed a pyrolysis process to recover the organic parts from LCD glass. Through thermal gravimetric analysis, the pyrolysis temperature of the LCD glass could be chosen at 850 K. The removal rate of organic parts from LCD glass reached 87.87 wt%. Pyrolysis products consisted of 66.82 wt% oils, 21.01 wt% gaseous and 12.13 wt% residues. In addition, the oils contained 46.27 wt% acetic acid and 32.94 wt% triphenyl phosphate. Then, the pyrolysis mechanisms and products sources of the liquid crystal glass have been analyzed based on the information of bonds energy. The pyrolysis mechanism analysis proved that the products mainly consisted of acetic acid, triphenyl phosphate and C, which is consistent to the results of GC-MS analysis. A reasonable way has been put forward to recycle the pyrolysis products: acetic acid and triphenyl phosphate can be collected by distillation, the rest oils and gases can be used as fuel and the remained glass can be used to extract indium and to produce building materials.

  11. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  12. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  13. Prediction models of long-term leaching behavior and leaching mechanism of glass components and surrogated nuclides in radioactive vitrified waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, K. S. [Department of Industrial Environment and Health, Yonsei University, Wonju (Korea, Republic of); Kim, I. T.; Kim, H. T.; Kim, J. H. [Korea Atomic Energy Research Institute (KAERI), Taejon (Korea, Republic of)

    1999-07-01

    Melting solidification is considered to be a perspective technology for stabilizing incineration ash remaining after incineration of combustible radioactive waste since it has the advantage of improving the physicochemical properties of waste forms. Final waste forms should be characterized to determine the degree to which they fulfills the acceptance criteria of the disposal facility. Chemical durability (leaching resistance) is known to be the most important factor in the assessment of waste forms. In this study, vitrified waste forms are manufactured and characterized. Feed materials consist of simulated radioactive incineration ash and base-glass with different mixing ratios. To assess the chemical durability of vitrified waste forms, the International Standard Organization (ISO) leach test has been conducted at 70 degree C with deionized distilled water as a leachant for 820 days, and the concentrations of glass components and surrogates in the leachates are then analyzed. Two models for predicting long-term leaching behavior of glass components and radionuclides in a glass form are applied to the leached data after 820 days. The model including a fitted parameter from the longer experimental data shows more accuracy, however, the model with shorter leaching test results offers the advantage of being able to predict the long-term behavior from the short-term experimental data. The leaching mechanisms of surrogates and glass components were also investigated by using two semi-empirical kinetic models and were found to be dissolution with diffusion. (author)

  14. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials

    Directory of Open Access Journals (Sweden)

    Haleh Kazemi Yazdi

    2016-12-01

    Full Text Available Statement of the Problem: The usage of glass ionomer cements (GICs restorative materials are very limited due to lack of flexural strength and toughness. Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Materials and Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm. The characteristics of the powder particles were observed under scanning electron microscopy. The samples were made for each experimental group; KMEm and lucite- modified Ketac-Molar easy Mix (LMKMEm according to manufacturer’s instruction then were collected in damp tissue and stored in incubator for 1 hour. The samples were divided into two groups, one stored in distilled water for 24 hours and the others for 1 week.10 samples were made for testing biaxial flexural strength after 1 day and 1 week, with a crosshead speed of 1mm/min, calculated in MPa. The hardness (Vickers hardness tester of each experimental group was also tested. To evaluate optical properties, 3 samples were made for each experimental group and evaluated with a spectrophotometer. The setting time of modified GIC was measured with Gillmore machine. Result: The setting time in LMKMEm was 8 minutes. The mean biaxial flexural strength was LMKMEm/ 1day: 24.13±4.14 MPa, LMKMEm/ 1 week: 24.22±4.87 MPa KMEm/1day:28.87±6.31 MPa and KMEm/1 week: 26.65±5.82 MPa which were not statistically different from each other. The mean Vickers hardness was LMKMEm: 403±66 Mpa and KMEm: 358±22 MPa; though not statistically different from each other. The mean total transmittance (Tt was LMKMEm: 15.9±0.7, KMEm: 22.3±1.2, the mean diffuse transmittance (Td was LMKMEm: 12.2±0.5, KMEm: 18.0±0.5 which were statistically different from each other. Conclusion: Leucite glass can be incorporated with a

  15. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Kers, G.; Santen, E. van

    2011-01-01

    This presentation shows the advantages of re-melting post-consumer glass, but also the potential risks of using contaminated cullet in the raw material batch of glass furnaces (e.g. container glass furnaces). As an example of potential advantages: increasing the cullet % in the batch of an efficient

  16. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Kers, G.; Santen, E. van

    2011-01-01

    This presentation shows the advantages of re-melting post-consumer glass, but also the potential risks of using contaminated cullet in the raw material batch of glass furnaces (e.g. container glass furnaces). As an example of potential advantages: increasing the cullet % in the batch of an efficient

  17. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation; Etude des caracteristiques structurales et des proprietes de verres riches en terres rares destines au confinement des produits de fission et elements a vie longue

    Energy Technology Data Exchange (ETDEWEB)

    Bardez, I

    2004-11-15

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO{sub 2} fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO{sub 2} - 8.94 B{sub 2}O{sub 3} - 3.05 Al{sub 2}O{sub 3} - 14.41 Na{sub 2}O - 6.32 CaO - 1.89 ZrO{sub 2} - 3.60 RE{sub 2}O{sub 3} (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and {sup 29}Si, {sup 27}Al and {sup 11}B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  18. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices; Effets d'irradiations sur la structure de verres borosilicates - comportement a long terme des matrices vitreuses de stockage des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonfils, J. de

    2007-09-15

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu{sup 3+} and Nd{sup 3+}). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10{sup 13} at.cm{sup -2}, which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  19. Characterization of the Italian glasses and their interaction with clay Task 3 Characterization of radioactive waste forms a series of final reports (1985-89) No 23

    Energy Technology Data Exchange (ETDEWEB)

    Cantale, C.; Castelli, S.; Donato, A.; Traverso, D.M. [ENEA, Casaccia (IT)

    1991-12-31

    The objective of this research work was the selection of a borosilicate glass composition suitable for the solidification of the HLW stream coming from the treatment of all the high-level wastes stored in Italy (MTR, Candu and Elk River) and the characterization of this glass with reference to the geological disposal. This research work was part of an Italian research project named `Ulisse project`, whose goal was the development and the demonstration of an integrated treatment of all the HLW stored in Italy, after their mixing (resulting waste: MCE waste). The main concept is to carry out a pre-treatment of the wastes, in order to concentrate the HLW fraction and to simplify the vitrification process, separating the most part of the inert salts. The research work concerning the separation process and pilot plant demonstration of the pre-treatment process were carried out in the framework of the CEC R and D programme (Contract No Fl1W-0011-lS). The laboratory studies concerning the vitrification of the resulting HLW streams and the vitrification demonstration in the Italian full-scale, inactive IVET plant complete the `Ulisse project`. Some glass compositions were prepared and preliminarily characterized. The glass named BAZ was finally selected. A complete characterization of this glass was carried out in order to evaluate its mechanical, physical and physico-chemical properties. The chemical durability was evaluated by the MCC-1 static leach test at 90{sup 0}C, using three different leachants and two surface-area to leachant-volume ratios. The same characterization programme was applied to the BAZ glass produced in the IVET plant during the plant vitrification demonstration programme. A comparison between the two glasses and a critical evaluation of their performances with respect to other nuclear waste glasses` durability was performed. 25 refs.; 46 figs.; 20 tabs.

  20. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production......Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  1. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  2. Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements.

    Science.gov (United States)

    Hurrell-Gillingham, K; Reaney, I M; Miller, C A; Crawford, A; Hatton, P V

    2003-08-01

    The effects of devitrification of an ionomer glass with a molar composition 4.5SiO(2).3Al(2)O(3).1.5P(2)O(5).3CaO.2CaF(2) on cement formation and in vitro biocompatibility were investigated. Differential thermal analysis was used to study the phase evolution in the glass, and to determine the heat treatments for production of glass-ceramics. X-ray diffraction patterns from glass frit heat-treated at 750 degrees C for 2h contained peaks corresponding to apatite (JCPDS 15-876), whereas for samples heat-treated at 950 degrees C for 2h apatite and mullite (JCPDS 15-776) were the major phases detected. Transmission electron microscopy (TEM) confirmed that apatite and apatite-mullite phases were present after heat treatments at 750 degrees C and 950 degrees C respectively. Glass and glass-ceramics were ground to prepare <45microm powders and glass ionomer cements were produced using a ratio of 1g powder: 0.2g PAA: 0.3g 10% m/v tartaric acid solution in water. In vitro biocompatibility was evaluated using cultured rat osteosarcoma (ROS) cells. Scanning electron microscopy (SEM) showed that cells colonised the surfaces of cements prepared using untreated ionomer glass and glass crystallised to form apatite (750 degrees C/2h). However, quantitative evaluation using MTT and total protein assays indicated that more cell growth occurred in the presence of cements prepared using ionomer glasses crystallised to apatite than cements prepared using untreated glass. The least cell growth and respiratory activity was observed on cements made with crystallised glass containing both apatite and mullite. It was concluded that the controlled devitrification of ionomer glasses could be used to produce GIC bone cements with improved biocompatibility.

  3. The Effects of Gravity on ZBLAN Glass

    Science.gov (United States)

    Tucker, Dennis S.; Workman, Gary; Smith, Guy; Tucker, Dennis S.

    1999-01-01

    Heavy metal fluoride glass fibers show promise in applications such as surgical lasers, spectroscopy and imaging fiber bundles. ZBLAN, which is within this class has been studied for a number of years. ZBLAN's theoretical attenuation coefficient is approximately 0.002 dB/km which is much better than that of fused silica at 0.2 dB/km. However, due to impurities and crystallites the attenuation coefficients achieved to date are considerably larger than those of fused silica. Impurities can be controlled with better processing techniques. Crystallization has been found to be a function of gravity. It is found that heating to the crystallization temperature in unit gravity results in crystallization while heating in reduced gravity does not. The exact mechanism for this phenomenon is not known but is speculated to be related to stress.

  4. Effect of small glass composition changes on flue gas emissions of glass furnaces

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Kersbergen, M.J. van

    2008-01-01

    Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of

  5. Effect of small glass composition changes on flue gas emissions of glass furnaces

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Kersbergen, M.J. van

    2008-01-01

    Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of volati

  6. Insertion of marble waste in the production chain of glass wool; Insercao do residuo de marmore na cadeia produtiva da la de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G.F.; Alves, J.O.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: girleyf@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The work aimed the study of the recycle of the waste from marble cutting, aiming the reuse as partial raw material in the production of glass wool. Glass wool are materials with chemical and mechanical resistance, durability and lightness, and also important thermo-acoustic properties. A mixture of the waste with chemical additives was melted in a laboratory electric furnace using temperature of 1450 deg C. The melted material was directly poured in a water-filled recipient aiming the rapidly cooling. Samples of the produced material were characterized by XRD, SEM and DTA. The results showed that the residue from marble cutting can be inserted into the productive chain of glass wool, providing a decrease in the extraction of mineral resources, a profitable destination for this waste, and a economy for the companies producer of thermo-acoustic insulators. (author)

  7. Technical Note: Updated durability/composition relationships for Hanford high-level waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.F.; Hartley, S.A.; Redgate, P.E.

    1996-03-01

    This technical note presents empirical models developed in FYI 995 to predict durability as functions of glass composition. Models are presented for normalized releases of B, Li, Na, and Si from the 7-day Product Consistency Test (PCT) applied to quenched and canister centerline cooled (CCC) glasses as well as from the 28-day Materials Characterization Center-1 (MCC-1) test applied to quenched glasses. Models are presented for Composition Variation Study (CVS) data from low temperature melter (LTM) studies (Hrma, Piepel, et al. 1994) and high temperature melter (HTM) studies (Vienna et al. 1995). The data used for modeling in this technical note are listed in Appendix A.

  8. Laboratory investigation of the performance properties of hot mix asphalt containing waste glass

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2016-07-01

    Full Text Available CSIR is currently undertaking a study on potential utilization of crushed glass as a substitute material to natural aggregate in asphalt mixes. As part of the study, laboratory investigation is needed to determine the performance characteristics...

  9. Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Hopf, J.; Kerisit, Sebastien N.; Angeli, F.; Charpentier, Thibault M.; Icenhower, Jonathan P.; McGrail, Bernard P.; Windisch, Charles F.; Burton, Sarah D.; Pierce, Eric M.

    2016-05-15

    Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high–valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O–Al2O3–B2O3–HfO2–SiO2 system (e.g., Na/[Al+B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si—O—Hf moieties in the glass. Results from flow–through experiments conducted under dilute and near–saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers

  10. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-12-01

    A layered experimental design involving mixture variables was generated to support developing property-composition models for high-level waste (HLW) glasses. The design was generated in two stages, each having unique characteristics. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. The layers were defined by single- and multi-variable constraints. The first stage involved 15 glass components treated as mixture variables. For each layer, vertices were generated and optimal design software was used to select alternative subsets of vertices and calculate design optimality measures. Two partial quadratic mixture models, containing 25 terms for the outer layer and 30 terms for the inner layer, were the basis for the optimal design calculations. Distributions of predicted glass property values were plotted and evaluated for the alternative subsets of vertices. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer to form a layered design for the first stage. The design for the second stage was selected to augment the first-stage design. The discussion of the second-stage design begins in this Part 1 and is continued in Part 2 (Cooley and Piepel, 2003b).

  11. REDOX state analysis of platinoid elements in simulated high-level radioactive waste glass by synchrotron radiation based EXAFS

    Science.gov (United States)

    Okamoto, Yoshihiro; Shiwaku, Hideaki; Nakada, Masami; Komamine, Satoshi; Ochi, Eiji; Akabori, Mitsuo

    2016-04-01

    Extended X-ray Absorption Fine Structure (EXAFS) analyses were performed to evaluate REDOX (REDuction and OXidation) state of platinoid elements in simulated high-level nuclear waste glass samples prepared under different conditions of temperature and atmosphere. At first, EXAFS functions were compared with those of standard materials such as RuO2. Then structural parameters were obtained from a curve fitting analysis. In addition, a fitting analysis used a linear combination of the two standard EXAFS functions of a given elements metal and oxide was applied to determine ratio of metal/oxide in the simulated glass. The redox state of Ru was successfully evaluated from the linear combination fitting results of EXAFS functions. The ratio of metal increased at more reducing atmosphere and at higher temperatures. Chemical form of rhodium oxide in the simulated glass samples was RhO2 unlike expected Rh2O3. It can be estimated rhodium behaves according with ruthenium when the chemical form is oxide.

  12. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    Science.gov (United States)

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of (29)Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO(+) and SiO2(+) ion species was performed, and we found that SiO(+) ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO3). For SiO2(+), no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. (28)Si(16)O(18)O(+), (30)Si(16)O(16)O(+)). The developed method was validated by measuring a series of reference solutions with different (29)Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  13. Risk-informed assessment of radionuclide release from dissolution of spent nuclear fuel and high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae M., E-mail: tae.ahn@nrc.gov

    2017-06-15

    Highlights: • Dissolution of HLW waste form was assessed with long-term risk informed approach. • The radionuclide release rate decreases with time from the initial release rate. • Fast release radionuclides can be dispersed with discrete container failure time. • Fast release radionuclides can be restricted by container opening area. • Dissolved radionuclides may be further sequestered by sorption or others means. - Abstract: This paper aims to detail the different parameters to be considered for use in an assessment of radionuclide release. The dissolution of spent nuclear fuel and high-level nuclear waste glass was considered for risk and performance insights in a generic disposal system for more than 100,000 years. The probabilistic performance assessment includes the waste form, container, geology, and hydrology. Based on the author’s previous extended work and data from the literature, this paper presents more detailed specific cases of (1) the time dependence of radionuclide release, (2) radionuclide release coupled with container failure (rate-limiting process), (3) radionuclide release through the opening area of the container and cladding, and (4) sequestration of radionuclides in the near field after container failure. These cases are better understood for risk and performance insights. The dissolved amount of waste form is not linear with time but is higher at first. The radionuclide release rate from waste form dissolution can be constrained by container failure time. The partial opening area of the container surface may decrease radionuclide release. Radionuclides sequestered by various chemical reactions in the near field of a failed container may become stable with time as the radiation level decreases with time.

  14. Leach behavior of high-level borosilicate glasses under deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  15. Leach behavior of high-level borosilicate glasses under deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  16. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  17. Quenching Effects on Iron Site Partitioning in the Apollo 17 Orange Glass Composition

    Science.gov (United States)

    Dyar, M. D.

    1985-01-01

    Mare petrogenesis and the structure of the lunar interior were studied. Analyses of the spectral signatures of glasses was useful to remote sensing applications in areas of the moon where glass is in significant proportions in the lunar soil. The studies provided information on Fe site occupancies in glasses, which are used to construe oxygen fugacities at the lunar surface. Data were obtained through work on synthetic analogues of lunar glasses. However, recent Mossbauer studies of an Apollo 15 green glass composition have shown that synthetic glasses are extremely sensitive to variations in quenching media. Glass structure and Fe(3+)/Fe(2+) ratios are strongly controlled by quenching conditions, which may mask the effects of the original glass' formation temperature or oxygen partial pressure. Synthetic glasses were often run at low fugacities on Pt wires. The effects of quench media on the Apollo 17 orange glass composition are considered.

  18. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Science.gov (United States)

    Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-01

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO2sbnd Al2O3sbnd B2O3 glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  19. IMPACT OF PARTICLE SIZE AND AGGLOMERATION ON SETTLING OF SOLIDS IN CONTINUOUS MELTERS PROCESSING RADIOACTIVE WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    HRMA PR

    2008-12-18

    The major factor limiting waste loading for many waste compositions in continuous waste glass melters is the settling of crystalline materials. The currently used constraints, i.e., the minimum liquidus temperature or the maximum fraction of equilibrium crystallinity at a given temperature, are based on thennodynamic equilibria. Because of the rapid circular convection in the melter, these constraints are probably irrelevant and cannot prevent large crystals from settling. The main factor that detennines the rate of settling ofindividual crystals, such as those ofspinel, is their size. The tiny crystals of RU02 are too small to settle, but they readily fonn large agglomerates that accelerate their rate ofsettling by severalorders ofmagnitude. The RU02 agglomerates originate early in the melting process and then grow by the shear-flocculation mechanism. It is estimated that these agglomerates must either be ofhundreds micrometers in size or have an elongated shape to match the observed rates ofthe sludge-layer fonnation. PACS: 47.57.ef, 81.05.Kj, 81.10.Fg

  20. Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concrete

    Directory of Open Access Journals (Sweden)

    Seong Kyum Kim

    2017-01-01

    Full Text Available The high quality liquid crystal display (LCD processing waste glass (LPWG generated from the manufacturing process of Korea’s LCD industries, having the world’s highest technological level and production, was finely ground into particles smaller than cement particles (higher fineness than OPC to verify their applicability and performance as a replacement for cement. For a concrete mix having a W/B ratio of 0.44, cement was replaced with LPWG glass powder (LGP at ratios of 5, 10, 15, and 20% (LGP12 and 5 and 10% (LGP5 according to the particle size to prepare test cylinder specimens, which were tested with respect to air contents, slump in fresh concrete, and compressive strength and splitting tensile strength of hardened concrete. The microstructure of the concrete specimens was analyzed through Scanning Electron Microscopy (SEM, Energy Dispersive X-ray (EDX, and a Mercury Intrusion Porosimetry (MIP. Replacement of cement with LGP for cement could effectively decrease the quantity of cement used due to the excellent performance of LGP. It may positively contribute to the sustainable development of the cement industry as well as waste recycling and environment conservation on a national scale.

  1. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia

    2015-01-01

    Reliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition....... In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However......, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved....

  2. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    Energy Technology Data Exchange (ETDEWEB)

    AA KRUGER; A GOEL; CP RODRIGUEZ; JS MCCLOY; MJ SCHWEIGER; WW LUKENS; JR, BJ RILEY; D KIM; M LIEZERS; P HRMA

    2012-08-13

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.

  3. Effects of density difference of constituent elements on glass formation in TiCu-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Zhongyan Zhang; Zengbao Jiao; Jie Zhou; Yuan Wu; Hui Wang; Xiongjun Liu; Zhaoping Lun

    2013-01-01

    Glass formation is generally favored by a large atomic size mismatch among constituent elements, which usually leads to large density differences among them as well. During melting, elemental segregation occurs due to Stokes’ law and then inevitably affects glass formation. In this paper, such effects on glass-forming ability in a TiCu-based alloy system have been demonstrated. In the bulk glass-forming composition Ti43Cu42Hf14Si1, macroscopic segregation of Si was observed in the as-melted ingots and silicon was completely depleted in the as-cast rods. In another Ti33Cu47Ni8Zr11Si1 alloy, nevertheless, the effects of density differences among the constituent elements were less severe. It was also confirmed that using proper pre-alloys could be an effective way in alleviating the side effects of the elemental segregation.

  4. Influence of the waste glass in the axial compressive strength of Portland cement concrete; Influencia dos residuos vitreos na resistencia a compressao axial do concreto de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, E.J.P.; Paiva, A.E.M., E-mail: edson.jansen@hotmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais

    2012-07-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  5. Prospects of effective microorganisms technology in wastes treatment in Egypt

    Institute of Scientific and Technical Information of China (English)

    Emad A Shalaby

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  6. Preparation of soda-lime glass using rock wool waste; Preparacao de vidros sodo-calcicos utilizando residuo de la de rocha

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, F.C.; Della, V.P. [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Ballmann, T.J.S.; Folgueras, M.V. [Universidade do Estado de Santa Catarina (UESC), Joinville, SC (Brazil); Junkes, J.A., E-mail: janajunkes@gmail.com [Centro Universitario Tiradentes, Maceio, AL (Brazil)

    2016-10-15

    Discarded by the mining industry during the maintenance stoppages of pelletizing furnaces, rock wool has in its composition SiO{sub 2} (56%), Na{sub 2} O (12%) and CaO (7%) propitious for obtaining soda-lime glasses. Under this focus, this work developed soda-lime glasses formulations, using as main raw-material rock wool waste in proportions from 50 to 100% by adjusting the chemical composition of the formulations with sand, sodium and calcium carbonates, as silica, soda and lime sources, respectively. In some formulations the sodium carbonate was replaced by sodium sulfate, which acts as a refining agent, improving homogenization and reducing the bubble formation during the melting. Initially, the raw-materials were evaluated by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. The tests showed that the rock wool waste has potential to be used in soda-lime glasses production, however, the chemical composition must be corrected. After knowing the waste potential, seven mixtures were prepared and molten at 1550 °C for 1 to 2 h. It has been found that the maximum rock wool waste percentage that can be used is between 60 and 80%, and that the 2 h melting time resulted in more homogeneous glasses and fewer bubbles according to the addition of sodium sulfate which is efficient for bubbles removal. (author)

  7. Chemical composition analysis of simulated waste glass T10-G-16A

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  8. Effect of furnace atmosphere on E-glass foaming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-12-01

    The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

  9. 纺织废料在玻璃屏风上的装饰应用%The Application of Textile Waste on a Glass Screen

    Institute of Scientific and Technical Information of China (English)

    石成伟; 张洪亭

    2013-01-01

      纺织原料种类多,纺织加工对纤维要求高,废料的利用可以提高原料的利用价值,与玻璃屏风的有机结合能够设计出自然典雅的艺术效果,为纺织经济的发展提供辅助作用。用于办公场所的隔断,餐厅的屏风,居家的装饰等既能半遮挡光线和视线,又采用双层玻璃隔音,是一副自然的装饰品。为纺织经济的多样化发展提供了途径。%Textile raw material variety, high processing requirements of the fibers, the use of waste can improve the utilization value of raw material, and the combination of glass screen to be able to design a natural and elegant artistic effect, provides the auxiliary role for textile and the development of economy, partition for the office, the screen of the restaurant, the decoration that occupy the home, both to keep out the light and the line of sight, then use double deck glass insulation, is a natural decoration. Provides a way for textile and the diversification of economic development.

  10. Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes

    Directory of Open Access Journals (Sweden)

    He F.

    2014-01-01

    Full Text Available The paper reports on some experimental results obtained from the production of glass-ceramics containing gold tailings powder (GTP. Frits particle sintered technology was used to prepare glass ceramic products. SiO2, CaO, ZnO, BaO and B2O3 were selected to adjust the composition of the glass. Based on the results of differential thermal analysis (DTA, the nucleation and crystallization temperature of parent glass samples with different schedule were identified, respectively. X-ray diffraction (XRD analysis of the produced glass-ceramics materials revealed that the main crystalline phase was β-wollastonite. With the increasing of CaO content, the intensity of crystal diffractive peaks also increases. The formation of β-wollastonite crystal could be accelerated by the increasing of CaO. The glass-ceramics with fine microstructure showed better physical, mechanical properties and chemical resistance. Overall results indicated that it was a feasible attempt to produce glass-ceramics for building and decorative materials from waste materials. The amount of GTP used in the glass batches was more than 65 wt% of the whole raw.

  11. The performance of Inconel 693 electrodes for processing an iron phosphate glass melt containing 26 wt.% of a simulated low activity waste

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jen-Hsien; Newkirk, Joseph W. [Department of Material Science and Engineering, Missouri University of Science and Technology, 101 Straumanis-James Hall 401 W. 16th St., Rolla, MO 65409-0330 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Brow, Richard K., E-mail: brow@mst.edu [Department of Material Science and Engineering, Missouri University of Science and Technology, 101 Straumanis-James Hall 401 W. 16th St., Rolla, MO 65409-0330 (United States); Schlesinger, Mark E.; Ray, Chandra S.; Day, Delbert E. [Department of Material Science and Engineering, Missouri University of Science and Technology, 101 Straumanis-James Hall 401 W. 16th St., Rolla, MO 65409-0330 (United States)

    2014-01-15

    Iron phosphate glass is a candidate fixation medium for storing radioactive waste. The Department of Energy supported a program to assess the viability of using Fe-phosphate glass for vitrifying low activity waste in a Joule Heated Melter (JHM). In this study, Inconel 693 electrodes were tested in a research-scale joule-heated melter (RSM) at Pacific Northwest National Laboratory. After a 10-day test at 1030 °C that yielded 124 kg of glass, the electrodes exhibited a dimensional loss rate of ∼1.6 mm/year, which is comparable to that of Inconel 690 electrodes used in a JHM for processing borosilicate melts. Microstructural changes occurred within the outermost 700 μm of the electrodes and are consistent with an earlier study of Inconel coupons in Fe-phosphate melts. The results indicate that Inconel 693 should have an acceptable corrosion resistance as the electrode for JHM processing of iron phosphate melts.

  12. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... effect on crystallization is studied by in situ high-pressure and high-temperature XRD using synchrotron radiation. Two crystallization temperatures, observed by in-situ XRD, behave differently with varying pressure. The onset crystallization temperature increases with pressure with a slope of 9.5 K...

  13. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  14. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses and Aluminate Solutions - 13099

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)

  15. Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-27

    The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  16. Adverse Effects of Waste Generation in Calabar Urban, Nigeria ...

    African Journals Online (AJOL)

    Adverse Effects of Waste Generation in Calabar Urban, Nigeria. ... a sample of 97 respondents [industrial and environmental health workers] who ... Key words: Management, Waste generation; Calabar Urban; Environment, health implications.

  17. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-12-31

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

  18. Production and characterization of polypropylene composites filled with glass fibre recycled from pyrolysed waste printed circuit boards.

    Science.gov (United States)

    Li, Shenyong; Sun, Shuiyu; Liang, Haifeng; Zhong, Sheng; Yang, Fan

    2014-01-01

    Waste printed circuit boards (WPCBs) are composed of nearly 70% non-metals, which are generally recycled as low-value filling materials or even directly dumped in landfills. In this study, polypropylene (PP) composites reinforced by recycled pure glass fibres (RGF) from pyrolysed WPCBs were successfully produced. The manufacturing process, mechanical properties and thermal behaviour of the composites were investigated. The results showed that the appropriate addition of RGF in the composites can significantly improve the mechanical properties and thermal behaviour. When the added content of RGF was 30%, the maximum increment of tensile strength, impact strength, flexural strength and flexural modulus of the glass fibre (GF)/PP composites are 25.93%, 41.38%, 31.16% and 68.42%, respectively, and the vicat softening temperature could rise by 4.6°C. Furthermore, leaching of the GF/PP composites was also investigated. The GF/PP composites exhibited high performance and non-toxicity, offering a promising method to recycle RGF from pyrolysed WPCBs with high-value applications.

  19. A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Scott K.; Piepel, Gregory F.; Gan, Hao; Kot, Wing; Pegg, Ian L.

    2003-12-01

    Part 1 (Cooley and Piepel, 2003a) describes the first stage of a two-stage experimental design to support property-composition modeling for high-level waste (HLW) glass to be produced at the Hanford Site in Washington state. Each stage used a layered design having an outer layer, an inner layer, a center point, and some replicates. However, the design variables and constraints defining the layers of the experimental glass composition region (EGCR) were defined differently for the second stage than for the first. The first-stage initial design involved 15 components, all treated as mixture variables. The second-stage augmentation design involved 19 components, with 14 treated as mixture variables and 5 treated as non-mixture variables. For each second-stage layer, vertices were generated and optimal design software was used to select alternative subsets of vertices for the design and calculate design optimality measures. A model containing 29 partial quadratic mixture terms plus 5 linear terms for the non-mixture variables was the basis for the optimal design calculations. Predicted property values were plotted for the alternative subsets of second-stage vertices and the first-stage design points. Based on the optimality measures and the predicted property distributions, a ''best'' subset of vertices was selected for each layer of the second-stage to augment the first-stage design.

  20. Development of continuous liquid-fed laboratory-scale mini-melter for nuclear waste glass development

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, M.A.H.; Marschman, S.C.; Graff, G.L.

    1987-02-01

    A small, continuous liquid-fed mini-melter (LFMM) has been developed at Pacific Northwest Laboratory (PNL) to aid in waste glass feed slurry development. The LFMM offers several advantages over testing in large-scale melters. The LFMM requires little lead time in preparing for a test run, and the labor and material requirements are low. Real-time melting behavior of liquid feed slurries can be investigated, and feed rates can be estimated for larger-scale melters. The glass produced is representative of that produced by a larger-scale melter, as well as representative of the processing operation itself. Glass produced by the LFMM may subsequently be analyzed for metallic and other secondary phase formation. In contrast to larger-scale melters, the LFMM may be easily and inexpensively installed in a hot cell because of its relatively small size and simple configuration, enabling testing of radioactive feeds. A total of six LFMM experimental runs were performed. Feeds were obtained which corresponded to PNL melter runs performed in larger PNL developmental joule-heated research melters. These nonradioactive liquid-fed ceramic melters are known as the High-Bay Ceramic Melter (HBCM), the Experimental Ceramic Melter (ECM), and the Pilot-Scale Ceramic Melter (PSCM). Preliminary results obtained with the limited testing are promising. Feeds processed in the LFMM exhibited behavior closely resembling that observed in the large-scale melters. Feed rate correlations between the LFMM and ECM, HBCM, and PSCM were developed to estimate a range of expected feed rates for the large-scale melters from LFMM data. More developmental work with LFMM testing needs to be completed. Further testing will eliminate bias and establish the LFMM's true correlation to, and representation of, large-scale melters.

  1. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    OpenAIRE

    A. Bobrowski; Kmita, A.; Starowicz, M.; B. Stypuła; B. Hutera

    2012-01-01

    An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide onthe structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgOin propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of theFT-IR absorption spectra.

  2. Leaching behavior of microtektite glass compositions in sea water and the effect of precipitation on glass leaching

    Science.gov (United States)

    1991-01-01

    The present study attempts to account for the slow corrosion rates of microtektite glass in nature by comparing the leach rates of synthetic microtektite glass samples in deionized water and in sea-water, respectively. In order to obtain systematic data about leachant composition effects, leach tests were also carried out with synthetic leachant compositions enriched with respect to silica or depleted with respect to certain major components of sea-water (Mg, Ca).

  3. Effects of varying base glass composition on the optical properties of lead borate glasses doped with rare earth ions

    Science.gov (United States)

    Heidorn, William D.

    Rare Earth (RE) doped lead borate glasses are expected to exhibit a compositional dependence in their optical properties due to the changes induced by variations in the structure of the base glass with increasing lead oxide content. A series of lead borate glasses with the composition xPbO:(99.5 - x)B2O 3 (x = 29.5 to 69.5 in steps of 10 mol%) doped with 0.5 mol% Sm2O3, Er2O3, and Ho2O3 were prepared using the melt quench technique followed by 3 hours of annealing near the glass transition temperature. Optical absorption and fluorescence spectra of these RE doped lead borate glasses were analyzed using Judd-Ofelt theory. The compositional dependence of Judd-Ofelt intensity parameters, O t (t = 2, 4, 6), were determined and were then used to calculate the radiative transition probability of the excited states, the total radiative transition probability, branching ratios, and radiative lifetime of the glasses. From the fluorescence spectra the stimulated emission cross section, and Stark splitting of the excited states were calculated as a function of glass composition. A fourth set of samples with composition xPbO:(99 - x)B2O 3(x = 29 to 69 in steps of 10 mol%) co-doped with 0.5 mol% Er2 O3 and Ho2O3 were also prepared and the effects of co-doping on the absorption and fluorescence were analyzed. In all the glass systems studied, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation. Er3+ transitions exhibit large stimulated cross section suggesting the possible utilization of these materials in laser applications. Keywords: Lead and bismuth borate glasses, fluorescence, optical absorption, Sm3+, Ho3+, Er3+ ions, Judd-Ofelt intensity parameters, stimulated emission cross section.

  4. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

  5. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kukkadapu, Ravi K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schreiber, Daniel K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kruger, Albert A. [Office of River Protection, Richland, WA (United States)

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals were extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fetotal ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.

  6. Property/composition relationships for Hanford high-level waste glasses melting at 1150{degrees}C volume 2: Chapters 12-16 and appendices A-K

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation Study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g}), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  7. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  8. Purification effects of glass flux on A356 melt

    Institute of Scientific and Technical Information of China (English)

    倪红军; 孙宝德; 蒋海燕; 陈晨; 丁文江

    2002-01-01

    In order to remove hydrogen and inclusions from A356 alloy melt,a low melting-point glass flux,JDN-Ⅱ,was developed.The results indicated that JDN-Ⅱ flux has distinct effect of purification and protection on A356 alloy melt.When the dosage of the flux was 3%,the content of hydrogen in A356 melt was only 2.6 mL/kg at 857 ℃ and 0.7 mL/kg even at 750 ℃.In the meantime,the mechanical properties of the alloy increase greatly with the covering of 3% JDN-Ⅱ flux.Compared with no flux,the tensile strength of A356 alloy increases by 9.42% and the elongation increases by 22%.The purification mechanism of JDN-Ⅱ glass flux was discussed too.

  9. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements.

    Science.gov (United States)

    Wren, A; Clarkin, O M; Laffir, F R; Ohtsuki, C; Kim, I Y; Towler, M R

    2009-10-01

    Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO(2)-0.36 ZnO-0.12 CaO-0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T (g)). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M (w), 80,800) and water to form a GIC and the working time (T (w)) and the setting time (T (s)) of the resultant cements were then determined. The cement based on the solgel glass had a longer T (w) (78 s) as compared to the cement based on the melt derived glass (19 s). T (s) was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (sigma(c)) and biaxial flexure (sigma(f)), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.

  10. Simulation of cooling and solidification of three-dimensional bulk borosilicate glass: effect of structural relaxations

    Science.gov (United States)

    Barth, N.; George, D.; Ahzi, S.; Rémond, Y.; Joulaee, N.; Khaleel, M. A.; Bouyer, F.

    2014-02-01

    The modeling of the viscoelastic stress evolution and specific volume relaxation of a bulky glass cast is presented in this article and is applied to the experimental cooling process of an inactive nuclear waste vitrification process. The concerned borosilicate glass is solidified and cooled down to ambient temperature in a stainless steel canister, and the thermomechanical response of the package is simulated. There exists a deviant compression of the liquid core due to the large glass package compared to standard tempered glass plates. The stress load development of the glass cast is finally studied for different thermal load scenarios, where the cooling process parameters or the final cooldown rates were changed, and we found a great influence of the studied cooldown rates on the maximum stress build-up at ambient temperature.

  11. Effect of Glass Reinforced Epoxy (GRE) pipe filled with Geopolymer Materials for Piping Application: Compression Properties

    OpenAIRE

    2016-01-01

    The aim of this paper is to achieve the highest compressive strength of glass reinforced epoxy pipe with the geopolymer filler content of weight percentage that were used in glass reinforced epoxy pipe. The samples were prepared by using the filament winding method. The effect of weight percentage of geopolymer materials in epoxy hardener was studied under mechanical testing, which is using the compression test. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled wi...

  12. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas.

  13. Ion leaching of a glass-ionomer glass: an empirical model and effects on setting characteristics and strength.

    Science.gov (United States)

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2007-01-01

    The release of ions from a glass-ionomer glass, which in the polyacid matrix effects the cross-linking and setting of a cement, can be modelled and initiated by acid-treatment in a dilute acid. This study examined the effect of time of acetic acid leaching on the working time, setting time, and strength of a model GIC. A reactive fluoride glass was immersed in hot acetic acid for 0 (control), 5, 15, 35, 65, 95 and 125 min, filtered and dried. The glass was mixed with an experimental GI liquid in a capsule system and the mixed pastes assessed for working and initial setting time. Compressive strength testing was undertaken according to ISO9917:2003. Immersion time had a significant effect on both working and setting time of the resultant pastes only up to 65 min of immersion, and corresponded with a thin-film ion diffusion model. Compressive strength did not vary significantly with immersion time. The glass-ionomer setting reaction can be conveniently retarded by immersion of the powder in acetic acid, without affecting strength. A reactivity model was developed, whereby the effects of various changes to the leaching process may be usefully examined.

  14. Partial replacement of the feldspar waste of flat glass ceramics for masses in white; Substituicao parcial do feldspato pelo residuo de vidro plano em massas para ceramica branca

    Energy Technology Data Exchange (ETDEWEB)

    Porto, V.S.; Araujo, A.M.B.; Morais, C.R.S., E-mail: valdenia_porto@hotmail.com [Universidade Federal da Paraiba (CCHSA/UFPB), PB (Brazil); Cavalcanti, M.S.L. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2012-07-01

    In all the industrial production process requires the consumption of raw materials exaggerated the traditional scarcity of incurring the same. To reverse this situation, one of the possible actions is the search for alternative technologies that aim to replace these materials by waste that exhibit similar characteristics. This study aims to verify the possibility of partially replacing feldspar by waste flat glass ceramic mass for white, since this type of waste, when subjected to high temperatures can act as a flux. For this research, initially the raw materials were characterized using the techniques of energy dispersive spectroscopy X-ray (EDX) and X-ray diffraction. Then, test pieces were prepared to be burned at temperatures between 1000 and 1250 ° C, which were submitted to tests of porosity to absorb water. The results are within the standards required by the standards established for ceramic products, which confirms the feasibility of such waste to act as a flux in ceramic white masses. (author)

  15. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    Science.gov (United States)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  16. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    Science.gov (United States)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  17. Obsidian: alteration study under hydrothermal-like conditions for its assessment as a nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Rania, Nishi; Shrivastava, J.P. [Department of Geology, University of Delhi, Delhi - 110007 (India); Bajpai, R.K. [BETDD, Nuclear Recycle Group, BARC, Mumbai - 400008 (India)

    2013-07-01

    Alteration experiments of obsidian (from Osham Hill, Gujarat, India) were performed under hydrothermal-like conditions. Neo-formed minerals were compared with naturally altered minerals to assess its performance. Altered specimens show partial to complete leaching of glass, where ionic release is of the order of Na>Si>K>Ca>Al = Mg>Mn>Ti. SEM-BSE images show distinct microstructures and mineral paragenesis of smectite, chlorite, nontronite, and illite inside and outside of the secondary layers - show retention of Si, Al, and Mg ions, fixation in the alteration products after their meager release to the solution. Secondary minerals-palagonite, chlorite, calcite, zeolite and white colored clays - formed after experiments largely correspond to altered obsidian in the natural environment since ∼ 65 Ma. (authors)

  18. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.

    Science.gov (United States)

    Bethke, Kevin; Andrei, Virgil; Rademann, Klaus

    2016-01-01

    As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.

  19. The Effect of Two Different E Glass Fiber Reinforcements on Mechanical Properties of Polymethyl Metacrylate Denture Base Resins

    OpenAIRE

    Sinmazisik, G.; Ozyegin, LS.; Akesi, S.

    2002-01-01

    Denture base polymers were reinforced with various types of fibers, such as glass, carbon/graphite and ultrahigh-modulus polyethylene fibers. These procedures were performed to take advantage of the good esthetic qualities of glass fibers and good bonding of glass fibers to polymers via silane coupling agents. The most common type of glass used in fiber production is the so-called E glass (electrical glass). This study investigated the effect of chopped fibers with two different silane coupli...

  20. High-energy {gamma}-irradiation effect on physical ageing in Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Kozdras, A. [Department of Physics of Opole University of Technology, 75 Ozimska Str., Opole, PL-45370 (Poland); Department of Economy of Academy of Management and Administration in Opole, 18 Niedzialkowski Str., Opole, PL-45085 (Poland); Kozyukhin, S. [Institute of General and Inorganic Chemistry of RAS, Leninsky Pr. 31, Moscow 199991 (Russian Federation); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202 Stryjska Str., Lviv, UA-79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, PL-42201 (Poland)], E-mail: shpotyuk@novas.lviv.ua

    2009-09-01

    Effect of Co{sup 60} {gamma}-irradiation on physical ageing in binary Ge{sub x}Se{sub 100-x} glasses (5 {<=} x {<=} 27) is studied using conventional differential scanning calorimetry method. It is shown, that high-energy irradiation leads to additional increase in the glass transition temperature and endothermic peak area near the glass transition region over the one induced by isochronal storage of these glasses at normal conditions. This {gamma}-induced physical ageing is shown to be well-pronounced in Se-rich glasses (x < 20), while only negligible changes are recorded for glasses of 20 {<=} x {<=} 27 compositions. The effect under consideration is supposed to be associated with {gamma}-activated structural relaxation of the glass network towards thermodynamic equilibrium of supercooled liquid.

  1. Effect of MAE on the properties of phosphate edge-cladding glasses

    Institute of Scientific and Technical Information of China (English)

    Fenggang Zhao; Guonian Wang; Lili Hu

    2007-01-01

    Edge-cladding is a key factor in improving saturated small signal gain coefficient βs of large laser disc glass. In this paper, the glasses were melted with traditional method. The influences of mixed alkali effect (MAE) on refractive index, thermal expansion coefficient α, glass transition temperature Tg, dilatometer softening temperature Td, and relative chemical durability of phosphate edge-cladding glasses were studied.The results reveal that when Li/(Na + Li) = 0.5, Tg, Td, and dissolution rate (DR) reach a minimal value.These results are preferred in phosphate edge-cladding glasses.

  2. Temperature Effects on Aluminoborosilicate Glass and Melt Structure

    Science.gov (United States)

    Wu, J.; Stebbins, J. F.

    2008-12-01

    Quantitative determination of the atomic-scale structure of multi-component oxide melts, and the effects of temperature on them, is a complex problem. Ca- and Na- aluminoborosilicates are especially interesting, not only because of their major role in widespread technical applications (flat-panel computer displays, fiber composites, etc.), but because the coordination environments of two of their main network cations (Al3+ and B3+) change markedly with composition and temperature is ways that may in part be analogous to processes in silicate melts at high pressures in the Earth. Here we examine a series of such glasses with different cooling rates, chosen to evaluate the role modifier cation field strength (Ca2+ vs. Na+) and of non-bridging oxygen (NBO) content. To explore the effects of fictive temperature, fast quenched and annealed samples were compared. We have used B-11 and Al-27 MAS NMR to measure the different B and Al coordinations and calculated the contents of non-bridging oxygens (NBO). Lower cooling rates increase the fraction of [4]B species in all compositions. The conversion of [3]B to [4]B is also expected to convert NBO to bridging oxygens, which should affect thermodynamic properties such as configurational entropy and configurational heat capacity. For four compositions with widely varying compositions and initial NBO contents, analysis of the speciation changes with the same, simple reaction [3]B = [4]B + NBO yields similar enthalpy values of 25±7 kJ/mol. B-11 triple quantum MAS NMR allows as well the proportions of [3]B boroxol ring and non-ring sites to be determined, and reveals more [3]B boroxol ring structures present in annealed (lower temperature) glasses. In situ, high-temperature MAS NMR spectra have been collected on one of the Na-aluminoborosilicate and on a sodium borate glass at 14.1 T. The exchange of boron between the 3- and 4-coordinated sites is clearly observed well above the glass transition temperatures, confirming the

  3. Effect of temperature on tensile properties of injection moulded short glass fibre and glass bead filled ABS hybrids

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The present study investigated the effect of temperature on tensile strength and modulus of injection moulded ABS polymer reinforced with both short fibres (GF and spherical glass beads (GB over the temperature range 25 to 100°C. Tensile strength, σh and modulus, Eh, of ABS/GF/GB hybrids increased as volume fraction of the total glass in the hybrids increased. A linear increase in σh and Eh was found with increasing the hybrid ratio of the glass fibre, χf, over the entire temperature range studied. Results indicated that the tensile properties of the ABS/GF/GB hybrid composites at any temperature, T, can be estimated from the rule-of-hybrid-mixtures of the form Ph = Pcfχf + Pcb(1 – χf where Pcf and Pcb are the tensile properties of the ABS/GF and ABS/GB composites at temperature T, respectively. It was found also that σh and Eh both decrease with increasing temperature in a linear manner. The rate at which σh and Eh decreased with temperature was dependent upon the hybrid ratio of the glass fibre, χf, and the total concentration of the glass in the hybrids.

  4. Evaluating the quality and effectiveness of hazardous waste training programs

    Energy Technology Data Exchange (ETDEWEB)

    Kolpa, R.L.; Haffenden, R.A. [Argonne National Lab., IL (United States); Weaver, M.A. [Headquarters Air Force Materiel Command, Wright-Patterson Air Force Base, OH (United States)

    1996-05-01

    An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

  5. Effective temperature dynamics of shear bands in metallic glasses

    Science.gov (United States)

    Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  6. Effects of B addition on glass forming ability and thermal behavior of FePC-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    Sheng-feng Guo; Chen Su; Jia-xiang Cui; Jing Li; Guan-nan Li; Meng Zhang; Ning Li

    2017-01-01

    The FePC-based bulk metallic glasses (BMGs) have been demonstrated to possess high plasticity and good soft magnetic properties.However, the relatively poor glass forming ability (GFA) and thermal stabilities limited their application in industries.The effects of microalloying with B in FePC-based BMGs on the GFA and thermal behaviors were systematically investigated.It was found that a small amount of B addition can dramatically enhance the GFA of FePC-based BMGs, which in turn leads to the critical maximum diameter up to 2 mm for full glass formation even using low cost raw materi-als.The underlying mechanism of the enhancement of GFA from the competing crystalline phase with amorphous phase, the average thermal expansion coefficient and dynamic viscosity were dis-cussed in detail.

  7. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  8. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  9. Effect of high thermal expansion glass infiltration on mechanical properties of alumina–zirconia composite

    Indian Academy of Sciences (India)

    A Balakrishnan; B B Panigrahi; K P Sanosh; Min-Cheol Chu; T N Kim; Seong-Jai Cho

    2009-08-01

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature. This could be attributed to the drastic drop in the coefficient of thermal expansion due to the compositional change in the soda lime glass during infiltration. There was a significant improvement in the Weibull modulus after glass infiltration. Glass infiltrated samples showed better thermal shock resistance. The magnitude of strength increment was found to be in the order of the surface residual stress generated by thermo-elastic properties mismatch between the composite and the penetrated glass.

  10. Giant enhancement of magnetocaloric effect in metallic glass matrix composite

    Institute of Scientific and Technical Information of China (English)

    WANG YongTian; BAI HaiYang; PAN MingXiang; ZHAO DeQian; WANG WeiHua

    2008-01-01

    The magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher tem-perature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg-1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg-1) and MnFeP0.45As0.55 (390 J·kg-1)(containing either ex-orbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (△Sm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum △Sm approaches a nearly constant value in a wide tem-perature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.

  11. Giant enhancement of magnetocaloric effect in metallic glass matrix composite

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetocaloric effect (MCE) has made great success in very low temperature refrigeration, which is highly desirable for application to the extended higher tem-perature range. Here we report the giant enhancement of MCE in the metallic glass composite. The large magnetic refrigerant capacity (RC) up to 103 J·kg-1 is more than double the RC of the well-known crystalline magnetic refrigerant compound Gd5Si2Ge1.9Fe0.1 (357 J·kg-1) and MnFeP0.45As0.55 (390 J·kg-1)(containing either ex-orbitant-cost Ge or poisonous As). The full width at half maximum of the magnetic entropy change (ΔSm) peak almost spreads over the whole low-temperature range (from 303 to 30 K), which is five times wider than that of the Gd5Si2Ge1.9Fe0.1 and pure Gd. The maximum ΔSm approaches a nearly constant value in a wide tem-perature span over 100 K, and however, such a broad table-like region near room temperature has seldom been found in alloys and compounds. In combination with the intrinsic amorphous nature, the metallic glass composite may be potential for the ideal Ericsson-cycle magnetic refrigeration over a broad temperature range near room temperature.

  12. Effect of Chemicals on Chemical Mechanical Polishing of Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; ZHANG Kai-Liang; SONG Zhi-Tang; FENG Song-Lin

    2007-01-01

    @@ We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25wt.% is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, vhile the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.

  13. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    Science.gov (United States)

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-06-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.

  14. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  15. Water Penetration—Its Effect on the Strength and Toughness of Silica Glass

    Science.gov (United States)

    Wiederhorn, Sheldon M.; Fett, Theo; Rizzi, Gabriele; Hoffmann, Michael J.; Guin, Jean-Pierre

    2013-03-01

    When a crack forms in silica glass, the surrounding environment flows into the crack opening, and water from the environment reacts with the glass to promote crack growth. A chemical reaction between water and the strained crack-tip bonds is commonly regarded as the cause of subcritical crack growth in glass. In silica glass, water can also have a secondary effect on crack growth. By penetrating into the glass, water generates a zone of swelling and, hence, creates a compression zone around the crack tip and on the newly formed fracture surfaces. This zone of compression acts as a fracture mechanics shield to the stresses at the crack tip, modifying both the strength and subcritical crack growth resistance of the glass. Water penetration is especially apparent in silica glass because of its low density and the fact that it contains no modifier ions. Using diffusion data from the literature, we show that the diffusion of water into silica glass can explain several significant experimental observations that have been reported on silica glass, including (1) the strengthening of silica glass by soaking the glass in water at elevated temperatures, (2) the observation of permanent crack face displacements near the crack tip of a silica specimen that had been soaked in water under load