WorldWideScience

Sample records for waste glasses effect

  1. Effects of composition on waste glass properties

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Chick, L.A.

    1979-01-01

    The electrical conductivity, viscosity, chemical durability, devitrification, and crystallinity of a defense waste glass were measured. Each oxide component in the glass was varied to determine its effect on these properties. A generic study is being developed which will determine the effects of 26 oxides on the above and additional properties of a wide field of possible waste glasses. 5 figures, 2 tables

  2. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  3. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  4. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  5. Temperature effects on waste glass performance

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab

  6. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  7. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  8. Fusibility of medical glass in hospital waste incineration: Effect of glass components

    International Nuclear Information System (INIS)

    Jiang, X.G.; An, C.G.; Li, C.Y.; Fei, Z.W.; Jin, Y.Q.; Yan, J.H.

    2009-01-01

    Medical glass, which is the principal incombustible component in hospital wastes, has a bad influence on combustion. In a rotary kiln incinerator, medical glass melts and turns into slag, possibly adhering to the inner wall. Prediction of the melting characteristics of medical glass hence is important for preventing slagging. The effect of various glass components on fusibility has been investigated experimentally; that of Na 2 O is the most marked. The softening temperature and flow temperature decrease 19.8 o C and 34.0 o C, respectively, with a rise of Na 2 O content in the Basic Content (standard composition of medical glass) of 1%. Correlations between fusion temperatures and glass components have been investigated; predictive functions of four characteristic melting temperatures have been obtained by simplifying the multi-variant series and were verified by testing glass samples. Relative errors of fusion temperatures (computed vs. measured) are mostly less than 5%.

  9. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  10. Radiation effects in vitreous and devitrified simulated waste glass

    International Nuclear Information System (INIS)

    Weber, W.J.; Turcotte, R.P.; Bunnell, L.R.; Roberts, F.P.; Westsik, J.H. Jr.

    1979-01-01

    The long-term radiation stability of vitreous and partially devitrified forms of high-level waste glass was investigated in accelerated experiments by 266 Cm doping. The effects of radiation on microstructure, phase behavior, density, impact strength, stored energy, and leachability are reported to a cumulative radiation dose of 5 x 10 18 α decays/cm 3 . This dose produces saturation of radiation effects in most properties. 4 figures

  11. The Radiation Effect to Waste Glass that Resulting of Vitrification

    International Nuclear Information System (INIS)

    Herlan Martono; Aisyah

    2002-01-01

    The high level liquid waste (HLLW) is generated from the first step extraction of the nuclear fuel reprocessing. This waste was contain of few of actinide and many of fission product. The alpha radiation of actinide that contain on the HLLW cause the change the waste glass characteristic. The experiment was conducted by the doping, irradiation and heating of waste glass resulting from vitrification. The alpha radiation cause the change of composition that could be detected from change of waste glass density and mechanical strength. The increasing of alpha radiation dose cause the increasing change of density and mechanical strength, although the change of mechanical strength is not significant. Degree of change of waste glass density also depend on type of waste-glass and reach for saturated point at over of 5x10 24 alpha decay/m 3 . The gamma radiation of fission product that contain on the HLLW can increasing of waste glass temperature that cause the structure change, so devitrification was occur. The devitrification can the increasing of leaching rate. The cumulative of gamma dose rate was not cause the devitrification. (author)

  12. Radiation effects in glass waste forms for high-level waste and plutonium disposal

    International Nuclear Information System (INIS)

    Weber, W.J.; Ewing, R.C.

    1997-01-01

    A key challenge in the permanent disposal of high-level waste (HLW), plutonium residues/scraps, and excess weapons plutonium in glass waste forms is the development of predictive models of long-term performance that are based on a sound scientific understanding of relevant phenomena. Radiation effects from β-decay and α-decay can impact the performance of glasses for HLW and Pu disposition through the interactions of the α-particles, β-particles, recoil nuclei, and γ-rays with the atoms in the glass. Recently, a scientific panel convened under the auspices of the DOE Council on Materials Science to assess the current state of understanding, identify important scientific issues, and recommend directions for research in the area of radiation effects in glasses for HLW and Pu disposition. The overall finding of the panel was that there is a critical lack of systematic understanding on radiation effects in glasses at the atomic, microscopic, and macroscopic levels. The current state of understanding on radiation effects in glass waste forms and critical scientific issues are presented

  13. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  14. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  15. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  16. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  17. Effect of lead species on the durability of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Kuchinski, F.A.

    1987-01-01

    It has been shown that the incorporation of lead metal into the corrosion environment reduces the leaching rate of nuclear waste glasses. The present study evaluated the effects of lead metal, oxides, alloys, glasses and soluble species on the corrosion rate of a waste glass. The inherent durability of nuclear waste glasses comes from the about due to the insoluble surface film developed during corrosion. This surface film, enriched with iron, aluminum and calcium acts as a diffusion barrier to further corrosion. Except for PbO 2 , all lead species inhibited glass corrosion due to the formation of a surface film enriched in lead. No corroded glass layer was observed below the lead surface layer. Also, no glass corrosion products were found on the lead surface, except for small amounts of silicon. The transport and deposition of lead on the glass surface appears to be the key factors in preventing glass corrosion. At high glass surface area to volume ratios, the glass corroded considerably at short times since the dissolved lead source could not coat the entire glass surface rapidly enough to prevent continued corrosion. Also, experimental solution values did not agree with thermodynamics model predictions. This suggests that kinetic factors, namely diffusion barriers, are controlling the glass corrosion rate

  18. Radionuclide decay effects on waste glass corrosion and weathering

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-01-01

    The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as ·OH and O 2 - . Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects

  19. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  20. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  1. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  2. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  3. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  4. Effects of radionuclide decay on waste glass behavior: A critical review

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-12-01

    This paper is an extension of a chapter in an earlier report [1] that provides an updated review on the status of radiation damage problems in nuclear waste glasses. This report will focus on radiation effects on vitrified borosilicate nuclear waste glasses under conditions expected in the proposed Yucca mountain repository. Radiation effects on high-level waste glasses and their surrounding repository environment are important considerations for radionuclide immobilization because of the potential to alter the glass stability and thereby influence the radionuclide retentive properties of this waste form. The influence of radionuclide decay on vitrified nuclear waste may be manifested by several changes, including volume, stored energy, structure, microstructure, mechanical properties, and phase separation. Radiation may also affect the composition of aqueous fluids and atmospheric gases in relatively close proximity to the waste form. What is important to the radionuclide retentive properties of the repository is how these radiation effects collectively or individually influence the durability and radionuclide release from the glass in the event of liquid water contact

  5. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  6. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  7. Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report

    International Nuclear Information System (INIS)

    McVay, G.L.; Robinson, G.R.

    1984-04-01

    An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs

  8. Effects of composition on properties in an 11-component nuclear waste glass system

    International Nuclear Information System (INIS)

    Chick, L.A.; Piepel, G.F.; Mellinger, G.B.; May, R.P.; Gray, W.J.; Buckwalter, C.Q.

    1981-09-01

    Ninety simplified nuclear waste glass compositions within an 11-component oxide composition matrix were tested for crystallinity, viscosity, volatility, and chemical durability. Empirical models of property response as a function of glass composition were developed using statistical experimental design and modeling techniques. A new statistical technique was developed to calculate the effects of oxide components on each property. Independent melts were used to check the prediction accuracy of the models

  9. Fracture toughness in nuclear waste glasses and ceramics: environmental and radiation effects

    International Nuclear Information System (INIS)

    Weber, W.J.; Matzke, H.J.

    1986-03-01

    The effects of atmospheric moisture and radiation damage on fracture properties of nuclear waste glasses and ceramics was investigated by indentation techniques. In nuclear waste glasses, atmospheric moisture has no measurable effect on hardness but decreases the fracture toughness; radiation damage, on the other hand, decreased the hardness and increased the fracture toughness. In nuclear ceramics, self-radiation damage from alpha decay decreased the hardness and elastic modules; the fracture toughness increased with dose to a broad maximum and then decreased slightly with further increases in dose

  10. The effect of clay on the dissolution of nuclear waste glass

    Science.gov (United States)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  11. The effect of clay on the dissolution of nuclear waste glass

    International Nuclear Information System (INIS)

    Lemmens, K.

    2001-01-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  12. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  13. Effect of Technetium-99 sources on its retention in low activity waste glass

    Science.gov (United States)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; Wang, Guohui; Schweiger, Michael J.; Soderquist, Chuck Z.; Lukens, Wayne; Kruger, Albert A.

    2018-05-01

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2•2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.

  14. Effect of Technetium-99 Sources on Its Retention in Low Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; Wang, Guohui; Schweiger, Michael J.; Soderquist, Chuck Z.; Lukens, Wayne W.; Kruger, Albert A.

    2018-05-01

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2∙2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with hexavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from glass melt.

  15. The effect of devitrification on leaching rate of glass containing simulated high level liquid waste (HLLW)

    International Nuclear Information System (INIS)

    Suryantoro; Sumarbagiono; Martono, H.

    1996-01-01

    Effect of devitrification on leaching rate of glass named G1 and G2 each contains 20 wt% and 30wt% of waste has been studied. devitrification of waste - glass has been carried out by heating those specimens at 850 o C for 10, 18, 26, 34, 42 and 50 hours respectively. The weight percentage of crystal in waste glass was determined by X-ray diffractometer and leaching rate was determined by soxhlet apparatus at 100 o C for 24 hours. The longer heating time, the more weight percentage of crystal is formed. The results show that leaching rate of G2 specimens are higher than those of G1. For G1 the leaching rate at 850 o C in 20 times than without heating, and for G2 leaching rate is 15.7 times than without heating. (author)

  16. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  17. Effect of Na{sub 2}O on aqueous dissolution of nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, Rahmat Ullah, E-mail: rufarooqi@live.com [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA (United States)

    2017-04-15

    Sodium oxide is present in the majority of commercial and waste glasses as a viscosity-reducing component. In some nuclear waste glasses, its source is the waste itself. As such, it can limit the waste loading because of its deleterious effect on the resistance of the glass to attack by aqueous media. The maximum tolerable content of Na{sub 2}O in glass depends on the presence and concentration of components that interact with it. To assess the acceptability limits of Na{sub 2}O in the composition region of nuclear waste glasses, we formulated 11 baseline compositions by varying the content of oxides of Si, B, Al, Ca, Zr, and Li. In each of these compositions, we varied the Na{sub 2}O fraction from 8–16 mass% to 23–30 mass%. To each of 146 glasses thus formulated, we applied the seven-day Product Consistency Test (PCT) to determine normalized B and Na releases (r{sub i}, where i ≡ B or Na). Fitting approximation functions ln(r{sub i}/gm{sup −2}) = Σb{sub ij}g{sub j} to r{sub i} data (g{sub j} is the j-th component mass fraction and b{sub ij} the corresponding component coefficient), we showed that the r{sub B} (and, consequently, the initial glass alteration rate) was proportional to the glass component mass fractions in the order Al{sub 2}O{sub 3}glass structure would fall apart or beyond which a continuous nondurable phase would be separated. Specific examples are given to demonstrate restrictions imposed on the boundary of the composition region of acceptable glasses by the maximum allowable r{sub B} and by the melt viscosity required for glass melter operation. Finally, the role that PCT data may play in understanding the evolution of the glass alteration process is discussed.

  18. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  19. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  20. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  1. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  2. Effects of container material on PCT leach test results for high-level nuclear waste glasses

    International Nuclear Information System (INIS)

    Xing, S.B.; Pegg, I.L.

    1994-01-01

    A glass-based waste form used for the immobilization of high-level nuclear wastes should exhibit good resistance to aqueous corrosion since typically this is the primary process by which radionucleides could be released into the environment upon failure of other barriers. In the USA, the Waste Acceptance Product Specifications (WAPS) provides a set of requirements to ensure the consistency of the waste forms produced and specifies the Product Consistency Test (PCT) as a measure of relative chemical durability. While the PCT procedure permits usage of both Teflon and stainless steel vessels for testing of simulated development glasses, Teflon is not permitted for testing of production glasses due to radiative degradation. The results presented in this paper indicate that there are very significant differences between tests conducted in the two types of vessels due to the well-known permeability of Teflon to atmospheric carbon dioxide which results in lowering of the solution pH and a consequent reduction in the leach rate of silicate glasses. A wide range of nuclear waste glass compositions was subjected to the PCT procedure using both Teflon and stainless steel vessels. The magnitude of the effect (up to a factor of four for B, Na, Li concentrations) depends strongly on glass composition, therefore the isolated checks performed previously were inconclusive. The permeability to CO, of two types of Teflon vessels specified in the PCT procedure was directly measured using buffer solutions: ingress of CO, is linear in time, strongly pH-dependent, and was as high as 100 ppm after 7 days. In actual PCT tests in Teflon vessels, the total CO, content was 560 ppm after 87 days and 1930 ppm after one year

  3. Effect of various lead species on the leaching behavior of borosilicate waste glass

    International Nuclear Information System (INIS)

    Lehman, R.L.; Kuchinski, F.A.

    1984-01-01

    A borosilicate nuclear waste glass was static leached in pure water, silicate water, and brine solution. Three different forms of lead were included in specified corrosion cells to assess the extent to which various lead species alter the leaching behavior of the glass. Weight loss data indicated that Pb/sub m/ amd PbO greatly reduce the weight loss of glass when leached in pure water, and similar effects were noted in silicate and brine. Si concentrations, which were substantial in the glass-alone leachate, were reduced to below detection limits in all pure water cells containing a lead form. Lead concentration levels in the leachate were controlled by lead form solubility and appeared to be a significant factor in influencing apparent leaching behavior. Surface analysis revealed surface crystals, which probably formed when soluble lead in the leachate reacted with dissolved or activated silica at the glass surface. The net effect was to reduce the lease of some glass constituents to the leachate, although it was not clear whether the actual corrosion of the glass surface was reduced. Significantly different corrosion inhibiting effects were noted among lead metal and two forms of lead oxide. 9 refs., 7 figs., 3 tabs

  4. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    Science.gov (United States)

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  5. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  6. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  7. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  8. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  9. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses

    International Nuclear Information System (INIS)

    Florent, Olivier

    2006-06-01

    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then β irradiated at different doses up to 10 9 Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe 3+ reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe 3+ amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h 0 /e-) consuming equilibrium. He + and Kr 3+ ions and γ irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  10. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  11. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  12. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  13. Effects of carbonate and sulphate ions in synthetic groundwater on high-level waste glass leaching

    International Nuclear Information System (INIS)

    Kamizono, H.

    1990-01-01

    This laboratory experiment aims to examine the effects of rare earth carbonate and sulphate ions, that are naturally present in underground water, have on glass used to store high-level radioactive waste for disposal underground. Borosilicate glass (or HLW glass) is stored under observation on the land surface for several decades before being buried deep below ground in geological disposal sites. Two types of precipitation occur during leaching from the glass, immediate formation of a hydrated surface layer and slow precipitation from concentration in the leachates. This slow process of some elements precipitating onto the glass surface or into the leachates is examined in this experiment using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Carbonates from rare-earth elements are found in the synthetic groundwater used. It is shown that carbonate and sulphate ions will affect leaching and will occur in geological disposal sites. Other particles were also observed to precipitate using SEM-EDX. (author)

  14. Diffusion processes in nuclear waste glasses

    International Nuclear Information System (INIS)

    Serruys, Y.; Limoge, Y.; Brebec, G.

    1992-01-01

    Problems concerning the containment of nuclear wastes are presented. Different materials which have been considered for this purpose are briefly reviewed and we see why glass is one of the favorite candidates. It is focussed on what is known about diffusion in 'simple enough' glasses. After a recall concerning the structure and possible defects, the main results on diffusion in 'simple' glasses are given and it is shown what these results involve for the mechanisms of diffusion. The diffusion models are presented which can account for transport in random media: percolation and random walk models. Specific phenomena for the nuclear waste glasses are considered: the effect of irradiation on diffusion and leaching (i.e. corrosion by water). Finally diffusion data in nuclear waste glasses are presented. (author). 199 refs., 6 figs., 1 tab

  15. Effect of glass composition on waste form durability: A critical review

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs

  16. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    provide models and parameter values that can be used to calculate the dissolution rates for the different modes of water contact. The analyses were conducted to identify key aspects of the mechanistic model for glass dissolution to be included in the abstracted models used for PA calculations, evaluate how the models can be used to calculate bounding values of the glass dissolution rates under anticipated water contact modes in the disposal. system, and determine model parameter values for the range of potential waste glass compositions and anticipated environmental conditions. The analysis of a bounding rate also considered the effects of the buildup of glass corrosion products in the solution contacting the glass and potential effects of alteration phase formation. Note that application of the models and model parameter values is constrained to the anticipated range of HLW glass compositions and environmental conditions. The effects of processes inherent to exposure to humid air and dripping water were not modeled explicitly. Instead, the impacts of these processes on the degradation rate were taken into account by using empirically measured parameter values. These include the rates at which water sorbs onto the glass, drips onto the glass, and drips off of the glass. The dissolution rates of glasses that were exposed to humid air and dripping water measured in laboratory tests are used to estimate model parameter values for contact by humid air and dripping water in the disposal system

  17. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  18. Effect of different glass and zeolite A compositions on the leach resistance of ceramic waste forms

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.; Glandorf, D.

    1996-01-01

    A ceramic waste form is being developed for waste generated during electrometallurgical treatment of spent nuclear fuel. The waste is generated when fission products are removed from the electrolyte, LiCl-KCl eutectic. The waste form is a composite fabricated by hot isostatic pressing a mixture of glass frit and zeolite occluded with fission products and salt. Normalized release rate is less than 1 g/m 2 d for all elements in MCC-1 leach test run for 28 days in deionized water at 90 C. This leach resistance is comparable to that of early Savannah River glasses. We are investigating how leach resistance is affected by changes in cationic form of zeolite and in glass composition. Composites were made with 3 forms of zeolite A and 6 glasses. We used 3-day ASTM C1220-92 (formerly MCC-1) leach tests to screen samples for development purposes only. The leach test results show that the glass composites of zeolites 5A and 4A retain fission products equally well. Loss of Cs is small (0.1-0.5 wt%), while the loss of divalent and trivalent fission products is one or more orders of magnitude smaller. Composites of 5A retain chloride ion better in these short-term screens than 4A and 3A. The more leach resistant composites were made with durable glasses rich in silica and poor in alkaline earth oxides. XRD show that a salt phase was absent in the leach resistant composites of 5A and the better glasses but was present in the other composites with poorer leach performance. Thus, absence of salt phase corresponds to improved leach resistance. Interactions between zeolite and glass depend on composition of both

  19. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W.; Wang, L.M.

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m -1 , 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions

  20. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  1. Effect of composition and radiation on the Hertzian indentation behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Matzke, H.; Kahl, L.; Routbort, J.L.; Saidl, J.

    1983-01-01

    The Hertzian indentation technique has been used to determine the fracture toughness, K/sub Ic/ of two borosilicate glasses developed to contain high-level nuclear waste. For the product VG 98/12, adding selected groups of fission products leaves K/sub Ic/ unchanged, but addition of Pb lowers K/sub Ic/ by approx. 20%. Radiation with 77 MeV α-particles to a dose of approx. 10 15 α/cm 2 increases K/sub Ic/ by approx. 75%. For the product SM 58 LW 11, the fracture toughness was measured on pieces taken from different parts of a large cylinder to investigate the effects of segregation phenomena and of partial crystallization and formation of small cristobalite inclusions which decrease K/sub Ic/ by approx. 25%

  2. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  3. Effects of S/V on secondary phase formation on waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Bates, J.K.; Gong, M.; Dietz, N.L.; Pegg, I.L.

    1994-01-01

    Simulated West Valley high-level nuclear waste glass, WV205, was leached with and without buffered media in both deuterated and ordinary water at glass surface area to solution volumes (S/N) of 200--6000 m -1 . Examination of the glass surface after testing for 14 days indicated that the S/V-induced pH change plays a dominant role in the development of the altered surface layer and the secondary phases formed. The changes due to SN-induced pH determine the rate of surface layer formation, the element distribution in the surface layer, and possibly, the identities of the secondary phases. Changes due to SN-induced elemental concentration also influence glass reaction rate in terms of the layer thickness and the elemental distribution in the surface layers

  4. Effects of heavy weight waste glass recycled as fine aggregate on the mechanical properties of mortar specimens

    International Nuclear Information System (INIS)

    Choi, So Yeong; Choi, Yoon Suk; Yang, Eun Ik

    2017-01-01

    Highlights: • The properties of mortar used heavy weight waste glass as fine aggregate were compared. • Unit volume weight and shielding performance increased with the content of waste glass. • However, the strength decreased as the waste glass substitution increased. • The waste glass substitution affected on pores ranging from 10–100 nm. - Abstract: The quantities of heavy weight waste glass have increased over time due to rapid industrialization and changes in the quality of life. Moreover, most of this waste is not recycled. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. Therefore, it is necessary to investigate the possibility of recycling of heavy weight waste glass as an ingredient in the manufacturing of concrete. In this study, the suitability of heavy weight waste glass as a fine aggregate material is considered. The results of flow test, unit volume weight, radiation shielding performance, compressive strength, flexural strength, and micropore and macropore distribution of mortar are compared and evaluated. It was found that when the heavy weight waste glass substitution ratio increases, the fluidity, unit volume weight and radiation shielding performance also increase. However, the compressive and flexural strength of mortar gradually decrease with an increase in the substitution ratio of heavy weight waste glass. Moreover, the micro pore size distribution is significantly affected by the substitution of heavy weight waste glass.

  5. Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C

    Science.gov (United States)

    De Echave, T.; Tribet, M.; Jollivet, P.; Marques, C.; Gin, S.; Jégou, C.

    2018-05-01

    To predict the long-term behavior of high-level radioactive waste glass, it is necessary to study aqueous dissolution of the glass matrix under geological repository conditions. The present article focuses on SON68 (an inactive surrogate of the R7T7 glass) glass alteration in synthetic clayey groundwater at 70 °C. Experiments in deionized water as reference were also performed in the same conditions. Results are in agreement with those of previous studies showing that magnesium present in the solution is responsible for higher glass alteration. This effect is transient and pH-dependent: Once all the magnesium is consumed, the glass alteration rate diminishes. Precipitation of magnesium silicate of the smectite group seems to be the main factor for the increased glass alteration. A pH threshold of 7.5-7.8 was found, above which precipitation of these magnesium silicates at 70 °C is possible. TEM observations reveal that magnesium silicates grow at the expense of the passivating gel, which partly dissolves, forming large pores which increase mass transfer between the reacting glass surface and the bulk solution.

  6. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    International Nuclear Information System (INIS)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z.

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable

  7. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  8. Composition effects on chemical durability and viscosity of nuclear waste glasses - systematic studies and structural thermodynamic models

    International Nuclear Information System (INIS)

    Feng, X.

    1988-01-01

    Two of the primary criteria for the acceptability of nuclear waste glasses are their durability, i.e. chemical resistance to aqueous attack for 10 4 to 10 5 years, and processability, which requires their viscosity at the desired melt temperature to be sufficiently low. Chapter 3 presents the results of systematic composition variation studies around the preliminary reference glass composition WV205 and an atomistic interpretation of the effects of individual oxides. Chapter 4 is concerned with modifications of the Jantzen-Plodinec hydration model which takes into account formation of complex aluminosilicate compounds in the glass. Chapter 5 is devoted to the development and validation of the structural-thermodynamic model for both durability and viscosity. This model assumes the strength of bonds between atoms to be the controlling factor in the composition dependence of these glass properties. The binding strengths are derived from the known heats of formation and the structural roles of constituent oxides. Since the coordination state of various oxides in the glass is temperature dependent and cation size has opposite effects on the two properties, the correlation between melt viscosity and rate of corrosion at low temperature is not simply linear. Chapter 6 surveys the effects of aqueous phase composition on the leach behavior of glasses. These studies provide a comprehensive view of the effects of both glass composition and leachant composition on leaching. The models developed correlate both durability and viscosity with glass composition. A major implication is that these findings can be used in the systematic optimization of the properties of complex oxide glasses

  9. Control of high level radioactive waste-glass melters - Part 5: Modeling of complex redox effects

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Computerized thermodynamic computations are useful in predicting the sequence and products of redox reactions and in assessing process variations. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Continuous melter test results have been compared to this improved staged-thermodynamic model of redox behavior

  10. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  11. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  12. Heterogeneities in nuclear waste glass

    International Nuclear Information System (INIS)

    Ladirat, Ch.

    1997-01-01

    The industrial vitrification of high level radioactive wastes is a 2 stage process. During the first stage, the concentrated solution is heated in a spinning resistance oven at the temperature of 400 Celsius degrees till evaporation and calcination. The second stage begins when the dry residue falls into a melting pot that is maintained at a temperature of 1100-1150 Celsius degrees. Glass fretting is added and the glass is elaborated through the fusion of the different elements present in the melting pot. Heterogeneities in the glass may be associated to: - the presence in the solution to vitrify of insoluble elements from the dissolution of the fuel (RuO 2 , Rh, Pd), - the presence of minuscule metal scraps (Zr) that have been produced during the cutting of the fuel element, - the failures to conform to the technical specifications of the vitrification process, for instance, temperatures or flow rates when introducing the different elements in the melting pot. (A.C.)

  13. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  14. Database for waste glass composition and properties

    International Nuclear Information System (INIS)

    Peters, R.D.; Chapman, C.C.; Mendel, J.E.; Williams, C.G.

    1993-09-01

    A database of waste glass composition and properties, called PNL Waste Glass Database, has been developed. The source of data is published literature and files from projects funded by the US Department of Energy. The glass data have been organized into categories and corresponding data files have been prepared. These categories are glass chemical composition, thermal properties, leaching data, waste composition, glass radionuclide composition and crystallinity data. The data files are compatible with commercial database software. Glass compositions are linked to properties across the various files using a unique glass code. Programs have been written in database software language to permit searches and retrievals of data. The database provides easy access to the vast quantities of glass compositions and properties that have been studied. It will be a tool for researchers and others investigating vitrification and glass waste forms

  15. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization

    International Nuclear Information System (INIS)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction 10 B(n,α) 7 Li, where the 10 B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author)

  16. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Bruno M.J., E-mail: bruno.thien@psi.ch [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Godon, Nicole; Ballestero, Anthony; Gin, Stephane [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Ayral, Andre [Institut Europeen des Membranes, Universite de Montpellier, cc. 047, Place Eugene Bataillon, 34095 Montpellier (France)

    2012-08-15

    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 Degree-Sign C, surface/volume ratio (S/V) = 55 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. 'Mg-free' AVM glasses were also leached in initially pure water (50 Degree-Sign C, 200 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg{sup 2+}. The addition of Mg{sup 2+} in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na{sup +}. The addition of Mg{sup 2+} in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water

  17. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  18. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  19. Nuclear waste under glass, further discussion

    Science.gov (United States)

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  20. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  1. Borosilicate glass as a matrix for the immobilization of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-01-01

    The reference waste form for immobilization of Savannah River Plant (SRP) waste is borosilicate glass. In the reference process, waste is mixed with glass-forming chemicals and melted in a Joule-heated ceramic melter at 1150 0 C. Waste glass made with actual or simulated waste on a small scale and glass made with simulated waste on a large scale confirm that the current reference process and glass-former composition are able to accommodate all SRP waste compositions and can produce a glass with: high waste loading; low leach rates; good thermal stability; high resistance to radiation effects; and good impact resistance. Borosilicate glass has been studied as a matrix for the immobilization of SRP waste since 1974. This paper reviews the results of extensive characterization and performance testing of the glass product. These results show that borosilicate glass is a very suitable matrix for the immobilization of SRP waste. 18 references, 3 figures, 10 tables

  2. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  3. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar

    International Nuclear Information System (INIS)

    Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Abadir, E.F.; Hussain, A.I.

    2012-01-01

    Highlights: → Glass powder (GP) and nano-silica (CS) were used as a partial cement replacement in cement mortar (CM). → No damaging effect can be detected due to the reaction between GP and CM with particle size up to 75 μm. → Hybrid combination of GP/CS greatly improved mechanical properties and microstructure of CM. -- Abstract: This paper presents a laboratory study of the properties of colloidal nano-silica (CS)/waste glass cement composites. The microstructure, alkali-silica reaction (ASR), and the mechanical properties of cement mortars containing waste glass powder (WG) as a cement replacement with and without CS are investigated and compared with plain mortar. In addition, the hydration of cement compounds was followed by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results show that incorporation of WG has a positive effect on the mechanical properties of cement mortars especially when CS is presented. In addition, the DTA/TGA results and XRD analysis show a reduction in the calcium hydroxide (CH) content in mortars with both WG and a hybrid combination of WG and CS. This confirms the improvement of mechanical properties and the occurrence of the pozzolanic reaction after 28 days of hydration.

  4. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  5. The Effect of Composition on Spinel Crystals Equilibrium in Low-Silica High-Level Waste Glasses

    International Nuclear Information System (INIS)

    Jiricka, Milos; Hrma, Pavel R.; Vienna, John D.

    2003-01-01

    The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. The effects of Al2O3, B2O3, Fe2O3, NiO, SiO2, and ZrO2 on the TL in this region and in glasses with 42 to 56 mass% SiO2 were similar. However, in the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42 to 56 mass% SiO2. The effect of MnO on the TL of the higher SiO2 glasses is not yet understood with sufficient accuracy. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25C to 64C below the TL

  6. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO2, hollandite, glass SON68)

    International Nuclear Information System (INIS)

    Suzuki, T.

    2007-06-01

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO 2 to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO 2 colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO 2 matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H 2 O 2 (product resulting from water radiolysis) increased the dissolution rate of UO 2 to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  7. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  8. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  9. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    Science.gov (United States)

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  10. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Chung

    2017-11-01

    Full Text Available Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM, X-ray computed tomography (CT, and automated image analysis (RapidAir. The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  11. Effect of Feed Melting, Temperature History and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    International Nuclear Information System (INIS)

    Izak, Pavel; Hrma, Pavel R.; Arey, Bruce W.; Plaisted, Trevor J.

    2001-01-01

    This study was undertaken to help design mathematical models for high-level waste (HLW) glass melter that simulate spinel behavior in molten glass. Spinel, (Fe,Ni,Mn) (Fe,Cr)2O4, is the primary solid phase that precipitates from HLW glasses containing Fe and Ni in sufficient concentrations. Spinel crystallization affects the anticipated cost and risk of HLW vitrification. To study melting reactions, we used simulated HLW feed, prepared with co-precipitated Fe, Ni, Cr, and Mn hydroxides. Feed samples were heated up at a temperature-increase rate (4C/min) close to that which the feed experiences in the HLW glass melter. The decomposition, melting, and dissolution of feed components (such as nitrates, carbonates, and silica) and the formation of intermediate crystalline phases (spinel, sodalite (Na8(AlSiO4)6(NO2)2), and Zr-containing minerals) were characterized using evolved gas analysis, volume-expansion measurement, optical microscope, scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. Nitrates and quartz, the major feed components, converted to a glass-forming melt by 880C. A chromium-free spinel formed in the nitrate melt starting from 520C and Sodalite, a transient product of corundum dissolution, appeared above 600C and eventually dissolved in glass. To investigate the effects of temperature history and minor components (Ru,Ag, and Cu) on the dissolution and growth of spinel crystals, samples were heated up to temperatures above liquidus temperature (TL), then subjected to different temperature histories, and analyzed. The results show that spinel mass fraction, crystals composition, and crystal size depend on the chemical and physical makeup of the feed and temperature history

  12. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  13. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  14. Effects of crystallization on thermal properties and chemical durability of the glasses containing simulated high level radioactive wastes

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Terai, Ryohei; Hara, Shigeo

    1978-01-01

    In order to improve the thermodynamic stability of the glasses containing high level radioactive wastes, the conversion to glass-ceramics by the heat-treatment was carried out with two kinds of glasses, and the change of thermal properties and chemical durability by crystallization was investigated. One of the glasses has a composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 system, and another one has a composition which could grow the nephelite crystals from Na 2 O in wastes and Al 2 O 3 and SiO 2 added as glass-forming materials. Transition and yield points shifted to higher temperatures by the conversion and the glass-ceramics were found to be more stable than the original glasses. The glass-ceramics of the composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 showed poor durability, whereas the chemical durability of the glass-ceramics containing nephelite crystals was considerably improved. In the latter case, improvement of the durability is attributable to that some parts of glass are converted to nephelite crystals and the crystals are more durable than glass under most conditions. (auth.)

  15. Relative leach behavior of waste glasses and naturally occurring glasses

    International Nuclear Information System (INIS)

    Adams, P.B.

    1979-01-01

    Simulated nuclear waste glasses of the sodium-borosilicate type with a low waste loading and of the zinc-borosilicate type with a high waste loading have been compared with obsidians. The resuls indicate that the waste glasses would corrode in normal natural environments at a rate of about 0.1 μm per year at 30 0 C and about 5 μm per year at 90 0 C, compared with obsidians which seem to corrode at, or less than, about 0.01 μm per year at 30 0 C and less than 1 μm per year at 90 0 C. Activation energies for reactions of the two waste glasses with pure water are about 20 kcal/g-mol. 3 figures, 7 tables

  16. Estimates of radionuclide release from glass waste forms in a tuff repository and the effects on regulatory compliance

    International Nuclear Information System (INIS)

    Aines, R.D.

    1986-04-01

    This paper discusses preliminary estimates of the release of radionuclides from waste packages containing glass-based waste forms under the expected conditions at Yucca Mountain. These estimates can be used to evaluate the contribution of waste package performance toward meeting repository regulatory restrictions on radionuclide release. Glass waste will be held in double stainless steel canisters. After failure of the container sometime after the 300 to 1000 year containment period, the open headspace in these cans will provide the only area where standing water can accumulate and react with the glass. A maximum release rate of 0.177 g/m 2 x year or 1.3 grams per year was obtained. Normalized loss of 1.3 grams per year corresponds to 0.08 parts in 100,000 per year of the 1660 kg reference weight of DWPF glass

  17. Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars

    International Nuclear Information System (INIS)

    Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Hussain, A.I.

    2011-01-01

    Highlights: → Glass powder (GP) and nano clay (NC) were used as a partial cement replacement in cement mortar (CM). → No damaging effect can be detected due to the reaction between GP and CM with particle size up to 75 μm. → Hybrid combination of GP/NC greatly improved mechanical properties and microstructure of CM. - Abstract: Worldwide, around 2.6 billion tons of cement is produced annually. This huge size of production consumes large amounts of energy and is one of the largest contributors to carbon dioxide (CO 2 ) release. Accordingly, there is a pressing demand to minimise the quantity of cement used in the concrete industry. The main challenge to this is to get durable concrete with less cement and within reasonable cost. The economic, environmental and engineering benefits of reusing ground waste-glass powder (WGP) as a partial cement replacement has been established, but low glass reactivity and the possible alkali-silica reaction (ASR) are a drawback. Recent advances in nano-technology have revealed that nano-sized particles such as nano clay (NC) have a high surface area to volume ratio that provides the potential for tremendous chemical reactivity, accelerating pozzolanic activity and hindering ASR. This paper presents a laboratory study of the properties of NC/WGP cement composites. The microstructure, ASR, fracture energy, compressive and flexural properties of cement mortars containing WGP as a cement replacement with and without NC are investigated and compared with plain matrix. In addition, the hydration of cement compounds was followed by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and also X-ray diffraction (XRD). The results showed that incorporation of glass powder has a positive effect on the mechanical properties of cement mortars after 28 days of hydration. Also, the results revealed that the mechanical properties of the cement mortars with a hybrid combination of glass powder and NC were all higher than

  18. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  19. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  20. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  1. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  2. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  3. Effects of alpha decays on nuclear waste glasses, simulation through atomistic models

    International Nuclear Information System (INIS)

    Ghaleb, D.; Delaye, J.M.

    1997-01-01

    In a simplified (SiO 2 , B 2 O 3 , Na 2 O 3 , Al 2 O 3 , ZrO 2 ) nuclear glass we have simulated, by Molecular Dynamics simulations, the effects of displacement cascades created by the slowing-down of the recoil nucleus. The methodology employed to construct and validate the used Molecular Dynamics model representing the basis matrix of the 'light-water' French nuclear glass (R77) and the manner which are simulated atomic displacements are described. Although the energies given to recoil nucleus were relatively low (≤ 1/10 of actual energies) the study has yielded a number of interesting results. Notably we have: - identified the main mechanisms responsible for the depolymerization of the network; - observed, at the atomic level, the kinetic of the structure evolution; - detailed the behavior and displacement mechanisms of every atomic species during the cascade sequences; - made a link with the experimentation through the calculation of some physical properties. (authors)

  4. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  5. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  6. Production and remediation of low-sludge, simulated Purex waste glasses, 1: Effects of sludge oxide additions on melter operation

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but less durable than most simulated SRS high-level waste glasses. Also, Purex 4 glass was considerably less durable than predicted by the algorithm which will be used to control production of DWPF glass. A melter run was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by Hydration Thermodynamics. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the composition, crystallinity, and durability was determined. This document details the melter operation and composition and crystallinity analyses

  7. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  8. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  9. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  10. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al2O3, Cr2O3, SO3 and Na2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.

  11. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  12. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  13. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  14. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  15. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  16. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    International Nuclear Information System (INIS)

    Sobolev, Konstantin; Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-01-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement

  17. Effect of Feed Melting, Temperature History, and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Hrma, P.; Arey, B. W.; Plaisted, T. J.

    2001-01-01

    Roč. 289, 1-3 (2001), s. 17-29 ISSN 0022-3093 Grant - others:DOE(US) DE/06/76RL01830 Keywords : feed melting * crystalization * high-level waste glass Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.363, year: 2001

  18. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  19. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  20. Glass forms for immobilization of Hanford wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Babad, H.

    1975-03-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged alkaline high-level liquid wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. At this time also, large volumes of various other solid radioactive wastes (sludges, excavated Pu-contaminated soil, and doubly encapsulated 137 CsCl and 90 SrF 2 ) will be stored on the Hanford Reservation. All these solid wastes can be converted to immobile silicate and aluminosilicate glasses of low water leachability by melting them at 1100 0 to 1400 0 C with appropriate amounts of basalt (or sand) and other glass-formers such as B 2 O 3 or CaO. Reviewed in this paper are formulations and other melt conditions used successfully in batch tests to make glasses from actual and synthetic wastes; leachability and other properties of these glasses show them to be satisfactory vehicles for immobilization of the Hanford wastes. (U.S.)

  1. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  2. Chemistry and kinetics of waste glass corrosion

    International Nuclear Information System (INIS)

    Bates, J.K.

    1996-01-01

    Under repository disposal conditions, the reaction of glass with water comprises the source term for release of radionuclides to the near-field environment. An understanding of glass reaction and the manner by which radionuclides are released is needed to design the waste package and to evaluate the total performance of the repository. The ASTM Standard C-1174-91 provides a general methodology for obtaining information related to the behavior of glass. This paper reviews the application of this standard to glass reaction. In the first step in the ASTM approach, the researcher identifies the materials and the conditions under which the long-term behavior is to be determined. Glass compositions have undergone a genesis over the past 15 years in response to concerns about feed streams, processing, and durability. A range of borosilicate compositions has been identified, but as new applications for vitrification occur, for example, immobilization of weapons plutonium and residue from plutonium processing, different compositions must be evaluated. The repository environment depends on the spatial emplacement of waste containers (glass and spent fuel), and both open-quotes hotclose quotes and open-quotes coldclose quotes scenarios have been proposed for the Yucca Mountain site. Regardless of the exact configuration, the near-field hydrology is expected to be unsaturated: that is, the waste packages are contacted initially by water vapor, and ultimately by small amounts of dripping or standing water. The behavior of glass can be studied as a function of composition within the constraints the environmental conditions place on the physical parameters that affect glass reaction (temperature, radiation field, groundwater composition, etc.). In the second step, the researcher reviews the literature and proposes a reaction pathway by which glass reacts in an unsaturated environment

  3. Glass formulation for phase 1 high-level waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  4. Evaluation of models of waste glass durability

    International Nuclear Information System (INIS)

    Ellison, A.

    1995-01-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ''correct'' functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory

  5. Experimental design of a waste glass study

    International Nuclear Information System (INIS)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150 degrees C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases

  6. Fixation of radioactive waste in glass

    International Nuclear Information System (INIS)

    Chapman, C.C.; Mendel, J.E.

    1976-08-01

    After a brief review of the source of high level wastes and the specific requirements and desirable characteristics of glass used as a storage vehicle, the development work done on two vitrification systems is outlined. One is an in-can melter system and the second is a ceramic melter. Primary emphasis has been placed on the in-can melter system for use in the near future. Both systems are capable of converting high level waste to a glass which possesses low release potential

  7. Glass as a matrix for SRP high-level defense waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; Bibler, N.E.; Dukes, M.D.; Plodinec, M.J.

    1980-01-01

    Work done at Savannah River Laboratory and elsewhere that has led to development of glass as a candidate for solidifying Savannah River Plant waste is summarized. Areas of development described are glass formulation and fabrication, and leaching and radiation effects

  8. Long-term release from high level waste glass. Part IV. The effect of leaching mechanism

    International Nuclear Information System (INIS)

    Freude, E.; Grambow, B.; Lutze, W.; Rabe, H.; Ewing, R.C.

    1984-01-01

    A linear time dependence for the corrosion under near saturation conditions is considered, and a rate equation in the QTERM code is used to model the long-term behavior of the German glass, C-31-3EC, JSS A, and SRL TDS 131. 22 refs., 4 figs., 1 tab

  9. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  10. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  11. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  12. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  13. Glass compositions suitable for PFR wastes

    International Nuclear Information System (INIS)

    Boult, K.A.; Dalton, J.T.; Eccles, E.W.; Hough, A.; Marples, J.A.C.; Paige, E.L.; Sutcliffe, P.W.

    1988-03-01

    Previous work had identified glass compositions that were suitable for vitrifying current and future high level wastes from the Prototype Fast Reactor (PFR) fuel reprocessing plant. Further work on these glasses has shown that: a) Foaming and crystallisation can occur under certain conditions, both probably associated with the presence of iron in the waste. Either of these could lead to greater difficulties in processing. b) Inconel 690, the preferred JCM (Joule-heated Ceramic Melter) electrode material has an acceptable corrosion rate at 1200 0 C: ca 0.6mm.y -1 . c) The leach rates are unaffected by radiation damage. The density of the glass decreases slightly with α-dose, with a dependency that extrapolates, at infinite time, to an 0.13% linear expansion. d) The concentrations of the radiologically important elements Tc, Np, Pu and Am, observed in a 'repository simulation' leach test, were satisfactorily low. (author)

  14. Standard test method for determining liquidus temperature of immobilized waste glasses and simulated waste glasses

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These practices cover procedures for determining the liquidus temperature (TL) of nuclear waste, mixed nuclear waste, simulated nuclear waste, or hazardous waste glass in the temperature range from 600°C to 1600°C. This method differs from Practice C829 in that it employs additional methods to determine TL. TL is useful in waste glass plant operation, glass formulation, and melter design to determine the minimum temperature that must be maintained in a waste glass melt to make sure that crystallization does not occur or is below a particular constraint, for example, 1 volume % crystallinity or T1%. As of now, many institutions studying waste and simulated waste vitrification are not in agreement regarding this constraint (1). 1.2 Three methods are included, differing in (1) the type of equipment available to the analyst (that is, type of furnace and characterization equipment), (2) the quantity of glass available to the analyst, (3) the precision and accuracy desired for the measurement, and (4) candi...

  15. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  16. Using of borosilicate glass waste as a cement additive

    International Nuclear Information System (INIS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-01-01

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  17. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  18. Influence of Some Nuclear Waste on The Durability and Mechanical Properties of Borosilicate glass

    International Nuclear Information System (INIS)

    El-Alaily, N.A.

    2003-01-01

    Various glass systems have been shown to be suitable for producing waste glass forms that are thermally and mechanically stable and exhibit good chemical durability. In this study borosilicate glass containing sodium oxide and aluminum oxide was prepared as a host for high level nuclear waste. The glass durability when the samples were immersed either in distilled water or ground water at 70 degree was studied. The density, porosity and mechanical properties were also investigated. The effects of exposing the samples immersed in groundwater to gamma rays in the glass durability and all other mentioned properties were also studied. The results showed that immersing the glass in ground water causing a decrease in the glass durability. The exposure of the glass immersed in ground water to the gamma rays increases the durability of the glass. The mechanical properties of the prepared glass were good. Although these properties decrease for the corroded glass but they were still good

  19. Comparative study of seven glasses for solidification of nuclear wastes

    International Nuclear Information System (INIS)

    Nogues, J.L.; Hench, L.L.; Zarzycki, J.

    1982-06-01

    The relative leaching behavior of seven alkali borosilicate glasses considered for immobilization of high level radioactive wastes was compared using a static 90 0 C leach test. Leaching times studied were 1, 3, 7, 14 and 28 days with ratios of glass surface area (SA) to solution volume (V) being SA/V = 1.0 cm -1 and 0.1 cm -1 . With the range of glass compositions studied, it was not possible to determine the effect of each element on leaching behavior, however some conclusions regarding the general influence of the glass network formers can be made: the addition of Al 2 O 3 , results in a large increase in the chemical durability of the glass. The presence of Fe 2 O 3 , is necessary to develop with Al 2 O 3 a second protective layer on top of the silica-rich film that results from rapid dealkalization. The difference between the results obtained at SA/V = 1.0 cm -1 and 0.1 cm -1 shows the importance of understanding both the effects of glass composition and solution concentrations on the behavior of nuclear waste glasses

  20. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  1. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  2. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  3. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  4. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  5. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  6. Investigation of waste glass pouring behavior over a knife edge

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  7. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90 degrees C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials

  8. Effect of Callovo-Oxfordian clay rock on the dissolution rate of the SON68 simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J., E-mail: James.Neeway@pnnl.gov [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Abdelouas, Abdesselam; Ribet, Solange; El Mendili, Yassine [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France); Schumacher, Stéphan [ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry (France); Grambow, Bernd [SUBATECH, Unité Mixte de Recherche 6457, École des Mines de Nantes, CNRS/IN2P3, Université de Nantes, BP 20722, 44307 Nantes cedex 3 (France)

    2015-04-15

    Long-term storage of high-level nuclear waste glass in France is expected to occur in an engineered barrier system (EBS) located in a subsurface Callovo-Oxfordian (COx) clay rock formation in the Paris Basin in northeastern France. Understanding the behavior of glass dissolution in the complex system is critical to be able to reliably model the performance of the glass in this complex environment. To simulate this multi-barrier repository scenario in the laboratory, several tests have been performed to measure glass dissolution rates of the simulated high-level nuclear waste glass, SON68, in the presence of COx claystone at 90 °C. Experiments utilized a High-Performance Liquid Chromatography (HPLC) pump to pass simulated Bure site COx pore water through a reaction cell containing SON68 placed between two COx claystone cores for durations up to 200 days. Silicon concentrations at the outlet were similar in all experiments, even the blank experiment with only the COx claystone (∼4 mg/L at 25 °C and ∼15 mg/L at 90 °C). The steady-state pH of the effluent, measured at room temperature, was roughly 7.1 for the blank and 7.3–7.6 for the glass-containing experiments demonstrating the pH buffering capacity of the COx claystone. Dissolution rates for SON68 in the presence of the claystone were elevated compared to those obtained from flow-through experiments conducted with SON68 without claystone in silica-saturated solutions at the same temperature and similar pH values. Additionally, through surface examination of the monoliths, the side of the monolith in direct contact with the claystone was seen to have a corrosion thickness 2.5× greater than the side in contact with the bulk glass powder. Results from one experiment containing {sup 32}Si-doped SON68 also suggest that the movement of Si through the claystone is controlled by a chemically coupled transport with a Si retention factor, K{sub d}, of 900 mL/g.

  9. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  10. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  11. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  12. Irradiations effects on the structure of boro-silicated glasses: long term behaviour of nuclear waste glassy matrices

    International Nuclear Information System (INIS)

    Bonfils, J. de

    2007-09-01

    This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu 3+ and Nd 3+ ). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10 13 at.cm -2 , which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)

  13. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    Johnson, K.D.B.; Marples, J.A.C.

    1979-05-01

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  14. Nanoporous Glasses for Nuclear Waste Containment

    OpenAIRE

    Woignier, Thierry; Primera, Juan; Reynes, Jerôme

    2016-01-01

    Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical dura...

  15. Producing glass-ceramics from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, A.R.; Rawlings, R.D. [Imperial College, London (United Kingdom)

    2002-10-01

    An overview is given of recent research at the Department of Materials of Imperial College, London, UK, concerning the production of useful glass-ceramic products from industrial waste materials. The new work, using controlled crystallisation to improve the properties of vitrified products, could help to solve the problem of what to do with increasing amounts of slag, fly ash and combustion dust. The results show, that it is possible to produce new materials with interesting magnetic and constructive properties.

  16. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  17. A new viscosity model for waste glass formulations

    International Nuclear Information System (INIS)

    Sadler, A.L.K.

    1996-01-01

    Waste glass formulation requires prediction, with reasonable accuracy, of properties over much wider ranges of composition than are typically encountered in any single industrial application. Melt viscosity is one such property whose behavior must be predicted in formulating new waste glasses. A model was developed for silicate glasses which relates the Arrhenius activation energy for flow to an open-quotes effectiveclose quotes measure of non-bridging oxygen content in the melt, NBO eff . The NBO eff parameter incorporates the differing effects of modifying cations on the depolymerization of the silicate network. The activation energy-composition relationship implied by the model is in accordance with experimental behavior. The model was validated against two different databases, with satisfactory results

  18. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  19. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  20. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  1. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  2. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  3. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  4. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  5. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Science.gov (United States)

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  6. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Canonical correlation of waste glass compositions and durability, including pH

    International Nuclear Information System (INIS)

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses

  8. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  9. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  10. Calculation of the viscosity of nuclear waste glass systems

    International Nuclear Information System (INIS)

    Shah, R.; Behrman, E.C.; Oksoy, D.

    1990-01-01

    Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt

  11. Colloid formation during waste glass corrosion

    International Nuclear Information System (INIS)

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  12. Leaching behavior of simulated high-level waste glass

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi

    1987-03-01

    The author's work in the study on the leaching behavior of simulated high-level waste (HLW) glass were summarized. The subjects described are (1) leach rates at high temperatures, (2) effects of cracks on leach rates, (3) effects of flow rate on leach rates, and (4) an in-situ burial test in natural groundwater. In the following section, the leach rates obtained by various experiments were summarized and discussed. (author)

  13. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  14. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  15. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    Science.gov (United States)

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.

  16. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    International Nuclear Information System (INIS)

    Marcial, Jose; Hrma, Pavel R.; Schweiger, Michael J.; Swearingen, Kevin J.; Tegrotenhuis, Nathan E.; Henager, Samuel H.

    2010-01-01

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 (micro)m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-(micro)m quartz particles; particles (ge) 150 (micro)m formed clusters. Particles of 5 (micro)m completely dissolved by 900 C whereas particles (ge) 150 (micro)m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  17. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    International Nuclear Information System (INIS)

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250 degree C. The nine major oxide components were SiO 2 , B 2 O 3 , Li 2 O, Na 2 O, CaO, MgO, Fe 2 O 3 , Al 2 O 3 , and ZrO 2 . The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150 degree C. Least squares regression was used to obtain component coefficients for all the models

  18. Use of waste glass in highway construction (update--1992).

    Science.gov (United States)

    1993-01-01

    Increasing pressures to recycle more wastes and minimize the amount of materials placed in landfills are forcing reconsideration of potential uses of waste glass in highway construction and maintenance operations. The federal government and many stat...

  19. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  20. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    International Nuclear Information System (INIS)

    Zhang, Hua; Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C.; Hyatt, Neil C.

    2015-01-01

    Highlights: • Spinel crystallization incorporates ZnO from base glass, displacing Mg and Ni. • Raman spectroscopy demonstrates significant impact on glass structure by addition of ZnO to base glass. • Addition of ZnO reduces glass dissolution rate at early time periods (up to 28 days). - Abstract: Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na 2 O/Li 2 O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn 0.60 Ni 0.20 Mg 0.20 )(Cr 1.37 Fe 0.63 )O 4 . The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q 3 species, which we attribute to Si–O–Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na 2 O/Li 2 O base glass up to 28 days, due to a combination of the enhanced network

  1. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  2. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  3. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  4. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  5. High-level waste glass compendium; what it tells us concerning the durability of borosilicate waste glass

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Allison, J.

    1993-01-01

    Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed. Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed based on experimental evidence from laboratory testing. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards

  6. Development Of Glass Matrices For HLW Radioactive Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.

    2010-01-01

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc 99 , Cs 137 , and I 129 . Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  7. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  8. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  9. Application of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Lieshout, van B.; Spiesz, P.R.; Brouwers, H.J.H.

    2012-01-01

    Container glass aggregates and glass powder are waste products of the glass recycling industry. In this research, these products are incorporated in self-compacting concrete (SCC) mixtures, replacing conventional aggregates and fine powders. The SCC mixtures were designed using a particle packing

  10. Time-temperature-transformation kinetics in SRL waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bickford, D.F.; Karraker, D.G.

    1983-01-01

    Time-temperature-transformation (TTT) curves have been determined for SRL 165 waste glass. Extent and sequence of crystallization were determined by XRD and SEM. The incipient crystallization product, spinel, can be determined at one volume percent by magnetic susceptibility. The type and percentage of crystallization is correlated with waste glass durability. 20 references, 5 figures, 1 table

  11. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  12. Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media

    International Nuclear Information System (INIS)

    Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

    2008-01-01

    Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media

  13. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    OpenAIRE

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  14. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    Pankov, Alexey S.; Ojovan, Michael I.; Batyukhnova, Olga G.; Lee, William E.

    2007-01-01

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under γ-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  15. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  17. Operating Range for High Temperature Borosilicate Waste Glasses: (Simulated Hanford Enveloped)

    International Nuclear Information System (INIS)

    Mohammad, J.; Ramsey, W. G.; Toghiani, R. K.

    2003-01-01

    The following results are a part of an independent thesis study conducted at Diagnostic Instrumentation and Analysis Laboratory-Mississippi State University. A series of small-scale borosilicate glass melts from high-level waste simulant were produced with waste loadings ranging from 20% to 55% (by mass). Crushed glass was allowed to react in an aqueous environment under static conditions for 7 days. The data obtained from the chemical analysis of the leachate solutions were used to test the durability of the resulting glasses. Studies were performed to determine the qualitative effects of increasing the B2O3 content on the overall waste glass leaching behavior. Structural changes in a glass arising due to B2O3 were detected indirectly by its chemical durability, which is a strong function of composition and structure. Modeling was performed to predict glass durability quantitatively in an aqueous environment as a direct function of oxide composition

  18. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  19. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  20. Waste E-glass particles used in cementitious mixtures

    International Nuclear Information System (INIS)

    Chen, C.H.; Huang, R.; Wu, J.K.; Yang, C.C.

    2006-01-01

    The properties of concretes containing various waste E-glass particle contents were investigated in this study. Waste E-glass particles were obtained from electronic grade glass yarn scrap by grinding to small particle size. The size distribution of cylindrical glass particle was from 38 to 300 μm and about 40% of E-glass particle was less than 150 μm. The E-glass mainly consists of SiO 2 , Al 2 O 3 , Ca O and MgO, and is indicated as amorphous by X-ray diffraction (XRD) technique. Compressive strength and resistance of sulfate attack and chloride ion penetration were significantly improved by utilizing proper amount of waste E-glass in concrete. The compressive strength of specimen with 40 wt.% E-glass content was 17%, 27% and 43% higher than that of control specimen at age of 28, 91 and 365 days, respectively. E-glass can be used in concrete as cementitious material as well as inert filler, which depending upon the particle size, and the dividing size appears to be 75 μm. The workability decreased as the glass content increased due to reduction of fineness modulus, and the addition of high-range water reducers was needed to obtain a uniform mix. Little difference was observed in ASR testing results between control and E-glass specimens. Based on the properties of hardened concrete, optimum E-glass content was found to be 40-50 wt.%

  1. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Science.gov (United States)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  2. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  3. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  4. Investigation of metastable immiscibility in nuclear-waste-glasses. I-III

    International Nuclear Information System (INIS)

    Egnell, J.; Larsen, J.G.; Moeller, L.; Roed, G.

    1981-12-01

    Metastable liquid-liquid separation in glasses can often cause significant changes in physical and chemical properties of the original homogeneous glass. In some technical borosilicate glasses this phenomenon is used to change the chemical durability of the glass. For potential nuclear-waste-glasses the slow cooling through the temperature range 550 0 C - 700 0 C may lead to such a liquid-liquid phase separation. In order to investigate the susceptibility of phase separation of nuclear-waste-glasses, two KBS model glasses, ABS-39 and ABS-41, were investigated. Two of the subsequent reports are concerned with this problem. The third report also takes into consideration the effects of MoO 3 on the immiscibility gap. The maximum amount of MoO 3 that can be dissolved in ABS-39 and ABS 41 is also determined. (Auth.)

  5. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    OpenAIRE

    Ponsot, In?s M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low te...

  6. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  7. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  8. Glass-ceramics: Their production from wastes - a review

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  9. Application of a glass furnace system to low-level radioactive and mixed waste disposal

    International Nuclear Information System (INIS)

    Klinger, L.; Armstrong, K.

    1986-01-01

    In 1981 Mound began a study to determine the feasibility of using an electrically heated glass furnace for the treatment of low-level radioactive wastes generated at commercial nuclear power facilities. Experiments were designed to determine: Whether the technology offered solutions to industry waste disposal problems, and if so; whether is could meet what were thought to be critical requirements for radioactive thermal waste processing. These requirements include: high quality combustion of organic constituents, capture and immobilization of radioactivity, integrity of final waste form, and cost effectiveness. To address these questions a variety of wastes typical of the types generated by nuclear power facilities, including not only standard trash but also wastes of high aqueous and/or inorganic content, were spiked with waste radioisotopes predominant in plant wastes and processed in the glass furnace. The results of this study indicate that the unit is capable of fully meeting the addressed needs of the nuclear industry for power plant waste processing

  10. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  11. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  12. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  13. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  14. Effects of β-irradiation in multicomponent glasses simulating the matrix of the French nuclear waste glass (R7T7)

    International Nuclear Information System (INIS)

    Boizot, B.; Ghaleb, D.; Petite, G.

    2001-01-01

    4-, 5- and 6-oxide components alumino-borosilicate glasses, with compositions closed to the matrix of the french nuclear glass 'R7T7' have been irradiated with electrons (β) at 2.5 MeV with a Van de Graff accelerator. These glasses have been studied after irradiation with different spectroscopic methods: Electron Paramagnetic Resonance for the study of defects, Raman Micro-spectroscopy for the study of amorphous network evolution under irradiation, and by 11 B MAS NMR. The results of these studies are presented here. It shows in particular a great sensibility to the irradiation conditions like dose rate and irradiation temperature, who are therefore important parameters for the representativeness of such experiments. (authors)

  15. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  16. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Directory of Open Access Journals (Sweden)

    Ali Jabbar Abed Al-Nidawi

    Full Text Available In this study, an investigation was conducted to explore and synthesize silicate (SiO2 glass from waste rice husk ash (RHA. MnO2 doped zinc silicate glasses with chemical formula [(ZnO55 + (WRHA45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt% was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared (FTIR spectroscopy, and ultraviolet–visible (UV–Vis spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30° indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation. Keywords: Rice husk, Manganese dioxide, Glass, Zinc silicate, Sintering, Optical properties

  17. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    International Nuclear Information System (INIS)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  18. Viscosity and electrical conductivity of glass melts as a function of waste composition

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wiley, J.R.

    1979-01-01

    Radioactive waste at the Savannah River Plant contains high concentrations of nonradioactive compounds of iron and aluminum. Simulated waste compositions containing varying ratios of iron to aluminum were added to glass melts to determine the effect on the melt properties. Waste containing high-aluminum increased the melt viscosity, but waste containing high-iron reduced the melt viscosity. Aluminum and iron both reduced the melt conductivity

  19. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  20. Leach rate studies on glass containing actual radioactive waste

    International Nuclear Information System (INIS)

    Walker, D.D.; Wiley, J.R.; Dukes, M.D.; LeRoy, J.H.

    1980-01-01

    Borosilicate glass containing radioactive wastes from the Savannah River Plant have been leached for 900 days. The International Standards Organization's (ISO) static leach test procedure was used on glass buttons in various leachants. Leach rates based on 90 Sr and 137 Cs analyses were similar: 2 x 10 -8 to 3 x 10 -8 g/(cm 2 )(d) in distilled water, 1 x 10 -8 to 3 x 10 -7 g/(cm 2 )(d) in pH 7 buffer, 3 x 10 -7 to 7 x 10 -7 g/(cm 2 )(d) in pH 9 buffer, and 7 x 10 -6 to 8 x 10 -5 g/(cm 2 )(d) in pH 4 buffer. Rates based on Pu analyses were the same as above in distilled water and pH 9 buffer, but were lower by an order of magnitude in pH 4 and pH 7 buffers. Almost all leach rates remained constant between 200 and 900 days of leaching. Increasing the concentration of the buffering agents had no effect on the leach rates at pH 7 (phosphate) and pH 9 (carbonate), but dramatically increased the rates at pH 4 (acetate). Leach rates did not differ significantly between high aluminum and high iron waste glasses

  1. Immobilization of high level nuclear wastes in sintered glasses. Devitrification evaluation produced with different thermal treatments

    International Nuclear Information System (INIS)

    Messi de Bernasconi, N.B.; Russo, D.O.; Bevilacqua, M.E.; Sterba, M.E.; Heredia, A.D.; Audero, M.A.

    1990-01-01

    This work describes immobilization of high level nuclear wastes in sintered glass, as alternative way to melting glass. Different chemical compositions of borosilicate glass with simulate waste were utilized and satisfactory results were obtained at laboratory scale. As another contribution to the materials studies by X ray powder diffraction analysis, the devitrification produced with different thermal treatments, was evaluated. The effect of the thermal history on the behaviour of fission products containing glasses has been studied by several working groups in the field of high level waste fixation. When the glass is cooled through the temperature range from 800 deg C down to less than 400 deg C (these temperatures are approximates) nucleation and crystal growth can take place. The rate of crystallization will be maximum near the transformation point but through this rate may be low at lower temperatures, devitrification can still occur over long periods of time, depending on the glass composition. It was verified that there can be an appreciable increase in leaching in some waste glass compositions owing to the presence of crystalline phases. On the other hand, other compositions show very little change in leachability and the devitrified product is often preferable as there is less tendency to cracking, particularly in massive blocks of glass. A borosilicate glass, named SG7, which was developed specially in the KfK for the hot pressing of HLW with glass frit was studied. It presents a much enhanced chemical durability than borosolicate glass developed for the melting process. The crystallization behaviour of SG7 glass products was investigated in our own experiments by annealing sintered samples up to 3000 h at temperatures between 675 and 825 deg C. The samples had contained simulated waste with noble metals, since these might act as foreign nuclei for crystallization. Results on the extent of devitrification and time- temperature- transformation curves are

  2. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  3. Simulation used to qualify nuclear waste glass for disposal

    International Nuclear Information System (INIS)

    Reimus, T.W.; Kuhn, W.L.

    1987-07-01

    A hypothetical vitrification system was simulated errors associated with controlling and predicting the composition of the nuclear waste glass produced in the system. The composition of the glass must fall within certain limits to qualify for permanent geologic disposal. The estimated error in predicting the concentrations of various constituents in the glass was 2% to 8%, depending on the strategy for sampling and analyzing the feed and on the assumed magnitudes of the process uncertainties. The estimated error in controlling the glass composition was 2% to 9%, depending on the strategy for sampling and analyzing the waste and on the assumed magnitudes of the uncertainties. This work demonstrates that simulation techniques can be used to assist in qualifying nuclear waste glass for disposal. 3 refs., 2 figs., 4 tabs

  4. X-ray spectrometric determination of glass content of melts incorporating radioactive waste: a feasibility study

    International Nuclear Information System (INIS)

    Slates, R.V.

    1978-09-01

    X-ray fluorescence spectrometry was evaluated for the determination of glass content and homogeneity of glass incorporating high-level radioactive waste. Accuracy and precision were determined for analyses of Al 2 O 3 , SiO 2 , CaO, TiO 2 , MnO, Fe 2 O 3 , and NiO in specimens of known composition. These specimens were prepared by fusing powdered glass with nonradioactive synthetic waste. Matrix effects of sodium on these analyses were specifically evaluated. X-ray fluorescence spectrometry was shown to be applicable to the proposed determinations by comparing the known glass contents of 14 glass waste compositions with those calculated from experimentally determined concentrations of SiO or TiO 2

  5. The role of ceramics, cement and glass in the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Glasser, F.P.

    1985-01-01

    A brief account is given of the constitution and origin of nuclear waste. The immobilization of wastes is discussed: borosilicate glasses are considered as possible matrices; ceramic forms are dealt with in more detail. The principles of the use of ceramics are explained, with examples of different ceramic structures; cements are mentioned as being suitable for wet, medium- to low-active wastes. The effects of radiation on cement, ceramic and glass waste forms are indicated. The account concludes with 'summary and future progress'. (U.K.)

  6. Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash

    Science.gov (United States)

    Al-Nidawi, Ali Jabbar Abed; Matori, Khamirul Amin; Zakaria, Azmi; Mohd Zaid, Mohd Hafiz

    In this study, an investigation was conducted to explore and synthesize silicate (SiO2) glass from waste rice husk ash (RHA). MnO2 doped zinc silicate glasses with chemical formula [(ZnO)55 + (WRHA)45]100-X[MnO2]X, (where X = 0, 1, 3 and 5 wt%) was prepared by conventional melt quenching technique. The glass samples were characterized using energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed that by increasing the concentration of MnO2, the color of glass samples changed from colorless to brown and the density of glass increased. XRD results showed that a broad halo peak which centered on the low angle (2θ = 30°) indicated the amorphous nature of the glass. FTIR results showed basic structural units of Si-O-Si in non-bridging oxygen, Si-O and Mn-O in the glass network. FESEM result showed a decreasing porosity with an increasing MnO2 content, which was attributed to the Mn ions resort to occupy interstitial sites inside the pores of glass. Besides, the absorption intensity of glass increased and the band gap value decreased with increasing the MnO2 percentage. In this synthesized glass system of MnO2 doped zinc silicate glasses using RHA as a source of silica, the MnO2 affect most of the properties of the glass system under investigation.

  7. Development and radiation stability of glasses for highly radioactive wastes

    International Nuclear Information System (INIS)

    Hall, A.R.; Dalton, J.T.; Hudson, B.; Marples, J.A.C.

    1976-01-01

    The variation of formation temperature, crystallizing behaviour and leach resistance with composition changes for sodium-lithium borosilicate glasses suitable for vitrifying Magnox waste are discussed. Viscosities have been measured between 400 and 1050 0 C. The principal crystal phases which occur have been identified as magnesium silicate, magnesium borate and ceria. The leach rate of polished discs in pure water at 100 0 C does not decrease with time if account is taken of the fragile siliceous layer that is observed to occur. The effect of 100 years' equivalent α- and β-irradiation on glass properties is discussed. Stored energy release experiments demonstrated that energy is released over a wide temperature range so that it cannot be triggered catastrophically. Temperatures required to release energy are dependent upon the original storage temperature. Helium release is by Fick's diffusion law up to at least 30% of the total inventory, with diffusion coefficients similar to those for comparable borosilicate glasses. Leach rates were not measurably affected by α-radiation. β-radiation in a Van de Graaff accelerator did not change physical properties, but irradiation in an electron microscope caused minute bubbles in lithium-containing glasses above 200 0 C. (author)

  8. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    Science.gov (United States)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  9. NUCLEAR WASTE GLASSES: CONTINUOUS MELTING AND BULK VITRIFICAITON

    International Nuclear Information System (INIS)

    KRUGER, A.A.

    2008-01-01

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed

  10. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  11. Studies of glass waste form performance at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Banba, Tsunetaka; Kamizono, Hiroshi; Nakayama, Shinichi; Tashiro, Shingo

    1989-08-01

    The recent studies of glass waste form performance at Japan Atomic Energy Research Institute can be classified into the following three categories; (1) Study on the volatilization of radionuclides from the waste glass, which is necessary to estimate the safety in relation to operation of a storage facility. (2) Study on the radiation (alpha-radiation) effects which have relation to the long-term stability of the waste glass. (3) Study on the leaching behavior of actinides under the repository conditions, which is necessary to predict the long-term release rate of radionuclides from the waste glass. In the present report, the recent results corresponding to the above categories are described. (author)

  12. Modeling a novel glass immobilization waste treatment process using flow

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Nehls, J.W. Jr.; Welch, T.D.; Giardina, J.L.

    1996-01-01

    One option for control and disposal of surplus fissile materials is the Glass Material Oxidation and Dissolution System (GMODS), a process developed at ORNL for directly converting Pu-bearing material into a durable high-quality glass waste form. This paper presents a preliminary assessment of the GMODS process flowsheet using FLOW, a chemical process simulator. The simulation showed that the glass chemistry postulated ion the models has acceptable levels of risks

  13. Preliminary assessment of the controlled release of radionuclides from waste packages containing borosilicate waste glass

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Apted, M.J.; Engle, D.W.; Eslinger, P.W.

    1990-06-01

    The purpose of this report is to provide a preliminary assessment of the release-rate for an engineered barriers subsystem (EBS) containing waste packages of defense high-level waste borosilicate glass at geochemical and hydrological conditions similar to the those at Yucca Mountain. The relationship between the proposed Waste Acceptance Preliminary Specifications (WAPS) test of glass- dissolution rate and compliance with the NRC's release-rate criterion is also evaluated. Calculations are reported for three hierarchical levels: EBS analysis, waste-package analysis, and waste-glass analysis. The following conclusions identify those factors that most acutely affect the magnitude of, or uncertainty in, release-rate performance

  14. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  15. Nuclear waste disposal: alternatives to solidification in glass proposed

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    More than a quarter-million cubic meters of liquid radioactive wastes are now being held at government installations awaiting final disposal. During the past 20 years, the disposal plan of choice has been to incorporate the 40 to 50 radioactive elements dissolved in liquid wastes into blocks of glass, seal the glass in metal canisters, and insert the canisters into deep, geologically stable salt beds. Over the last few years, some geologists and materials scientists have become concerned that perhaps not enough is known yet about the interaction of waste, container, and salt (or any rock) to have a reasonable assurance that the hazardous wastes will be contained successfully. The biggest advantage of glass at present is the demonstrated practicality of producing large, highly radioactive blocks of it. The frontrunner as a successor to glass is ceramics, which are nonmetallic crystalline materials formed at high temperature, such as chinaware or natural minerals. An apparent advantage of ceramics is that they already have an ordered atomic structure, whose properties can be tailored to a particular waste element and to conditions of a specific disposal site. A ceramic tailored for waste disposal called supercalcine-ceramic has been developed. It was emphasized that the best minerals for waste solidification may be those that have proved most stable under natural conditions over geologic time. Disadvantage to ceramics are radiation damage and transmutation. However, it is now obvious that some ceramics are more stable than glass under certain conditions. Metal-encapsulated ceramic, called cermet, is being developed as a waste form. Cermets are considerably more resistant at 100 0 C than a borosilicate waste glass. Researchers are now testing prospective waste forms under the most extreme conditions that might prevail in a waste disposal site

  16. Development of a glass matrix for vitrification of sulphate bearing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Mishra, R.K.; Thorat, Vidya; Ramchandran, M.; Amar Kumar; Ozarde, P.D.; Raj, Kanwar; Das, D.

    2004-07-01

    High level radioactive liquid waste (HLW) is generated during reprocessing of spent nuclear fuel. In the earlier reprocessing flow sheet ferrous sulphamate has been used for valancy adjustment of Pu from IV to III for effective separation. This has resulted in generation of HLW containing significance amount of sulphate. Internationally borosilicate glass matrix has been adopted for vitrification of HLW. The first Indian vitrification facility at Waste Immobilislition Plant (WIP), Tarapur a five component borosilicate matrix (SiO 2 :B 2 O 3 :Na 2 O : MnO : TiO 2 ) has been used for vitrification of waste. However at Trombay HLW contain significant amount of sulphate which is not compatible with standard borosilicate formulation. Extensive R and D efforts were made to develop a glass formulation which can accommodate sulphate and other constituents of HLW e.g., U, Al, Ca, etc. This report deals with development work of a glass formulations for immobilization of sulphate bearing waste. Different glass formulations were studied to evaluate the compatibility with respect to sulphate and other constituents as mentioned above. This includes sodium, lead and barium borosilicate glass matrices. Problems encountered in different glass matrices for containment of sulphate have also been addressed. A glass formulation based on barium borosilicate was found to be effective and compatible for sulphate bearing high level waste. (author)

  17. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  18. Glass as a waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-01-01

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

  19. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  20. Borosilicate glass as a matrix for immobilization of SRP high-level waste

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1980-01-01

    Approximately 22 million gallons of high-level radioactive defense waste are currently being stored in large underground tanks located on the Savannah River Plant (SRP) site in Aiken, South Carolina. One option now being considered for long-term management of this waste involves removing the waste from the tanks, chemically processing the waste, and immobilizing the potentially harmful radionuclides in the waste into a borosilicate glass matrix. The technology for producing waste glass forms is well developed and has been demonstrated on various scales using simulated as well as radioactive SRP waste. Recently, full-scale prototypical equipment has been made operational at SRP. This includes both a joule-heated ceramic melter and an in-can melter. These melters are a part of an integrated vitrification system which is under evaluation and includes a spray calciner, direct liquid feed apparatus, and various elements of an off-gas system. Two of the most important properties of the waste glass are mechanical integrity and leachability. Programs are in progress at SRL aimed at minimizing thermally induced cracking by carefully controlling cooling cycles and using ceramic liners or coatings. The leachability of SRP waste glass has been studied under many different conditions and consistently found to be low. For example, the leachability of actual SRP waste glass was found to be 10 -6 to 10 -5 g/(cm 2 )(day) initially and decreasing to 10 -9 to 10 -8 g/(cm 2 )(day) after 100 days. Waste glass is also being studied under anticipated storage conditions. In brine at 90 0 C, the leachability is about 5 x 10 -8 g/(cm 2 )(day) after 60 days. The effects of other geological media including granite, basalt, shale, and tuff are also being studied as part of the multibarrier isolation system

  1. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  2. A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-08-01

    This report reviews information on miscibility limits in borosilicate glass-forming systems. It includes both a literature survey and an account of experimental work performed within the Canadian Nuclear Fuel Waste Management Program. Emphasis is placed on the measurement and depiction of miscibility limits in multicomponent (mainly quaternary) systems, and the effects of individual components on the occurrence of phase separation. The behaviour of the multicomponent system is related to that of simpler (binary and ternary) glass systems. The possible occurrence of phase separation, as well as its avoidance, during processing of nuclear waste glasses is discussed

  3. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  4. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  5. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  6. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, M S; Mishra, P.K., E-mail: maheshss@barc.gov.in [Nuclear Recycle Board, Bhabha Atomic Research Centre, Mumbai (India); Mandal, S; Barik, S; Roy Chowdhury, A; Sen, R [Central Glass and Ceramic Institute, Kolkata (India)

    2012-10-15

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  7. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    International Nuclear Information System (INIS)

    Sonavane, M.S.; Mishra, P.K.; Mandal, S.; Barik, S.; Roy Chowdhury, A.; Sen, R.

    2012-01-01

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  8. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  9. Effects of ionization on silicate glasses

    International Nuclear Information System (INIS)

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures

  10. Development of Models to Predict the Redox State of Nuclear Waste Containment Glass

    Energy Technology Data Exchange (ETDEWEB)

    Pinet, O.; Guirat, R.; Advocat, T. [Commissariat a l' Energie Atomique (CEA), Departement de Traitement et de Conditionnement des Dechets, Marcoule, BP 71171, 30207 Bagnols-sur-Ceze Cedex (France); Phalippou, J. [Universite de Montpellier II, Laboratoire des Colloides, Verres et Nanomateriaux, 34095 Montpellier Cedex 5 (France)

    2008-07-01

    Vitrification is one of the recommended immobilization routes for nuclear waste, and is currently implemented at industrial scale in several countries, notably for high-level waste. To optimize nuclear waste vitrification, research is conducted to specify suitable glass formulations and develop more effective processes. This research is based not only on experiments at laboratory or technological scale, but also on computer models. Vitrified nuclear waste often contains several multi-valent species whose oxidation state can impact the properties of the melt and of the final glass; these include iron, cerium, ruthenium, manganese, chromium and nickel. Cea is therefore also developing models to predict the final glass redox state. Given the raw materials and production conditions, the model predicts the oxygen fugacity at equilibrium in the melt. It can also estimate the ratios between the oxidation states of the multi-valent species contained in the molten glass. The oxidizing or reductive nature of the atmosphere above the glass melt is also taken into account. Unlike the models used in the conventional glass industry based on empirical methods with a limited range of application, the models proposed are based on the thermodynamic properties of the redox species contained in the waste vitrification feed stream. The thermodynamic data on which the model is based concern the relationship between the glass redox state and the oxygen fugacity in the molten glass. The model predictions were compared with oxygen fugacity measurements for some fifty glasses. The experiments carried out at laboratory and industrial scale with a cold crucible melter. The oxygen fugacity of the glass samples was measured by electrochemical methods and compared with the predicted value. The differences between the predicted and measured oxygen fugacity values were generally less than 0.5 Log unit. (authors)

  11. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  12. DHLW Glass Waste Package Criticality Analysis (SCPB:N/A)

    International Nuclear Information System (INIS)

    Davis, J.W.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objective of this evaluation is to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package

  13. Relationship between reaction layer thickness and leach rate for nuclear waste glasses

    International Nuclear Information System (INIS)

    Chick, L.A.; Pederson, L.R.

    1984-02-01

    Three leaching tests, devised to distinguish among several proposed nuclear waste glass leaching mechanisms, were carried out for four different waste glasses. In the first test, the influence of a pre-formed reaction layer on elemental release was evaluated. In the second test, glass specimens were replaced with fresh samples halfway through the leaching experiment, to evaluate the influence of the concentration of glass components in leaching. Finally, regular replacement of the leachant at fixed time intervals essentially removed the variable changing solution concentration, and allowed an assessment of the influence of reaction layer thickness on the leaching rate. Results for all glasses tested indicated that the reaction layer presented little or no barrier to leaching, and that most of the retardation on leaching rates generally observed are attributable to saturation effects. 20 references, 6 figures, 1 table

  14. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  15. Long-term modeling of glass waste in portland cement- and clay-based matrices

    International Nuclear Information System (INIS)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ''templates'' was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ''affinity effect'' cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity

  16. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  17. The quality study of recycled glass phosphor waste for LED

    Science.gov (United States)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  18. An empirical modeling tool and glass property database in development of US-DOE radioactive waste glasses

    International Nuclear Information System (INIS)

    Muller, I.; Gan, H.

    1997-01-01

    An integrated glass database has been developed at the Vitreous State Laboratory of Catholic University of America. The major objective of this tool was to support glass formulation using the MAWS approach (Minimum Additives Waste Stabilization). An empirical modeling capability, based on the properties of over 1000 glasses in the database, was also developed to help formulate glasses from waste streams under multiple user-imposed constraints. The use of this modeling capability, the performance of resulting models in predicting properties of waste glasses, and the correlation of simple structural theories to glass properties are the subjects of this paper. (authors)

  19. The Effects of Oxygen Partial Pressure on Liquidus Temperature of a High-Level Waste Glass with Spinel as the Primary Phase

    International Nuclear Information System (INIS)

    Izak, Pavel; Hrma, Pavel R.; Wilson, Benjamin K.; Vienna, John D.

    2000-01-01

    The redox state of iron affects spinal crystallization in vitrified high-level waste (HLW) glass. Simulated HLW glass with spinel as the primary crystalline phase field was heat treated at constant temperatures within the interval from 850 C to 1300 C under varying atmospheres with oxygen partial pressure, Po2, ranging from 1x10-16 kPa (pure CO) to 101 kPa (pure O2). Liquidus temperature (TL) of glass increased with decreasing Po2 up to Po2 > 3 x 10-9 kPa. At Po2 < 3 x 10-9 kPa, Ni-Fe alloy precipitated from the glass, and TL decreased. Samples were analyzed with optical microscope and scanning electron microscope. The mass fraction of spinel in glass was determined using quantitative X-ray diffraction. Spinel composition was investigated with energy disperse spectroscopy. Ferrous-ferric equilibrium at TL was calculated in a HLW glass as a function of temperature and Po2, based on the previous studies by Schreiber. TL/FeO over the interval 0.0063 < gFeO < 0.051 (1x10-2 kPa < Po2 < 3x10-9 kPa) was estimated from calculated ferrous-ferric equilibrium at TL as 1835 C

  20. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  1. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  2. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  4. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  5. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  6. Production of a High-Level Waste Glass from Hanford Waste Samples

    International Nuclear Information System (INIS)

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  7. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  8. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  9. Glass Formulation Development for INEEL Sodium-Bearing Waste

    International Nuclear Information System (INIS)

    Vienna, J.D.; Schweiger, M.J.; Smith, D.E.; Smith, H.D.; Crum, J.V.; Peeler, D.K.; Reamer, I.A.; Musick, C.A.; Tillotson, R.D.

    1999-01-01

    For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO 2 , 14.26 mass% B 2 O 3 , 11.31 mass% Fe 2 O 3 , 3.08 mass% TiO 2 , and 2.67 mass % Li 2 O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa·s, is nearly ideal for waste-glass processing in

  10. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-01-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the U.S. Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the immiscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the open-quotes alkaliclose quotes corner of the NBS submixture

  11. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the ''alkali'' corner of the NBS submixture

  12. Joule-heated glass-furnace system for the incineration of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.; Doty, J.W.; Kramer, D.P.

    1982-01-01

    For the past 1-1/2 years, Mound has been preparing and evaluating a commercially available joule-heated glass furnace unit, coupled with a wet scrubbing system. The purpose of the glass furnace evaluation is to advance and document incinerator technology for such combustibles as solids, resins, and sludges, and to develop a stable waste form for subsequent disposal. Four (4) waste nonradioactive types were selected to determine the combustion efficiency of the furnace unit: (1) dry solid waste composed of paper, plastics, rubber, and cloth, (2) ion exchange resin of both the anionic and cationic type, (3) filter sludge composed of diatomaceous earth, organic cellulosic filter aid, and powdered ion exchange resin, and (4) cartridge filters having glass and plastic filter surfaces and nonmetallic cores. When completed, the combustion efficiency experiments for the proposed nonradioactive waste-types revealed the ability of the furnace to easily incinerate waste at feedrates of up to 150 lb/hr. During the course of the experiments, combustibles in the offgas remained consistently low, suggesting excellent combustion efficiency. Furthermore, ash produced by the combustion process was effectively incorporated into the melt by convective currents in the glass. Future work on the glass furnace incinerator will include spiking the waste to determine radioisotope behavior in the furnace

  13. The incorporation of technetium into a representative low-activity waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bakel, A.J.; Bowers, D.L.; Buck, E.C.; Emery, J.W.

    1997-01-01

    A glass that has been tested to understand the corrosion behavior of waste glasses with high soda contents for immobilizing Hanford incidental wastes has been made by melting crushed glass with either TcO 2 or NaTcO 4 at 1,100--1,300 C. Incorporation of technetium in the glass was affected by solubility or kinetic effects. Metallic technetium inclusions formed in all the TcO 2 -doped glasses. Inclusions also formed in glasses with added NaTcO 4 that were melted at 1,100 C, but a glass melted at 1,200 C did not contain detectable inclusions. The presence of Tc-bearing inclusions complicates the interpretation of results from dissolution tests because of the simultaneous release of technetium from more than one phase, the unknown surface areas of each phase, and the possible incorporation of technetium that is released from one phase into another phase. A glass containing about 0.15 mass % Tc dissolved in the glass is being used in dissolution tests to study the release behavior of technetium

  14. Ceramics and glasses for radioactive waste storage

    International Nuclear Information System (INIS)

    Baudin, G.

    1984-06-01

    Borosilicate glasses are mainly choosen for the confinement of fission products; industrial plants are either in operation (AVM) or in construction. Studies of ceramics as a matrix haven't received real application [fr

  15. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength

  16. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  17. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  18. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  19. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    International Nuclear Information System (INIS)

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550 0 C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass

  20. Low leach rate glasses for immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Chick, L.A.; Buckwalter, C.Q.

    1980-10-01

    Improved defense and commercial waste glass have about one order of magnitude lower leach rates at 90 0 C in static deionized water than reference glasses. This durability difference diminishes as the leaching temperature is raised, but at repository temperature less than 150 0 C, the improved compositions would have considerable advantages over reference glases. At the melting temperatures necessary for most of the high-durability glasses, volatility was found to be higher than that experienced in processing current reference glases. Higher volatilities might be compensated for by specific design of the off-gas system for improved off-gas treatment and volatile materials recovery. 6 figures, 2 tables

  1. The role of natural glasses as analogues in projecting the long-term alteration of high-level nuclear waste glasses: Part 1

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1993-01-01

    The common observation of glasses persisting in natural environments for long periods of time (up to tens of millions of years) provides compelling evidence that these materials can be kinetically stable in a variety of subsurface environments. This paper reviews how natural and historical synthesized glasses can be employed as natural analogues for understanding and projecting the long-term alteration of high-level nuclear waste glasses. The corrosion of basaltic glass results in many of the same alteration features found in laboratory testing of the corrosion of high-level radioactive waste glasses. Evidence has also been found indicating similarities in the rate controlling processes, such as the effects of silica concentration on corrosion in groundwater and in laboratory leachates. Naturally altered rhyolitic glasses and tektites provide additional evidence that can be used to constrain estimates of long-term waste glass alteration. When reacted under conditions where water is plentiful, the corrosion for these glasses is dominated by network hydrolysis, while the corrosion is dominated by molecular water diffusion and secondary mineral formation under conditions where water contact is intermittent or where water is relatively scarce. Synthesized glasses that have been naturally altered result in alkali-depleted alteration features that are similar to those found for natural glasses and for nuclear waste glasses. The characteristics of these alteration features appear to be dependent on the alteration conditions which affect the dominant reaction processes during weathering. In all cases, care must be taken to ensure that the information being provided by natural analogues is related to nuclear waste glass corrosion in a clear and meaningful way

  2. A comparison of the performance of nuclear waste glasses by modeling

    International Nuclear Information System (INIS)

    Grambow, B.; Strachan, D.M.

    1988-12-01

    Through a combination of data collection and computer modeling, the dissolution mechanism of nuclear waste glasses has been investigated and more clearly defined. Glass dissolution can be described as a dissolution/precipitation process in which glass dissolves in aqueous solution and solids precipitate as the solubility products are exceeded. The dissolution process is controlled by activity of the rate-limiting specie H 4 SiO 4 . As a concentration of H 4 SiO 4 increases, the rate of dissolution decreases until a final reaction rate is reached. Between the forward reaction rate (early time) and final reaction rate (very long time), glasses may exhibit an intermediate root time dependence caused by a transport resistance for the diffusion of H 4 SiO 4 within the gel layer on the glass surface. In this report, three glasses are studied: JSS-A, PNL 76-68, and SRL-131. Data from static and dynamic leach tests are assembled, plotted, and successfully modeled. The kinetic parameters for these glasses are reported. With four parameters derived from experiments for each glass, the model can be used to calculate the effects of changes in the initial composition of the water contacting the glass. The effects of convective flow can also be modeled. Furthermore, glasses of different compositions can be readily compared. 49 refs., 27 figs., 5 tabs

  3. Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes

    International Nuclear Information System (INIS)

    Ezz-Eldin, F.M.

    2001-01-01

    This paper discusses the leaching behavior of simulated high-level-waste cabal glass (CaO-B 2 O 3 -Al 2 O 3 ) as a bulk specimen. During leach tests, the glass is immersed in either deionized water or in groundwater for up to 57 days at 70 deg. C. Based on the results, mechanisms observed with the leaching of the glass in deionized water or groundwater are discussed. Three factors, i.e., time of immersion, type of leaching solution and irradiation effect, are extensively studied. The corrosion was found to be linear with time in the limit of investigation (1-57 days) but with different rates depending on the type of solution and glass composition. Effects of γ-irradiation on the glass together with groundwater were found to decrease the glass durability. The evolution of the damage on mechanical and physical properties of the glass before and after leaching or irradiation was also discussed. The addition of waste oxide changes the properties of the glass matrix, so the influence of the guest oxides on the properties of host materials is also discussed

  4. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses; Influence du dopage par certains elements de transition sur les effets d'irradiation dans des verres d'interet nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Florent, Olivier

    2006-06-15

    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then {beta} irradiated at different doses up to 10{sup 9} Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe{sup 3+} reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe{sup 3+} amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h{sup 0}/e-) consuming equilibrium. He{sup +} and Kr{sup 3+} ions and {gamma} irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  5. Electrical resistivities of glass melts containing simulated SRP waste sludges

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1978-08-01

    One option for the long-term management of radioactive waste at the Savannah River Plant is to solidify the waste in borosilicate glass by using a continuous, joule-heated, ceramic melter. Electrical resistivities that are needed for melter design were measured for melts of two borosilicate, glass-forming mixtures, each of which was combined with various amounts of several simulated-waste sludges. The simulated sludge spanned the composition range of actual sludges sampled from SRP waste tanks. Resistivities ranged from 6 to 10 ohm-cm at 500 0 C. Melt composition and temperature were correlated with resistivity. Resistivity was not a simple function of viscosity. 15 figures, 4 tables

  6. Glass as a medium for the ultimate disposal of highly radioactive waste

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-09-01

    The conversion of high level radioactive liquid wastes into glass is now considered in every nuclear country. The glass composition must take into account the components of the solutions and be formulated in order to meet certain requirements, mainly those necessary for safe further disposal. The compositions of these glasses, all borosilicates, are consequently unusual. Heat due to β γ decay generates some devitrification but it has not yet been demonstrated that this is detrimental. β irradiation has minor effects on the glass structure but the effect of α emitters is not presently totally investigated. If stored energy consequenses are negligible, further experiments must be carried out to ascertain the effect of helium build up or the behaviour of the mechanical properties. Processes of industrial interest have been developped and a plant has already produced radioactive glass blocks for 5 years

  7. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  8. Product consistency leach tests of Savannah River Site radioactive waste glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Bates, J.K.

    1990-01-01

    The product consistency test (PCT) is a glass leach test developed at the Savannah River Site (SRS) to confirm the durability of radioactive nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a seven day, crushed glass leach test in deionized water at 90C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2-5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment. When the results of the two laboratories were compared to each other, the agreement was within 20%. Normalized concentrations for the nonradioactive and radioactive elements in the PCT leachates measured at both facilities indicated that the radionuclides were released from the glass slower than the major soluble elements in the glass. For both laboratories, the normalized releases for both glasses were in the general order Li ∼ B ∼ Na > Si > Cs - 137 > Sb - 125 < Sr - 90. The normalized releases for the major soluble elements and the final pH values in the tests with radioactive glass are consistent with those for nonradioactive glasses with similar compositions. This indicates that there was no significant effect of radiation on the results of the PCT

  9. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  10. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  11. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.; Pegg, I.L.; Joseph, I.; Bardakci, T.; Gan, H.; Gong, W.; Chaudhuri, M.

    2010-01-01

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  12. Glass-crystalline materials for active waste incorporation

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Krylova, N.V.; Vlasov, V.I.; Polyakov, A.S.

    1979-01-01

    This paper presents the results of investigations into the possibility and conditions for using glass-crystalline materials for the incorporation of radionuclides. Materials of a cast pyroxene type that are obtained by smelting calcined wastes with acid blast furnace slags are described. A study was also made of materials of a basalt type prepared from wastes with and without alkali metal salt. Changes in the structure and properties of materials in the process of storage at different temperatures have been studied

  13. Waste Material Based "Terrazzo" Tiles: The Effect Of Curing Time And Extreme Environmental Conditions Over Glass Aggregate/Cement Matrix Boundary

    Science.gov (United States)

    Paris, E.; Radica, F.; Stabile, P.; Ansaloni, F.; Giuli, G.; Carroll, M. R.

    2017-12-01

    Currently, more than half of all materials extracted globally (over three billion tonnes/year in the EU only) are transformed for use in construction. Before year 2020, the EU aims to reduce the environmental impact of the construction sector by recycling or re-using large amounts of these materials, thus reducing the consumption of raw materials and helping promote the sector's economic stability. With this challenge in mind an aesthetically pleasant and fully recycled (up to 78%) pre-cast cement based tile (Terrazzo tiles) was designed by replacing raw materials with Glass Waste (GW) and Construction/Demolition Waste (CDW). Several recent studies explored the effect of the addition of GW in the manufacture of urban pavements, concluding that the use of GW can improve various phases of pavement life and structure by enhancing the structural performance, durability, environmental friendliness, and aesthetic features. In this study we extend this knowledge also to interior cement-based tiles by evaluating the technical performances of this this novel designed tile, in particular by focusing on the interface between the GW aggregates and different Portland cement based matrix at extreme environmental conditions. For this work three representative waste material based "terrazzo" tiles were selected and characterized by means of XRD and SEM imaging in order to study the boundary effect between GW aggregate and different binding materials: limestone powder, quartz powder and fine ground WG powder. A fourth additional mixture of Portland cement and CDW material was characterized. Fragments of a Limestone matrix tile were also thermally threated at -18°C and at 60°C for one week to witness the possible formation of new harmful phases at the grain-matrix boundary. Preliminary results on X-ray diffraction patterns show that 1 year after manufacture and/or thermal treatment there is no new formation of harmful phases other than the starting ones. High magnification SEM

  14. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  15. Porous glass matrix method for encapsulating high-level nuclear wastes

    International Nuclear Information System (INIS)

    Macedo, P.B.; Tran, D.C.; Simmons, J.H.; Saleh, M.; Barkatt, A.; Simmons, C.J.; Lagakos, N.; DeWitt, E.

    1979-01-01

    A novel process which uses solidified porous high-silica glass powder to fixate radioactive high-level wastes is described. The process yields cylinders consisting of a core of high-silica glass containing the waste elements in its structure and a protective layer also of high-silica glass completely free of waste elements. The process can be applied to waste streams containing 0 to 100% solids. The core region exhibits a higher coefficient of thermal expansion and a lower glass transition temperature than the outer protective layer. This leads to mechanical strengthening of the glass and good resistance to stress corrosion by the development of a high residual compressive stress on the surface of the sample. Both the core and the protective layer exhibit extremely high chemical durability and offer an effective fixation of the radioactive waste elements, including 239 Pu and 99 Tc which have long half-lives, for calculated periods of more than 1 million years, when temperatures are not allowed to rise above 100 0 C

  16. Leaching of actinides from simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Pickering, S.; Walker, C.T.; Offermann, P.

    1982-01-01

    Two types of simulated nuclear waste glass doped with actinides were leached at 200 0 C in distilled water and salt solutions. Am, Np, Pu and U were all preferentially retained in the surface layer on the glass. Leaching ratios of 0.1 to 0.2 for Np and approx. 0.02 for Am were measured. The losses of Am and Np to the leachant were proportional to the total weight loss of the glass and were larger at 10 ml leachant/cm 2 glass than at 5 ml/cm 2 . Weight loss from the glass occurred only at the start of the experiments for periods ranging from 10 h to 10 days according to leachant composition and volume. Wt losses from the C31-3-EC glass were much greater in saturated NaCl solution than in distilled water. Enrichment in the outer surface layer of Al or Ca according to glass type could be correlated with leachant pH, glass composition and weight loss measurements

  17. Immobilization of radioactive wastes in glasses and ceramics

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A large amount of radioactive liquid wastes arises from the reprocessing of spent nuclear fuels to recover uranium and plutonium. Immobilization of such wastes in solid form and disposal of the solidified wastes in safe places, to prevent contamination of the human environment, are topics of considerable interest for both the scientific community and the public in general. The great majority of materials candidate for the encapsulation of radioactive wastes are inorganic non-metalic, such as glasses, glass-ceramics, special cements, calcined ceramics and few more. Among these materials, certain glasses have received special attention, and are being studied for over twenty years. It is estimated that about US$2 billion have already been spent in these studies. The disposal (long term storage) of these solid wastes may be possible in deep geological formations, salt mines, the ocean bed, by evacuation to the outer space, etc. A brief review on the several options avaiable for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of the candidate materials for encapsulation. A few suggestions for the solution of the Brazilian problem are advanced. (Author) [pt

  18. Method and apparatus for glass solidification porcessing for radioactive liquid waste

    International Nuclear Information System (INIS)

    Torada, Shin-ichiro; Masaki, Toshio; Sakai, Akira.

    1989-01-01

    Glass material supplied to a glass melting furnace is made in the form of a glass container. Then, radioactive liquid wastes are directly injected into the glass vessel and the glass vessel injected with the radioactive liquid wastes is charged into the glass melting furnace. The glass material and the radioactive liquid wastes are supplied simultaneously to the glass melting furnace. Then, corresponding to the amount of the glass material used for the glass vessel, the amount of the radioactive liquid wastes injected to the inside thereof is controlled to thereby set the mixing ratio between the glass material and the radioactive liquid wastes. Further, by controlling the number of the glass vessels injected with the radioactive liquid wastes to be charged into the glass melting furnace, the amount of supplying the radioactive liquid wastes and the glass material is controlled. This can easily maintain constant the amount of the glass material and the radioacative liquid wastes supplied to the glass melting furnace and the mixing ratio thereof. (T.M.)

  19. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  20. Utilization of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Spiesz, P.; Rouvas, S.; Brouwers, H.J.H.

    2016-01-01

    Abstract This article addresses the development of a translucent and air purifying concrete containing waste glass. The concrete composition was optimized applying the modified Andreasen & Andersen model to obtain a densely packed system of granular ingredients. Both untreated (unwashed) and washed

  1. Utilization of borosilicate glass for transuranic waste immobilization

    International Nuclear Information System (INIS)

    Ledford, J.A.; Williams, P.M.

    1979-01-01

    Incinerated transuranic waste and other low-level residues have been successfully vitrified by mixing with boric acid and sodium carbonate and heating to 1050 0 C in a bench-scale continuous melter. The resulting borosilicate glass demonstrates excellent mechanical durability and chemical stability

  2. Incorporation of tv tube glass waste in aluminous porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J.N.F.; Santos, T.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    Full test: This work analyzes the reuse of TV tube glass waste as a method to provide alternative raw material for aluminous porcelain, through of replacement of natural sodic feldspar by up to 30 wt.%. Aluminous porcelain formulations containing TV tube glass waste were pressed and fired in air at 1300 deg C using a fast-firing cycle. Ceramic pieces were characterized by X-ray diffraction, scanning electron microscopy, linear shrinkage, apparent density, apparent porosity, water absorption, and electrical resistivity. XRD and SEM results indicated that all aluminous porcelain pieces are composed essentially of mullite, quartz, and ?-alumina embedded in a vitreous matrix. The results also showed that the aluminous porcelain pieces containing TV tube glass waste presented low water absorption values between 0.42 and 0.45 %, apparent density between 2.44 and 2.46 g/cm3, and volume electrical resistivity between 1.91 and 2.93 x 1011 ?.cm. Thus, the TV tube glass waste could be used into aluminous porcelain formulations, in the range up to 30 wt.%, as a replacement for traditional flux material (sodic feldspar). (author)

  3. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  4. Kinetic Rate Law Parameter Measurements on a Borosilicate Waste Glass: Effect of Temperature, pH, and Solution Composition on Alkali Ion Exchange

    International Nuclear Information System (INIS)

    Pierce, Eric M.; McGrail, B PETER.; Icenhower, J P.; Rodriguez, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2004-01-01

    The reaction kinetics of glass is controlled by matrix dissolution and ion exchange (IEX). Dissolution of an alkali-rich simulated borosilicate waste glass was investigated using single-pass flow-through (SPFT) experiments. Experiments were conducted as a function of temperature, pH, and solution composition by varying the SiO 2 (aq) activity in the influent solution. Results showed that under dilute conditions matrix dissolution increased with increasing pH and temperature, and decreased with increasing SiO 2 (aq) activity. IEX rates decreased with increasing pH and temperature, and increased with increasing SiO 2 (aq) activity. Over the solution composition range interrogated in this study the dominant dissolution mechanism changed from matrix dissolution to IEX. These results suggest that ''secondary'' reactions may become dominant under certain environmental conditions and emphasize the need to incorporate these reactions into dissolution rate models

  5. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  6. Control of high level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs

  7. Thermo-chemistry of nuclear waste glasses: a new approach

    International Nuclear Information System (INIS)

    Linard, Y.; Neuville, D.R.; Richet, P.

    1997-01-01

    Understanding of the stability and weathering of glasses used for storing fission products is hampered by a general lack of basic thermochemical information. Models have been setup to predict Gibbs free energies of dissolution of glasses, but ascertaining their accuracy is made difficult by the very lack of reliable experimental data with which model results should be compared. As enthalpies of formation can in principle be determined from usual solution calorimetry experiments, the lack of Gibbs-free energy data for glasses mainly stems from the fact that, as disordered substances, glasses do not obey the third principle and have indeed large configurational entropies. These entropies can be determined from thermochemical measurements only when there exist a congruently melting crystalline compound with the same composition. Using available data, we have calculated the Gibbs-free energies of formation of a series of silicate glasses for which such a calorimetric determination is possible. With these results, we assess the predictions of Paul's model (1977) for calculating Gibbs-free energies of dissolution. As the complex compositions of the borosilicate glasses used for nuclear waste storage prevent determining configurational entropies by calorimetric methods, we point out how these can be determined instead from viscosity measurements. We finally discuss the implications of this approach for modeling of water-glass interactions. (authors)

  8. Conceptual process for conversion of high level waste to glass

    International Nuclear Information System (INIS)

    1975-01-01

    During a ten-year period highly radioactive wastes amounting to 22 million gallons of salt cake and 5 million gallons of wet sludge are to be converted to 1.2 million gallons of glass and 24 million gallons of decontaminated salt cake and placed in the new storage facilities which will provide high assurance of containment with minimal reliance on maintenance and surveillance. The glass will contain nearly all of the radioactivity in a form that is highly resistant to leaching and dispersion. The salt cake will contain a small amount of residual radioactivity. The process is shown in Figure 1 and the facilities may be arranged in seven modules to accomplish seven tasks, (1) remove wastes from tanks, (2) separate sludge and salt, (3) decontaminate salt, (4) solidify and package sludge and 137 Cs, (5) solidify and package decontaminated salt, (6) store high level waste, and (7) store decontaminated salt cake

  9. Achievement report for fiscal 2000 on research and development of high level waste glass utilization system of CO2 emission suppression type; 2000 nendo CO2 haishutsu yokuseigata hai glass kodo riyo system no kenkyu kaihatsu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to establish a waste glass recycling system of low cost and requiring less CO2 emission amount and energy consumption, research and development has been made on classification of waste glasses into particle composition that is required in regenerated commercial products. This paper summarizes the achievements in fiscal 2000. In the research of a waste glass reusing and supplying system designed by using LCA, discussions were given on items required in circulating and recycling waste glass resources, and quality control on raw materials and products. Evaluations of product quality control items were made on crystallized glass, sintered glasswool, automotive window glass, electric bulbs, fluorescent lamp glass, and quartz glass. Utilization tests were carried out for Mashiko porcelain china clay with an intention of expanding the application of waste glass, whereas the relationship between waste glass addition amount and optimal sintering temperature range was verified, disclosing that the limit of the waste glass addition is 10%. In the research on multi-functional hybrid materials, discussions were given on light-weight tiles and water permeating blocks with regard to the manufacturing technology, facility specifications, product quality, effects of the functions, and durability. (NEDO)

  10. Alternative design concept for the second Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Rainisch, R.

    1992-10-01

    This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design

  11. Disposal costs for SRP high-level wastes in borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    Rozsa, R.B.; Campbell, J.H.

    1982-01-01

    Purpose of this document is to compare and contrast the overall burial costs of the glass and ceramic waste forms, including processing, storage, transportation, packaging, and emplacement in a repository. Amount of waste will require approximately 10,300 standard (24 in. i.d. x 9-5/6 ft length) canisters of waste glass, each containing about 3260 lb of waste at 28% waste loading. The ceramic waste form requires about one-third the above number of standard canisters. Approximately $2.5 billion is required to process and dispose of this waste, and the total cost is independent of waste form (glass or ceramic). The major cost items (about 80% of the total cost) for all cases are capital and operating expenses. The capital and 20-year operating costs for the processing facility are the same order of magnitude, and their sum ranges from about one-half of the total for the reference glass case to two-thirds of the total for the ceramic cases

  12. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  13. Radioactive wastes immobilization in glasses and ceramics

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A review on the several options available for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of each material to be encapsulated. Some of the main fields requiring further advancements in both scientific and technological research are discussed and a few suggestions for the solution of the brazilian problem are given. (Author) [pt

  14. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  15. Development of iodine waste forms using low-temperature sintering glass

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Nenoff, Tina Maria; Garino, Terry J.; Rademacher, David

    2010-01-01

    This presentation will describe our recent work on the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce a stable waste form. Radioactive iodine ( 129 I, half-life of 1.6 x 10 7 years) is generated in the nuclear fuel cycle and is of particular concern due to its extremely long half-life and its effects on human health. As part of the DOE/NE Advanced Fuel Cycle Initiative (AFCI), the separation of 129 I from spent fuel during fuel reprocessing is being studied. In the spent fuel reprocessing scheme under consideration, the iodine is released in gaseous form and collected using Ag-loaded zeolites, to form AgI. Although AgI has extremely low solubility in water, it has a relatively high vapor pressure at moderate temperatures (>550 C), thus limiting the thermal processing. Because of this, immobilization using borosilicate glass is not feasible. Therefore, a bismuth oxide-based glasses are being studied due to the low solubility of bismuth oxide in aqueous solution at pH > 7. These waste forms were processed at 500 C, where AgI volatility is low but the glass powder is able to first densify by viscous sintering and then crystallize. Since the glass is not melted, a more chemically stable glass can be used. The AgI-glass mixture was found to have high iodine leach resistance in these initial studies.

  16. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  17. Alpha self irradiation effects in nuclear borosilicate glass

    International Nuclear Information System (INIS)

    Peuget, S.; Roudil, D.; Deschanels, X.; Jegou, C.; Broudic, V.; Bart, J.M.

    2004-01-01

    The properties of actinide glasses are studied in the context of high-level waste management programs. Reprocessing high burnup fuels in particular will increase the minor actinide content in the glass package, resulting in higher cumulative alpha decay doses in the glass, and raising the question of the glass matrix behavior and especially its containment properties. The effect of alpha self-irradiation on the glass behavior is evaluated by doping the glass with a short-lived actinide ( 244 Cm) to reach in several years the alpha dose received by the future glass packages over several thousand years. 'R7T7' borosilicate glasses were doped with 3 different curium contents (0.04, 0.4 and 1.2 wt% 244 CmO 2 ). The density and mechanical properties of the curium-doped glasses were characterized up to 2. 10 18 α/g, revealing only a slight evolution of the macroscopic behavior of R7T7 glass in this range. The leaching behavior of curium-doped glass was also studied by Soxhlet tests. The results do not show any significant evolution of the initial alteration rate with the alpha dose. (authors)

  18. Borosilicate glasses for the high activity waste vetrification

    International Nuclear Information System (INIS)

    Cantale, C.; Donato, A.; Guidi, G.

    1984-01-01

    Some results concerning the researches carried out on the high-level wastes vitrification at ENEA, Comb-Mepis-Rifiu laboratory are reported. A fission product solution referred to power plant nuclear fuel reprocessing has been selected and simulated with no radioactive chemicals. Some glass composition have been tested for the vitrification of this solution, the best of them being taken into consideration for real active tests at the hot bench scale plant ESTER in Ispra. The final glasses have been characterized from the chemical and physical point of view; moreover some microstructural investigations have been performed in order to identify few microsegregations and to test the degree of amorphousness of the products

  19. A comparison of the performance of nuclear waste glasses by modeling

    International Nuclear Information System (INIS)

    Grambow, B.; Strachan, D.M.

    1988-01-01

    A model selected for the licensing process must be based on a physical and chemical understanding of the glass corrosion mechanism. The purpose of this paper is to show that a dissolution/precipitation model can be used to better understand the effects of various system variables on glass dissolution. The application and validation of this model are also discussed. A dissolution/precipitation model developed appears applicable to experiments with a wide range of solution compositions as well as to more complex systems, such as the bentonite/glass/water system the steel corrosion product/glass/water system, or the dissolution of natural basalt glass in a geologic environment. This model is based on solution chemistry and transition state theory. The theoretical background of this model is discussed elsewhere and is used to describe the dissolution behavior of three nuclear waste glasses. These glasses were selected because they represent a wide range of behavior and, therefore, could be used to illustrate the capabilities of the dissolution/precipitation model. The effects of parameters, such as temperature and starting solution composition, on the dissolution behavior of glass are also discussed. 27 refs., 10 figs., 1 tab

  20. Material interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1986-01-01

    This review paper systematizes the additional interactions that materials in a geologic repository will impose on the borosilicate glass waste form-groundwater interactions. These materials are the steel canister that holds the glass, the steel overpack over the canister, backfill materials that may be used, and last, the repository host rock. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g., oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interaction(s) is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. Repository relevant interactions testing that requires further study before long-term predictions can be made are noted. 62 refs

  1. A general model for the dissolution of nuclear waste glasses in salt brine

    International Nuclear Information System (INIS)

    McGrail, B.P.; Strachan, D.M.

    1988-07-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution of SRL-165 defense waste glass in a high-magnesium (PBB3) brine at a temperature of 90/degree/C. The synergetic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron-silica ratio depended on the metal-to-glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron-silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model could be used with confidence in predicting radionuclide release rates for a salt repository. If the deleterious effects of the iron corrosion products can be shown to be transient, and the fracturing of the glass can be minimized, it appears that the performance of SRL-165 defense waste glass will be near the NRC regulatory criterion for fraction release of one part in 100,000 in PBB3 brine at 90/degree/C under silica-saturated conditions. 47 refs., 6 figs., 1 tab

  2. Immobilization of high-level wastes into sintered glass: 1

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    In order to immobilize the high-level radioactive wastes from fuel elements reprocessing, borosilicate glass was adopted. Sintering experiments are described with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO and Na 2 O) (which does not present devitrification problems) mixed with simulated calcinated wastes. The hot pressing line (sintering under pressure) was explored in two variants 1: In can; 2: In graphite matrix with sintered pellet extraction. With scanning electron microscopy it is observed that the simulated wastes do not disolve in the vitreous matrix, but they remain dispersed in the same. The results obtained point out that the leaching velocities are independent from the density and from the matrix type employed, as well as from the fact that the wastes do no dissolve in the matrix. (M.E.L.) [es

  3. Assessment of water/glass interactions in waste glass melter operation

    International Nuclear Information System (INIS)

    Postma, A.K.; Chapman, C.C.; Buelt, J.L.

    1980-04-01

    A study was made to assess the possibility of a vapor explosion in a liquid-fed glass melter and during off-standard conditions for other vitrification processes. The glass melter considered is one designed for the vitrification of high-level nuclear wastes and is comprised of a ceramic-lined cavity with electrodes for joule heating and processing equipment required to add feed and withdraw glass. Vapor explosions needed to be considered because experience in other industrial processes has shown that violent interactions can occur if a hot liquid is mixed with a cooler, vaporizable liquid. Available experimental evidence and theoretical analyses indicate that destructive glass/water interactions are low probability events, if they are possible at all. Under standard conditions, aspects of liquid-fed melter operation which work against explosive interactions include: (1) the aqueous feed is near its boiling point; (2) the feed contains high concentrations of suspended particles; (3) molten glass has high viscosity (greater than 20 poise); and (4) the glass solidifies before film boiling can collapse. While it was concluded that vapor explosions are not expected in a liquid-fed melter, available information does not allow them to be ruled out altogether. Several precautionary measures which are easily incorporated into melter operation procedures were identified and additional experiments were recommended

  4. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  5. The long-term acceleration of waste glass corrosion: A preliminary review

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulation models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition's durability

  6. UK program: glasses and ceramics for immobilization of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    Johnson, K.D.B.

    1979-01-01

    The UK Research Program on Radioactive Waste Management includes the development of processes for the conversion of high-level-liquid-reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behavior under storage and disposal conditions have been examined. Methods for immobilizing activity from other wastes by conversion to glass or ceramic forms are described. The UK philosophy of final solutions to waste management and disposal is presented

  7. Elaboration of new ceramic composites containing glass fibre production wastes

    International Nuclear Information System (INIS)

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  8. An approach to thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Besmann, T.M.; Beahm, E.C.; Spear, K.E.

    1998-01-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses

  9. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  10. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  11. Plan for glass waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Aines, R.D.

    1987-09-01

    The purpose of glass waste form testing is to determine the rate of release of radionuclides from breached glass waste containers. This information will be used to qualify glass waste forms with respect to the release requirements. It will be the basis of the source term from glass waste for repository performance assessment modeling. This information will also serve as part of the source term in the calculation of cumulative releases after 100,000 years in the site evaluation process. It will also serve as part of the source term input for calculation of cumulative releases to the accessible environment for 10,000 years after disposal, to determine compliance with EPA regulations. This investigation will provide data to resolve information needs. Information about the waste forms which is provided by the producer will be accumulated and evaluated; the waste form will be tested, properties determined, and mechanisms of degradation determined; and models providing long-term evaluation of release rates designed and tested. 23 refs

  12. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    International Nuclear Information System (INIS)

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP

  13. High-level waste solidification: why we chose glass

    International Nuclear Information System (INIS)

    Grover, J.R.

    1980-01-01

    This paper considers the desirable properties and factors to be assessed in the selection of a solidified waste product, surveys the possible product options and then analyzes in detail their suitability in meeting the criteria. It concludes that glasses are currently the preferred choice for the following reasons: their ability to fix the full spectrum of elements contained in the waste; their tolerance of the composition variations that will occur on a day to day basis in practice; their relatively low formation temperatures that lead to simpler and hence safer processing; their radiation stability; and their adequate leach rates. Suitable compositions are available for the wastes that will arise in the UK and techniques are available for manufacture on a production scale. Lower leach rates might be obtained by choosing glasses with higher formation temperatures or ceramics. However, these latter generally also have higher formation temperatures, have less tolerance for composition variations and their radiation stability is unproven. Supercalcines and synthetic rocks (SYNROC) may eventually be demonstrated to have some advantageous properties, but present indications are that these could be major disadvantages which more than offset any gains. Other advanced concepts (for example, the dispersion of glass beads in a metal matrix) have lower leach rates, but lead to additional complexity in manufacture

  14. Low sintering temperature glass waste forms for sequestering radioactive iodine

    Science.gov (United States)

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  15. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  16. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams

  17. Optimization of glass composition for the vitrification of nuclear waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Soper, P.D.; Roberts, G.J.; Lightner, L.F.; Walker, D.D.; Plodinec, M.J.

    1982-01-01

    Waste glasses of different compositions were compared in terms of leachability, viscosity, liquidus temperature, and coefficient of expansion. The compositions of the glasses were determined by statistical optimization. Waste glass of the optimized composition is more durable than the current reference composition but can still be processed at low temperature

  18. Matt waste from glass separated collection: an eco-sustainable addition for new building materials.

    Science.gov (United States)

    Bignozzi, M C; Saccani, A; Sandrolini, F

    2009-01-01

    Matt waste (MW), a by-product of purification processes of cullet derived from separated glass waste collection, has been studied as filler for self-compacting concrete and as an addition for newly blended cement. Properties of self-compacting concrete compared to reference samples are reported. They include characteristics at the fresh and hardened states, and the compressive strength and porosity of mortar samples that were formulated with increasing amounts of MW to be used as cement replacement (up to 50wt.%). The effects of matt waste are discussed with respect to the mechanical and microstructural characteristics of the resulting new materials.

  19. Phase formation during corrosion experiments with two simulated borosilicate nuclear waste glasses

    International Nuclear Information System (INIS)

    Haaker, R.F.

    1985-10-01

    Corrosion products resulting from the reaction of simulated high-level radioactive waste glasses with various solutions have been identified. At 200degC, in saturated NaCl, a degree of reaction of 10 g C31-3 glass or 2.6 g SON 68 glass per liter of solution was obtained. Analcime, vermiculite (a phyllosilicate) and a 2:1 zinc silicate are the major silica containing alteration products for the C31-3 glass. Analcime was the only silicate alteration product which could be identified for SON 68 glass. C31-3 glass appeared to be less reactive with a quinary brine containing Mg ++ than with NaCl. With the quinary brine, montmorillonite (a phyllosilicate) was the predominant silica containing alteration product. Hydrotalcite (a Mg-Al hydroxysulfate) and montmorillonite were the major Al-containing phases. A phyllosilicate, probably montmorillonite, was observed to form during the reaction of SON 68 glass with quinary brine. With either glass, modified NaCl brines which contained small amounts of MgCl 2 seem to have the effect of decreasing the amount of analcime and increasing the amount of phyllosilicate which is formed. In the case of C31-3 glass, there is approximately enough Mg, Al and Zn to precipitate most of the leached Si; measured Si concentrations remain well below that expected for amorphous silica. SON 68 glass has less Zn, Al and Mg than C31-3 glass and much higher Si concentrations of the leachates. (orig./RB)

  20. Modeling the dissolution behavior of defense waste glass in a salt repository environment

    International Nuclear Information System (INIS)

    McGrain, B.P.

    1988-02-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution behavior of SRL-165 defense waste glass in a high-magnesium brine (PBB3) at a temperature of 90 0 C. The synergistic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron/silica stoichiometry depended on the metal/glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron/silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model can be used with confidence in predicting radionuclide release rates for a salt repository. 25 refs., 4 figs., 1 tab

  1. Development of glass compositions with 9% waste content for the vitrification of high-level waste from LWR nuclear reactors

    International Nuclear Information System (INIS)

    Lakatos, T.

    1979-10-01

    Reduction of the contents of waste in glass from 20-25% to 9% causes a decrease of the leaching resistance of the glass. The addition of Zn0 reduces the leaching values by a factor of approximately 10. The crystallized glass ceramics have a lower coefficient of thermal expansion than glassy waste bodies. The separation of the phase which contains Mo occurs during heat treatment. The amount of separated Mo is lower for low alkali sac type (Si0 2 - A1 2 0 3 -Ca0 system) of glasses by a factor of approximately 50. All the glasses were prepared with simulated waste composition. (GBn.)

  2. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  3. Rhyolitic glasses as natural analogues of nuclear waste glasses: behaviour of an Icelandic glass upon natural aqueous corrosion

    International Nuclear Information System (INIS)

    Magonthier, M.-C.; Petit, J.-C.; Dran, J.-C.

    1992-01-01

    A detailed study of the altered rims present in narrow fissures of a 52 ka-old Icelandic obsidian reveals the behaviour of transition and heavy elements, as well as the mechanism and kinetics of alteration, during glass/solution interaction. These complex altered rims are alkali depleted and consist of alternating layers of Fe-rich aluminosilicate and aluminium thihydroxide. The elemental partitioning observed on this naturally corroded obsidian is supported by laboratory experiments performed on the same glass, the elemental accumulation being explained by the formation of a hydrosilicate. A good correlation exists between the thickness of the altered rims and that calculated from the amounts of Fe and Ti accumulated locally. Thus, immobile elements can be used reliably as indices of the extent of alteration because only near-equilibrium conditions occur. The good agreement between the experimental hydration rate of obsidians and the progress of natural corrosion, leads to the assumption that ion diffusion is the long-term controlling mechanism of corrosion. Such an assumption is supported by the particular distribution of the immobile elements which is due to ion diffusion and coprecipitation processes (self-organization genesis). These observations have implications for nuclear waste disposal topics and support the validity of obsidians as analogues of nuclear waste glasses with respect to some local environmental constraints induced by waste packaging and disposal. (author)

  4. Comparison of the corrosion behaviors of the glass-bonded sodalite ceramic waste form and reference HLW glasses

    International Nuclear Information System (INIS)

    Ebert, W. L.; Lewis, M. A.

    1999-01-01

    A glass-bonded sodalite ceramic waste form is being developed for the long-term immobilization of salt wastes that are generated during spent nuclear fuel conditioning activities. A durable waste form is prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. A mechanistic description of the corrosion processes is being developed to support qualification of the CWF for disposal. The initial set of characterization tests included two standard tests that have been used extensively to study the corrosion behavior of high level waste (HLW) glasses: the Material Characterization Center-1 (MCC-1) Test and the Product Consistency Test (PCT). Direct comparison of the results of tests with the reference CWF and HLW glasses indicate that the corrosion behaviors of the CWF and HLW glasses are very similar

  5. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  6. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  7. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  8. Dense and porous glass and glass ceramics from natural and waste raw materials

    OpenAIRE

    Marangoni, Mauro

    2016-01-01

    The main goal of the herewith presented research activities was to develop innovative processes and materials for building applications adapted to the needs of Saudi Arabia according to the information exchanged with the partners from KACST (King Abdulaziz City of Science and Technology). The research activity focused on the development of a wide range of ceramic components via sinter-crystallization of glasses produced from waste (fly ash, slag, sludge) with or without the addition of vit...

  9. Research on the Properties of the Waste Glass Concrete Composite Foundation

    Science.gov (United States)

    Jia, Shilong; Chen, Kaihui; Chen, Zhongliang

    2018-02-01

    The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.

  10. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  11. Investigation on Compressive Strength of Special Concrete made with Crushed Waste Glass

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Special concrete is the type of concrete that produced by using waste material or using unusual techniques/method of preparation. Special concrete made with waste material is becoming popular in a construction site. This is because the special concrete is selected due to quality, integrity, economic factor and environmental factor. The waste glass is selected as an additional material to provide a good in compressive strength value. The compressive strength is the importance of mechanical properties of concrete and typically the concrete is sustained and stiffed in compression load. The significant issue to utilize the waste glass from the automotive windscreen is to improve the strength of concrete. The waste glass is crushed to become 5 mm size and recognised as crushed waste glass that be used in concrete as additional material. The main objective of the study is to determine the appropriate percentage of crushed waste glass in concrete grade, 30 in order to enhance the compressive strength. There are four mixes of concrete that contained of crushed waste glass with percentage of 2 %, 4 %, 6 % and 8 % and one control mix with 0 % of crushed waste glass. As the result, crushed waste glass with an additional 4 % in concrete is reported having a higher value of compressive strength in early and mature stage. In addition, if the percentage of crushed glass wastes in concrete increases and it leads to a reduction in the workability of concrete.

  12. Glasses used in the solidification of high level radioactive waste: their behaviour in aqueous solutions

    International Nuclear Information System (INIS)

    Grauer, R.

    1983-02-01

    Because of their amorphous structure, glasses are particularly suitable matrixes for the solidification of the mixture of radionuclides included in the high level wastes from reactor fuel reprocessing. They are not sensitive to variations in the fractions present of different waste oxides and are resistent to the effects of irradiation. In particular, borosilicate glasses have been investigated for around 25 years and the vitrification techniques have been tested on the technological scale. The environmental conditions within a final waste repository are expected to be such that the chemical resistance of glasses to attack by groundwaters is of special interest. In the present report the corrosion behaviour is described, with emphasis being placed upon the most significant controlling parameters. Since experimental determination of corrosion rates must be done in relatively short-time experiments, the results of which can depend strongly upon the measurement methods employed, it is necessary to carry out a critical assessment of the techniques commonly used in laboratory work. Experimental results are illustrated by means of selected examples. Particular emphasis is placed upon the effects of increased temperatures and of irradiation. The models which have been proposed for the estimation of the long-term corrosion behaviour of glasses are not yet fully sufficient and improvements are required. Furthermore, the actual corrosion rates which are fed into such models must be replaced by values more appropriate for the actual environmental conditions to which the glasses are most likely to be exposed within high level waste repositories. It should be noted, however, that even with current conservative input data on corrosion rates, typical estimated lifetimes for vitrified waste blocks are of the order of 10 5 years. The report concludes with recommendations concerning the most useful areas for further investigations. (author)

  13. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Park, Hwan Seo; Ahn, Do-Hee [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Yim, Man-Sung, E-mail: msyim@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2016-11-15

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi{sub 2}O{sub 3} (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi{sub 2}O{sub 3} and the glass composition. It was confirmed that BiI{sub 3}, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi{sub 5}O{sub 7}I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10{sup −3}–10{sup −2} g/m{sup 2} day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of {sup 129}I. - Highlights: • Glass composite waste forms were developed to stabilize iodine confined in Bi-embedded SBA-15. • BiI{sub 3} within Bi-embedded SBA-15 was transformed to BiOI and Bi{sub 5}O{sub 7}I during sintering process. • Iodine volatility was significantly affected by glass composition and Bi{sub 2}O{sub 3} additive. • Iodine leaching rates were 10{sup −3}–10{sup −2} g/m{sup 2} day due to the stable iodine phases encapsulated by glassy networks. • Glass composite waste form of Bi-embedded SBA-15 is expected to be a candidate material for stable storage of {sup 129}I.

  14. Aqueous alteration of Japanese simulated waste glass P0798: Effects of alteration-phase formation on alteration rate and cesium retention

    International Nuclear Information System (INIS)

    Inagaki, Y.; Shinkai, A.; Idemistu, K.; Arima, T.; Yoshikawa, H.; Yui, M.

    2006-01-01

    Aqueous alteration tests were performed with a Japanese simulated waste glass P0798 in alkaline solutions as a function of pH or species/concentration of alkaline metals in the solution in order to evaluate the alteration conditions determining whether smectite (2:1 clay mineral) or analcime (zeolite) forms as the major alteration-phase. XRD analysis of the alteration-phases showed that smectite forms at any pH between 9.5 and 12, and analcime forms at pH above 11, though the formation also depends on species and concentrations of alkaline metals in the solution. These results cannot agree with the thermodynamically predicted phase stability, e.g., smectite is more stable than the thermodynamic prediction shows. On the basis of the results of alteration conditions, the alteration tests were performed under smectite forming conditions, where only smectite forms or no crystalline phases form, in order to evaluate the alteration rate and the mechanism of cesium release/retention. The results showed that the glass alteration proceeds slowly in proportion to square root of time under smectite forming conditions, which indicates that the alteration rate can be controlled by a diffusion process. It was suggested that the alteration rate under smectite forming conditions is independent of the pH, alkaline metal species/concentration in the solution and whether smectite actually forms or not. The results also indicated that most of cesium dissolved from the glass can be retained in the alteration-phases by reversible sorption onto smectite or irreversible incorporation into analcime, pollucite or solid solutions of them

  15. Development and characterization of basalt-glass ceramics for the immobilization of transuranic wastes

    International Nuclear Information System (INIS)

    Lokken, R.O.; Chick, L.A.; Thomas, L.E.

    1982-09-01

    Basalt-based waste forms were developed for the immobilization of transuranic (TRU) contaminated wastes. The specific waste studied is a 3:1 blend of process sludge and incinerator ash. Various amounts of TRU blended waste were melted with Pomona basalt powder. The vitreous products were subjected to a variety of heat treatment conditions to form glass ceramics. The total crystallinity of the glass ceramic, ranging from 20 to 45 wt %, was moderately dependent on composition and heat treatment conditions. Three parent glasses and four glass ceramics with varied composition and heat treatment were produced for detailed phase characterization and leaching. Both parent glasses and glass ceramics were mainly composed of a continuous, glassy matrix phase. This glass matrix entered into solution during leaching in both types of materials. The Fe-Ti rich dispersed glass phase was not significantly degraded by leaching. The glass ceramics, however, exhibited four to ten times less elemental releases during leaching than the parent glasses. The glass ceramic matrix probably contains higher Fe and Na and lower Ca and Mg relative to the parent glass matrix. The crystallization of augite in the glass ceramics is believed to contribute to the improved leach rates. Leach rates of the basalt glass ceramic are compared to those of other TRU nuclear waste forms containing 239 Pu

  16. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  17. Structure study and properties of rare earth-rich glassed for the conditioning of nuclear waste

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd) The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium L III -edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  18. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  19. Glass melter assembly for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Chen, A.E.; Russell, A.; Shah, K.R.; Kalia, J.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is designed to solidify high level radioactive waste by converting it into stable borosilicate after mixing with glass frit and water. The heart of this conversion process takes place in the glass melter. The life span of the existing melter is limited by the possible premature failure of the heater assembly, which is not remotely replaceable, in the riser and pour spout. A goal of HWVP Project is to design remotely replaceable riser and pour spout heaters so that the useful life of the melter can be prolonged. The riser pour spout area is accessible only by the canyon crane and impact wrench. It is also congested with supporting frame members, service piping, electrode terminals, canister positioning arm and other various melter components. The visibility is low and the accessibility is limited. The problem is further compounded by the extreme high temperature in the riser core and the electrical conductive nature of the molten glass that flows through it

  20. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    International Nuclear Information System (INIS)

    Vernaz, E.; Matzke, H.J.

    1992-01-01

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are briefly described. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g. the German product GP 98/12 etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water or other aqueous solutions are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g. Cm-244) or ion-implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions

  1. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-24

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer

  2. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-01-01

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3 , has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental

  3. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    International Nuclear Information System (INIS)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-01

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling

  4. The encapsulation of nuclear waste in a magnesium aluminosilicate glass-ceramic

    International Nuclear Information System (INIS)

    Luk, K.M.

    1999-07-01

    containment vessels. A calcined mixed simulated waste provided by BNFL was found to prevent sintering of MAS. An attempt was made to discover which constituents of the waste were preventing densification. Individual oxides were chosen to represent the oxides of groups 1 and 2, the transition and rare earth metals found in nuclear waste. The oxides of lithium, caesium, barium, iron, nickel, chromium, molybdenum, cerium and neodymium were chosen. These oxides were encapsulated, at the rate of 10 volume %, in MAS. The majority of these oxides were not found to significantly prevent the sintering of MAS. However, lithium, caesium, barium and molybdenum oxides did have a dramatic effect on the densification of MAS. It is possible that altering the temperature profile could largely remedy this effect for caesium, barium and molybdenum but it is unlikely that a waste containing a significant proportion of lithium oxide could achieve high densifications in MAS. This conclusion was confirmed by the encapsulation of simplified mixed oxide wastes containing the above oxides with and without lithium oxide. High densifications were achieved without lithium oxide and significantly less densification was achieved with lithium oxide. It is thought that the encapsulation of a non lithium oxide containing nuclear waste in a MAS glass-ceramic could be viable since lithium oxide is only added to current nuclear waste glass to reduce melt viscosity. (author)

  5. Magnetic properties of glasses from geothite industrial wastes recycling (FeOOH)

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Esparza, M.; Gonzalez-Oliver, C.

    1997-01-01

    It has been carried out the magnetic properties determination for high iron oxide content glasses series obtained from a geothite red mud waste from the zinc hydrometallurgy and dolomite and glass cullet as main raw materials. It has been determined the magnetic susceptibility and magnetization values for the glasses here investigated. The results suggest that the magnetic behaviour are depending on the glass chemical composition, so that glasses can be differently classified like ferrimagnetic, ferromagnetic, superparamagnetic and paramagnetic. (Author) 6 refs

  6. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  7. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  8. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  9. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  11. Using of Glass Wastes as a Fine Aggregate in Concrete Mixture

    Directory of Open Access Journals (Sweden)

    Mohammad F. Al-Deen

    2013-04-01

    Full Text Available In this study, the waste glass (WG is considered as a fine aggregate in the concretemixture. WG is used after grinding to size according to Iraqi sand specificationsNo.45. The waste glass has been used instead of sand in different proportions whichare 0%, 33%, 66% and 100%. The effects of WG on compressive strength of theconcrete and unit weight are analysed. As results of this study, WG is determined tohave a significant effect upon the reduction of its compressive strength and there is asignificant decreasing of its unit weight. As for cost analysis, it was determined tolower the cost of concrete production. This study was an environmental one inconsideration of the fact that WG could be used in the concrete as fine aggreagateswithout the need for a high cost or rigorous energy.

  12. SRL in-situ tests in the United Kingdom: Part 2, Surface analyses of SRS waste glass buried for one and two years in limestone at Ballidon, UK

    International Nuclear Information System (INIS)

    Namboodri, C.G. Jr.; Wicks, G.G.

    1991-01-01

    A multiphase experimental program to assess and understand waste glass behavior under a wide range of conditions has been in progress at the Savannah River Laboratory (SRL) for over a decade. An important part of this experimental effort is to assess the effects of repository relevant conditions on performance of SRS waste glass, in both controlled laboratory tests, as well as in actual field experiments. In laboratory test, SRS waste glass, simulated and in many cases also fully radioactive, has been tested in environments of salt, basalt, shale, granite, clay and tuff. In field experiments, there are four joint international programs being conducted in four different countries, involving burial of SRS simulated waste glass in granite, limestone, clay and salt geologies. This report discusses the SRS waste glass studies in limestone at Ballidon, UK

  13. Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars

    Directory of Open Access Journals (Sweden)

    José Marcos Ortega

    2018-03-01

    Full Text Available At present, reusing waste constitutes an important challenge in order to reach a more sustainable environment. The cement industry is an important pollutant industrial sector. Therefore, the reduction of its CO2 emissions is now a popular topic of study. One way to lessen those emissions is partially replacing clinker with other materials. In this regard, the reuse of waste glass powder as a clinker replacement could be possible. This is a non-biodegradable residue that permanently occupies a large amount of space in dumping sites. The aim of this work is to study the long-term effects (400 days of the addition of waste glass powder on the microstructure and service properties of mortars that incorporate up to 20% of this addition as clinker replacement. The microstructure has been characterised using the non-destructive impedance spectroscopy technique and mercury intrusion porosimetry. Furthermore, differential thermal analysis was also performed. Compressive strength and both steady-state and non-steady-state chloride diffusion coefficients have also been determined. Considering the obtained results, mortars with 10% and 20% waste glass powder showed good service properties until 400 days, similar to or even better than those made with ordinary Portland cement without additions, with the added value of contributing to sustainability.

  14. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Projected radionuclide inventories of DWPF glass from current waste at time of production

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the DWPF estimate the inventory of long-lived radionuclides present in the waste glass, and report the values in the Waste Form Qualification Report. In this report, conservative (biased high) estimates of the radionuclide inventory of glass produced from waste currently in the Tank Farm are provided. In most cases, these calculated values compare favorably with actual data. In those cases where the agreement is not good, the values reported here are conservative

  16. 57Fe Moessbauer effect in borosilicate glasses

    International Nuclear Information System (INIS)

    Music, S.

    1989-01-01

    The present study was carried out to elucidate the valence state of iron and its co-ordination in borosilicate glasses, which are being investigated as possible solidification matrices for the immobilization of a simulated nuclear waste. 57 Fe Mossbauer spectroscopy was used as the experimental technique. The chemical compositions of glass samples and the experimental conditions for the preparation of these samples are given. Iron in the form of haematite (α-Fe 2 O 3 ) was used as doping material. Details of the experimental procedure have previously been described. Isomer shifts are calculated relative to α-iron. The results indicate a strong dependence of the valency of the iron and its coordination on the chemical composition of the glass and the Fe 2 O 3 content. The method of preparing the glasses also influences the state of the iron in oxide glasses. (Author)

  17. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    Science.gov (United States)

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recycling of waste glass as a partial replacement for fine aggregate in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2009-02-01

    Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The properties of concretes containing waste glass as fine aggregate were investigated in this study. The strength properties and ASR expansion were analyzed in terms of waste glass content. An overall quantity of 80 kg of crushed waste glass was used as a partial replacement for sand at 10%, 15%, and 20% with 900 kg of concrete mixes. The results proved 80% pozzolanic strength activity given by waste glass after 28 days. The flexural strength and compressive strength of specimens with 20% waste glass content were 10.99% and 4.23%, respectively, higher than those of the control specimen at 28 days. The mortar bar tests demonstrated that the finely crushed waste glass helped reduce expansion by 66% as compared with the control mix.

  19. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    International Nuclear Information System (INIS)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel

    2013-01-01

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter

  20. Antagonist effects of calcium on borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  1. Antagonist effects of calcium on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-01-01

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage

  2. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  3. Leach testing of waste glasses under near-saturation conditions

    International Nuclear Information System (INIS)

    Strachan, D.M.; Grambow, B.

    1983-11-01

    Two waste glasses, MCC 76 to 68 and C31 to 3, were leached in deionized water and 0.001 M MgCl 2 for periods up to 158 days. At 57 days the gel layer was removed from some of the specimens and leaching continued for up to 100 days. Results from leaching in deionized water showed that the gel layer was not protective. Results from leaching in 0.001 M MgCl 2 are in good agreement with the predicted results obtained from the use of the PHREEQE geochemical code and with sepiolite [Mg 2 Si 3 O 6 (OH) 4 ] as the Mg-bearing precipitate. Both B and Si were predicted and observed to increase with increasing glass dissolution while maintaining sepiolite solubility. Both MCC 76 to 68 and C31 to 3 glasses showed increased leaching in 0.001 M MgCl 2 upon removal of the layer. This suggests a leaching mechanism whereby leaching is driven by the formation of an alteration product

  4. Growth of hydrated gel layers in nuclear waste glasses

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Machiels, A.J.

    1984-01-01

    The hydration kinetics of waste glasses in contact with an aqueous solution has been studied by using three different approaches. Emphasis has been placed on modeling processes in the transition zone defined as the region in which the nature of the glass changes from the original dry glass to an open hydrated structure. The first model relies on concentration-dependent diffusion coefficients to obtain a transition zone in which the ions mobility is extremely low compared to that in the gel layer. In the second model, the transition zone and hydrated layer are treated as distinct phases and it is assumed that ion exchange at their common boundary is the rate-controlling process. The third model treats the transition zone as a thin film of constant thickness and low diffusivity. In the absence of appreciable network dissolution, all three models indicate that growth of the gel layer becomes eventually proportional to the square root of time; however, as long as processes in the transition zone are rate controlling, growth is linearly proportional to time

  5. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    Science.gov (United States)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  6. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  7. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani, E-mail: mfsyazwani86@postech.ac.kr [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor (Malaysia); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Schweiger, Michael J.; Riley, Brian J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2015-10-15

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl–KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (T{sub L}): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE{sub 2}O{sub 3}) while possessing an acceptable chemical durability. - Highlights: • We investigated crystallization in borosilicate glasses containing rare earth oxides. • New crystallinity and durability data are shown for glasses proposed in the literature. • Both liquidus temperature and chemical durability increased as the waste loading increased.

  8. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  9. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  10. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  11. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    Work which has appeared since the earlier report (EIR--477) on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetics models which provides a more sound basis for prediction of long-term behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 .d can be derived from long-term corrosion experiments in stagnant water at 90 0 C. At the envisaged repository temperature of 55 0 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. (Auth.)

  12. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  13. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  14. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II

  15. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  16. In situ one-year burial experiments with simulated nuclear waste glasses

    International Nuclear Information System (INIS)

    Hench, L.L.; Spilman, D.; Buonaquisti, T.; Werme, L.

    1985-01-01

    Two simulated nuclear waste glasses were corroded in an in-situ experiment in the Stripa mine up to one year at 90 degree C and ambient temperature. Changes in compositional in-depth profiles were measured using Fourier transform infrared reflection spectroscopy, SIMS and Rutherford back-scattering. For glass/glass interfaces, both glasses showed depletion of Na, Cs and B, but for the more corrosion resistant glass, the lower depletion is ascribed to the formation of a thin (0.2 nm) coherent and dense outer layer enriched in Mg, Ca, Sr, Ba, Zn-Al and Si, which impedes both ion exchange and network attack of the bulk underneath. For the bentonite interfaces, cation exchange of Ca, Mg, Al and Fe from the bentonite for primarily Na and B is found to produce a glass surface that has three silicate-rich layers. The larger concentrations of M/super2+/ and M/super3+/ cation and the high silica content of the reaction layers result in a considerably retarded rate of ion exchange after the formation of these layers during the first three months of burial. The granite interfaces showed the lowest rate of attack. This appears to be due to a large increase of Fe and Al within the glass surfaces exposed to granite. The results obtained using Rutheford back-scattering confirm the results obtained using the other techniques for surface analysis. Analysis of burial samples cast in steel mini-canisters show no significant effects associated with the steel canister-glass interface. (author)

  17. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  18. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  19. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  20. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  1. Startup and operation of a plant-scale continuous glass melter for vitrification of Savannah River Plant simulated waste

    International Nuclear Information System (INIS)

    Willis, T.A.

    1980-01-01

    The reference process for disposal of radioactive waste from the Savannah River Plant is vitrification of the waste in borosilicate glass in a continuous glass melter. Design, startup, and operation of a plant-scale developmental melter system are discussed

  2. Volume reduction and solidification of radioactive waste incineration ash with waste glass

    International Nuclear Information System (INIS)

    Koyama, Hidemi; Kobayashi, Masayuki

    2007-01-01

    The low-level radioactive waste generated from research institutions and hospitals etc. is packed into a container and is kept. The volume reduced state or the unprocessed state by incineration or compression processing are used because neither landfill sites nor disposal methods have been fixed. Especially, because the bulk density is low, and it is easy to disperse, the low-level radioactive waste incineration ash incinerated for the volume reduction is a big issue in security, safety, stability in the inventory location. A safe and appropriate disposal processing method is desired. When the low temperature sintering method in the use of the glass bottle cullet was examined, volume reduction and stabilization of low-level radioactive waste incineration ash were verified. The proposed method is useful for the easy treatment of the low-level radioactive waste incineration ash. (author)

  3. Characteristics of borosilicate waste glass form for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    Basic data, required for the design and the performance assessment of a repository of HLW, suchas the chemical composition and the characteristics of the borosilicate waste glass have been identified according to the burn-ups of spent PWR fuels. The diemnsion of waste canister is 430mm in diameter and 1135mm in length, and the canister should hold less than 2kwatts of heat from their decay of radionuclides contained in the HLW. Based on the reprocessing of 5 years-cooled spent fuel, one canister could hold about 11.5wt.% and 10.8wt.% of oxidized HLW corresponding to their burn-ups of 45,000MWD/MTU and 55,000MWD/MTU, respectively. These waste forms have been recommanded as the reference waste forms of HLW. The characteristics of these wastes as a function of decay time been evaluated. However, after a specific waste form and a specific site for the disposal would be selected, the characteristics of the waste should be reevaluated under the consideration of solidification period, loaded waste, storage condition and duration, site circumstances for the repository system and its performance assessment.

  4. Nuclear waste glass melter design including the power and control systems

    International Nuclear Information System (INIS)

    Chapman, C.C.

    1982-01-01

    An energy balance of a joule-heated nuclear waste glass melter is used to discuss the problems in the design of the melter geometry and in the specifications of the power and control systems. The relationships between geometry, electrode current density, production rate, load voltage, and load power are presented graphically. The influence of liquid feeding on the surface of the glass and the variability of nuclear waste glass on the design and control during operation is discussed. 10 refs

  5. Letter report: Minor component study for low-level radioactive waste glasses

    International Nuclear Information System (INIS)

    Li, H.

    1996-03-01

    During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass

  6. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    International Nuclear Information System (INIS)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-01-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively

  7. Characterization of damage created by alpha disintegrations in radionuclear waste glass

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Mueller, P.

    1990-01-01

    Study of thermostimulated luminescence of an alpha irradiated glass used as radionuclear waste glass has revealed the formation of a structural defect induced by alpha irradiation. To detect this structural modification the thermostimulated signal of an alpha irradiated sample is recorded under certain conditions. The nature of generated defects has been established using synthetic glasses of more simple composition such as silica or boro-silicate glasses. Results obtained with these simple glasses are transposed to alpha irradiated radionuclear waste glass. The problem is to see how autoirradiated glass could evolve in time. For this purpose actinide-doped glasses are now being fabricated and specific thermostimulated luminescence equipment has been developed for this purpose

  8. Performance of a buried radioactive high level waste (HLW) glass after 24 years

    International Nuclear Information System (INIS)

    Jantzen, Carol M.; Kaplan, Daniel I.; Bibler, Ned E.; Peeler, David K.; John Plodinec, M.

    2008-01-01

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in a lysimeter in the SRS burial ground for 24 years. Lysimeter leachate data was available for the first 8 years. The glass was exhumed in 2004. The glass was predicted to be very durable and laboratory tests confirmed this. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with results of other laboratory and field tests. Radionuclide profiling for alpha, beta, and 137 Cs indicated that Pu was not enriched in the soil while 137 Cs and 9 deg. C Sr were enriched in the first few centimeters surrounding the glass. Lysimeter leachate data indicated that 9 deg. C Sr and 137 Cs leaching from the glass was diffusion controlled

  9. Alteration of basaltic glass in Iceland as a natural analogue for nuclear waste glasses

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Advocat, T.; Fritz, B.; Petit, J.C.

    1989-01-01

    The authors describe the longer term geochemical consequences of basaltic glass dissolution in fresh water at 0 0 C calculated with the computer code DISSOL. The clay minerals were represented by an ideal solid solution model (CISSFIT) able to describe variations in chemical composition of a clay phase in response to variations of the solution chemistry. The predicted mineral phases were iron hydroxides followed by kaolinite, TOT clays, chabazite and clinoptilolite. These results are in reasonably good agreement with experimental results and observations of altered subglacial hyaloclastites from Iceland. The formation of secondary products are mainly controlled by thermodynamic constraints. Kinetic effects, such as diffusion in the near glass surface are not important

  10. Effects of MgO on short and long term stabilities in water of R7T7 and M7 nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Advocat, T; Vernaz, E; Dussossoy, J [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Crovisier, J L [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France)

    1993-12-31

    Magnesium oxide was added to the standard R7T7 and M7 glass compositions developed for containment of fission product solutions. M7 differs from the R7T7 reference glass mainly by a larger proportion of network modifier elements and a correspondingly lower proportion of glass network forming elements. The percentage of fission products, simulated in this study by inactive elements, was the same in both cases. Increasing the MgO content of the glass compositions by 2 to 5 wt% resulted in significant variations in the aqueous leaching resistance at 90 and 100 deg C. Experimental findings demonstrated that the initial dissolution rate measured at 100 deg C in a Soxhlet apparatus was proportional to the MgO content and inversely proportional to the network former content (mainly SiO2). This was confirmed by a glass hydration model based on the thermodynamic stability of the glass matrix components. Aqueous corrosion tests were also conducted at 90 deg C under static conditions at various SA/V ratios to simulate the progress of the reaction. Under these conditions, the glass dissolution rate diminished more slowly in time when the initial magnesium content was high and the network former content was low. This may be due primarily to a variation in the glass silica solubility limit related to the glass composition; it may also be related to the formation of secondary silica and magnesia alteration products controlling the glass dissolution reaction affinity.

  11. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  12. Economic comparison of crystalline ceramic and glass waste forms for HLW disposal

    International Nuclear Information System (INIS)

    McKee, R.W.; Daling, P.M.; Wiles, L.E.

    1983-05-01

    A titanate-based, crystalline ceramic produced by hot isostatic pressing has been proposed as a potentially more stable and improved waste form for high-level nuclear waste disposal compared to the currently favored borosilicate glass waste form. This paper describes the results of a study to evaluate the relative costs for disposal of high-level waste from a 70,000 metric ton equivalent (MTE) system. The entire waste management system, including waste processing and encapsulation, transportation, and final repository disposal, was included in this analysis. The repository concept is based on the current basalt waste isolation project (BWIP) reference design. A range of design basis alternatives is considered to determine if this would influence the relative economics of the two waste forms. A thermal analysis procedure was utilized to define optimum canister sizes to assure that each waste form was compared under favorable conditions. Repository costs are found to favor the borosilicate glass waste form while transportation costs greatly favor the crystalline ceramic waste form. The determining component in the cost comparison is the waste processing cost, which strongly favors the borosilicate glass process because of its relative simplicity. A net cost advantage on the order of 12% to 15% on a waste management system basis is indicated for the glass waste form

  13. Parametric effects on glass reaction in the unsaturated test method

    International Nuclear Information System (INIS)

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  16. Enhanced HLW glass formulations for the waste treatment and immobilization plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [DOE-WTP Project Office, US Department of Energy, Richland, Washington (United States)

    2013-07-01

    Current estimates and glass formulation efforts are conservative vis-a-vis achievable waste loadings. These formulations have been specified to ensure that glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum, chromium, bismuth, iron, phosphorous, zirconium, and sulfur compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. DOE has a testing program to develop and characterize HLW glasses with higher waste loadings. This work has demonstrated the feasibility of increases in waste loading from 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected these higher waste loading glasses will reduce the HLW canister production requirement by 25% or more. (authors)

  17. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms

  18. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  19. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  20. Leaching characteristics of actinides from simulated reactor waste glass

    International Nuclear Information System (INIS)

    Weed, H.C.; Coles, D.G.; Bradley, D.J.; Mensing, R.W.; Schweiger, J.S.

    1979-01-01

    Two methods for measuring the leach rates of simulated high level waste glass are compared. One is a modification of the standard IAEA method and the other is a one-pass method in which fresh leachant solution is pumped over the sample at a controlled flow rate and temperature. For times up to 3 days, there is close agreement between results from the two methods at 25.0 0 C. Leach rates from the one-pass method show a correlation with flow rate only on day 1 at 25.0 0 C, whereas they show a correlation with flow rate for all three days at 75.0 0 C. 237 Np rates at 75.0 0 C are greater than those at 25.0 0 C, but 239 Pu rates at 75.0 0 C are less than or equal to those at 25.0 0 C

  1. Mechanisms that control aqueous leaching of nuclear waste glass

    International Nuclear Information System (INIS)

    Simmons, J.H.; Barkatt, A.; Macedo, P.B.

    1982-01-01

    The development of predictive models and risk calculations for the time evolution of radioactive isotope leaching from fixation solids depends on many factors, including measurement accuracy, measurement relevance, a complete understanding of possible dissolution mechanisms, and the ability to project worst case conditions for all appropriate mechanisms. Some of the mechanisms observed and understood at present are the mechanisms of dissolution of glasses in neutral unbuffered water, the effects of structural disintegration of the glass protective layer, the effects of slowly flowing bath waters and possibly, the mechanisms of leach-rate reduction by solution saturation. The mechanisms that control radiation and temperature effects including alpha particle emission and nuclear transmutations are as yet little understood or investigated

  2. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  3. Composition and redox control of waste glasses: Recommendation for process control limit

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1986-01-01

    An electrochemical series of redox couples, originally developed for Savannah River Laboratory glass frit 131 (SRL-131) as a reference composition, has been extended to two other alkali borosilicate compositions that are candidate glasses for nuclear waste immobilization. Since no dramatic differences were ascertained in the redox chemistry of selected multivalent elements in SRL-131 versus that in Savannah River Laboratory glass frit 165 (SRL-165) and in West Valley glass number-sign 205 (WV-205), the comprehensive electrochemical series can readily be applied to a range of nuclear waste glass compositions. In order to alleviate potential problems with foaming and precipitation of insolubles during the processing of the nuclear waste in these glass melts, the [Fe 2+ ]/[Fe 3+ ] ratio of the melt should be between 0.1 and 0.5. 27 refs., 4 figs., 2 tabs

  4. Synthesis of recent investigations on corrosion behaviour of radioactive waste glasses

    International Nuclear Information System (INIS)

    Grauer, R.

    1985-03-01

    By way of a supplement to an earlier report (NTB 83-01, EIR-Report Nr. 477), work which has appeared in the meantime on the corrosion behaviour of borosilicate glasses as a solidification matrix for high-level radioactive waste has been evaluated. Many works have confirmed that for a particular glass, besides temperature and pH-value, the silicate concentration of the solution exerts the strongest influence on corrosion rate. The effect of silicate can be described in terms of simple reaction kinetic models which provides a more sound basis for prediction of longterm behaviour of glasses than previously existed. Meanwhile, the effects of backfill- and canister-materials and their corrosion products have been given the attention they merit. These materials affect glass corrosion primarily through regulation of silicic acid concentration. A particular finding which is of interest is the strong inhibition of glass corrosion by lead ions. Stationary corrosion rates in the order of magnitude of 10 -5 g/cm 2 ·d can be derived from long-term corrosion experiments in stagnant water at 90 C. At the envisaged repository temperature of 55 C they will be one to two orders of magnitude less. The effects of radioactive decay on corrosion rate are either very small or not detectable at all. No further new viewpoints have been put forward with regard to a possible thermal re-structuring of glasses under repository conditions: re-crystallisation (devitrification) is not to be feared. With regard to future experiments, further work on quantification of the effects of canister- and backfill-materials and experiments with corrosion inhibitors would be of primary interest. (author)

  5. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  6. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  7. Production of sodalite waste forms by addition of glass

    International Nuclear Information System (INIS)

    Pereira, C.

    1995-01-01

    Spent nuclear fuel can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. Sodalite is one of the mineral waste forms under study. Fission products in the molten salt are ion-exchanged into zeolite A, which is converted to sodalite and consolidated. Sodalite can be formed directly from mixtures of salt and zeolite A at temperatures above 975 K; however, nepheline is usually produced as a secondary phase. Addition of small amounts of glass frit to the mixture reduced nepheline formation significantly. Loss of fission products was not observed for reaction below 1000 K. Hot-pressing of the sodalite powders yielded dense pellets (∼2.3 g/cm 3 ) without any loss of fission product species. Normalized release rates were below 1 g/m 2 ·day for pre-washed samples in 28-day leach tests based on standard MCC-1 tests but increased with the presence of free salt on the sodalite

  8. Immobilization of high-level wastes into sintered glass: 2

    International Nuclear Information System (INIS)

    Bevilacqua, A.M.; Russo, D.O.; Messi de Bernasconi, N.; Audero, M.A.

    1987-01-01

    High level radioactive wastes are immobilized into borosilicate glasses. Experiences with the variety VG 98/12 (SiO 2 , TiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, Na 2 O) are described. The pressing was performed in a matrix of 12.7 mm diameter, the walls of which were lubricated with sterotex dissolved in Cl 4 C. The sintering was made in an horizontal electric furnace in air atmosphere at temperatures between 500 and 600 deg C. It was observed that the maximum density occurs at 605 deg C. Comparing both the hot and the cold pressing process, it is concluded that: 1) In spite of requiring more complex equipment the hot pressing process has the advantage that lower pressures are applied, with the consequent obtainment of waste blocks with larger diameters, and 2) it is advisable that pressing process should be performed in the definitive can. (M.E.L.) [es

  9. Glass-bonded iodosodalite waste form for immobilization of 129I

    Science.gov (United States)

    Chong, Saehwa; Peterson, Jacob A.; Riley, Brian J.; Tabada, Diana; Wall, Donald; Corkhill, Claire L.; McCloy, John S.

    2018-06-01

    Immobilization of radioiodine is an important requirement for current and future nuclear fuel cycles. Iodosodalite [Na8(AlSiO4)6I2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Dried unwashed sodalite powders were used to synthesize glass-bonded iodosodalite waste forms (glass composite materials) by heating pressed pellets at 650, 750, or 850 °C with two types of sodium borosilicate glass binders. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. For the best waste form produced (pellets mixed with 10 mass% of glass binder and heat-treated at 750 °C), the maximum possible elemental iodine loading was 19.8 mass%, but only ∼8-9 mass% waste loading of iodine was retained in the waste form after thermal processing. Other pellets with higher iodine retention either contained higher porosity or were incompletely sintered. ASTM C1308 and C1285 (product consistency test, PCT) experiments were performed to understand chemical durability under diffusive and static conditions. The C1308 test resulted in significantly higher normalized loss compared to the C1285 test, most likely because of the strong effect of neutral pH solution renewal and prevention of ion saturation in solution. Both experiments indicated that release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix or from initial sodalite synthesis; however the C1308 test result indicated that congruent dissolution of iodosodalite occurred. The average release rates of iodine obtained from C1308 were 0.17 and 1.29 g m-2 d-1 for 80 or 8 m-1, respectively, and the C1285 analysis gave a value of 2 × 10-5 g m-2 d-1, which is comparable to or better than the durability of

  10. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  11. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  12. Preliminary flowsheet for the conversion of Hanford high-level waste to glass

    International Nuclear Information System (INIS)

    Beary, M.M.; Chick, L.A.; Ely, P.C.; Gott, S.A.

    1977-06-01

    The flowsheets describe a process for converting waste removed from the Hanford underground waste tanks to more immobile form. The process involves a chemical separation of the radionuclides from industrial chemicals, and then making glass from the resulting small volume of highly radioactive waste. Removal of Sr, actinides, cesium, and technetium is discussed

  13. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  14. A relationship between leach rate of nuclear waste glass and residual amount of sodium on the glass surface

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi; Banba, Tsunetaka

    1984-12-01

    Leach tests of simulated high-level waste glass were carried out in order to examine the quantitative relationship between the amount of elements on the sample surface and that in the leachate. An experimental equation was obtained expressing the relationship between the amount of Na on the sample surface and that in the leachate. This shows that it is possible in some cases to estimate the amount of Na in the leachate by measuring the amount of Na on the sample surface. One example of such an estimation was observed with the simulated high-level waste glass leached at 100 0 C in the presence of a backfill material. (author)

  15. Mechanistic Evaluation of the Effect of Calcium Carbide Waste on ...

    African Journals Online (AJOL)

    OLUWASOGO

    amounts of wastes from ceramic, steel industry and coal-fired power plants every year. ... slag dust, hydrated lime, hydraulic cement, fly ash, loess or other suitable ..... (2011). The. Effect of using Glass Powder Filler on Hot Asphalt Concrete.

  16. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    International Nuclear Information System (INIS)

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; Pokorny, Richard; Yano, Tetsuji

    2017-01-01

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2 /(Li 2 CO 3 +H 3 BO 3 +Na 2 CO 3 ) mass fractions at temperatures between 600°C and 1040°C. To track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2 /(Li 2 CO 3 +H 3 BO 3 +Na 2 CO 3 ) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.

  17. Infrared and Raman investigation of rare-earth phosphate glasses for potential use as radioactive waste forms

    International Nuclear Information System (INIS)

    Morgan, S.H.

    1989-01-01

    This project was designed to investigate the properties of the rare-earth phosphate glass systems CeO 2 -P 2 O 5 and Pr 2 O 3 -P 2 O 5 for potential use as radioactive waste glasses. The glass-forming region and optimum processing parameters of these glass systems were investigated. The structure of the host glasses and glassed loaded with simulated waste elements was investigated using Raman and infrared spectroscopy. Because of the radical differences in the spectra of the molybdenum-loaded glasses, the structure of the MoO 3 -P 2 O 5 glass system was also investigated. 29 refs., 8 figs., 2 tabs

  18. Test Summary Report Vitrification Demonstration of an Optimized Hanford C-106/AY-102 Waste-Glass Formulation

    International Nuclear Information System (INIS)

    Goles, Ronald W.; Buchmiller, William C.; Hymas, Charles R.; MacIsaac, Brett D.

    2002-01-01

    In order to further the goal of optimizing Hanford?s HLW borosilicate flowsheet, a glass formulation effort was launched to develop an advanced high-capacity waste form exhibiting acceptable leach and crystal formation characteristics. A simulated C-106/AY-102 waste envelop inclusive of LAW pretreatment products was chosen as the subject of these nonradioactive optimization efforts. To evaluate this optimized borosilicate waste formulation under continuous dynamic vitrification conditions, a research-scale Joule-heated ceramic melter was used to demonstrate the advanced waste form?s flowsheet. The main objectives of this melter test was to evaluate (1) the processing characteristics of the newly formulated C-106/AY-102 surrogate melter-feed stream, (2) the effectiveness of sucrose as a glass-oxidation-state modifier, and (3) the impact of this reductant upon processing rates

  19. First-order model for durability of Hanford waste glasses as a function of composition

    International Nuclear Information System (INIS)

    Hrma, P.; Piepel, G.F.; Schweiger, M.J.; Smith, D.E.

    1992-04-01

    Two standard chemical durability tests, the static leach test MCC-1 and product consistency test PCT, were conducted on simulated borosilicate glasses that encompass the expected range of compositions to be produced in the Hanford Waste Vitrification Plant (HWVP). A first-order empirical model was fitted to the data from each test method. The results indicate that glass durability is increased by addition of Al 2 O 3 , moderately increased by addition of ZrO 2 and SiO 2 , and decreased by addition of Li 2 O, Na 2 O, B 2 O 3 , and MgO. Addition of Fe 2 O 3 and CaO produce an indifferent or reducing effect on durability according to the test method. This behavior and a statistically significant lack of fit are attributed to the effects of multiple chemical reactions occurring during glass-water interaction. Liquid-liquid immiscibility is suspected to be responsible for extremely low durability of some glasses

  20. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  1. High-silica glass matrix process for high-level waste solidification

    International Nuclear Information System (INIS)

    Simmons, J.H.; Macedo, P.B.

    1981-01-01

    In the search for an optimum glass matrix composition, we have determined that chemical durability and thermal stability are maximized, and that stress development is minimized for glass compositions containing large concentrations of glass-forming oxides, of which silica is the major component (80 mol%). These properties and characteristics were recently demonstrated to belong to very old geological glasses known as tektites (ages of 750,000 to 34 million years.) The barrier to simulating tektite compositions for the waste glasses was the high melting temperature (1600 to 1800 0 C) needed for these glasses. Such temperatures greatly complicate furnace design and maintenance and lead to an intolerable vaporization of many of the radioisotopes into the off-gas system. Research conducted at our laboratory led to the development of a porous high-silica waste glass material with approximately 80% SiO 2 by mole and 30% waste loading by weight. The process can handle a wide variety of compositions, and yields long, elliptical, monolithic samples, which consist of a loaded high-silica core completely enveloped in a high-silica glass tube, which has collapsed upon the core and sealed it from the outside. The outer glass layer is totally free of waste isotopes and provides an integral multibarrier protection system

  2. Methods of vitrifying waste with low melting high lithia glass compositions

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  3. High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively

  4. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.; Smith, D.E.

    1997-01-01

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed

  5. High-level waste glass field burial tests at CRNL

    International Nuclear Information System (INIS)

    Melnyk, T.W.; Walton, F.B.; Johnson, H.L.

    1983-06-01

    In 1960 June, 25 nepheline syenite-based glass hemispheres containing the fission products 137 Cs, 90 Sr, 144 Ce and 106 Ru were buried below the water table in fluvial sand at the Chalk River Nuclear Laboratories of Atomic Energy of Canada Limited. Soil and groundwater concentrations of 90 Sr and 137 Cs have been determined since then and the data have been interpreted using kinetically limited migration models to deduce the leaching history of the glass for these burial conditions. The leaching history derived from the field data is compared to laboratory leaching of samples from a glass hemisphere retrieved in 1978, and also to pre-burial laboratory leaching of identical hemispheres. The time dependence of the leach rates observed for the buried specimens suggests that leaching is being inhibited by the formation of a protective surface layer, although no direct observation of this layer has been made. Using an average leach rate of 5.6 x 10 -14 kg/(m 2 .s) derived from the field data for the period 1966 to 1977, it is estimated that it would require approximately 20 million years to dissolve the glass hemispheres. The effect of the kinetic limitations of the fission-product/fluvial-sand interactions is discussed with respect to the migration of 90 Sr and 137 Cs over a 20-a time scale. It is concluded that kinetically limited sorption by oxyhydroxides rather than equilibrium ion exchange controls the long-term migration of 90 Cr; the action of the oxyhydroxides immobilizes the 90 Sr on the longer time scale. Cesium is initially rapidly bound to the micaceous fraction of the sand. On a longer time scale, slow remobilization of 137 Cs in particulate form is observed and is believed to be related to bacterial action

  6. The role of noble metals in electric melting of nuclear waste glass

    International Nuclear Information System (INIS)

    Roth, G.; Weisenburger, S.

    1990-01-01

    Electrical melting of nuclear waste glass in ceramic melters applies Joule heating, with the molten glass acting as the conductive medium. The local energy release inside the melt relieves from the restriction of external heat addition, allowing to scale up the melter to industrial units. Certainly, that principle makes the melter operation susceptible for changes of the electrical properties of the glass melt. Hence, the melt properties are required to be locally uniform and constant with time. Temporary fluctuations in the feed composition, however, are usually attenuated by the high retention times being in the order of a day and more. More essential for the melter operation are segregation effects occurring systematically. This behaviour can be observed in the case of the so-called noble metal elements Ruthenium, Palladium and Rhodium, belonging to the Platinum metal group. The subject of this paper is to describe the behaviour of the noble metals in electric melting and the problems they can contribute to. The discussion is based on detailed knowledge gained from PAMELA's LEWC processing and from large-scale vitrification of commercial-like waste simulate at INE/KfK. Finally, ways are indicated to solve the noble metal problem technically

  7. Effect of composition on peraluminous glass properties: An application to HLW containment

    Science.gov (United States)

    Piovesan, V.; Bardez-Giboire, I.; Perret, D.; Montouillout, V.; Pellerin, N.

    2017-01-01

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO2 - Al2O3 - B2O3 - Na2O - Li2O - CaO - La2O3 system, defined by an excess of aluminum ions Al3+ in comparison with modifier elements such as Na+, Li+ or Ca2+. To understand the effect of composition on physical properties of glasses (viscosity, density, Tg), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties.

  8. Nuclear waste glass product consistency test (PCT), Version 5.0

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached

  9. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  10. Influence of the heat treatment on the Moessbauer spectrum of a simulated nuclear-waste glass

    International Nuclear Information System (INIS)

    Grave, E. de; Alboom, A. van; Stalios, A.D.

    1990-01-01

    The crystallization behaviour of a reference glass for the conditioning of α-contaminated waste is studied by means of 57 Fe Moessbauer spectroscopy at 80 K and at room temperature. The parent glass and three, nearly fully crystallized samples, produced by heating at 620, 700 and 800degC respectively, the latter temperature being above the glass' crystallization temperature T c , have been considered. All spectra have been analysed by both a superposition of two ferrous and two ferric doublets and by a superposition of a ferrous and a ferric quadrupole splitting distribution. It is concluded that the latter method is to be preferred for the spectra of those samples which have not been heated above T c . The change in the crystallites' morphology of the glass samples as a function of the heat-treatment temperature, i.e. from nearly equiaxed crystallites at 620degC to plate-like ones at 700degC seems to have no significant effect on the Moessbauer parameters. For all spectra, a linear correlation between quadrupole splitting and isomer shift is derived. The results are discussed in terms of different iron coordinations and geometrical deformations theoreof. (orig.)

  11. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  12. P2O5-doping in waste glasses: evolution of viscosity and crystallization processes

    Science.gov (United States)

    Tarrago, Mariona; Espuñes, Alex; Garcia-Valles, Maite; Martinez, Salvador

    2015-04-01

    Current concern for environmental preservation is the main motive for the study of new, more sustainable materials. Increasing amounts of sewage sludge are produced in wastewater treatment plants over the world every day. This fact represents a major problem for the municipalities and industries due to the volume of waste and also to the contaminant elements it may bear, which require expensive conditions for disposal in landfills. Vitrification is an established technique in the inertization of different types of toxic wastes (such as nuclear wastes and contaminated soils) that has been used successfully for sewage sludge. Glasses of basaltic composition (43.48SiO2-14.00Al2O3-12.86Fe2O3-10.00CaO-9.94MgO-3.27Na2O-1.96K2O-0.17MnO-0.55P2O5-2.48TiO2) are used as a laboratory analogous of wastes such as sewage sludge and galvanic sludge to study the properties of the inertization matrix. This basaltic matrix is doped by adding 1%, 2%, 3%, 4% and 20% of P5O5 in order to cover the compositional range of phosphate in sewage sludge encountered in the literature. In this study, the focus has been placed in the effect of the concentration of phosphate (P2O5) in glass stability, thermal properties and evolution of viscosity with temperature. The dependence of viscosity on temperature and the thermal behaviour of these glasses are critical parameters in the design of their production process. Regarding the compositional limits of the mixture, it has been observed that melt reactivity is much increased when P2O5 content is over 4%, hindering the glass conformation process. Moreover, stanfieldite (calcium and magnesium phosphate) crystallized during glass making when phosphate concentration approached 20%, hence establishing the upper limit for glass stability. Viscosity is also dramatically increased in this range, hence requiring production amends. Differential thermal analysis has provided nucleation and crystallization temperatures of the glasses around 915°C and 1050

  13. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  14. Investigation of the use of waste crushed glass in the production of asphalt mixes

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2017-06-01

    Full Text Available Recent study at the Council for Scientific and Industrial Research in South Africa has revealed the potential to substitute depleting natural aggregates with waste crushed glass in asphalt mixes. This paper presents an investigation of the use...

  15. Electrical power supply and controls for a remotely operated glass melter for nuclear waste

    International Nuclear Information System (INIS)

    Haideri, A.Q.

    1985-01-01

    An electrical power supply, controls and instruments used for a joule heated glass melter for nuclear waste are discussed. Remotely replaceable interconnection wiring assemblies for power, controls and instruments are also described

  16. Waste glass as eco-friendly replacement material in construction products

    Science.gov (United States)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  17. Damage radiation alpha effects in sintered waste form

    International Nuclear Information System (INIS)

    Messi de Bernasconi, Norma B.; Prado, Miguel O.; Bevilacqua, Arturo M.; Arribere, Maria; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    We have subjected the borosilicate glass to thermal neutron irradiation in a reactor, with an accumulated fluence equivalent to approximately E3, E4, E5, y E6 years of waste disposal. We considered the following potential effects of accumulated alpha decay: a) Changes in the density; b) Changes in the dissolution rates; c) Changes in the microstructure of the sintered glass. (author)

  18. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  19. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.; Kruger, A. A.

    2018-03-08

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  20. Structural characterization of hog iron oxide content glasses obtained from zinc hydrometallurgy wastes

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhujharov, W.

    1997-01-01

    It has been carried out the structural characterization of high oxide content glasses obtained by melting of a goethite industrial waste from the zinc hydrometallurgy with other raw materials as dolomite and glass cullet. The structural characterization has been carried out by X-ray Diffraction (XRD), X-Ray Diffraction by Amorphous Dispersion (RDF) and Mossbauer spectroscopy. It has been determined the interatomic distance, the oxidation state and the coordination of iron atoms in these glasses. (Author) 16 refs

  1. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour

    Directory of Open Access Journals (Sweden)

    Manuel Torres-Carrasco

    2015-03-01

    The findings show that AAS paste behaviour of rheology when the activator was a commercial waterglass solution or NaOH/Na2CO3 with waste glass was similar, fit the Herschel-Bulkley model. The formation of primary C-S-H gel in both cases were confirmed. However, the rheological behaviour in standard cements fit the Bingham model. The use of the waste glass may be feasible from a rheological point of view in pastes can be used.

  2. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    International Nuclear Information System (INIS)

    Fox, K. M.; Edwards, T. B.

    2016-01-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  3. Electrical service and controls for Joule heating of a defense waste experimental glass melter

    International Nuclear Information System (INIS)

    Erickson, C.J.; Haideri, A.Q.

    1983-01-01

    Vitrification of radioactive liquid waste in a glass matrix is a leading candidate for long-term storage of high-level waste. This paper describes the electrical service and control system for an experimental electrically heated, nonradioactive glass melter installed at Savannah River Laboratory. Data accumulated, and design/operating experience acquired in operating this melter, are being used to design a modified melter to be installed in a processing area for use with radioactive materials

  4. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  5. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  6. Glass Formulation For The Hanford Tank Waste Treatment And Immobilization Plant (WTP)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Jain, V.

    2009-01-01

    A computational method for formulating Hanford HLW glasses was developed that is based on empirical glass composition-property models, accounts for all associated uncertainties, and can be solved in Excel R in minutes. Calculations for all waste form processing and compliance requirements included. Limited experimental validation performed.

  7. Development of aluminosilicate and borosilicate glasses as matrices for CANDU high-level waste

    International Nuclear Information System (INIS)

    Strathdee, G.G.; McIntyre, N.S.; Taylor, P.

    1979-01-01

    This paper covers the results of analyses of two radioactive nepheline syenite glass blocks recovered from in-ground leaching experiments at the Chalk River Nuclear Laboratories. Current research on borosilicate glasses for immobilization of high-level waste is also described

  8. GLASS FORMULATION FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT (WTP)

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; VIENNA JD; KIM DS; JAIN V

    2009-05-27

    A computational method for formulating Hanford HLW glasses was developed that is based on empirical glass composition-property models, accounts for all associated uncertainties, and can be solved in Excel{sup R} in minutes. Calculations for all waste form processing and compliance requirements included. Limited experimental validation performed.

  9. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  10. Elaboration of new ceramic composites containing glass fibre production wastes

    Directory of Open Access Journals (Sweden)

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  11. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    International Nuclear Information System (INIS)

    Cunnane, J.C.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste

  12. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  13. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  14. Properties Improvement of Cast Stone Produced Using Recycled Glass Waste and Lightweight Aggregates

    Directory of Open Access Journals (Sweden)

    Elham Abd AL-Majeed

    2018-01-01

    Full Text Available Cast stone (CS is a form of pre-cast concrete widely, used in architectural applications for decorating and building face in place of natural stone due its superior features. The present study was an attempt in using of local lightweight aggregate materials (LWAM as an alternative to percentage of coarse aggregate, and glass wastes as alternatives to percentages of fine aggregate in cast stone normal mixtures with white cement and plasticizer admixture. The CS products were cured after 24 hrs using of two different processes: water curing (at 23 C° for 3 days and steam curing (at 60 C° for 14 hrs. Then the products were characterized by tests of compressive strength, design, absorption, flexure strength and liner drying shrinkage. The addition of alternative materials was done by trial mixes (M0-M3 through 3 groups (A, B, and C according to standards. Group A: design of reference mixtures of CS with compressive strength of 46.3 MPa and the absorption of 6.19%, Group B: design of mixtures containing 50% LWA were 16% lighter than those of Group A with compressive strength of 43.6 MPa and 11% improvement in the absorption, Group C: design of mixtures containing (50 and 75% glass waste with compressive strength of (47.5-44.3 MPa and the absorption of (5.3-4.7%, respectively. The modified steam curing process (curing after 24 hrs casting done in this study could prove its effectiveness in the achievement of the required compressive strength in comparison with the normal process (direct curing after casting due to the effect of such new process in providing the more uniform distribution of the cement gel with good physical properties. Results from the flexural strength test could prove the achievement of the required levels (6.9 – 6.3 at 50 – 75% glass waste addition recorded in the standard.

  15. Leaching characteristics of actinides from simulated reactor waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Weed, H.C.; Coles, D.G.; Bradley, D.J.; Mensing, R.W.; Schweiger, J.S.

    1979-01-18

    Two methods for measuring the leach rates of simulated high level waste glass are compared. One is a modification of the standard IAEA method and the other is a one-pass method in which fresh leachant solution is pumped over the sample at a controlled flow rate and temperature. For times up to 3 days, there is close agreement between results from the two methods at 25.0/sup 0/C. Leach rates from the one-pass method show a correlation with flow rate only on day 1 at 25.0/sup 0/C, whereas they show a correlation with flow rate for all three days at 75.0/sup 0/C. /sup 237/Np rates at 75.0/sup 0/C are greater than those at 25.0/sup 0/C, but /sup 239/Pu rates at 75.0/sup 0/C are less than or equal to those at 25.0/sup 0/C.

  16. Composition - structure - properties relationships of peraluminous glasses for nuclear waste containment

    International Nuclear Information System (INIS)

    Piovesan, Victor

    2016-01-01

    Part of the Research and Development program concerning high level nuclear waste conditioning aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of homogeneity, thermal stability, long term behavior and process ability. This study focuses on peraluminous glasses, defined by an excess of aluminum ions Al"3"+ in comparison with modifier elements such as Na"+, Li"+ or Ca"2"+. A Design of Experiment approach has been employed to determine relationships between composition of simplified peraluminous glasses (SiO_2 - B_2O_3 - Al_2O_3 - Na_2O - Li_2O - CaO - La_2O_3) and their physical properties such as viscosity, glass transition temperature and glass homogeneity. Moreover, some structural investigation (NMR) was performed in order to better understand the structural role of Na"+, Li"+ and Ca"2"+ and the structural organization of peraluminous glasses. Then, physical and chemical properties of fully simulated peraluminous glasses were characterized to evaluate transposition between simplified and fully simulated glasses and also to put forward the potential of peraluminous glasses for nuclear waste containment. (author) [fr

  17. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy d