WorldWideScience

Sample records for waste glass recycling

  1. Direction of CRT waste glass processing: electronics recycling industry communication.

    Science.gov (United States)

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Direction of CRT waste glass processing: Electronics recycling industry communication

    International Nuclear Information System (INIS)

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-01-01

    Highlights: ► Given a large flow rate of CRT glass ∼10% of the panel glass stream will be leaded. ► The supply of CRT waste glass exceeded demand in 2009. ► Recyclers should use UV-light to detect lead oxide during the separation process. ► Recycling market analysis techniques and results are given for CRT glass. ► Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  3. The quality study of recycled glass phosphor waste for LED

    Science.gov (United States)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  4. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  5. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  6. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling

    International Nuclear Information System (INIS)

    Lima, Norma Maria O.; Morais, Crislene R. Silva; Lima, Lenilde Mergia Ribeiro

    2011-01-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  8. Recycling of waste glass as a partial replacement for fine aggregate in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2009-02-01

    Waste glass creates serious environmental problems, mainly due to the inconsistency of waste glass streams. With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal. The properties of concretes containing waste glass as fine aggregate were investigated in this study. The strength properties and ASR expansion were analyzed in terms of waste glass content. An overall quantity of 80 kg of crushed waste glass was used as a partial replacement for sand at 10%, 15%, and 20% with 900 kg of concrete mixes. The results proved 80% pozzolanic strength activity given by waste glass after 28 days. The flexural strength and compressive strength of specimens with 20% waste glass content were 10.99% and 4.23%, respectively, higher than those of the control specimen at 28 days. The mortar bar tests demonstrated that the finely crushed waste glass helped reduce expansion by 66% as compared with the control mix.

  9. A review of glass-ceramics for the immobilization of nuclear fuel recycle wastes

    International Nuclear Information System (INIS)

    Hayward, P.J.

    1987-01-01

    This report reviews the status of the Canadian, German, U.S., Japanese, U.S.S.R. and Swedish programs for the development of glass-ceramic materials for immobilizing the high-level radioactive wastes arising from the recycling of used nuclear fuel. The progress made in these programs is described, with emphasis on the Canadian program for the development of sphene-based glass-ceramics. The general considerations of product performance and process feasibility for glass-ceramics as a category of waste form material are discussed. 137 refs

  10. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  11. A Study of the Closed-Loop Supply Chain Coordination on Waste Glass Bottles Recycling

    Directory of Open Access Journals (Sweden)

    Wenxue Ran

    2016-01-01

    Full Text Available The recycling of waste products can sharply save manufacturing cost and improve the economic efficiency and corporate-reputation. It also has a great effect on the environment and resources protection. In the management of the closed-loop supply chain, the recycling of waste products and decision-making on pricing often directly affect the supply and demand of products and the operation efficiency of supply chain. Therefore, first we take waste glass bottles as an example and establish a mathematical model to solve the profit of manufacturers and retailers solely. Then, we analyzed whole supply chain profit under a dual-channel recycling condition which is directly recycled by consumers or by retailers. Finally, we concluded that no matter what product’s price, quality, profit, or operational efficiency of supply chain is, the overall recycling is better than the single node recycling model. Based on the analysis, we developed a new model to coordinate the profit of manufacturers and retailers in the supply chain with revenue-sharing contract. A numerical study shows that this approach is applicable and effective.

  12. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  13. Effects of heavy weight waste glass recycled as fine aggregate on the mechanical properties of mortar specimens

    International Nuclear Information System (INIS)

    Choi, So Yeong; Choi, Yoon Suk; Yang, Eun Ik

    2017-01-01

    Highlights: • The properties of mortar used heavy weight waste glass as fine aggregate were compared. • Unit volume weight and shielding performance increased with the content of waste glass. • However, the strength decreased as the waste glass substitution increased. • The waste glass substitution affected on pores ranging from 10–100 nm. - Abstract: The quantities of heavy weight waste glass have increased over time due to rapid industrialization and changes in the quality of life. Moreover, most of this waste is not recycled. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. Therefore, it is necessary to investigate the possibility of recycling of heavy weight waste glass as an ingredient in the manufacturing of concrete. In this study, the suitability of heavy weight waste glass as a fine aggregate material is considered. The results of flow test, unit volume weight, radiation shielding performance, compressive strength, flexural strength, and micropore and macropore distribution of mortar are compared and evaluated. It was found that when the heavy weight waste glass substitution ratio increases, the fluidity, unit volume weight and radiation shielding performance also increase. However, the compressive and flexural strength of mortar gradually decrease with an increase in the substitution ratio of heavy weight waste glass. Moreover, the micro pore size distribution is significantly affected by the substitution of heavy weight waste glass.

  14. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation

    International Nuclear Information System (INIS)

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-01-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.

  15. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Recycling waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P I.S.

    1976-01-01

    It is being realized that if environmental quality is to be improved the amount of waste generated by man has to be substantially reduced. There are two ways this can be achieved. First, by conserving materials and energy, and sacrificing economic growth, a solution that is completely unacceptable because it would mean some form of rationing, mass unemployment, and collapse of society as it is known. The second way to reduce the volume of waste is by planned recycling, re-use, and recovery. Already the reclamation industry recovers, processes, and turns back for re-use many products used by industry and thereby reduces the UK's import bill for raw materials. In the book, the author sets out the various ways materials may be recovered from industrial and municipal wastes. The broad technology of waste management is covered and attention is focused on man's new resources lying buried in the mountains of industrial wastes, the emissions from stocks, the effluents and sludges that turn rivers into open sewers, and municipal dumps in seventeen chapters. The final chapter lists terms and concepts used in waste technology, organizations concerned with waste management, and sources of information about recycling waste. (MCW)

  17. Magnetic properties of glasses from geothite industrial wastes recycling (FeOOH)

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Esparza, M.; Gonzalez-Oliver, C.

    1997-01-01

    It has been carried out the magnetic properties determination for high iron oxide content glasses series obtained from a geothite red mud waste from the zinc hydrometallurgy and dolomite and glass cullet as main raw materials. It has been determined the magnetic susceptibility and magnetization values for the glasses here investigated. The results suggest that the magnetic behaviour are depending on the glass chemical composition, so that glasses can be differently classified like ferrimagnetic, ferromagnetic, superparamagnetic and paramagnetic. (Author) 6 refs

  18. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling; Lixo eletronico: caracterizacao quimica dos vidros de tubos de raios catodicos com viabilidade para reciclagem

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Norma Maria O.; Morais, Crislene R. Silva, E-mail: normalimam@ig.com.br [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, Lenilde Mergia Ribeiro [Universidade Federal de Campina Grande (UATEC/UFCG), Campina Grande, PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento

    2011-07-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  19. FY 1999 report on the development of technology to recycle architectural waste materials, glass, etc. Development of technology to recycle architectural waste materials; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Waste wood materials in the materials discharged from architectural disassembly were regarded as a potential wood resource, and the R and D of the technology to recycle these were conducted. Studies were made on the technology to finely grind waste wood materials, technology to compress/form waste wood materials and ground wood powder, verification of strength characteristics/dimension stability of the formed wood materials, etc. As to the wood materials which were badly degraded under ultra violet rays, they were coloring-processed by the steam treatment, and a possibility of coating substitution was confirmed. In relation to the technology to produce compressed wood materials, the optimization of heat treatment conditions was experimentally conducted. About the technology to give dimensional stability, dimensional stability was improved as a result of the improvement of chemicals feeding and the development of chemically processed drugs. In the development of light formed products, the board was successfully formed which is light in weight using lignocelluloses/inorganic hydrates and has the bending strength higher than that of the plaster board. In the development of interior materials, the technology was developed in which ground wood powder and thermo-plastic resin are mixed for die molding, and the OA floor using this was commercialized. (NEDO)

  20. Properties Improvement of Cast Stone Produced Using Recycled Glass Waste and Lightweight Aggregates

    Directory of Open Access Journals (Sweden)

    Elham Abd AL-Majeed

    2018-01-01

    Full Text Available Cast stone (CS is a form of pre-cast concrete widely, used in architectural applications for decorating and building face in place of natural stone due its superior features. The present study was an attempt in using of local lightweight aggregate materials (LWAM as an alternative to percentage of coarse aggregate, and glass wastes as alternatives to percentages of fine aggregate in cast stone normal mixtures with white cement and plasticizer admixture. The CS products were cured after 24 hrs using of two different processes: water curing (at 23 C° for 3 days and steam curing (at 60 C° for 14 hrs. Then the products were characterized by tests of compressive strength, design, absorption, flexure strength and liner drying shrinkage. The addition of alternative materials was done by trial mixes (M0-M3 through 3 groups (A, B, and C according to standards. Group A: design of reference mixtures of CS with compressive strength of 46.3 MPa and the absorption of 6.19%, Group B: design of mixtures containing 50% LWA were 16% lighter than those of Group A with compressive strength of 43.6 MPa and 11% improvement in the absorption, Group C: design of mixtures containing (50 and 75% glass waste with compressive strength of (47.5-44.3 MPa and the absorption of (5.3-4.7%, respectively. The modified steam curing process (curing after 24 hrs casting done in this study could prove its effectiveness in the achievement of the required compressive strength in comparison with the normal process (direct curing after casting due to the effect of such new process in providing the more uniform distribution of the cement gel with good physical properties. Results from the flexural strength test could prove the achievement of the required levels (6.9 – 6.3 at 50 – 75% glass waste addition recorded in the standard.

  1. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  2. Recycling method of rubbish glass, wasted slate and oyster shell; Gan Ca haizai wo riyosuru kenzaiyo glass kuzu oyobi senshoseki kuzu no recycle

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, A.; Omi, M. [Tohoku University, Sendai (Japan). Institute for Advanced Materials Processing

    1996-03-29

    Examination was made about the method of recycling rubbish glass and Gensho-stone slate, left after the use of construction materials, and oyster shells. In the experiment, quartz powder having the highest softening temperature was used instead of rubbish glass powder, and H3PO4 was used as the additive agent. The Gensho-stone slate was ground in a ball mill into power smaller than 100 mesh. The main constituent of the oyster shell, CaCO3, was subjected to thermolysis for conversion into CaO; and calcium phosphate was used as animal bone powder. The above-said materials as the starting materials were subjected to pressure-forming, and heating was done in the air at 1173K for 7.2ks for the production of sintered pellets. The sintered bodies were left in the air for 30 days and examined for geometrical changes, and it was found that the Gensho-stone slate was the best specimen, with the oyster shell occupying the second place, and that the sintered bodies of bone powder and SiO2 absorbed moisture indicating they were short of serviceability. As for the use of sintered bodies, Gensho stone may be used as material for landscape building while CaO may be used as a Ca ion source in the sea for cultivating seashells. 5 refs., 5 figs., 3 tabs.

  3. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  4. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  5. FY 1999 report on the results of the development of recycling technology of waste architectural materials, glass, etc. Development of the simple glass coloring/decoloring technology; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kan'igata glass chakudasshoku gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of increasing the ratio of recycling of waste architectural materials, glass, etc., the development was proceeded with of easy coloring of colorless glass by light irradiation and decoloring of it by heat treatment. The important point for technical development is to develop glass materials which are colored by light and decolored by heat at a level of technique with practicality and to develop coloring/decoloring device. Studies were made in the following three fields: 1) optimization of coloring/decoloring conditions for coloring/decoloring occurring from defects (color centers) under light irradiation; 2) optimization of coloring/decoloring conditions occurring from colorless ions and particulate formation under light irradiation; 3) development of a visible drawing device. In 1), bottle, sheet glass, and soda-lime silicate glass are colored brown by X-ray/UV radiation, but the coloring is bad in stability. However, it was found that the addition of silver oxide improved stability. In 2), it was recognized that when the glass containing a trace of Mn was melted in the reducing atmosphere, it became colorless, and when radiated by X-ray and heat-treated at approximately 200 degrees C, it was colored bluish violet which was vivid and stable. (NEDO)

  6. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  7. DEVELOPMENT OF A SUSTAINABLE CONCRETE WASTE RECYCLING SYSTEM

    OpenAIRE

    Truptimala Patanaik*; Niharika Patel; Shilpika Panda; Subhasmita Prusty

    2016-01-01

    Construction solid waste has caused serious environmental problems. Reuse, recycling and reduction of construction materials have been advocated for many years, and various methods have been investigated. There may be six type of building materials: plastic, paper, timber, metal, glass and concrete which can be reused and recycled. This paper examines the rate of reusable & recyclable concrete waste. On the other hand, the reuse of construction waste is highly essential ...

  8. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  9. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  10. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  11. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  12. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes.

    Science.gov (United States)

    Gattullo, Concetta Eliana; D'Alessandro, Caterina; Allegretta, Ignazio; Porfido, Carlo; Spagnuolo, Matteo; Terzano, Roberto

    2018-02-15

    Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing. Copyright © 2017. Published by Elsevier B.V.

  13. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Use of waste glass in highway construction (update--1992).

    Science.gov (United States)

    1993-01-01

    Increasing pressures to recycle more wastes and minimize the amount of materials placed in landfills are forcing reconsideration of potential uses of waste glass in highway construction and maintenance operations. The federal government and many stat...

  15. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  16. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  17. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  18. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  19. Achievement report in fiscal 2000 on technological development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of recycling technology corresponding to grades of demolished building lumbers); 2000 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai no hin'i ni taioshita recycle gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to reduce wastes, and promote effective utilization of wood resources, research and development has been made on a demolished building material recycling technology. This paper summarizes the achievements in fiscal 2000. In developing the technology to manufacture high water resistant wood boards, discussions were given on resor type phenolic resin as an adhesive, and on the medium density fiberboard (MDF) being a substitute material for plywood as the wooden board. As a result, a highly water resistant MDF that can clear JIS E0 has been developed. In the research of a technology to enhance durability of wooden boards, the in-liquid roll press method was devised to perform impregnation of chemicals into board raw materials continually and simply, whose device was fabricated on a trial basis. With regard to recycling of medium to low grade wood-based wastes, researches were performed on pulverization of the wastes, fabrication of liquefied woods, and effective utilization of the liquefied woods. Both of a hammer mill and a chip saw crusher fabricated wood powder with nearly uniform grain size regardless of types of the wood-based wastes. Liquefaction of plywood and PB boards required more stringent reaction conditions than liquefaction of such ordinary members as pillar materials and laminated lumbers. (NEDO)

  20. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  1. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  2. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  3. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  4. Application of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Lieshout, van B.; Spiesz, P.R.; Brouwers, H.J.H.

    2012-01-01

    Container glass aggregates and glass powder are waste products of the glass recycling industry. In this research, these products are incorporated in self-compacting concrete (SCC) mixtures, replacing conventional aggregates and fine powders. The SCC mixtures were designed using a particle packing

  5. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  6. Electronic waste recycling techniques

    CERN Document Server

    Bernardes, Andréa

    2015-01-01

    This book presents an overview of the characterization of electronic waste. In addition, processing techniques for the recovery of metals, polymers and ceramics are described. This book serves as a source of information and as an educational technical reference for practicing scientists and engineers, as well as for students.

  7. Recycling waste-paper

    Science.gov (United States)

    Widener, Edward L.

    1990-01-01

    Perhaps 80 percent of papermaking energy is expended in chemical pulping of vegetable cellulose, a natural polymer. Commercial supplies of wood, bagasse, cotton and flax are valued as renewable resources and bio-mass assets; however, few enterprises will salvage waste-paper and cardboard from their trash. A basic experiment in the Materials Lab uses simple equipment to make crude handsheets. Students learn to classify secondary fibers, identify contraries, and estimate earnings.

  8. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  9. Fly-Ash-Based Geopolymers: How the Addition of Recycled Glass or Red Mud Waste Influences the Structural and Mechanical Properties

    Czech Academy of Sciences Publication Activity Database

    Toniolo, N.; Taveri, Gianmarco; Hurle, K.; Roether, J. A.; Ercole, P.; Dlouhý, Ivo; Boccaccini, A. R.

    2017-01-01

    Roč. 8, č. 3 (2017), s. 411-420 ISSN 2190-9385 EU Projects: European Commission(XE) 642557 - CoACH Institutional support: RVO:68081723 Keywords : Geopolymers * Fly ash * Red mud * Waste glass Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 1.220, year: 2016 https://www. ceramic -science.com/articles/all-articles.html?article_id=100566

  10. Thermoset composite recycling: Properties of recovered glass fiber

    DEFF Research Database (Denmark)

    Beauson, Justine; Fraisse, Anthony; Toncelli, C.

    2015-01-01

    Recycling of glass fiber thermoset polymer composite is a challenging topic and a process able to recover the glass fibers original properties in a limited cost is still under investigation. This paper focuses on the recycling technique separating the glass fiber from the matrix material. Four...

  11. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  12. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  13. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    OpenAIRE

    Ponsot, In?s M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low te...

  14. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  15. Sustainable Performance of Iraqi Asphalt Base Course Using Recycled Glass as Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Hamid Athab Eedan Al-Jameel

    2018-03-01

    Full Text Available Nowadays, a lot of waste glass produced through different sides of life. Applying sustainability has been widely used in different construction materials and flexible pavement was contained different recycled materials through different studies. Recycled glass, where it is nonmetallic and inorganic, it can neither be incinerated nor decomposed, so it may be difficult to reclaim, has been used as filler, fine and coarse aggregates in the asphalt base course. In this study, various standard asphalt tests, such as stability, flow, density and air voids, have been conducted on reference mix asphalt and mix asphalt with different percentages of recycled glass when it has been used as filler, fine and coarse aggregates in the base course. Generally, the results show good indication, especially when using 10% of the recycled glass instead of coarse aggregate with 40-50 asphalt grades. This percentage improves most characteristics such as strength retained index which indicates better performance than reference mix.  

  16. Measures for recycling plastic wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Cossais, J C [Ministere de l' Industrie et de la Recherche, 75 - Paris (France). Delegation aux Economies de Matieres Premieres

    1978-05-01

    Raw materials crisis and environmental awareness have lead to the question of intensively dealing with the recycling of plastics. Although plastic wastes (residues) industrially occuring have been recycled for a long time, this is certainly not always the case in the subsequent stages. One must particularly give thought to the considerable quantities of agricultural and municipal wastes. Besides the problem of collecting the waste which can only be satisfactorily solved by separate collection or setting up sorting places, it is necessary for the recycling plastic wastes on a large scale to find or develop sellable products. The product for sale is limited by economical aspects and prejudices against recycled materials. The public have taken to a series of measures in France to simplify recycling plastic wastes. Private industry is also beginning to take interest in this new sources of raw materials.

  17. The effect of replaced recycled glass on thermal conductivity and compression properties of cement

    Science.gov (United States)

    khalil, A. S.; Mahmoud, M. A.; AL-Hathal, A.; Jawad, M. K.; Mozahim, B. M.

    2018-05-01

    This study deal with recycling of waste colorless glass bottles which are prepared as a powder and use them as an alternative for cement to save the environment from west and reduce some of cement(ceramic) damage and interactions with conserving physical properties of block concrete. Different weight percentage (0%, 2%, 4%, 5%, 6%, 8%, 10%, 15%, 20% and 25%) of recycled glass bottle were use in this research to be replaced by a certain percentages of cement. Thermal conductivity was studied for prepared samples. Results show that the thermal conductivity decrease with the increase of weight percentage of glass powder comparing with the stander sample.

  18. Achievement report in fiscal 2000 on technical development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of wooden board manufacturing technology using demolished building lumbers); 2000 nendo kenchiku glass nado recycle gijutsu kaihatsu seika hokokusho. Kenhciku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai wo mochiita mokushitsu board seizo gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on a wooden board manufacturing technology re-utilizing demolished building lumbers and waste plastics with an intention of saving resources and reducing wastes. This paper summarizes the achievements in fiscal 2000. In developing the technology to re-use demolished building lumbers, a method for removing metals attached to demolished building lumbers was established by using a magnetic separator and a metal detector, with which it was verified that iron can be removed nearly 100%. With regard to waste plastics, simultaneous use of specific gravity separation utilizing centrifugal force and electrostatic separation provided a prospect that metals and plastics of high melting points can be removed from mixed resins in waste household electric appliances, and that polypropylene (PP), polystyrene (PS), and ABS can be classified at high accuracy. In manufacturing waste wood and waste plastic boards, pilot plants were built to use the 'melt spray method', 'melt blow method', and 'laminating method' as the means to spray molten resin onto wood raw materials, wherein trials were performed on mixing molten resins with wood flakes, and on board forming. (NEDO)

  19. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  20. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  1. Waste management, informal recycling, environmental pollution and public health.

    Science.gov (United States)

    Yang, Hong; Ma, Mingguo; Thompson, Julian R; Flower, Roger J

    2018-03-01

    With rapid population growth, especially in low-income and middle-income countries, the generation of waste is increasing at an unprecedented rate. For example, annual global waste arising from waste electrical and electronic equipment alone will have increased from 33.8 to 49.8 million tonnes between 2010 and 2018. Despite incineration and other waste treatment techniques, landfill still dominates waste disposal in low-income and middle-income countries. There is usually insufficient funding for adequate waste management in these countries and uptake of more advanced waste treatment technologies is poor. Without proper management, many landfills represent serious hazards as typified by the landslide in Shenzhen, China on 20 December 2015. In addition to formal waste recycling systems, approximately 15million people around the world are involved in informal waste recycling, mainly for plastics, metals, glass and paper. This review examines emerging public health challenges, in particular within low-income and middle-income countries, associated with the informal sector. While informal recyclers contribute to waste recycling and reuse, the relatively primitive techniques they employ, combined with improper management of secondary pollutants, exacerbate environmental pollution of air, soil and water. Even worse, insufficient occupational health measures expose informal waste workers to a range of pollutants, injuries, respiratory and dermatological problems, infections and other serious health issues that contribute to low life expectancy. Integration of the informal sector with its formal counterparts could improve waste management while addressing these serious health and livelihood issues. Progress in this direction has already been made notably in several Latin American countries where integrating the informal and formal sectors has had a positive influence on both waste management and poverty alleviation. © Article author(s) (or their employer(s) unless

  2. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  3. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  4. A holistic approach to recycling of CRT glass and PCBs in Vietnam

    OpenAIRE

    Wiesmeth, Hans; Häckl , Dennis; Do, Quang Trung; Bui, Duy Cam

    2012-01-01

    Rapidly growing quantities of e-waste (WEEE) demand the increasing attention of environmental policy all over the world. Developing countries are particularly affected by recycling and disposal activities, which are deemed harmful to health and environment. Holistic or integrated approaches to WEEE policy are required. The paper discusses first recycling technologies for glass from cathode ray tubes (CRT) and printed circuit boards (PCBs) in Vietnam. Thereafter the German approach to WEEE ...

  5. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  6. Biogas-centred domestic waste recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C L

    1983-04-01

    In fast developing suburban towns, there is an urgent need for an integrated system for waste recycling and energy and fertiliser supply on a single house basis. This is because even though toilet waste is handled by a septic tank-soak pit arrangement, kitchen and bathroom water and solid organic wastes have to be discharged outside the house. A biogas based domestic waste recycling system has been designed and constructed and has been successfully working. Some salient features of this plant are discussed here.

  7. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of wastes and their recycling potentials; A case ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Key words: Solid waste, waste characterization, recycling potentials, waste scavengers. ABSTRACT: Wastes ... Waste management is the collection, transportation, processing ... wastes generated by household, commercial activities or other ...

  9. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  10. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  11. A Study of the Effect of Recycled Mix Glass on the Mechanical Properties of Green Concrete

    Directory of Open Access Journals (Sweden)

    Aseel B. Al-Zubaidi

    2017-12-01

    Full Text Available In this paper we utilized mixing of different types of recycled glass such as (neon glass, brown glass, and green glass that has high percentage of silicon dioxide (SiO2 with different concentrations. Utilization these landfall materials can be considered as keeping on resources. Different waste glasses used as a partial replacement of cement with different concentrations 11%, 13%, and 15% of cement weight for each type, and study the effect of it on the mechanical properties of concrete. After mixing, casting, and curing in water at (20±2°C for (7, 14, and 28 days, the mechanical properties showed that the compressive strength and flexural showed highest results at 13% from cement weight of neon glass, whereas splitting tensile strength showed the highest value at the same percentage, but from green glass.

  12. Global recycling - waste trafficking in disguise?

    DEFF Research Database (Denmark)

    Kamuk, Bettina; Hansen, Jens Aage

    2007-01-01

    Recycling is used as cover for illegal exporting of hazardous wastes (waste trafficking). This happens in spite of international conventions and codes of good conduct. Additional rules and recommendations are suggested to initiatiate local and national action and compliance with international...

  13. Technology development for recycling of decommissioning waste

    International Nuclear Information System (INIS)

    Choi, W. K.; Kim, G. N.; Lee, K. W.

    2010-04-01

    The scenarios for recycling or self-disposal of concrete wastes was established according to the regulatory requirements for clearance settled up in overseas countries as well as our country. Through the radiological safety assessment for those scenarios, the exposure rate for the workers and the public was evaluated to come up with the clearance level of radioactive nuclides. On the basis of the results, the necessary condition of the process equipment for a volume reduction and self-disposal was suggested toward recycling in non-nuclear field and limited recycling in nuclear filed. In order to satisfy the clearance level suggested from the assessment of the scenarios for recycling of dismantled concrete wastes, the processes for thermal crushing and mechanical grinding were optimized through the experiments on the characteristics of the thermal and mechanical treatment of concrete wastes generated from the KRR and UCP. As a consequence, the process which can be reduced the radioactive concrete waste volume by about 70% was established. And also, not only the originative integrated thermal crushing equipment in which the concrete wastes were crushed simultaneously with the thermal treatment but also the rotated paddle type impact crushing equipment were developed. An optimized stabilization processes which have the conditions for manufacturing cemented waste form containing the maximum content of fine concrete waste resulting the minimization of increase in volume of cemented waste form was established

  14. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  15. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    International Nuclear Information System (INIS)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-01-01

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  16. Estimation of residual MSW heating value as a function of waste component recycling

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Semiao, Viriato

    2008-01-01

    Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems

  17. Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)

    International Nuclear Information System (INIS)

    Larsen, A.W.; Merrild, H.; Moller, J.; Christensen, T.H.

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

  18. STAGE OF TEXTILE RECYCLE WASTE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TRIPA Simona

    2014-05-01

    Full Text Available Aim of this article is to examine the stage of textile recycle waste in Romania. For this purpose were analyzed the main sources of textile waste from Romania (industry of manufacture of textiles, wearing apparel, leather and related products, imports of textiles, clothing and footwear and imports of second hand clothing and also evolution of the quantity of textile waste in Romania. The benefits (economic and environmental of the collection and recycling of waste and the legislation on the waste management, have determined the diversification and increasing the number and the capacity of recovery and disposal of waste in Romania. We found the most textile waste in Romania was deposited in deposits onto or into land, in the proportion of 18.51%. This proportion is under the EU average of 34.03%, but is much higher than in other European country. Also, has been an increase in the number of incinerators, in the last years. With all of this, the interest in textile waste management in Romania is far from being to the level of European, where are associations who dealing with the collection and recycling of textiles and is achieved a selective collection of textile waste in the points especially designed for this thing. The information for this paper was gathered from literature, from the EUROSTAT database and INSSE database analysis and by Internet.

  19. Requirements for the recycling of hazardous waste

    International Nuclear Information System (INIS)

    Petts, M.

    1990-09-01

    The regulatory status of materials destined to be recycled is not always clear. There have been numerous questions from DOE Field Elements regarding the applicability of the Resource Conservation and Recovery Act (RCRA) to certain materials that can be recycled. The Office of Environmental Guidance, RCRA/CERCLA Division, has responded to questions relating to the RCRA regulations as they apply to materials that are recycled or are destined for recycling. Additional regulatory requirements for these materials may be promulgated upon the reauthorization of RCRA (e.g., regulation of used oil). Additional EH-23 information Briefs will be issued as these regulations develop. The Office of Environment, Safety and Health has convened a workshop to establish DOE's position on a number of issues associated with mixed waste and materials management, several relative to recycling

  20. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    Science.gov (United States)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  1. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  2. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover...

  3. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    involves several steps to prepare the samples mechanically and/or chemically for final analysis. Not all sample preparation methods are equally well suited for specific waste characterization purposes. The correctness of results and practical feasibility of sample preparation was strongly affected...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions....... The results for parameters associated with organic matter confirmed the idea of cross-contaminated recyclables in residual waste, whereas the results for heavy metals and trace elements were more complex. For many fractions rather high metal contents were found to be intrinsic properties of the recyclables...

  4. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  5. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  6. New recycling approaches for thermoset polymeric composite wastes – an experimental study on polyester based concrete materials filled with fibre reinforced plastic recyclates

    OpenAIRE

    Ribeiro, M. C. S.; Fiúza, António; Meira Castro, A C; Dinis, M. L.; Silva, Francisco J. G.; Meixedo, João Paulo

    2011-01-01

    In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in we...

  7. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  8. Melting behaviour of raw materials and recycled stone wool waste

    DEFF Research Database (Denmark)

    Schultz-Falk, Vickie; Agersted, Karsten; Jensen, Peter Arendt

    2018-01-01

    Stone wool is a widely used material for building insulation, to provide thermal comfort along with fire stability and acoustic comfort for all types of buildings. Stone wool waste generated either during production or during renovation or demolition of buildings can be recycled back into the sto...... wool melt production. This study investigates and compares the thermal response and melting behaviour of a conventional stone wool charge and stone wool waste. The study combines differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray diffraction (XRD). DSC reveals...... that the conventional charge and stone wool waste have fundamentally different thermal responses, where the charge experiences gas release, phase transition and melting of the individual raw materials. The stone wool waste experiences glass transition, crystallization and finally melting. Both DSC and HSM measurements...

  9. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  10. Recycling of solid wastes at kindergartens centers

    Directory of Open Access Journals (Sweden)

    Mohamed R.M.S.R.

    2017-02-01

    Full Text Available The present study aimed to conduct an activity on environmental awareness campaign at a kindergarten center, with the children age 4-6 years old. The activity included identify the various types of waste generated at the kindergarten and to realize the conservation practice by participating in simple waste management strategies and an explanation about recycling, reusing and reducing waste (3R. The activity provided the children more awareness about the importance of minimizing the plastic wastes. The activity had created an interesting experience to the young generation through practice activity and has given a light on the nature conservation along their growing years. It can be concluded that the awareness of environmental issues among children have risen up as noted by looking at students physical expression. Children have understood the potential to conserve nature from a simple action which is recycling. After the activity, children’s were able to identify and divide the rubbish.

  11. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  12. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  13. Utilization of waste glass in ECO-cement: Strength properties and microstructural observations

    International Nuclear Information System (INIS)

    Sobolev, Konstantin; Tuerker, Pelin; Soboleva, Svetlana; Iscioglu, Gunsel

    2007-01-01

    Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement

  14. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  15. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Science.gov (United States)

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  16. 17. Meeting municipal waste Magdeburg. Residual waste - recycling - resource; 17. Tagung Siedlungsabfallwirtschaft Magdeburg. Restabfall - Recycling - Ressource

    Energy Technology Data Exchange (ETDEWEB)

    Haase, Hartwig (ed.)

    2012-11-01

    Within the 17th meeting Waste Management at Residential Areas from 12th o 13th September, 2012 in Magdeburg (Federal Republic of Germany), the following lectures were held: (1) Opening Session - Waste management in Saxony-Anhalt (O. Aeikens); (2) World with future - the eco-social perspective (F.J. Radermacher); (3) Global commodity markets - rare earths and their recycling (I. Fahimi); (4) The further development of nearhousehold capture of recyclable materials (J. Seitel); (5) On the future of the disposal management (J. Balg); (6) Options for action for the future of the municipal waste management (A. Gosten); (7) Current models of the capture of recyclable materials in Germany (M. Kerkhoff); (8) The recycling bin as a pilot test in Hanover (R. Middendorf); (9) Position of BellandVision on the implementation of a unified recycling bin (J. Soelling); (10) What will change with the new Recycle Economy Law according to the material flows and waste treatment capacities? (H. Alwast); (11) Waste management plan Saxony-Anhalt - Current developments (S. Hagel); (12) Wastes from the thermal waste treatment - Risk potential and disposal (G.-R. Behr); (13) Landfill Mining - Contribution of the waste management to the securing of resources (K. Fricke); (14) Logistic process design and system design in the transport of wastes in developing countries using Serbia as an example (Z. Jovanovic); (15) Example of good practices in the subsequent use of landfills - Solar park Cracauer Anger (M. Harnack); (16) Ecoloop - energy efficient gasification in the limestone moving-bed (R. Moeller); (17) Utilization of waste and biomass as a resource? Only by means of an intelligent logistics. (S. Trojahn); (18) Renewable energy resources - Experiences of a network provider (J. Kempmann).

  17. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  18. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  19. Heterogeneities in nuclear waste glass

    International Nuclear Information System (INIS)

    Ladirat, Ch.

    1997-01-01

    The industrial vitrification of high level radioactive wastes is a 2 stage process. During the first stage, the concentrated solution is heated in a spinning resistance oven at the temperature of 400 Celsius degrees till evaporation and calcination. The second stage begins when the dry residue falls into a melting pot that is maintained at a temperature of 1100-1150 Celsius degrees. Glass fretting is added and the glass is elaborated through the fusion of the different elements present in the melting pot. Heterogeneities in the glass may be associated to: - the presence in the solution to vitrify of insoluble elements from the dissolution of the fuel (RuO 2 , Rh, Pd), - the presence of minuscule metal scraps (Zr) that have been produced during the cutting of the fuel element, - the failures to conform to the technical specifications of the vitrification process, for instance, temperatures or flow rates when introducing the different elements in the melting pot. (A.C.)

  20. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  1. Database for waste glass composition and properties

    International Nuclear Information System (INIS)

    Peters, R.D.; Chapman, C.C.; Mendel, J.E.; Williams, C.G.

    1993-09-01

    A database of waste glass composition and properties, called PNL Waste Glass Database, has been developed. The source of data is published literature and files from projects funded by the US Department of Energy. The glass data have been organized into categories and corresponding data files have been prepared. These categories are glass chemical composition, thermal properties, leaching data, waste composition, glass radionuclide composition and crystallinity data. The data files are compatible with commercial database software. Glass compositions are linked to properties across the various files using a unique glass code. Programs have been written in database software language to permit searches and retrievals of data. The database provides easy access to the vast quantities of glass compositions and properties that have been studied. It will be a tool for researchers and others investigating vitrification and glass waste forms

  2. Recycle and biodestruction of hazardous nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.; Kosinski, F.E.

    1987-01-01

    The US Department of Energy (DOE) owns the Oak Ridge Y-12 Plant located in Oak Ridge, Tennessee. The plant is operated for DOE by Martin Marietta Energy Systems, Inc. One of the plant's functions involves the purification and recycling of uranium wastes. The uranium recycle operation uses nitric acid in a solvent extraction purification process, and a waste stream containing nitric acid and other impurities is generated. Before 1976 the wastes were discarded into four unlined percolation ponds. In 1976, processes were developed and installed to recycle 50% of the wastes and to biologically decompose the rest of the nitrates. In 1983 process development studies began for in situ treatment of the four percolation ponds, and the ponds were treated and discharged by May 1986. The treatment processes involved neutralization and precipitation to remove metallic impurities, followed by anaerobic denitrification to reduce the 40,000 ug/g nitrate concentration to less than 50 ug/g. The final steps included flocculation and filtration. Approximately 10 million gallons of water in the ponds were treated and discharged

  3. Effects of composition on waste glass properties

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Chick, L.A.

    1979-01-01

    The electrical conductivity, viscosity, chemical durability, devitrification, and crystallinity of a defense waste glass were measured. Each oxide component in the glass was varied to determine its effect on these properties. A generic study is being developed which will determine the effects of 26 oxides on the above and additional properties of a wide field of possible waste glasses. 5 figures, 2 tables

  4. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  5. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  6. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  7. Thermal recycling and re-manufacturing of glass fibre thermosetting composites

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Beauson, Justine; Brøndsted, Povl

    2016-01-01

    The impact of using thermally recycled glass fibre in re-manufactured composites was investigated. A unidirectional glass fibre thermosetting composite laminate was manufactured. The matrix in one part of the laminate was burnt off to recover the glass fibres. These recycled glass fibres were used...

  8. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  9. Development of Composite Materials Under Ecological Aspects as Recycling Concept For Borosilicate Glass Containing Iron Slags

    International Nuclear Information System (INIS)

    Khalil, T.K.; Bossert, J.; Aly, H.F.; Bossert, J.

    1999-01-01

    Composite concept in materials science can be conveniently applied in the waste treatment technology to construct specific t ailor made c omposite materials, in which at least one of the phases is built by the waste material. In this work the applicability of this concept for the fixation and recycling of slags wastes is done, whereby different mixtures of blast furnace slags are mixed with two different borosilicate glasses, which serve as matrix material. Thermal behaviour of the produced compacts were studied. Both melting and powder technology are applied for the fabrication of dense products. The microstructure of sintered samples is investigated by electron microscopy. The mechanical properties such as hardness and fracture toughness are determined by a Vickers technique. An improvement of the fracture toughness of more than 50% over the value for the original glass VG 98 is achieved by slag addition

  10. Concept of an integrated waste economy represented on the example of recycling of valuable materials

    Energy Technology Data Exchange (ETDEWEB)

    Wender, H

    1980-08-01

    The historical development of waste elimination is discussed, followed by the waste problem in an environmental discussion, the possibilities of recycling within the framework of a waste industry, and the solution of the waste problem from a waste-economy viewpoint, including the definition of 'waste' and the grouping by types of waste, their amounts and increase rates, composition and valuable materials in community wastes with a review of waste technologies under waste-economy viewpoints. This is followed by a discussion of the sales possibilities for valuable components from mechanical sorting facilities, including used paper, old glass, hard substances, metals, plastics, succeeded by a comparative evaluation method, and the national economy aspect of the waste industry, with the savings effect in raw materials for different branches, effects on raw material reserves, the problem of dependence on imports, waste rates and living standard, and the importance of environmental instruments which are discussed in detail.

  11. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    International Nuclear Information System (INIS)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D.; Scales, Charlie R.; Maddrell, Ewan R.; Hobbs, Jeff

    2013-01-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  12. High level waste forms: glass marbles and thermal spray coatings

    International Nuclear Information System (INIS)

    Treat, R.L.; Oma, K.H.; Slate, S.C.

    1982-01-01

    A process that converts high-level waste to glass marbles and then coats the marbles has been developed at Pacific Northwest Laboratory (PNL) under sponsorship of the US Department of Energy. The process consists of a joule-heated glass melter, a marble-making device based on a patent issued to Corning Glass Works, and a coating system that includes a plasma spray coater and a marble tumbler. The process was developed under the Alternative Waste Forms Program which strived to improve upon monolithic glass for immobilizing high-level wastes. Coated glass marbles were found to be more leach-resistant, and the marbles, before coating were found to be very homogeneous, highly impact resistant, and conductive to encapsulation in a metal matric for improved heat transfer and containment. Marbles are also ideally suited for quality assurance and recycling. However, the marble process is more complex, and marbles require a larger number of canisters for waste containment and have a higher surface area than do glass monoliths

  13. Cadmium-containing waste and recycling possibilities

    International Nuclear Information System (INIS)

    Wiegand, V.; Rauhut, A.

    1981-01-01

    To begin with, the processes of cadmium production from zinc ores in smelting plants or from intermediates of other metal works are described. A considerable amount of the cadmium is obtained in the recycling process in zinc, lead, and copper works. The way of the cadmium-containing intermediaries, processing, enrichment, and disposal of cadmium waste are described. Uses of cadmium and its compounds are mentioned, and cadmium consumption in the years 1973-1977 in West Germany is presented in a table. Further chapters discuss the production and the way of waste during production and processing of cadmium-containing products, the problem of cadmium in household refuse and waste incineration plants, and the problem of cadmium emissions. (IHOE) [de

  14. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system

    NARCIS (Netherlands)

    Zhang, S.; Keulen, A.; Arbi, K.; Ye, G.

    2017-01-01

    The feasibility of a waste glass powder residue (GP) from glass recycling as partial mineral precursor to produce alkali-activated materials is investigated. GP served as powder coal fly ash (PCFA) replacement within a reference system composed of 50% PCFA and 50% ground granulated blast furnace

  15. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  16. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  17. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  18. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    International Nuclear Information System (INIS)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    Highlights: ► We model the environmental impact of recycling and incineration of household waste. ► Recycling of paper, glass, steel and aluminium is better than incineration. ► Recycling and incineration of cardboard and plastic can be equally good alternatives. ► Recyclables can be transported long distances and still have environmental benefits. ► Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  19. Solid waste characterization and recycling potential for a university campus

    International Nuclear Information System (INIS)

    Armijo de Vega, Carolina; Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well

  20. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  1. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  2. Innovative technologies of waste recycling with production of high performance products

    International Nuclear Information System (INIS)

    Gilmanshin, R; Azimov, Yu I; Gilmanshina, S I; Ferenets, A V; Galeeva, A I

    2015-01-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented. (paper)

  3. Innovative technologies of waste recycling with production of high performance products

    Science.gov (United States)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  4. Effects of waste glass additions on quality of textile sludge-based bricks.

    Science.gov (United States)

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  5. Recycled industrial and construction waste for mutual beneficial use.

    Science.gov (United States)

    2016-08-01

    Instead of going to landfills, certain waste materials from industry and building construction can be recycled in transportation infrastructure projects, such as roadway paving. The beneficial use of waste materials in the construction of transportat...

  6. Relative leach behavior of waste glasses and naturally occurring glasses

    International Nuclear Information System (INIS)

    Adams, P.B.

    1979-01-01

    Simulated nuclear waste glasses of the sodium-borosilicate type with a low waste loading and of the zinc-borosilicate type with a high waste loading have been compared with obsidians. The resuls indicate that the waste glasses would corrode in normal natural environments at a rate of about 0.1 μm per year at 30 0 C and about 5 μm per year at 90 0 C, compared with obsidians which seem to corrode at, or less than, about 0.01 μm per year at 30 0 C and less than 1 μm per year at 90 0 C. Activation energies for reactions of the two waste glasses with pure water are about 20 kcal/g-mol. 3 figures, 7 tables

  7. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......The Danish government has set a target of 50% recycling rates for household waste by 2022. To achieve this goal, the Danish municipalities should increase the source separation of household waste. While significant knowledge and experiences were locally gained, lessons learnt have not been...

  8. Recycling and treatment of plastic waste

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1998-01-01

    Radiation technology, using gamma or electron beams, develops its benefits at highest yield if macromolecular systems are treated. This is valid equally if build-up processes (polymerization, crosslinking) or degradative processes (chain scission, depolymerization) are initiated by radiation. Radiation-induced degradation is applied to convert polytetrafluoroethylene (Teflon) scrap into powder and low-molecular-weight products used in the production of other perfluoro compounds. The Teflon powder is blended with other materials for use as lubricant, and the perfluorocarboxylic derivatives are employed as surfactants. Radiation treatment of polymers could play a build-up role in the recycling of polymer wastes. The non-selective energy transfer from gamma or electron sources to polymer systems produces many kinds of reactive centers such as free radicals, oxydized and peroxydized active groups, on which further reactions may occur. In presence of monomer-like or oligomer-like reactive additives graft-copolymerization may take place, compatibilizing in this way the originally incompatible polymer components. Such a compatibilization is the key solution to recycling commingled plastic waste or producing composite materials of fibrous natural polymers and synthetic thermoplastics

  9. Detection of fire protection and mineral glasses in industrial recycling using Raman mapping spectroscopy

    Science.gov (United States)

    De Biasio, Martin; Arnold, Thomas; McGunnigle, Gerald; Kraft, Martin; Leitner, Raimund; Balthasar, Dirk; Rehrmann, Volker

    2011-06-01

    Recycling of glass requires the removal of specialist glasses, such as fireproof and mineral glasses, and glass ceramics, which are regarded as contaminants. The sorting must take place before melting for efficient glass recycling. Here, we demonstrate the feasibility of a real-time Raman mapping system for detecting and discriminating a range of industrially relevant glass contaminants in recovered glass streams. The components used are suitable for industrial conditions and the chemometric model is robust against imaging geometry and excitation intensity. The proposed approach is a novel alternative to established glass sorting sensors.

  10. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  11. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  12. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  13. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  14. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  15. Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy

    Directory of Open Access Journals (Sweden)

    Mario Testa

    2017-10-01

    Full Text Available Glass manufacturing is a high-volume process, during which large substance quantities are transformed into commercial products, and significant amounts of non-renewable resources and energy (i.e., thermal fuels and electrical power are consumed. The main purpose of this study is to give a critical explanation of the performance of the Italian container glass industry from the perspective of cullet being recycled, to outline the opportunities for transition towards circular business models that stimulate innovation in new sectors based on reverse-cycle activities for recycling. In 2015, disparate performances have been achieved as regards the container glass recycling rate in northern, central, and southern Italy, accounting for around 73%, 64%, and 55%, respectively. In fact, only northern Italy is in line with European targets, as by 2025 it will only need to increase its current performance by two percentage points, unlike central and southern Italy that will have to increase performance by, respectively, 11% and 20%. This shows a need to improve the efficiency of municipal waste collection systems in central and southern Italy, where undifferentiated waste still holds appreciable amounts of glass. Consequently, we propose several improvement channels, from the revision of waste legislation to the re-engineering of waste management supply chains.

  16. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  17. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  18. Workplace Waste Recycling Behaviour: A Meta-Analytical Review

    Directory of Open Access Journals (Sweden)

    Adekunle Oke

    2015-06-01

    Full Text Available In order to increase waste recycling, many studies have been conducted to understand factors that may influence waste recycling behaviour. However, these studies have focused on household contexts rather than other waste generation contexts. As a result, this paper seeks to provide a detailed analysis of previous studies on workplace waste recycling behaviour. Drawing from different databases, 51 relevant studies on workplace waste recycling attitudes and behaviour were meta-analysed. Findings showed that the highest percentage of the existing studies were conducted in the USA, focused on a single waste stream, were often conducted within academic contexts, adopted (or modified an existing theoretical framework and were based on questionnaires which elicited self-reported behaviour. Some of the factors identified include demographics, situational variables, past behaviour, incentives, prompts and/or information, attitudes and identity. The findings highlighted the scale of challenges confronting waste management practitioners in understanding the factors that may affect waste recycling behaviour due to the complexity and heterogeneity of human behaviours. However, the results from the reviewed studies in this research suggest that a combination of different factors may be required to influence workplace waste recycling behaviour. This may provide effective incentives to develop a framework that may assist waste management stakeholders when addressing workplace waste management.

  19. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  20. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    Science.gov (United States)

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  1. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  2. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  3. The market-incentive recycling system for waste packaging containers in Taiwan

    International Nuclear Information System (INIS)

    Bor Yunchang, Jeffrey; Chien, Y.-L.; Hsu, Esher

    2004-01-01

    This paper presents a new market-incentive (MI) system to recycle waste-packaging containers in Taiwan. Since most used packaging containers have no or insufficient market value, the government imposes a combined product charge and subsidy policy to provide enough economic incentive for recycling various kinds of packaging containers, such as iron, aluminum, paper, glass and plastic. Empirical results show that the new MI approach has stimulated and established the recycling market for waste-packaging containers. The new recycling system has provided 18,356 employment opportunities and generated NT$ 6.97 billion in real-production value and NT$ 3.18 billion in real GDP during the 1998 survey year. Cost-effectiveness analysis constitutes the theoretical foundation of the new scheme, whereas data used to compute empirical product charge are from two sources: marketing surveys of internal conventional costs of solid-waste collection, disposal and recycling in Taiwan, and benefit transfer of external environmental costs in the United States. The new recycling policy designed by the authors provides a reasonable solution for solid-waste management in a country with limited land resources such as Taiwan

  4. Electronic waste and informal recycling in Kathmandu, Nepal

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Thapa, Khim B.; Cimpan, Ciprian

    2018-01-01

    In the absence of relevant policies and supporting infrastructure, many developing countries are struggling to establish a resource-oriented waste management system. In countries like Nepal, where informal recycling practices are prevalent, the lack of understanding of the existing system hinders...... surveys, and site observations was conducted to understand the local recycling sector, the lifecycle of electronic products, and the relevant stakeholders. E-waste is found to be an integral part of the existing solid waste management chain and, therefore, needs to be addressed collectively. We identify...... any advancement in this sector. We characterize the informal recycling chain in Kathmandu, where a workforce of more than 10,000 people handles the recyclable items in various waste streams, including electronic waste (e-waste). A field study, supported by key informant interviews, questionnaire...

  5. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......-zero pattern was used to describe historical changes in the definition and components of waste fractions. Variation array was applied to determine the relationship between waste treatment and disposal options. As a result, compositional data analysis technique enables to analyze waste data regardless...

  6. Diffusion processes in nuclear waste glasses

    International Nuclear Information System (INIS)

    Serruys, Y.; Limoge, Y.; Brebec, G.

    1992-01-01

    Problems concerning the containment of nuclear wastes are presented. Different materials which have been considered for this purpose are briefly reviewed and we see why glass is one of the favorite candidates. It is focussed on what is known about diffusion in 'simple enough' glasses. After a recall concerning the structure and possible defects, the main results on diffusion in 'simple' glasses are given and it is shown what these results involve for the mechanisms of diffusion. The diffusion models are presented which can account for transport in random media: percolation and random walk models. Specific phenomena for the nuclear waste glasses are considered: the effect of irradiation on diffusion and leaching (i.e. corrosion by water). Finally diffusion data in nuclear waste glasses are presented. (author). 199 refs., 6 figs., 1 tab

  7. Economic evaluation of municipal solid waste recycling in Yazd:

    OpenAIRE

    Eslami H; Mokhtari M; Eslami Dost Z; Barzegar Khanghah MR; Ranjbar Ezzatabadi M

    2017-01-01

    Background and aims: In every urban waste management plan, recycling and reuse is considered as an economic pattern. This study aimed to economic evaluation of municipal solid waste recycling in Yazd by cost-benefit analysis in 2015. Methods: This research is a descriptive–analytic study which in the data about quality and quantity of municipal solid waste in Yazd city were collected through the sampling and physical analysis and the data about total income and costs from the implementatio...

  8. E-waste recycling: where does it go from here?

    Science.gov (United States)

    Zhang, Kai; Schnoor, Jerald L; Zeng, Eddy Y

    2012-10-16

    E-waste recycling has become a hotly debated global issue. This study, using China as a case study, analyzes the environmental, economic, and social implications of e-waste recycling in the developing world. More practical approaches, taking into account local economic and social conditions and the principles of Extended Producer Responsibility, are recommended to alleviate the increasing environmental disruption from improper e-waste disposal.

  9. LIFE CYCLE ANALYSIS OF HAZARDOUS WASTE AND RECYCLABLE ORIGIN OF HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Patrícia Raquel da Silva Sottoriva

    2011-09-01

    Full Text Available As the sustainable development that the society aims is based on economic, social and environmental factors, it can be said that the environmental crisis has as the component factors: natural resources, population and pollution. To reduce the pressure that human activities have on the environment, it is necessary to know the production process, inputs and outputs, to reduce potential problems such as waste and facilitate opportunities for system optimization. In this context it was investigated the life cycle of waste and household hazardous recyclable items to identify possibilities for reducing impact on supply chains. As a result it was found that the raw material most used by the paper industry is pine and eucalyptus plantations and some industries also use sugar cane. From the growing process until the paper is industrialized, there is a large demand of time. The cutting of eucalyptus should be done between 5 and 7 years, since the pine requires 10 to 12 years. After used, the papers can and should be recycled. When recycling 1 ton of paper 29.2 m3 of water can be saved, 3.51 MWh of electricity 76 and 22 trees when compared to traditional production processes. The cultivation of trees also contributes to carbon capture and sequestration. The eucalyptus ages 2, 4, 6, 8 years fixing concentrations of 11.12, 18.55, 80.91 and 97.86 t / ha, respectively. The paper can also be designed to compost due to biodegradability. The metal, glass and plastics are not biodegradable and inorganic nature needing to be recycled or reused. Recycling 1 ton of plastic is no economy of 5.3 MWh and 500 kg of oil. Even with the gains of environmental, social and economic impacts of recycling compared to traditional processes, in Brazil, the percentage of recycling paper and glass and PET bottles are less than 60%. The recycling of aluminum cans and steel exceeds 90%. Lamps and batteries are materials that are inadequately provide for contamination to the

  10. Recycling of some polymeric wastes using ionizing radiation

    International Nuclear Information System (INIS)

    ELSayed, E.F.

    2010-01-01

    Recycling of waste polyethylene and worn tires is very important problem due to their huge amount and their negative impact on environment. These two polymers differ from each other in nature, as waste polyethylene is thermoplastic, while waste rubber exists in thermosetting state. Accordingly, their blends should be very interesting. The aim of this work is to modify the physical and chemical properties of their blends at different ratio. Fillers and fibers are playing an important role for polymer reinforcement cost-effective end products. The present wok investigates the impact of gamma radiation doses, up to 150 KGy, on WPE/RWRP in composites of WPE/RWRP, 60/40 with talc, feldspar, glass fiber, and antimony trioxide (fire retardant), fillers over a range of content % up to 20 %. In this context, some physico-mechanical testing, namely TS, elongation at break, elastic modulus, hardness, TGA, DSC, electric conductivity, swelling, LOI and SEM investigations were implemented. It was found that applied fillers revealed expectedly different mechanical, thermal, electrical, chemical, swelling and morphological properties appreciably depending critically on the microstructure, i.e. aspect ratio and degree of dispersion of the filler and adhesion at the filler-matrix interface. The latter is largely due to the lamellar nature of the filler, as lamellar filler has high aspect ratio and this increases the wettability of the filler by the matrix.

  11. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  12. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    Science.gov (United States)

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  13. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  14. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    Science.gov (United States)

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.

  15. Influence of recycling programmes on waste separation behaviour.

    Science.gov (United States)

    Stoeva, Katya; Alriksson, Stina

    2017-10-01

    To achieve high rates of waste reuse and recycling, waste separation in households is essential. This study aimed to reveal how recycling programmes in Sweden and Bulgaria influenced inhabitants' participation in separation of household waste. The waste separation behaviour of 111 university students from Kalmar, Sweden and 112 students from Plovdiv, Bulgaria was studied using the Theory of Planned Behaviour framework. The results showed that a lack of proper conditions for waste separation can prevent individuals from participating in this process, regardless of their positive attitudes. When respondents were satisfied with the local conditions for waste separation their behaviour instead depended on their personal attitudes towards waste separation and recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Recyclable Materials (Waste) Management in Enterprise’s Production Process

    Science.gov (United States)

    Malevskaia-Malevich, E. D.; Demidenko, D. S.

    2017-10-01

    Currently, in view of the increasing garbage crisis, the notion of a “new lease of life” for waste becomes even more relevant. Waste recycling makes it possible not only to solve obvious environmental problems, but also to offer new resource opportunities for industries. Among the obvious economic, social and environmental advantages, however, waste recycling meets various problems. These problems and solutions for them, as well as the problems of economic efficiency improvement and recycling activities’ appeal for industrial companies in Leningrad region, are discussed in the present study.

  17. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  18. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  20. Qualification of a Vitrified High Level Waste Product to Support Used Nuclear Fuel Recycling in the US

    International Nuclear Information System (INIS)

    Murray, P.; Bailly, F.; Strachan, D.; Senentz, G.; Veyer, C.

    2009-01-01

    As part of the Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP), AREVA formed the International Nuclear Recycling Alliance (INRA) consisting of recognized world-leading companies in the area of used nuclear fuel (UNF) recycling,. The INRA team, consisting of AREVA, Mitsubishi Heavy Industries (MHI), Japan Nuclear Fuel Ltd (JNFL), Batelle Memorial Institute (BMI), URS Washington Division and Babcock and Wilcox (B and W), prepared a pre-conceptual design for an upgradable engineering-scale recycling plant with a nominal through put of 800 tHM/y. The pre-conceptual design of this leading-edge facility was based upon the extensive experience of the INRA team in recycling plant design and real world 'lessons learned' from actually building, commissioning, and operating recycling facilities in both France and Japan. The conceptual flowsheet, based upon the COEX TM separations process, separates the useful products for recycling into new fuel and sentences all the remaining fission products and minor actinides (MA) to the high level waste, (HLW) for vitrification. The proposed vitrified waste product will be similar to that currently produced in recycling plants in France. This wasteform has been qualified in France by conducting extensive studies and demonstrations. In the US, the qualification of vitrified glass products has been conducted by the US National Laboratories for the Defence Waste Processing Facility (DWPF), the West Valley Demonstration Plant (WVDP), and the Waste Treatment Plant (WTP). The vitrified waste product produced by recycling is sufficiently different from these current waste forms to warrant additional trials and studies. In this paper we review the differences in the vitrified waste forms previously qualified in the US with that produced from recycling of UNF in France. The lessons learned from qualifying a vitrified waste form in Europe is compared to the current US process for vitrified waste qualification including waste

  1. Temperature effects on waste glass performance

    International Nuclear Information System (INIS)

    Mazer, J.J.

    1991-02-01

    The temperature dependence of glass durability, particularly that of nuclear waste glasses, is assessed by reviewing past studies. The reaction mechanism for glass dissolution in water is complex and involves multiple simultaneous reaction proceeded, including molecular water diffusion, ion exchange, surface reaction, and precipitation. These processes can change in relative importance or dominance with time or changes in temperature. The temperature dependence of each reaction process has been shown to follow an Arrhenius relationship in studies where the reaction process has been isolated, but the overall temperature dependence for nuclear waste glass reaction mechanisms is less well understood, Nuclear waste glass studies have often neglected to identify and characterize the reaction mechanism because of difficulties in performing microanalyses; thus, it is unclear if such results can be extrapolated to other temperatures or reaction times. Recent developments in analytical capabilities suggest that investigations of nuclear waste glass reactions with water can lead to better understandings of their reaction mechanisms and their temperature dependences. Until a better understanding of glass reaction mechanisms is available, caution should be exercised in using temperature as an accelerating parameter. 76 refs., 1 tab

  2. Recycled agricultural wastes: biochars multifunctional role in agriculture and environment

    Science.gov (United States)

    The rapid population growth, urbanization and modernization worldwide have resulted in the significant increase of waste generated. Waste production is a major environmental problem in our society. In fact, recycling and using raw materials from the waste we generate are some of the environmental ch...

  3. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  4. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  5. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    Science.gov (United States)

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  7. Retention of Halogens in Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2010-05-01

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ≤100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  8. Sustainable recycling of municipal solid waste in developing countries

    International Nuclear Information System (INIS)

    Troschinetz, Alexis M.; Mihelcic, James R.

    2009-01-01

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors

  9. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  10. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    International Nuclear Information System (INIS)

    Friedrich, Elena; Trois, Cristina

    2013-01-01

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO 2 e (glass) to −19 111 kg CO 2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO 2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard

  11. Actinide recycling for reactor waste mass and radiotoxicity reduction

    International Nuclear Information System (INIS)

    Renard, A.; Maldague, T.; Pilate, S.; Journet, J.; Rome, M.; Harislur, A.; Vergnes, J.

    1994-01-01

    The long-term radiotoxicity of nuclear waste from a Light Water Reactor fuel is analyzed; it can be reduced by multiple recycling of actinides in fast reactors. The capabilities of a first recycling in the light water reactor itself are evaluated with regard to implications on reactor physics and core management. Two main options are compared with their penalties and efficiency

  12. Road Routes for Waste Disposal - MDC_RecyclingRoute

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This CURBSIDE RECYCLING ROUTES BOUNDARIES LAYER IS A polygon feature class created for the Miami-Dade Department of Solid Waste Management (DSWM). It contains the...

  13. The Diffusion Effect of MSW Recycling

    OpenAIRE

    Yi-Tui Chen; Fu-Chiang Yang; Shih-Heng Yu

    2017-01-01

    The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator t...

  14. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  15. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  16. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    Science.gov (United States)

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Status of electronic waste recycling techniques: a review.

    Science.gov (United States)

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  18. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  19. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  20. Recycle and reduction of waste water in ISL operation

    International Nuclear Information System (INIS)

    Du Zhiming; Liu Naizhong; Su Xuebin; Li Jianhua; Zou Maoqing; Xing Yongguo

    2014-01-01

    Sandstone type uranium resources will be promote the main force of natural uranium production in China. The wastewater produced in the process of in-situ leaching mining need to be studied specially, so as to meet the requirements of green mining and realize the recycling of wastewater and decrement. We have researched and adopted including nature groundwater environmental recycling, liquor of precipitation recycling, optimization of elution process, the transformation waste water reduction, water evaporation reduction and a series of technological measures. The field application results show that the wastewater recycling and reduction in the process of production achieved a good environmental protection effect. (authors)

  1. Development of recycling techniques on decommissioning concrete waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Sukekiyo, Mitsuaki

    2000-01-01

    Nuclear Power Engineering Corporation (NUPEC) has been developing decommissioning techniques, implemented under a contract with the Ministry of International Trade and Industry (MITI), to verify and improve the performance of the key decommissioning techniques. One of main themes is on concrete recycling techniques, which deals with high quality aggregate retrieval from concrete waste, high efficient usage of the by-product powder to recycling products, and effective usage of radioactive concrete to filling material for waste form. This paper describes progress and accomplishment on the concrete recycling technique development which started in 1996. (author)

  2. Characterization and potential recycling of home building wood waste

    Science.gov (United States)

    Philip A. Araman; D.P. Hindman; M.F. Winn

    2010-01-01

    Construction waste represents a significant portion of landfill waste, estimated as 17% of the total waste stream. Wood construction waste of a 2000 square foot single family home we found to be 1500-3700 lbs of solid-sawn wood, and 1000-1800 lbs of engineered wood products (EWP). Much of the solid-sawn lumber and EWPs could be recycled into several products. Through a...

  3. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  4. Glass forms for immobilization of Hanford wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Babad, H.

    1975-03-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged alkaline high-level liquid wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. At this time also, large volumes of various other solid radioactive wastes (sludges, excavated Pu-contaminated soil, and doubly encapsulated 137 CsCl and 90 SrF 2 ) will be stored on the Hanford Reservation. All these solid wastes can be converted to immobile silicate and aluminosilicate glasses of low water leachability by melting them at 1100 0 to 1400 0 C with appropriate amounts of basalt (or sand) and other glass-formers such as B 2 O 3 or CaO. Reviewed in this paper are formulations and other melt conditions used successfully in batch tests to make glasses from actual and synthetic wastes; leachability and other properties of these glasses show them to be satisfactory vehicles for immobilization of the Hanford wastes. (U.S.)

  5. Feasibility of Target Material Recycling as Waste Management Alternative

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Varuttamaseni, A.

    2004-01-01

    The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ion-beam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m 3 /yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a 'must' requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this

  6. ASSESSMENT OF ENERGY SAVING IN WASTE RECYCLING USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    Eugênio de Oliveira Simonetto

    2013-06-01

    Full Text Available Recycling is a topic of great importance in integrated waste management, evidence of this is verified in the National Policy of Solid Waste, decreed in 2010, where it is considered one of the priorities. In this article is presented a computer simulation model, since their development until its validation, which aims to support environmental managers in their decisions regarding the definition and / or maintenance of solid waste policies recycling, as well as evaluating the benefits of process in the environment (in this article we evaluated the energy savings. For the model development was considered: the rate of natural population growth (births and deaths, percentage of solid waste recycled (for each type of material, gravimetric composition of the material in the total waste generated, the amount of waste generated per inhabitant and energy savings caused by each distinct type of material. Through the model results generated, end users (environmental managers thereof may, for example, set incentives to reduce the total generation of solid waste, produce campaigns enhancing reuse and recycling and to assess the relative benefits of energy savings caused by recycling. Model validation was through analysis of future scenarios for a given municipality in southern Brazil. For modeling and system validation was used Vensim from Ventana Systems.

  7. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  8. Chemistry and kinetics of waste glass corrosion

    International Nuclear Information System (INIS)

    Bates, J.K.

    1996-01-01

    Under repository disposal conditions, the reaction of glass with water comprises the source term for release of radionuclides to the near-field environment. An understanding of glass reaction and the manner by which radionuclides are released is needed to design the waste package and to evaluate the total performance of the repository. The ASTM Standard C-1174-91 provides a general methodology for obtaining information related to the behavior of glass. This paper reviews the application of this standard to glass reaction. In the first step in the ASTM approach, the researcher identifies the materials and the conditions under which the long-term behavior is to be determined. Glass compositions have undergone a genesis over the past 15 years in response to concerns about feed streams, processing, and durability. A range of borosilicate compositions has been identified, but as new applications for vitrification occur, for example, immobilization of weapons plutonium and residue from plutonium processing, different compositions must be evaluated. The repository environment depends on the spatial emplacement of waste containers (glass and spent fuel), and both open-quotes hotclose quotes and open-quotes coldclose quotes scenarios have been proposed for the Yucca Mountain site. Regardless of the exact configuration, the near-field hydrology is expected to be unsaturated: that is, the waste packages are contacted initially by water vapor, and ultimately by small amounts of dripping or standing water. The behavior of glass can be studied as a function of composition within the constraints the environmental conditions place on the physical parameters that affect glass reaction (temperature, radiation field, groundwater composition, etc.). In the second step, the researcher reviews the literature and proposes a reaction pathway by which glass reacts in an unsaturated environment

  9. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    Science.gov (United States)

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  10. Recycling of quarry waste as part of sustainable aggregate production: Norwegian and Italian point of view

    Science.gov (United States)

    Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John

    2016-04-01

    Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by

  11. Evaluation of models of waste glass durability

    International Nuclear Information System (INIS)

    Ellison, A.

    1995-01-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ''correct'' functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory

  12. Waste glass as eco-friendly replacement material in construction products

    Science.gov (United States)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  13. Experimental design of a waste glass study

    International Nuclear Information System (INIS)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150 degrees C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases

  14. Experimental Study of Self-Compacting Mortar Incorporating Recycled Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Awetehagn Tuaum

    2018-01-01

    Full Text Available This experimental research is focused on the development of self-compacting mortar incorporating recycled glass aggregate (SCM-RGA as partial substitution of fine aggregate (wt 0%, 10%, 20%, 30%, 40% and 50%. The fresh and hardened mechanical properties as well as durability of SCM-RGA mixes were investigated. Limestone powder (LP was used as filler that constitutes 20% of the powder volume to reduce the amount of cement. The SCM-RGA mixtures were designed based on Japanese mix design method. The experimental test results showed that the slump flow of SCM-RGA mixes decreased and V-funnel flow time increased when the content of recycled glass aggregate (RGA increased. The bulk density, compressive strength, flexural strength, water absorption and sorptivity of SCM-RGA mixes were decreased as RGA content increased. Moreover, the accelerated mortar bar test results showed that the expansion due to alkali–silica reaction (ASR of SCM-RGA mixes increased as the content of RGA increased although the expansion of all mixes were within acceptable limit and potentially innocuous. In conclusion, up to 30% of RGA can be successfully integrated in SCM mixes that offers comparable strength performance, sorptivity enhancement and without long term detrimental ASR effect, and thus, contributes towards sustainable solid waste management, conservation of natural resources and environmental protection.

  15. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  16. Fixation of radioactive waste in glass

    International Nuclear Information System (INIS)

    Chapman, C.C.; Mendel, J.E.

    1976-08-01

    After a brief review of the source of high level wastes and the specific requirements and desirable characteristics of glass used as a storage vehicle, the development work done on two vitrification systems is outlined. One is an in-can melter system and the second is a ceramic melter. Primary emphasis has been placed on the in-can melter system for use in the near future. Both systems are capable of converting high level waste to a glass which possesses low release potential

  17. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards

    International Nuclear Information System (INIS)

    Long Laishou; Sun Shuiyu; Zhong Sheng; Dai Wencan; Liu Jingyong; Song Weifeng

    2010-01-01

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 deg. C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB.

  18. Achievement report for fiscal 2000 on development of technology related to new recycled products. Research and development of simultaneous recovery of chlorine contained in waste plastics and alkali contained in waste glass bottles; 2000 nendo shinki recycle seihin nado kanren gijutsu kaihatsu seika hokokusho. Hai plastic gan'yu enso to hai glass bin gan'yu alkali no doji kaishu ni kakawaru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researches have been made on a technology to have alkali contained in waste glass bottles reacted with chlorine contained in waste plastics to separate and remove salt, and reuse the residues as a resource for cement raw material. This paper summarizes the achievements in fiscal 2000. In the research, glass powder pulverized to 5 to 10 {mu} m, calcium carbonate, iron oxide, and alumina were used to prepare raw material for the ordinary Portland cement. Vinyl chloride pulverized to 3 mm was added into this cement raw material so that chlorine-alkali equivalent ration will be 1.0, and the material was sintered in a rotary kiln at 800 to 1,400 degrees C. As a result, it was discovered that salt is produced from the alkali in glass and the chlorine in vinyl chloride, whereas the produced salt volatilizes when heated to 1,200 degrees C or higher, and clinker containing low chlorine and alkali can be produced. The test result reveals that the control range of the chlorine and alkali ratio is from 1.0 to 1.1. The remaining problems are measures against carbon monoxide and dioxin contained in the exhaust gas, and treatment of dust containing salt. (NEDO)

  19. Recycling Potential of Waste Di-Isobutyl-Ketone (DIBK) and ...

    African Journals Online (AJOL)

    This paper investigated the possibility of using distillation to recover gold contained in the waste generated in Ghana as well as the recycling potential of the distillate (regenerated DIBK). It was established that distillation of the waste DIBK yielded about 92% distillate leaving a residue of tar, which contained all the gold in ...

  20. Reduce--recycle--reuse: guidelines for promoting perioperative waste management.

    Science.gov (United States)

    Laustsen, Gary

    2007-04-01

    The perioperative environment generates large amounts of waste, which negatively affects local and global ecosystems. To manage this waste health care facility leaders must focus on identifying correctable issues, work with relevant stakeholders to promote solutions, and adopt systematic procedural changes. Nurses and managers can moderate negative environmental effects by promoting reduction, recycling, and reuse of materials in the perioperative setting.

  1. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  2. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  3. Global status of recycling waste solar panels: A review.

    Science.gov (United States)

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  5. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  6. Reuse of materials from recyclable-waste collection for road building

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.; Ticali, D.

    2006-01-01

    A right policy of waste management should look to nature: in fact in nature nothing of produced is lost; everything could be considered food to energy resource for another subject. A diffusion of right policy of waste reuse is the leit motive of this study. Heavy problem of pollution and the protection of the natural environment, is the one of the most important problem of this society, and so to think waste to reuse for civil engineering research has a double aim: a) to reduce quantity to send to dump; b) to reuse good materials for civil engineering building, as substitute of natural aggregate. It look very innovative and actual to think to possibility of reuse glass from recyclable-waste collection for road building, and so we could consider road as a valid substitute to dump. The aim is to consider waste as an element with high energetic power and value added [it

  7. Solid Waste and Recycling Collection Routes

    Data.gov (United States)

    Town of Cary, North Carolina — View the Town’s current collection schedule, including pick-up day and recycling week designation.The Town of Cary collects garbage weekly at the curb on the same...

  8. Effects of beta/gamma radiation on nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-07-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted {beta}-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of {beta}/{gamma} radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  9. Effects of beta/gamma radiation on nuclear waste glasses

    International Nuclear Information System (INIS)

    Weber, W.J.

    1997-01-01

    A key challenge in the disposal of high-level nuclear waste (HLW) in glass waste forms is the development of models of long-term performance based on sound scientific understanding of relevant phenomena. Beta decay of fission products is one source of radiation that can impact the performance of HLW glasses through the interactions of the emitted β-particles and g-rays with the atoms in the glass by ionization processes. Fused silica, alkali silicate glasses, alkali borosilicate glasses, and nuclear waste glasses are all susceptible to radiation effects from ionization. In simple glasses, defects (e.g., non-bridging oxygen and interstitial molecular oxygen) are observed experimentally. In more complex glasses, including nuclear waste glasses, similar defects are expected, and changes in microstructure, such as the formation of bubbles, have been reported. The current state of knowledge regarding the effects of β/γ radiation on the properties and microstructure of nuclear waste glasses are reviewed. (author)

  10. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  11. Glass compositions suitable for PFR wastes

    International Nuclear Information System (INIS)

    Boult, K.A.; Dalton, J.T.; Eccles, E.W.; Hough, A.; Marples, J.A.C.; Paige, E.L.; Sutcliffe, P.W.

    1988-03-01

    Previous work had identified glass compositions that were suitable for vitrifying current and future high level wastes from the Prototype Fast Reactor (PFR) fuel reprocessing plant. Further work on these glasses has shown that: a) Foaming and crystallisation can occur under certain conditions, both probably associated with the presence of iron in the waste. Either of these could lead to greater difficulties in processing. b) Inconel 690, the preferred JCM (Joule-heated Ceramic Melter) electrode material has an acceptable corrosion rate at 1200 0 C: ca 0.6mm.y -1 . c) The leach rates are unaffected by radiation damage. The density of the glass decreases slightly with α-dose, with a dependency that extrapolates, at infinite time, to an 0.13% linear expansion. d) The concentrations of the radiologically important elements Tc, Np, Pu and Am, observed in a 'repository simulation' leach test, were satisfactorily low. (author)

  12. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    Science.gov (United States)

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  13. Standard test method for determining liquidus temperature of immobilized waste glasses and simulated waste glasses

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These practices cover procedures for determining the liquidus temperature (TL) of nuclear waste, mixed nuclear waste, simulated nuclear waste, or hazardous waste glass in the temperature range from 600°C to 1600°C. This method differs from Practice C829 in that it employs additional methods to determine TL. TL is useful in waste glass plant operation, glass formulation, and melter design to determine the minimum temperature that must be maintained in a waste glass melt to make sure that crystallization does not occur or is below a particular constraint, for example, 1 volume % crystallinity or T1%. As of now, many institutions studying waste and simulated waste vitrification are not in agreement regarding this constraint (1). 1.2 Three methods are included, differing in (1) the type of equipment available to the analyst (that is, type of furnace and characterization equipment), (2) the quantity of glass available to the analyst, (3) the precision and accuracy desired for the measurement, and (4) candi...

  14. Recycling of construction and demolition waste in Kuwait

    International Nuclear Information System (INIS)

    Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J.

    2002-01-01

    'Full text:' There is an increasing pressure on the construction industry to reduce costs and improve our environment. The fact is that both of these goals can be achieved at the same time. Although construction and demolition (C and D) constitutes a major type of waste in terms of volume and weight, its management and recycling efforts have not seen the light in Kuwait. The goal of this research project is to study methods leading to the minimization of the total C and D waste that is landfilled in Kuwait. This can be achieved by applying the waste management hierarchy in order of importance: 1) reduce, 2) re-use, 3) recycle, 4) incineration (energy recovery), and 5) safe disposal. This paper presents the current C and D waste disposal system in Kuwait and identifies potential problems to the environment, people and economy. Then, it investigates the recycling option to manage and control this major type of waste in an economically efficient and environmentally safe manner. There are significant volumes of potentially valuable and recoverable resources being wasted in the construction industry, and these figures are continuously growing as we are starting the new millennium. C and D waste constitutes 15%-30% of all solid waste entering landfills in various countries [Bossink 1995]; and thus it is a major type of waste. An estimated 2-3 million ton of construction and demolition waste are being only disposed of in Kuwait's landfill sites each year despite the limited available land (Industrial Investment Company, 1990). C and D waste is a target because it is both heavy and bulky, and therefore undesirable for disposal in engineered, lined landfills because of the space it consumes. On the other hand, many C and D materials have high potential for recovery and use. Recovering C and D waste can help communities reach their recycling goals, preserve valuable space in their local landfills, and create better opportunities for handling other kind of waste. Therefore

  15. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  16. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  17. Technical specifications for mechanical recycling of agricultural plastic waste

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.

    2013-01-01

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  18. An efficient method of material recycling of municipal plastic waste

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Michálková, Danuše; Kruliš, Zdeněk

    2004-01-01

    Roč. 85, č. 9 (2004), s. 975-979 ISSN 0141-3910. [IUPAC Microsymposium on Degradation, Stabilisation and Recycling of Polymers /42./. Prague, 14.07.2003-17.07.2003] R&D Projects: GA AV ČR(CZ) IBS4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : recycling * municipal plastic waste * compatibilisation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.685, year: 2004

  19. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    DEFF Research Database (Denmark)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-01-01

    that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further...... rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed...... of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste....

  20. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  1. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  2. Characterization of raw materials to obtain the mass for white ware, using waste glass

    International Nuclear Information System (INIS)

    Cavalcanti, M.S.L.; Porto, V.S.; Meneses, R.L; Albuquerque, A.V.; Guedes, B.F.R.; Morais, C.R.S.; Santana, L.N.L.

    2009-01-01

    A major problem faced in the post modern society is the huge amount of glass, accumulated in landfills cities. The glass material is one hundred percent recyclable and has the property to act as fluxes as well as feldspar. Given this premise, this study aimed to characterize materials - raw materials and waste glass regional plan for development of ceramic bodies with the similar behavior produced industrially, using shards of glass to partially replace the feldspar. The materials - raw materials used were clay, ball clay, kaolin, quartz, feldspar and shard of glass, being characterized by the techniques: chemical analysis, size analysis, differential thermal analysis vibrational spectroscopy in the infrared region, the Ray-Diffraction X and scanning electron microscopy. The results showed that the waste had higher rates of vitreous oxides fluxes and similar. (author)

  3. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    Science.gov (United States)

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    International Nuclear Information System (INIS)

    Chae, Jae Ou; Knak, S P; Knak, A N; Koo, H J; Ravi, V

    2006-01-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases

  5. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    Science.gov (United States)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  7. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  8. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  9. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  10. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    International Nuclear Information System (INIS)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-01-01

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  11. Separability studies of construction and demolition waste recycled sand.

    Science.gov (United States)

    Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C

    2013-03-01

    The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Achievement report for fiscal 2000 on research and development of high level waste glass utilization system of CO2 emission suppression type; 2000 nendo CO2 haishutsu yokuseigata hai glass kodo riyo system no kenkyu kaihatsu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to establish a waste glass recycling system of low cost and requiring less CO2 emission amount and energy consumption, research and development has been made on classification of waste glasses into particle composition that is required in regenerated commercial products. This paper summarizes the achievements in fiscal 2000. In the research of a waste glass reusing and supplying system designed by using LCA, discussions were given on items required in circulating and recycling waste glass resources, and quality control on raw materials and products. Evaluations of product quality control items were made on crystallized glass, sintered glasswool, automotive window glass, electric bulbs, fluorescent lamp glass, and quartz glass. Utilization tests were carried out for Mashiko porcelain china clay with an intention of expanding the application of waste glass, whereas the relationship between waste glass addition amount and optimal sintering temperature range was verified, disclosing that the limit of the waste glass addition is 10%. In the research on multi-functional hybrid materials, discussions were given on light-weight tiles and water permeating blocks with regard to the manufacturing technology, facility specifications, product quality, effects of the functions, and durability. (NEDO)

  13. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  14. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    Johnson, K.D.B.; Marples, J.A.C.

    1979-05-01

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  15. Recycling the construction and demolition waste to produce polymer concrete

    Science.gov (United States)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  16. Nanoporous Glasses for Nuclear Waste Containment

    OpenAIRE

    Woignier, Thierry; Primera, Juan; Reynes, Jerôme

    2016-01-01

    Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical dura...

  17. Producing glass-ceramics from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, A.R.; Rawlings, R.D. [Imperial College, London (United Kingdom)

    2002-10-01

    An overview is given of recent research at the Department of Materials of Imperial College, London, UK, concerning the production of useful glass-ceramic products from industrial waste materials. The new work, using controlled crystallisation to improve the properties of vitrified products, could help to solve the problem of what to do with increasing amounts of slag, fly ash and combustion dust. The results show, that it is possible to produce new materials with interesting magnetic and constructive properties.

  18. Nuclear waste under glass, further discussion

    Science.gov (United States)

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  19. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  20. Recycling Waste Electrical Socket as a Carbon Resource in ...

    African Journals Online (AJOL)

    Michael

    GMJ Vol. 16, No. 1, June, 2016. Recycling Waste Electrical Socket as a Carbon ... Carbon Resource in Ironmaking”, Ghana Mining Journal, Vol. 16, No. ... 2013; Dankwah and Koshy, 2014; Dankwah et al., ..... Chemical Science and Engineering, UNSW, ... of Scientific and Technology Research (IJSTR),. Vol. 4, Issue 2, pp.

  1. Recycling of plastic waste: Screening for brominated flame retardants (BFRs)

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Granby, Kit; Eriksson, Eva

    2017-01-01

    ,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile...

  2. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  3. Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna

    2016-01-01

    Abstract The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass‐based materials, in the form of monolithic and cellular glass‐ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica‐rich waste favours the obtainment of glass, iron‐rich wastes affect the functionalities, influencing the porosity in cellular glass‐based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste‐derived glasses into glass‐ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low‐cost alternative for glass‐ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up‐to‐date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste‐derived, glass‐based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27818564

  4. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  5. Performance of asphalt mixture incorporating recycled waste

    Science.gov (United States)

    Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan

    2017-12-01

    Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.

  6. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  7. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  8. Triboelectrostatic separation for granular plastic waste recycling: a review.

    Science.gov (United States)

    Wu, Guiqing; Li, Jia; Xu, Zhenming

    2013-03-01

    The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  10. Insertion of marble waste in the production chain of glass wool

    International Nuclear Information System (INIS)

    Rodrigues, G.F.; Alves, J.O.; Espinosa, D.C.R.; Tenorio, J.A.S.

    2010-01-01

    The work aimed the study of the recycle of the waste from marble cutting, aiming the reuse as partial raw material in the production of glass wool. Glass wool are materials with chemical and mechanical resistance, durability and lightness, and also important thermo-acoustic properties. A mixture of the waste with chemical additives was melted in a laboratory electric furnace using temperature of 1450 deg C. The melted material was directly poured in a water-filled recipient aiming the rapidly cooling. Samples of the produced material were characterized by XRD, SEM and DTA. The results showed that the residue from marble cutting can be inserted into the productive chain of glass wool, providing a decrease in the extraction of mineral resources, a profitable destination for this waste, and a economy for the companies producer of thermo-acoustic insulators. (author)

  11. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  12. Recycle operations as a methodology for radioactive waste volume reduction

    International Nuclear Information System (INIS)

    Rasmussen, G.A.

    1985-01-01

    The costs for packaging, transportation and burial of low-level radioactive metallic waste have become so expensive that an alternate method of decontamination for volume reduction prior to disposal can now be justified. The operation of a large-scale centralized recycle center for decontamination of selected low level radioactive waste has been proven to be an effective method for waste volume reduction and for retrieving valuable materials for unlimited use. The centralized recycle center concept allows application of state-of-the-art decontamination technology resulting in a reduction in utility disposal costs and a reduction in overall net amount of material being buried. Examples of specific decontamination process activities at the centralized facility will be reviewed along with a discussion of the economic impact of decontamination for recycling and volume reduction. Based on almost two years of operation of a centralized decontamination facility, a demonstrated capability exists. The concept has been cost effective and proves that valuable resources can be recycled

  13. Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.

    Science.gov (United States)

    Gao, Xuehua; Li, Qisheng; Qiu, Jun

    2018-04-01

    Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  16. Nuclear and toxic waste recycling process

    International Nuclear Information System (INIS)

    Bottillo, T.V.

    1988-01-01

    This patent describes the process for the safe and convenient disposal of nuclear and/or toxic wastes which comprises the steps of (a) collecting nuclear and/or toxic wastes which pose a danger to health; (b) packaging the wastes within containers for the safe containment thereof to provide filled containers having a weight sufficient to sink into the molten lava present within an active volcano; and (c) depositing the filled containers directly into the molten lava present within a volcano containing same to cause the containers to sink therein end to be dissolved or consumed by the heat, whereby the contents thereof are consumed to become a part of the mass of molten lava present within the volcano

  17. A Structural Scale for the Factors of Waste Sensors and Transducers Recycling Based on Consumer Satisfaction

    Directory of Open Access Journals (Sweden)

    Ming Ke

    2014-01-01

    Full Text Available This article first introduced the research results of both domestic and foreign scholars on the factors of waste sensors and transducers recycling, and in consideration of the four main bodies in waste sensors and transducers recycling, 14 influencing indicators of waste sensors and transducers recycling are extracted. Then this paper designed a questionnaire according to the 15 indicators of waste home appliance recycling, and put it on a research website. After verification of reliability and validity of the questionnaire, this paper analyzed the influencing factors of waste sensors and transducers recycling by using SPSS 13.0. Finally this article used factor analysis method to identify the representative factors. Two factors are concluded: Factor 1 mainly represents laws and regulations of government, governmental subsidy, governmental technology support, governmental market guidance, governmental monitor and control, recycling knowledge publication by government, social responsibilities of producers and recyclers, technique disposition ability of producers and recyclers, recyclers' service, therefore it could be summarized as government and enterprise disposition capability; while Factor 2 mainly represents consumers' benefit from recycling, convenience of consumers' recycling, mental satisfaction of consumers from recycling, consumers' recycling knowledge, social recycling environment, and thus they could be summarized as consumer incentive factor. This paper would provide some references for the analysis and research on influencing factors of waste sensors and transducers recycling.

  18. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building

    Directory of Open Access Journals (Sweden)

    Murat Kucukvar

    2016-01-01

    Full Text Available The current waste management literature lacks a comprehensive LCA of the recycling of construction materials that considers both process and supply chain-related impacts as a whole. Furthermore, an optimization-based decision support framework has not been also addressed in any work, which provides a quantifiable understanding about the potential savings and implications associated with recycling of construction materials from a life cycle perspective. The aim of this research is to present a multi-criteria optimization model, which is developed to propose economically-sound and environmentally-benign construction waste management strategies for a LEED-certified university building. First, an economic input-output-based hybrid life cycle assessment model is built to quantify the total environmental impacts of various waste management options: recycling, conventional landfilling and incineration. After quantifying the net environmental pressures associated with these waste treatment alternatives, a compromise programming model is utilized to determine the optimal recycling strategy considering environmental and economic impacts, simultaneously. The analysis results show that recycling of ferrous and non-ferrous metals significantly contributed to reductions in the total carbon footprint of waste management. On the other hand, recycling of asphalt and concrete increased the overall carbon footprint due to high fuel consumption and emissions during the crushing process. Based on the multi-criteria optimization results, 100% recycling of ferrous and non-ferrous metals, cardboard, plastic and glass is suggested to maximize the environmental and economic savings, simultaneously. We believe that the results of this research will facilitate better decision making in treating construction and debris waste for LEED-certified green buildings by combining the results of environmental LCA with multi-objective optimization modeling.

  19. Waste salt recovery, recycle, and destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1992-12-01

    Starting in 1943 and continuing into the 1970s, radioactive wastes resulting from plutonium processing at Hanford were stored underground in 149 single shell tanks. Of these tanks, 66 are known or believedto be leaking, and over a period are believed to have leaked about 750,000 gal into the surrounding soil. The bulk of the aqueous solution has been removed and transferred to double shell tanks, none of which are leaking. The waste consists of 37 million gallons of salt cake and sludge. Most of the salt cake is sodium nitrate and other sodium salts. A substantial fraction of the sludge is sodium nitrate. Small amounts of the radionuclides are present in the sludge as oxides or hydroxides. In addition, some of the tanks contain organic compounds and ferrocyanide complexes, many of which have undergone radiolytic induced chemical changes during the years of storage. As part of the Hanford site remediation effort, the tank wastes must be removed, treated, and the residuals must be immobilized and disposed of in an environmentally acceptable manner. Removal methods of the waste from the tanks fall generally into three approaches: dry removal, slurry removal, and solution removed. The latter two methods are likely to result in some additional leakage to the surrounding soil, but that may be acceptable if the tank can be emptied and remediated before the leaked material permeates deeply into the soil. This effort includes three parts: salt splitting, acid separation, and destruction, with initial emphasis on salt splitting

  20. Recycling of Waste Acetone by Fractional Distillation

    Science.gov (United States)

    Weires, Nicholas A.; Johnston, Aubrey; Warner, Don L.; McCormick, Michael M.; Hammond, Karen; McDougal, Owen M.

    2011-01-01

    Distillation is a ubiquitous technique in the undergraduate organic chemistry curriculum; the technique dates back to ca. 3500 B.C.E. With the emergence of green chemistry in the 1990s, the importance of emphasizing responsible waste management practices for future scientists is paramount. Combining the practice of distillation with the message…

  1. E-Waste recycling: new algorithm for hyper spectral identification

    International Nuclear Information System (INIS)

    Picon-Ruiz, A.; Echazarra-Higuet, J.; Bereciartua-Perez, A.

    2010-01-01

    Waste electrical and Electronic Equipment (WEEE) constitutes 4% of the municipal waste in Europe, being increased by 16-28% every five years. Nowadays, Europe produces 6,5 million tonnes of WEEE per year and currently 90% goes to landfill. WEEE waste is growing 3 times faster than municipal waste and this figure is expected to be increased up to 12 million tones by 2015. Applying a new technology to separate non-ferrous metal Waste from WEEE is the aim of this paper, by identifying multi-and hyper-spectral materials and inserting them in a recycling plant. This technology will overcome the shortcomings passed by current methods, which are unable to separate valuable materials very similar in colour, size or shape. For this reason, it is necessary to develop new algorithms able to distinguish among these materials and to face the timing requirements. (Author). 22 refs.

  2. Colloid formation during waste glass corrosion

    International Nuclear Information System (INIS)

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  3. Chemical recycle of plastics waste; Hai purasuchikku no kemikaru risaikuru

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, A. [Sumitomo Chemical Co. Ltd., Osaka (Japan)

    1997-11-01

    Chemical recycling of the wasted plastics contains from regeneration to monomer as a constructing component in the case of single element polymer to conversion to fuel oil through thermal decomposition of the mixed wasted plastics and application to chemical raw material. Polymethyl methacrylate (PMMA) decomposes to methylmethacrylate (MMA) monomer with high selection rate at max temperature of 400{+-}50degC. The Mitsubishi Rayon Co., Ltd. Signed a cooperative development contract on the recycling technique of PMMA The ICI., Ltd., Great Britain. Depolymerization technique of Polyethylene terephthalate (PET) is already used actually on methanolysis with Coca-Cola Corp. (Hoechst-Celanese Corp.) and glycolysis with Pepsi-Cola Corp. (Goodyear Inc.). The chemical recycle due to thermal decomposition of the mixed wasted plastics is established as a technique of gasification of the mixed wasted plastics to generate methanol in Japan by the Mitsubishi Heavy Ind., Ltd., and is operated in a pilot plant of 2 ton/day. Here was summarized on these trends in and out of Japan. 29 refs., 5 figs., 4 tab.

  4. Recycled lightweight concrete made from footwear industry waste and CDW.

    Science.gov (United States)

    Lima, Paulo Roberto Lopes; Leite, Mônica Batista; Santiago, Ediela Quinteiro Ribeiro

    2010-06-01

    In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW-25% EVA and 50% CDW-50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Waste cell phone recycling by thermal plasma techniques

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, T.; Kunimoto, N.; Abe, S. [Chuo Univ., Bunkyo-Ku, Tokyo (Japan). Dept. of Electrical, Electronics, and Communication Engineering; Li, O.L.; Chang, J.S.; Ruj, B. [McMaster Univ., Hamilton, ON (Canada). Faculty of Engineering

    2010-07-01

    Due to the cost-effective nature of wireless networks, the number of cell phones used around the world has increased significantly. However, a major problem of this technology is the generation of a great deal of complex electronics wastes, such as cell phones. The typical average life of a cell phone is around 2 years. Therefore, inexpensive recycling techniques must be developed for valuable resources such as real metals and plastics used in cell phones. Thermal plasma has been used for many different waste treatments since it has the capability to detoxify waste by-products. This paper presented a preliminary investigation for cell phone recycling by a thermal plasma technology. Recyclable resource material was identified by neutron activation analyses. Then, the cell phone waste was first crashed and treated by Ar twin torch plasmas to remove the majority of organic materials. The paper described the experimental apparatus and results. It was concluded that styrene (C{sub 8}H{sub 8}) and benzene (C{sub 6}H{sub 6}O) may be two major by-products in on-line by-products gas. The molecule becomes a much heavier by-product gas after cooling down. 6 refs., 6 figs.

  6. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  7. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  8. Properties of backfilling material for solidifying miscellaneous waste using recycled cement from waste concrete

    International Nuclear Information System (INIS)

    Matsuda, Atsuo; Yamamoto, Kazuo; Konishi, Masao; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakashima, Yoshio.

    1997-01-01

    A large reduction of total radioactive waste is expected, if recycled cement from the waste concrete of decommissioned nuclear power plants would be able to be used the material for backfilling mortar among the miscellaneous waste. In this paper, we discuss the hydration, strength and consistency of recycled cement compared with normal portland cement. The strength of recycled cement mortar is lower than that of normal portland cement mortar on the same water to cement ratio. It is possible to obtain the required strength to reduce the water to cement ratio by using of high range water-reducing AE agent. According to reducing of water to cement ratio, the P-type funnel time of mortar increase with the increase of its viscosity. However, in new method of self-compactability for backfilling mortar, it became evident that there was no difference between the recycled cement and normal portland cement on the self-compactability. (author)

  9. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  10. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    Science.gov (United States)

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  11. Chrome recycling from leather solid wastes

    International Nuclear Information System (INIS)

    Mohamed, O.A.; Mohamady, H.S.; El-Sayed, N.H.

    2005-01-01

    Leather processing is one of the industrial activities that generate chromium bearing wastes in different forms, one of them is chrome shavings which contributes about 10% of the quantum raw skins /hides, and causes on burning dangerous human hazardous. Hydrolysis processes by different alkalis such as (LiOK KOH, NaOH) have been applied to recover chrome from solid wastes. The extent of hydrolysis was studied as a function of alkalis concentrations, in presence and absence of reducing agents, shaking time and temperature. Hydrolysis process exhibits 99%, 98% and 97%, chrome recovery for LiOH, KOH and NaOH respectively. The recovered chrome has been used in retaining process, examined through visual and mechanical tests of leather samples. The evaluation of the tanning process with recovered chrome gave acceptable results

  12. Energy recycling of plastic and rubber wastes

    International Nuclear Information System (INIS)

    Hussain, R.

    2003-01-01

    Major areas for applications of plastics and rubbers are building and construction, packaging, transportation, automobiles, furniture, house wares, appliances, electrical and electronics. Approximately 20% of all the plastics produced are utilized by the building and construction industry/sup (1-3)/. Categories of polymers mostly used in the above industries include poly (vinyl chloride), polypropylene, polyethylene, polystyrene phenolics, acrylics and urethanes. Tyres and tubes are almost exclusively made up of rubbers. One third of total consumption of plastics finds applications, like films, bottles and packaging, in food-products that have a maximum life-span of two years, after which these find way to waste dumps. As the polymer industry in Pakistan is set to grow very rapidly in the near future the increase in utilization of plastic products in synchronous with the advent of computers and information technology. About 0.60 Kg per capita of waste generated daily in Lahore /(7.14)/ contains considerable quantity of plastics. (AB)

  13. Research and Development of a New Waste Collection Bin to Facilitate Education in Plastic Recycling

    Science.gov (United States)

    Chow, Cheuk-fai; So, Wing-Mui Winnie; Cheung, Tsz-Yan

    2016-01-01

    Plastic recycling has been an alternative method for solid waste management apart from landfill and incineration. However, recycling quality is affected when all plastics are discarded into a single recycling bin that increases cross contaminations and operation cost to the recycling industry. Following the engineering design process, a new…

  14. Management of PET plastic bottles waste through recycling Khartoum state

    International Nuclear Information System (INIS)

    Fadlalla, N. B. I.

    2010-10-01

    This study been carried out to assess the general waste management in Khartoum State and effectively manage the PET plastic bottles by identifying practical means and introducing recycling as cleaner production tool to achieve sustainable development goals. The information data were gathered during the period June-July 2010 through questionnaires, interview, meeting and visits to various sites, in addition to the official information and documents collected from reliable sources, mainly Sudan Central Bank, customs authorities, Ministry of Industry, soft drink and water bottling factories. The data were presented in tables, graphs and charts by applying windows excel program and also applying e view package for the future forecast. Analysis of data shows a rising consumption in PET bottles and the forecasted PET consumption in year 2015 estimated to be 60000 Tons, twice the estimate in the year 2010. This situation will create serious environmental problems that require much more effort to be exerted by all stake holders to book for scientific and practical solutions for the disposal of plastic waste through recycling. Based on the analysis and findings recommendations have been made that ensure on recycling of PET plastic bottles by mechanical method that depends mainly on collection, segregation, cleaning and processing. Further studies and researches on other recycling methods have been recommended in the future. (Author)

  15. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  16. Mix proportions and properties of CLSC made from thin film transition liquid crystal display optical waste glass.

    Science.gov (United States)

    Wang, Her-Yung; Chen, Jyun-Sheng

    2010-01-01

    In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management. 2009 Elsevier Ltd. All rights reserved.

  17. Glasses used for the high level radioactive wastes storage

    International Nuclear Information System (INIS)

    Sombret, C.

    1983-06-01

    High level radioactive wastes generated by the reprocessing of spent fuels is an important concern in the conditioning of radioactive wastes. This paper deals with the status of the knowledge about glasses used for the treatment of these liquids [fr

  18. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling, measurement, data, data collection, construction and demolition (C&D) recycling, source reduction, life cycle...

  19. Recycling of Metal Containing Waste by Liquid-Liquid Extraction

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1999-01-01

    Through the years, a large number of liquid-liquid extraction have been proposed for metal waste recovery and recycling(1,2). However, few of them have achieved commercial application. In fact, relatively little information is available on practical operation and economic feasibility. This presentation will give complementary information by describing and comparing three processes, based on the Am MAR hydrometallurgical concept and representing three different modes of operation

  20. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  1. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  2. Analysis of efficiency of waste reverse logistics for recycling.

    Science.gov (United States)

    Veiga, Marcelo M

    2013-10-01

    Brazil is an agricultural country with the highest pesticide consumption in the world. Historically, pesticide packaging has not been disposed of properly. A federal law requires the chemical industry to provide proper waste management for pesticide-related products. A reverse logistics program was implemented, which has been hailed a great success. This program was designed to target large rural communities, where economy of scale can take place. Over the last 10 years, the recovery rate has been very poor in most small rural communities. The objective of this study was to analyze the case of this compulsory reverse logistics program for pesticide packaging under the recent Brazilian Waste Management Policy, which enforces recycling as the main waste management solution. This results of this exploratory research indicate that despite its aggregate success, the reverse logistics program is not efficient for small rural communities. It is not possible to use the same logistic strategy for small and large communities. The results also indicate that recycling might not be the optimal solution, especially in developing countries with unsatisfactory recycling infrastructure and large transportation costs. Postponement and speculation strategies could be applied for improving reverse logistics performance. In most compulsory reverse logistics programs, there is no economical solution. Companies should comply with the law by ranking cost-effective alternatives.

  3. Control of high-level radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Coleman, C.J.

    1990-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Site High Level Waste as a durable borosilicate glass for permanent disposal in a repository. The DWPF will be controlled based on glass composition. The following discussion is a preliminary analysis of the capability of the laboratory methods that can be used to control the glass composition, and the relationships between glass durability and glass properties important to glass melting. The glass durability and processing properties will be controlled by controlling the chemical composition of the glass. The glass composition will be controlled by control of the melter feed transferred from the Slurry Mix Evaporator (SME) to the Melter Feed Tank (MFT). During cold runs, tests will be conducted to demonstrate the chemical equivalence of glass sampled from the pour stream and glass removed from cooled canisters. In similar tests, the compositions of glass produced from slurries sampled from the SME and MFT will be compared to final product glass to determine the statistical relationships between melter feed and glass product. The total error is the combination of those associated with homogeneity in the SME or MFT, sampling, preparation of samples for analysis, instrument calibration, analysis, and the composition/property model. This study investigated the sensitivity of estimation of property data to the combination of variations from sampling through analysis. In this or a similar manner, the need for routine glass product sampling will be minimized, and glass product characteristics will be assured before the melter feed is committed to the melter

  4. Soil reinforcement with recycled carpet wastes.

    Science.gov (United States)

    Ghiassian, Hossein; Poorebrahim, Gholamreza; Gray, Donald H

    2004-04-01

    A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.

  5. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  6. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  7. High-level waste glass compendium; what it tells us concerning the durability of borosilicate waste glass

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Allison, J.

    1993-01-01

    Facilities for vitrification of high-level nuclear waste in the United States are scheduled for startup in the next few years. It is, therefore, appropriate to examine the current scientific basis for understanding the corrosion of high-level waste borosilicate glass for the range of service conditions to which the glass products from these facilities may be exposed. To this end, a document has been prepared which compiles worldwide information on borosilicate waste glass corrosion. Based on the content of this document, the acceptability of canistered waste glass for geological disposal is addressed. Waste glass corrosion in a geologic repository may be due to groundwater and/or water vapor contact. The important processes that determine the glass corrosion kinetics under these conditions are discussed based on experimental evidence from laboratory testing. Testing data together with understanding of the long-term corrosion kinetics are used to estimate radionuclide release rates. These rates are discussed in terms of regulatory performance standards

  8. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  9. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  10. Development Of Glass Matrices For HLW Radioactive Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.

    2010-01-01

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc 99 , Cs 137 , and I 129 . Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  11. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  12. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  13. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    the WTP flowsheet and the underlying mechanisms that dictate its partitioning between streams within the LAW vitrification facility. These studies are aimed at increasing the single-pass Tc retention in glass and the potential use of high-temperature mineral phases to capture Tc. The Tc-bearing mineral phases would be thermally stable and resistant to Tc release during feed melting reactions or they could serve as alternative waste forms. The LAW glass research and development is focused on reducing the total volume of LAW glass produced and minimizing the impact of (or potentially eliminating) the need for recycle.

  14. Time-temperature-transformation kinetics in SRL waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bickford, D.F.; Karraker, D.G.

    1983-01-01

    Time-temperature-transformation (TTT) curves have been determined for SRL 165 waste glass. Extent and sequence of crystallization were determined by XRD and SEM. The incipient crystallization product, spinel, can be determined at one volume percent by magnetic susceptibility. The type and percentage of crystallization is correlated with waste glass durability. 20 references, 5 figures, 1 table

  15. Informal electronic waste recycling: a sector review with special focus on China.

    Science.gov (United States)

    Chi, Xinwen; Streicher-Porte, Martin; Wang, Mark Y L; Reuter, Markus A

    2011-04-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Informal electronic waste recycling: A sector review with special focus on China

    International Nuclear Information System (INIS)

    Chi Xinwen; Streicher-Porte, Martin; Wang, Mark Y.L.; Reuter, Markus A.

    2011-01-01

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  17. Glass formulation for phase 1 high-level waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B 2 O 3 content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B 2 O 3 and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume

  18. The role of residual cracks on alkali silica reactivity of recycled glass aggregates

    DEFF Research Database (Denmark)

    Maraghechi, Hamed; Shafaatian, Seyed-Mohammad-Hadi; Fischer, Gregor

    2012-01-01

    Despite its environmental and economical advantages, crushed recycled glass has limited application as concrete aggregates due to its deleterious alkali-silica reaction. To offer feasible mitigation strategies, the mechanism of ASR should be well understood. Recent research showed that unlike some...

  19. Utilization of recycled glass as aggregate in controlled low-strength material (CLSM)

    Energy Technology Data Exchange (ETDEWEB)

    Ohlheiser, T.R. [Western Mobile Denver Aggregate Div., CO (United States)

    1998-10-01

    Incoming glass from curbside recycling programs is successfully being utilized as aggregate replacements. The colored glass that can not be used by local bottle manufacturers is crushed to a {1/2} in. (12.5 mm) material and used in various construction projects. The most successful use of processed glass aggregate (PGA) to date, has been in replacing up to 100% of the aggregate in controlled low-strength material (CLSM). It has proven to be successful and has gained acceptance by contractors in the Boulder, Colorado area.

  20. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  1. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    OpenAIRE

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  2. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  3. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An illicit economy: scavenging and recycling of medical waste.

    Science.gov (United States)

    Patwary, Masum A; O'Hare, William Thomas; Sarker, M H

    2011-11-01

    This paper discusses a significant illicit economy, including black and grey aspects, associated with medical waste scavenging and recycling in a megacity, considering hazards to the specific group involved in scavenging as well as hazards to the general population of city dwellers. Data were collected in Dhaka, Bangladesh, using a variety of techniques based on formal representative sampling for fixed populations (such as recycling operatives) and adaptive sampling for roaming populations (such as scavengers). Extremely hazardous items (including date expired medicines, used syringes, knives, blades and saline bags) were scavenged, repackaged and resold to the community. Some HCE employees were also observed to sell hazardous items directly to scavengers, and both employees and scavengers were observed to supply contaminated items to an informal plastics recycling industry. This trade was made possible by the absence of segregation, secure storage and proper disposal of medical waste. Corruption, a lack of accountability and individual responsibility were also found to be contributors. In most cases the individuals involved with these activities did not understand the risks. Although motivation was often for personal gain or in support of substance abuse, participants sometimes felt that they were providing a useful service to the community. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Model for the separate collection of packaging waste in Portuguese low-performing recycling regions.

    Science.gov (United States)

    Oliveira, V; Sousa, V; Vaz, J M; Dias-Ferreira, C

    2018-06-15

    Separate collection of packaging waste (glass; plastic/metals; paper/cardboard), is currently a widespread practice throughout Europe. It enables the recovery of good quality recyclable materials. However, separate collection performance are quite heterogeneous, with some countries reaching higher levels than others. In the present work, separate collection of packaging waste has been evaluated in a low-performance recycling region in Portugal in order to investigate which factors are most affecting the performance in bring-bank collection system. The variability of separate collection yields (kg per inhabitant per year) among 42 municipalities was scrutinized for the year 2015 against possible explanatory factors. A total of 14 possible explanatory factors were analysed, falling into two groups: socio-economic/demographic and waste collection service related. Regression models were built in an attempt to evaluate the individual effect of each factor on separate collection yields and predict changes on the collection yields by acting on those factors. The best model obtained is capable to explain 73% of the variation found in the separate collection yields. The model includes the following statistically significant indicators affecting the success of separate collection yields: i) inhabitants per bring-bank; ii) relative accessibility to bring-banks; iii) degree of urbanization; iv) number of school years attended; and v) area. The model presented in this work was developed specifically for the bring-bank system, has an explanatory power and quantifies the impact of each factor on separate collection yields. It can therefore be used as a support tool by local and regional waste management authorities in the definition of future strategies to increase collection of recyclables of good quality and to achieve national and regional targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Attitudes of Preservice Social Studies Teachers towards Solid Wastes and Recycle

    Science.gov (United States)

    Karatekin, Kadir; Merey, Zihni

    2015-01-01

    The objective of this study is to determine the attitudes of preservice social studies-teachers towards solid wastes and recycle. This study used the screening model, In order to determine the attitudes of preservice teachers towards solid wastes and recycle, we used the "Scale for the Attitudes of Preservice Teachers towards Solid Wastes and…

  7. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  8. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  9. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recycling of organic wastes by employing Eisenia fetida.

    Science.gov (United States)

    Yadav, Anoop; Garg, V K

    2011-02-01

    This paper reports the recycling of nutrients by vermicomposting of cow dung (CD), poultry droppings (PD) and food industry sludge (FIS) employing earthworms (Eisenia fetida). A total of six vermicomposting units were established and dynamics of chemical and biological parameters has been studied for 13 weeks. The waste mixture containing 50% CD+25% PD+25% FIS had better fertilizer value among studied waste combinations. At the end of experiment, vermicomposts showed decrease in pH and organic C, but increase in EC, total Kjeldhal N, total available P and total K contents. The C:N ratio of final vermicomposts also reduced to 10.7-12.7 from 22.8 to 56 in different waste combinations. The earthworms have good biomass gain and cocoon production in all vermicomposting units but CD alone and 50% CD+25% PD+25% FIS were better than other studied combinations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  12. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  13. Waste E-glass particles used in cementitious mixtures

    International Nuclear Information System (INIS)

    Chen, C.H.; Huang, R.; Wu, J.K.; Yang, C.C.

    2006-01-01

    The properties of concretes containing various waste E-glass particle contents were investigated in this study. Waste E-glass particles were obtained from electronic grade glass yarn scrap by grinding to small particle size. The size distribution of cylindrical glass particle was from 38 to 300 μm and about 40% of E-glass particle was less than 150 μm. The E-glass mainly consists of SiO 2 , Al 2 O 3 , Ca O and MgO, and is indicated as amorphous by X-ray diffraction (XRD) technique. Compressive strength and resistance of sulfate attack and chloride ion penetration were significantly improved by utilizing proper amount of waste E-glass in concrete. The compressive strength of specimen with 40 wt.% E-glass content was 17%, 27% and 43% higher than that of control specimen at age of 28, 91 and 365 days, respectively. E-glass can be used in concrete as cementitious material as well as inert filler, which depending upon the particle size, and the dividing size appears to be 75 μm. The workability decreased as the glass content increased due to reduction of fineness modulus, and the addition of high-range water reducers was needed to obtain a uniform mix. Little difference was observed in ASR testing results between control and E-glass specimens. Based on the properties of hardened concrete, optimum E-glass content was found to be 40-50 wt.%

  14. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  15. Properties and characteristics of high-level waste glass

    International Nuclear Information System (INIS)

    Ross, W.A.

    1977-01-01

    This paper has briefly reviewed many of the characteristics and properties of high-level waste glasses. From this review, it can be noted that glass has many desirable properties for solidification of high-level wastes. The most important of these include: (1) its low leach rate; (2) the ability to tolerate large changes in waste composition; (3) the tolerance of anticipated storage temperatures; (4) its low surface area even after thermal shock or impact

  16. Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling

    Science.gov (United States)

    Nzioka, A. M.; Kim, Y. J.

    2018-01-01

    In this study, we present the results of an experimental study of the use of the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to characterise the coatings of the recovered E - glass fibres. The recovered E - glass fibres were obtained using chemical recycling process coupled with ultrasound cavitation. The objective of this study was to analyse the impact of chemical recycling and the ultrasound cavitation process on the sizing properties of the recovered fibres. We obtained the recovered fibres and sized using 1 wt% 3 - aminopropyltriethoxysilane (APS). Part of the sized fibres was washed with acetone and analysed all the sample fibres using AFM and XPS. Results showed the different composition of sizing after extraction using acetone. We compared the results of this study with that of virgin clean glass fibres.

  17. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-01-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  18. High levels of antimony in dust from e-waste recycling in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiangyang, E-mail: bixy@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Li, Zhonggen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Zhuang, Xiaochun [Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Han, Zhixuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Yang, Wenlin [Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China)

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: {yields} Antimony and arsenic concentrations in dust from e-waste recycling were investigated. {yields} E-waste recycling is an important emerging source of Sb pollution. {yields} Sb/As ratios may help identify the e-waste contamination.

  19. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  20. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  1. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  2. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  3. Glass-ceramics: Their production from wastes - a review

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  4. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  5. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  6. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  7. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  8. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  9. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  10. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).

    Science.gov (United States)

    Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F

    2017-11-01

    Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  12. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    Science.gov (United States)

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  14. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  15. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Mingfei [Henan Key Laboratory Cultivation Base of Mine Environmental Protection and Ecological Remediation, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Fu, Zegang [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Wang, Yaping, E-mail: wangyp326@163.com [School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China (China); Wang, Jingyu [Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000 Henan China (China); Zhang, Zhiyuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2017-01-15

    Highlights: • CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. • A part of PbO was reduced into Pb and detached from the glass phase. • The rest of PbO and other metal oxides were mainly concentrated in the B{sub 2}O{sub 3} phase. • PbO enriched in the interconnected B{sub 2}O{sub 3} phase can be completely leached out by HNO{sub 3}. • High silica glass powder(SiO{sub 2} purity >95%) was obtained after the leaching process. - Abstract: In this study, a novel process for the removal of toxic lead from the CRT funnel glass and synchronous preparation of high silica glass powder was developed by a carbon-thermal reduction enhanced glass phase separation process. CRT funnel glass was remelted with B{sub 2}O{sub 3} in reducing atmosphere. In the thermal process, a part of PbO contained in the funnel glass was reduced into metallic Pb and detached from the glass phase. The rest of PbO and other metal oxides (including Na{sub 2}O, K{sub 2}O, Al{sub 2}O{sub 3,} BaO and CaO) were mainly concentrated in the boric oxide phase. The metallic Pb phase and boric oxide phase were completely leached out by 5 mol/L HNO{sub 3}. The lead removal rate was 99.80% and high silica glass powder (SiO{sub 2} purity >95 wt%) was obtained by setting the temperature, B{sub 2}O{sub 3} added amount and holding time at 1000 °C, 20% and 30 mins, respectively. The prepared high silicate glass powders can be used as catalyst carrier, semipermeable membranes, adsorbents or be remelted into high silicate glass as an ideal substitute for quartz glass. Thus this study proposed an eco-friendly and economical process for recycling Pb-rich electronic glass waste.

  16. Study of Wettability of Clayey Ceramic and Fluorescent Lamp Glass Waste Powders

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Monteiro, Sergio Neves; Ribeiro, Sebastião; Sardinha, Leonardo Carneiro; Vieira, Carlos Maurício Fontes

    The glass tube of spent fluorescent lamps is contaminated with mercury, which might be a serious hazard in the case of conventional recycling by melting with other glasses. A possible solution could be its incorporation into a clay body to fabricate common fired ceramics such as bricks and tiles. The objective of this work is to characterize a type of fluorescent lamp glass waste to be incorporated into a clayey ceramic. The characterization was performed in terms of wettability tests to evaluate the interaction between the surface of the clayey ceramic and glass waste as a function of the firing temperature. The results showed that the contact angle decreased with increasing temperature, reaching a value of 79°, at a temperature of 1100°C, but not sufficient to completely wet the ceramic. However, compatible chemical composition and reduction of porosity by the flow of soft glass waste between the clay particles favor the consolidation of the ceramics structure above 900°C.

  17. The Radiation Effect to Waste Glass that Resulting of Vitrification

    International Nuclear Information System (INIS)

    Herlan Martono; Aisyah

    2002-01-01

    The high level liquid waste (HLLW) is generated from the first step extraction of the nuclear fuel reprocessing. This waste was contain of few of actinide and many of fission product. The alpha radiation of actinide that contain on the HLLW cause the change the waste glass characteristic. The experiment was conducted by the doping, irradiation and heating of waste glass resulting from vitrification. The alpha radiation cause the change of composition that could be detected from change of waste glass density and mechanical strength. The increasing of alpha radiation dose cause the increasing change of density and mechanical strength, although the change of mechanical strength is not significant. Degree of change of waste glass density also depend on type of waste-glass and reach for saturated point at over of 5x10 24 alpha decay/m 3 . The gamma radiation of fission product that contain on the HLLW can increasing of waste glass temperature that cause the structure change, so devitrification was occur. The devitrification can the increasing of leaching rate. The cumulative of gamma dose rate was not cause the devitrification. (author)

  18. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  19. Trajectory Analysis of Copper and Glass Particles in Electrostatic Separation for the Recycling of ASR

    Directory of Open Access Journals (Sweden)

    Beom-uk Kim

    2017-10-01

    Full Text Available Automobile-shredder-residue (ASR recycling techniques have been widely applied for improving the total recycling rate of end-of-life vehicles. In this study, to obtain useful information for predicting or improving ASR-separation efficiency, trajectory analyses of conductors (copper and non-conductors (glass were performed using a lab-scale induction electrostatic separator. The copper-wire trajectories obtained showed a good agreement depending significantly on the electric field strength and particle size. The observed copper-wire trajectories showed consistent congruity with the coarse-particles simulation (0.5 and 0.25 mm. The observed fine-particles (0.06 mm trajectory was deflected toward the (− attractive electrode, owing to the charge density effects due to the particle characteristics and relative humidity. This results in superior separation performance because more copper enters the conductor products bin. The actual dielectric-glass trajectory was deflected toward the (− attractive electrode, thus showing characteristics similar to conductive-particle characteristics. Through analyses conducted using a stereoscopic microscope, scanning electron microscope, and energy dispersive spectroscope, we found heterogeneous materials (fine ferrous particles and conductive organics on the glass surface. This demonstrates the separation-efficiency decrease for non-ferrous metals during electrostatic separation in the recycling of ASR. Future work should include a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

  20. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    Science.gov (United States)

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  1. Ecofeed, animal feed produced from recycled food waste

    Directory of Open Access Journals (Sweden)

    Katsuaki Sugiura

    2009-09-01

    Full Text Available Due to the price hike of imported grains for feed, the production of Ecofeed, feed produced from recycled food waste, has increased in recent years. Food dregs from the food and beverage processing industry and out-of-date food from supermarkets and convenience stores are most often used as raw materials for Ecofeed. As food waste usually contains a lot of moisture and is easily spoiled, guidelines prescribing measures to be taken when collecting, transporting and storing raw materials, and for the production, shipment, storage and use of Ecofeed products, have been developed to ensure the safety of Ecofeed. The guidelines also include measures that should be taken to prevent the spread of bovine spongiform encephalopathy when producing and using Ecofeed. A certification system was introduced in March 2009 to ensure the quality and safety of Ecofeed and thus promote its use.

  2. Ecofeed, animal feed produced from recycled food waste.

    Science.gov (United States)

    Sugiura, Katsuaki; Yamatani, Shoich; Watahara, Masashi; Onodera, Takashi

    2009-01-01

    Due to the price hike of imported grains for feed, the production of Ecofeed, feed produced from recycled food waste, has increased in recent years. Food dregs from the food and beverage processing industry and out-of-date food from supermarkets and convenience stores are most often used as raw materials for Ecofeed. As food waste usually contains a lot of moisture and is easily spoiled, guidelines prescribing measures to be taken when collecting, transporting and storing raw materials, and for the production, shipment, storage and use of Ecofeed products, have been developed to ensure the safety of Ecofeed. The guidelines also include measures that should be taken to prevent the spread of bovine spongiform encephalopathy when producing and using Ecofeed. A certification system was introduced in March 2009 to ensure the quality and safety of Ecofeed and thus promote its use.

  3. Case study: apparel industry waste management: a focus on recycling in South Africa.

    Science.gov (United States)

    Larney, M; van Aardt, A M

    2010-01-01

    The need for effective apparel waste management is motivated by the increasing cost and decreasing availability of landfill space and the dwindling of natural resources. The aim of this study was to identify the current solid waste disposal and recycling practices of the apparel industry in South Africa and to determine their attitude and willingness towards recycling, their perception of the feasibility thereof, barriers to recycling and marketing strategies that would be appropriate for products made from recycled materials. A structured questionnaire was mailed to apparel manufacturers in South Africa. The results indicated that most apparel manufacturers use landfills to dispose of their waste, while approximately half recycle some of the waste. They are fairly positive towards recycling, with consideration of economical feasibility. Phi-coefficients show no practically significant relationship between company size and the use of recycled materials. The most important barriers to recycling are lack of equipment and technology, lack of material to recycle and lack of consumer awareness. Marketing strategies for recycled products are recommended. It is concluded that consumer awareness and knowledge regarding recycled apparel products should be developed in order to ensure a market and that apparel manufacturers should be encouraged to recycle more extensively, in order to ensure that resources will not be exhausted unnecessarily and the environment will be preserved optimally.

  4. Mixture optimization of cement treated demolition waste with recycled masonry and concrete

    NARCIS (Netherlands)

    Xuan, D.X.; Houben, L.J.M.; Molenaar, A.A.A.; Shui, Z.H,

    2011-01-01

    Due to environmental reasons and the shortage of natural resources, it is greatly valuable to recycle construction and demolition waste (CDW) as much as possible. One of effective ways to reuse more CDW is to produce a cemented road base material. The recycled CDW however is a mix of recycled

  5. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    International Nuclear Information System (INIS)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  6. FY 1998 report on the results of the development for an advanced application system for glass waste with CO2 emission reduction; 1998 nendo CO{sub 2} haishutsu yokuseigata hai glass kodo riyo system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of the cycling recycle society, it is important to promote recycling using glass waste for CO2 reduction and effective use of resources. The paper described the FY 1998 results of the development. It included the classification by which the composition of the particle sizes required for recycled products will be made possible, basic studies for low-cost pulverization/separation of foreign substances, and tests on heightening of process accuracy. Relating to the artificial synthesis of feldspar/pottery stone using glass waste/alumina waste as starting materials, vitrification behavior was studied to find out the optimum synthesis conditions. Glass waste of 60% and aluminum hydroxide of 40% were mixed at calcination temperature of 1,100 degrees C for more than 1 hour. Properties of the artificial feldspar/pottery stone were similar to those of the natural one. As to the utilization of glass waste to hydrothermally solidified materials, high-strength solidified matter without crack was obtained in the three-component system of G powder/hydrated lime/gypsum. Concerning the production of eco-glass block, a study was made on the size and mixing ratio of the cullet waste which is very soluble and has no effects on performance. The paper touched also on the R and D of the environmentally friendly type system using multi-functional hybrid materials. (NEDO)

  7. Recycling of radioactive mineral waste by activity separation

    International Nuclear Information System (INIS)

    Schartmann, F.; Cramer, T.; Meier-Kortwig, J.; Diedenhofen, S.; Wotruba, H.

    2005-01-01

    The AST process is a device for the recycling of building rubble originating from the dismantling of nuclear installations. Due to the activity separation in the process, a major part of rubble which would have otherwise been radioactive waste can now be cleared. The AST process has been developed in the course of the combined research project ''Aufbereitung radioaktiver mineralischer Rueckstaede durch Aktivitaetsseparation (Recycling of radioactive mineral waste by activity separation)'' which was sponsored by the BMBF (Federal Ministry for Education and Research). The first step was to investigate the activity distribution between the various constituents of activated heavy concrete (additions: hematite, magnetite, iron cuttings), of contaminated heavy and normal concrete, as well as of composition floor. Heavy concrete with metal additions showed a selective activation of the various constituents. Contaminated rubble often exhibits a selective enrichment of the activity in the cement in contrast to the aggregate. The AST facility for activity separation was designed on the basis of these results. Trial operation with various types of building rubble was carried out using three methods for sorting, screening according to grain size, magnetic separation and radiometric sorting. The use of these three methods was adapted to the material. (orig.)

  8. A survey of economic indices of plastic wastes recycling industry

    Directory of Open Access Journals (Sweden)

    Malek Hassanpour

    2015-11-01

    Full Text Available Numerous small recycling units of plastic wastes have been currently constructed heedless to study of economic indices in Iran. Pay attention to the prominent performance of the industrial sector for economic development and its priority for fortifying other sectors to implement job opportunities, survey of the economic indices beckon the stakeholders and industries owners. The main objective of this study was a survey of economic indices in small recycling unit of plastic wastes. Therefore, the practice of computing the economic indices was performed using empirical equations, professional experiences and observations in site of the industry in terms of sustainability performance. Current study had shown the indices values such as value-added percent, profit, annual income, breakeven point, value-added, output value, data value, variable cost of good unit and production costs were found 62%, $ 366558, $ 364292.6, $ 100.34, $ 423451.25, $ 255335.75, $ 678787, $ 389.65 and $ 314494.4 respectively. The breakeven point about 15.93%, the time of return on investment about 1.12 (13.7 months were represented that this industry slightly needs long time to afford the employed capital and starts making a profit.

  9. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    Science.gov (United States)

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  10. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  11. Simulation used to qualify nuclear waste glass for disposal

    International Nuclear Information System (INIS)

    Reimus, T.W.; Kuhn, W.L.

    1987-07-01

    A hypothetical vitrification system was simulated errors associated with controlling and predicting the composition of the nuclear waste glass produced in the system. The composition of the glass must fall within certain limits to qualify for permanent geologic disposal. The estimated error in predicting the concentrations of various constituents in the glass was 2% to 8%, depending on the strategy for sampling and analyzing the feed and on the assumed magnitudes of the process uncertainties. The estimated error in controlling the glass composition was 2% to 9%, depending on the strategy for sampling and analyzing the waste and on the assumed magnitudes of the uncertainties. This work demonstrates that simulation techniques can be used to assist in qualifying nuclear waste glass for disposal. 3 refs., 2 figs., 4 tabs

  12. Present status of recycling waste mobile phones in China: a review.

    Science.gov (United States)

    Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni

    2017-07-01

    A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.

  13. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions

  14. Plutonium Solubility In High-Level Waste Alkali Borosilicate Glass

    International Nuclear Information System (INIS)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-01

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to ∼18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m 3 of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m 3 3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt

  15. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound

    International Nuclear Information System (INIS)

    Guo Jie; Rao Qunli; Xu Zhenming

    2008-01-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m 2 , heat deflection temperature of 175 deg. C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits

  16. NUCLEAR WASTE GLASSES: CONTINUOUS MELTING AND BULK VITRIFICAITON

    International Nuclear Information System (INIS)

    KRUGER, A.A.

    2008-01-01

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed

  17. Studies on the Potential of Waste Soda Lime Silica Glass in Glass Ionomer Cement Production

    Directory of Open Access Journals (Sweden)

    V. W. Francis Thoo

    2013-01-01

    Full Text Available Glass ionomer cements (GIC are produced through acid base reaction between calcium-fluoroaluminosilicate glass powder and polyacrylic acid (PAA. Soda lime silica glasses (SLS, mainly composed of silica (SiO2, have been utilized in this study as the source of SiO2 for synthesis of Ca-fluoroaluminosilicate glass. Therefore, the main objective of this study was to investigate the potential of SLS waste glass in producing GIC. Two glasses, GWX 1 (analytical grade SiO2 and GWX 2 (replacing SiO2 with waste SLS, were synthesized and then characterized using X-ray diffraction (XRD and energy dispersive X-ray (EDX. Synthesized glasses were then used to produce GIC, in which the properties were characterized using Fourier transform infrared spectroscopy (FT-IR and compressive test (from 1 to 28 days. XRD results showed that amorphous glass was produced by using SLS waste glass (GWX 2, which is similar to glass produced using analytical grade SiO2 (GWX 1. Results from FT-IR showed that the setting reaction of GWX 2 cements is slower compared to cement GWX 1. Compressive strengths for GWX 1 cements reached up to 76 MPa at 28 days, whereas GWX 2 cements showed a slightly higher value, which is 80 MPa.

  18. Emergy analysis of the recycling options for construction and demolition waste.

    Science.gov (United States)

    Yuan, Fang; Shen, Li-yin; Li, Qi-ming

    2011-12-01

    Construction and demolition (C&D) waste is becoming a major contributor to environmental pollution. In Shanghai, China, the quantity of C&D waste is 2.11E+07 t/yr, which accounts for 45% of the total quantity of solid waste. There has been a growing promotion of recycling C&D waste as an effective way to solve this waste problem. However, the evaluation of the efficiency of recycling C&D waste as a potential source of resources is largely based on traditional economic analysis. The economic analysis emphasizes money instead of the harmony between economic benefit and environmental effects. There is a need for a new strategic approach to investigate the efficiency of recycling C&D waste to achieve the integration between economic, social and environmental effects. Emergy theory can be employed to analyze different recycling options for C&D waste. With reference to the Chinese construction industry, this paper demonstrates that the close-loop recycling option is better than the open-loop recycling option for C&D waste in terms of the integration of social, environmental and sustainable aspects. To evaluate different technology solutions for C&D waste recycling, the emergy theory and method is not limited to a cost-benefit balance but can include economic, social, environmental and sustainable effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Modeling a novel glass immobilization waste treatment process using flow

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Nehls, J.W. Jr.; Welch, T.D.; Giardina, J.L.

    1996-01-01

    One option for control and disposal of surplus fissile materials is the Glass Material Oxidation and Dissolution System (GMODS), a process developed at ORNL for directly converting Pu-bearing material into a durable high-quality glass waste form. This paper presents a preliminary assessment of the GMODS process flowsheet using FLOW, a chemical process simulator. The simulation showed that the glass chemistry postulated ion the models has acceptable levels of risks

  20. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non

  1. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  2. Children with health impairments by heavy metals in an e-waste recycling area

    NARCIS (Netherlands)

    Zeng, Xiang; Xu, Xijin; Boezen, H. Marike; Huo, Xia

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals

  3. BPEO/BPM in recycling of low level waste metal in the UK - 16210

    International Nuclear Information System (INIS)

    Dodd, Kevin; Robinson, Joe; Lindberg, Maria

    2009-01-01

    Best Practicable Environmental Option (BPEO) and Best Practicable Means (BPM) are concepts well established in the nuclear industry to help guide and inform waste management decision making. The recycling of contaminated metal waste in the UK is not well established, with the majority of waste disposed of at the Low Level Waste Repository (LLWR) at Drigg. This paper presents an overview of the Strategic BPEO study completed by Studsvik examining the options for low level metal waste management and a subsequent BPM study completed in support of a proposed metals recycling service. The environmental benefits of recycling metals overseas is further examined through the application of life cycle analysis to the metals recycling process. The methodologies used for both studies are discussed and the findings of these studies presented. These indicate that recycling contaminated metal is the preferred option, using overseas facilities until UK facilities are available. The BPM for metals recycling is discussed in detail and indicates that a tool box for processing metal waste is required to ensure BPM is applied on a case by case basis. This is supported by effective management of waste transport and waste acceptance criteria. Whilst the transport of contaminated metal overseas for treatment adds to the environmental burden of metals recycling, this when compared with the production of virgin metal, is shown to remain beneficial. The results of the Studsvik studies demonstrate the benefits of recycling metals, the options available for such a service and challenges that remain. (authors)

  4. Municipal solid waste management for total resource recycling: a case study on Haulien County in Taiwan.

    Science.gov (United States)

    Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei

    2013-01-01

    This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.

  5. A Group Approach in a Community Empowerment: A Case Study of Waste Recycling Group in Jakarta

    Science.gov (United States)

    Hadiyanti, Puji

    2016-01-01

    This study reviews a group approach in empowering the community through waste recycling activities related to the development of human resources in Jakarta. The specific objectives to be achieved are the wish to understand and find: (1) Conditions of waste recycling empowerment in Jakarta, (2) Mechanisms of a group approach in empowering…

  6. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Kers, G.; Santen, E. van

    2011-01-01

    This presentation shows the advantages of re-melting post-consumer glass, but also the potential risks of using contaminated cullet in the raw material batch of glass furnaces (e.g. container glass furnaces). As an example of potential advantages: increasing the cullet % in the batch of an efficient

  7. Preliminary assessment of the controlled release of radionuclides from waste packages containing borosilicate waste glass

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Apted, M.J.; Engle, D.W.; Eslinger, P.W.

    1990-06-01

    The purpose of this report is to provide a preliminary assessment of the release-rate for an engineered barriers subsystem (EBS) containing waste packages of defense high-level waste borosilicate glass at geochemical and hydrological conditions similar to the those at Yucca Mountain. The relationship between the proposed Waste Acceptance Preliminary Specifications (WAPS) test of glass- dissolution rate and compliance with the NRC's release-rate criterion is also evaluated. Calculations are reported for three hierarchical levels: EBS analysis, waste-package analysis, and waste-glass analysis. The following conclusions identify those factors that most acutely affect the magnitude of, or uncertainty in, release-rate performance

  8. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  9. Nuclear waste disposal: alternatives to solidification in glass proposed

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    More than a quarter-million cubic meters of liquid radioactive wastes are now being held at government installations awaiting final disposal. During the past 20 years, the disposal plan of choice has been to incorporate the 40 to 50 radioactive elements dissolved in liquid wastes into blocks of glass, seal the glass in metal canisters, and insert the canisters into deep, geologically stable salt beds. Over the last few years, some geologists and materials scientists have become concerned that perhaps not enough is known yet about the interaction of waste, container, and salt (or any rock) to have a reasonable assurance that the hazardous wastes will be contained successfully. The biggest advantage of glass at present is the demonstrated practicality of producing large, highly radioactive blocks of it. The frontrunner as a successor to glass is ceramics, which are nonmetallic crystalline materials formed at high temperature, such as chinaware or natural minerals. An apparent advantage of ceramics is that they already have an ordered atomic structure, whose properties can be tailored to a particular waste element and to conditions of a specific disposal site. A ceramic tailored for waste disposal called supercalcine-ceramic has been developed. It was emphasized that the best minerals for waste solidification may be those that have proved most stable under natural conditions over geologic time. Disadvantage to ceramics are radiation damage and transmutation. However, it is now obvious that some ceramics are more stable than glass under certain conditions. Metal-encapsulated ceramic, called cermet, is being developed as a waste form. Cermets are considerably more resistant at 100 0 C than a borosilicate waste glass. Researchers are now testing prospective waste forms under the most extreme conditions that might prevail in a waste disposal site

  10. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  11. Advanced High-Level Waste Glass Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, David K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schweiger, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fox, Kevin M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced

  12. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  13. Glass as a waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Bates, J.K.; Ellison, A.J.G.; Emery, J.W.; Hoh, J.C.

    1995-01-01

    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

  14. Thermal recycling of plastic waste using pyrolysis-gasification process for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Forbit, George Teke

    2012-04-04

    waste management organisations and disposal sites were conducted in various cities in the three case study countries. A resource-oriented manual sorting using the resource-recovery scavenging approach (RESA) simulating integration of scavenger's activities in waste sorting was conducted at BTU and Lagos. Major results obtained include: Characterization, quantification and classification of a dry sample of commingled MSW at Cottbus gave major waste fractions in order of decreasing abundance as 23.15% of residue waste, 19.75% of paper and cardboards, 17.80% of plastics, 14.63% of textiles and diapers, 10.06% of food waste and 9.55% of glass. An overall 33.21% of waste sample is compostable for manure, 52.2% usable as feedstock in the PG technology and 99.81% of total sample having a material or energy recovery potential. In Lagos, Nigeria main fractions were 29% of plastics, 36% of residue waste, 17% of soil/sand, 7% of paper with overall 41% usable as feedstock in PG technology, 39% compostable, 3% of recyclable (metal and glass). Sand can be recovered from the soil/sand fraction for construction. Excluding the sand/soil mixture, 83% of the total waste sample has potential for material and energy value. An appropriate technology that applies principles of pyrolysis and gasification to convert non-PVC plastic waste to energy was designed, constructed, tested and optimized with respect to: (i) Successful functioning with conversion of averagely 98.51% of input constituting of 82.78-98.21% of charcoal and 96.72-99.27% of plastic to heat energy (ii) Evaluation of socioeconomic and environmental impacts based on pyrolysis and exhaust gas and ash residue analysis showed absence of VOCs, heavy metals and pollutant organic and inorganic compounds; (iii) Safety and risk assessment to indoor pollution is very low; (iv) Assessment of the WTA and WTP indicated that 94% of respondents in Lagos, Nigeria and Porto Novo, Benin were willing to accept and pay for this technology. Using

  15. The use of short rotation willows and poplars for the recycling of saline waste waters

    Science.gov (United States)

    Jaconette Mirck; Ronald S. Jr. Zalesny; Ioannis Dimitriou; Jill A. Zalesny; Timothy A. Volk; Warren E. Mabee

    2009-01-01

    The production of high-salinity waste waters by landfills and other waste sites causes environmental concerns. This waste water often contains high concentrations of sodium and chloride, which may end up in local ground and surface waters. Vegetation filter systems comprised of willows and poplars can be used for the recycling of saline waste water. These vegetation...

  16. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  17. Borosilicate glass as a matrix for the immobilization of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wicks, G.G.; Bibler, N.E.

    1982-01-01

    The reference waste form for immobilization of Savannah River Plant (SRP) waste is borosilicate glass. In the reference process, waste is mixed with glass-forming chemicals and melted in a Joule-heated ceramic melter at 1150 0 C. Waste glass made with actual or simulated waste on a small scale and glass made with simulated waste on a large scale confirm that the current reference process and glass-former composition are able to accommodate all SRP waste compositions and can produce a glass with: high waste loading; low leach rates; good thermal stability; high resistance to radiation effects; and good impact resistance. Borosilicate glass has been studied as a matrix for the immobilization of SRP waste since 1974. This paper reviews the results of extensive characterization and performance testing of the glass product. These results show that borosilicate glass is a very suitable matrix for the immobilization of SRP waste. 18 references, 3 figures, 10 tables

  18. Fusibility of medical glass in hospital waste incineration: Effect of glass components

    International Nuclear Information System (INIS)

    Jiang, X.G.; An, C.G.; Li, C.Y.; Fei, Z.W.; Jin, Y.Q.; Yan, J.H.

    2009-01-01

    Medical glass, which is the principal incombustible component in hospital wastes, has a bad influence on combustion. In a rotary kiln incinerator, medical glass melts and turns into slag, possibly adhering to the inner wall. Prediction of the melting characteristics of medical glass hence is important for preventing slagging. The effect of various glass components on fusibility has been investigated experimentally; that of Na 2 O is the most marked. The softening temperature and flow temperature decrease 19.8 o C and 34.0 o C, respectively, with a rise of Na 2 O content in the Basic Content (standard composition of medical glass) of 1%. Correlations between fusion temperatures and glass components have been investigated; predictive functions of four characteristic melting temperatures have been obtained by simplifying the multi-variant series and were verified by testing glass samples. Relative errors of fusion temperatures (computed vs. measured) are mostly less than 5%.

  19. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Science.gov (United States)

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...

  20. Resource and waste taxation in the theory of the firm with recycling activities

    International Nuclear Information System (INIS)

    Conrad, K.

    1999-01-01

    The management of solid waste has become an urgent problem in nations with a great population density. Accordingly, waste reduction through source reduction and recycling has become increasingly important. Our purpose is to show how prevention, recycling and disposal of waste could be part of a theory of the firm. We first derive efficient production functions from production processes with waste as a by-product. Waste obtained as new scrap can partially be recycled by using additional inputs in order to cut back the purchase of virgin material. Waste not completely recyclable will leave the firm as disposal which also entails cost to the firm. We use the dual cost function approach to develop a theory of the firm under solid residual management. Since the producer does not bear the full cost of disposal, there will be a bias toward virgin materials and away from recycling. The goal of the government is to stimulate the firms to recycle with respect to the preservation of exhaustible resources. An incentive to recycle is a tax on resources or on waste. In order to determine the tax levels the government maximizes welfare subject to the dynamic constraint for decumulation of land fill for waste deposits. This gives the user cost and its time profile for taxing waste disposal or virgin material. In a comparative statistics analysis we compare the effect of taxes on waste vs. virgin material on effort to produce in a resource saving manner, on the quantity of recycled material, on output, and on the reduction of waste. Since the impact of environmental regulation on employment is important, our model detects seven effects on labor demand as part of resource conservation policy. We finally carry out a comparative statistics analysis of waste intensive firms operating in different market structures. Of interest is the impact of a resource or waste taxation on market volume, on the number of firms, on resource saving effort, and on profit. 36 refs

  1. The strategic role of recycling centres for environmental performance of waste management systems.

    Science.gov (United States)

    Krook, Joakim; Eklund, Mats

    2010-05-01

    This paper analyses how different actors influence the sorting quality of waste at recycling centres. Users (i.e. citizens) play an essential role since they conduct the actual sorting. They have difficulties sorting many of their discarded products, leading to decreased performance of the entire waste management system of which recycling centres are a part. Several measures addressing this problem are identified such as product design, improved terminology for labelling waste and increased manning at recycling centres. A fundamental task for managers and employees is to further develop information and guidance for users, both at home and at recycling centres. Several obstacles for improvements are also discussed, including working conditions and the economy of recycling centres, as well as the routines for communication and quality assurance among actors in the recycling business. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Logistics systems for recycling - Efficient collection of household waste

    Energy Technology Data Exchange (ETDEWEB)

    Jahre, M.

    1995-12-31

    This dissertation investigates collection and recycling of household waste with focus on packaging materials. The purpose is how to describe and explain the design of a collection system according to different system environments in order to achieve high logistics performance in terms of low cost and high service. The research approach consists of two main parts. First, data on existing systems are collected and analyzed. Then a model is used to analyze cost consequences from changes in the system and the environment. Four main properties of reverse distribution channels were identified including the number of distribution levels and distribution points, whether the system is bring or kerbside, the degree of separation at source and the degree of co-collection. The study further demonstrates that performance can be measured in a number of ways including service toward end-markets and households, costs, environmental consequences and programme ratios. Finally, two main environmental factors identified were population density and the number of materials being collected in the system. The major conclusion from the study is that systems in areas with low population density should collect and recycle few materials that should be separated at the source and then co-collected. Systems in areas with high population density, on the other hand, may collect many materials, but then centralized separation (i.e. processing in a MRF) should take place. 103 refs, 72 figs, 65 tabs

  3. Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Idiano D’Adamo

    2017-01-01

    Full Text Available Cumulative photovoltaic (PV power installed in 2016 was equal to 305 GW. Five countries (China, Japan, Germany, the USA, and Italy shared about 70% of the global power. End-of-life (EoL management of waste PV modules requires alternative strategies than landfill, and recycling is a valid option. Technological solutions are already available in the market and environmental benefits are highlighted by the literature, while economic advantages are not well defined. The aim of this paper is investigating the financial feasibility of crystalline silicon (Si PV module-recycling processes. Two well-known indicators are proposed for a reference 2000 tons plant: net present value (NPV and discounted payback period (DPBT. NPV/size is equal to −0.84 €/kg in a baseline scenario. Furthermore, a sensitivity analysis is conducted, in order to improve the solidity of the obtained results. NPV/size varies from −1.19 €/kg to −0.50 €/kg. The absence of valuable materials plays a key role, and process costs are the main critical variables.

  4. Logistics systems for recycling - Efficient collection of household waste

    Energy Technology Data Exchange (ETDEWEB)

    Jahre, M

    1996-12-31

    This dissertation investigates collection and recycling of household waste with focus on packaging materials. The purpose is how to describe and explain the design of a collection system according to different system environments in order to achieve high logistics performance in terms of low cost and high service. The research approach consists of two main parts. First, data on existing systems are collected and analyzed. Then a model is used to analyze cost consequences from changes in the system and the environment. Four main properties of reverse distribution channels were identified including the number of distribution levels and distribution points, whether the system is bring or kerbside, the degree of separation at source and the degree of co-collection. The study further demonstrates that performance can be measured in a number of ways including service toward end-markets and households, costs, environmental consequences and programme ratios. Finally, two main environmental factors identified were population density and the number of materials being collected in the system. The major conclusion from the study is that systems in areas with low population density should collect and recycle few materials that should be separated at the source and then co-collected. Systems in areas with high population density, on the other hand, may collect many materials, but then centralized separation (i.e. processing in a MRF) should take place. 103 refs, 72 figs, 65 tabs

  5. Glass-solidification method for high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kometani, Masayuki; Sasage, Ken-ichi.

    1996-01-01

    High level liquid wastes are removed with precipitates mainly comprising Mo and Zr, thereafter, the high level liquid wastes are mixed with a glass raw material comprising a composition having a B 2 O 3 /SiO 2 ratio of not less than 0.41, a ZnO/Li 2 O ratio of not less than 1.00, and an Al 2 O 3 /Li 2 O ratio of not less than 2.58, and they are melted and solidified into glass-solidification products. The liquid waste content in the glass-solidification products can be increased up to about 45% by using the glass raw material having such a predetermined composition. In addition, deposition of a yellow phase does not occur, and a leaching rate identical with that in a conventional case can be maintained. (T.M.)

  6. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  7. Chemical Recycling of PET Wastes with Different Catalysts

    Directory of Open Access Journals (Sweden)

    Mohammad Khoonkari

    2015-01-01

    Full Text Available Chemical recycling of polyethylene terephthalate, known as PET, has been the subject of increased interest as a valuable feedstock for different chemical processes. In this work, glycolysis of PET waste granules was carried out using excess ethylene glycol in the presence of different simple chemicals acting as catalysts, which are, namely, categorized in ionic liquids, metal salts, hydrotalcites, and enzymes. From every category, some materials as a sample were used, and the one which is going to bring the best result is noted. The effect of some parameters such as temperature, pressure, amount of sample, material ratio, and stirring rate was investigated. As a result we compared the best of each category with the others and final result is shown.

  8. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Sonavane, M S; Mishra, P.K., E-mail: maheshss@barc.gov.in [Nuclear Recycle Board, Bhabha Atomic Research Centre, Mumbai (India); Mandal, S; Barik, S; Roy Chowdhury, A; Sen, R [Central Glass and Ceramic Institute, Kolkata (India)

    2012-10-15

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  9. Feasibility Study for Preparation and Use of Glass Grains as an Alternative to Glass Nodules for Vitrification of Nuclear Waste

    International Nuclear Information System (INIS)

    Sonavane, M.S.; Mishra, P.K.; Mandal, S.; Barik, S.; Roy Chowdhury, A.; Sen, R.

    2012-01-01

    High level nuclear liquid waste (HLW) is immobilized using borosilicate glass matrix. Presently joule heated ceramic melter is being employed for vitrification of HLW in India. Preformed nodules of base glass are fed to melter along with liquid waste in predetermined ratio. In order to reduce the cost incurred for production of glass nodules of base glass, an alternative option of using glass grains was evaluated for its preparation and its suitability for the melter operation. (author)

  10. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  11. Gamma radiation induced changes in nuclear waste glass containing Eu

    Science.gov (United States)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  12. On the prevailing construction waste recycling practices: a South East Queensland study.

    Science.gov (United States)

    Tam, Vivian W Y; Kotrayothar, Duangthidar; Loo, Yew-Chaye

    2009-03-01

    Waste generated from construction and building demolition work constitutes about 68% of all solid waste generated each year in South East Queensland. Consequently, it has created a serious waste management problem. The State Governments of Victoria and New South Wales have been encouraging the use of recycled materials from construction and related waste; they have also promulgated specifications for their use. In Queensland, however, similar regulations are not anticipated in the near future, which explains the lack of funded research conducted in this important arena. This paper presents an evaluation of the prevailing waste recycling practices in Queensland. Nine sites were visited, including two construction sites, three demolition sites, three recycling plants and one landfill in South East Queensland. The difficulties encountered by the recycling programme operators and their associates at these sites are described and the benefits of recycling construction materials are presented. One of the major barriers is that the local councils disallow the use of recycled materials in new construction work. To help rectify these impediments to recycling, recommendations are given to increase the use of recycled construction waste in South East Queensland.

  13. The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China

    International Nuclear Information System (INIS)

    Chen Xudong; Xi Fengming; Geng Yong; Fujita, Tsuyoshi

    2011-01-01

    Research highlights: → Urban symbiosis creates compatibility of industrial development and waste management. → Mechanical technology leads to more CO 2 emission reduction. → Energy recovery technology leads to more fossil fuel saving. → Clean energy makes recycling technologies cleaner. → Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO 2 e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

  14. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  15. DHLW Glass Waste Package Criticality Analysis (SCPB:N/A)

    International Nuclear Information System (INIS)

    Davis, J.W.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objective of this evaluation is to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package

  16. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  17. Waste reduction and recycling initiatives in Japanese cities: lessons from Yokohama and Kamakura.

    Science.gov (United States)

    Hotta, Yasuhiko; Aoki-Suzuki, Chika

    2014-09-01

    Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results. © The Author(s) 2014.

  18. Comparative Study on Carbonated and Non-Carbonated Recycled Aggregate Concrete with Glass Powder as Partial Replacement for OPC

    Directory of Open Access Journals (Sweden)

    Abhishek Patil

    2017-12-01

    Full Text Available Recycled aggregates (RA possess the ability to be recycled, if undesirable properties are counteracted viz, porous mortar attached to it, with high water absorption and low density, this technique, accelerated carbonation can be one such to technique to counteract undesirable properties of RA, replacement of 20% of cement by glass powder assists in reducing w/c ratio[1][6] when used in concrete[2] suppress ASR reaction[1], this paper explains a new possibility of recycling concrete, work done and findings for improvising Recycled aggregate concrete (RAC and exploring the feasibility for use of RA in the near future.

  19. Glass formulation for phase 1 high-level waste vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  20. An empirical modeling tool and glass property database in development of US-DOE radioactive waste glasses

    International Nuclear Information System (INIS)

    Muller, I.; Gan, H.

    1997-01-01

    An integrated glass database has been developed at the Vitreous State Laboratory of Catholic University of America. The major objective of this tool was to support glass formulation using the MAWS approach (Minimum Additives Waste Stabilization). An empirical modeling capability, based on the properties of over 1000 glasses in the database, was also developed to help formulate glasses from waste streams under multiple user-imposed constraints. The use of this modeling capability, the performance of resulting models in predicting properties of waste glasses, and the correlation of simple structural theories to glass properties are the subjects of this paper. (authors)

  1. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  2. Recycling of glass: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Christensen, Thomas Højlund

    2009-01-01

    -wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect...

  3. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  4. Elimination of waste actinides by recycling them to nuclear reactors

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1981-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then decayed to insignificant levels, leaving the actinides as the principal hazardous species remaining. It is therefore at first sight an attractive idea to recycle the actinides in nuclear reactors, so as to eliminate them by nuclear fission. There are good reasons for examining the idea in detail, and studies have been carried out in a number of countries. These have culminated recently in international conferences at the European Joint Research Centre at Ispra in Italy and at Austin, Texas in the USA as well as in the issue of an IAEA Technical Report entitled An Evaluation of Actinide Partitioning and Transmutation, a product of a four-year IAEA Co-ordinated Research Programme, on which the present article is based. The term partitioning refers to the separation of the actinides from nuclear fuel cycle wastes, a necessary preliminary step to their introduction into reactors for transmutation by nuclear fission. The complete scheme will be referred to as P-T, i.e. partitioning-transmutation

  5. Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes

    DEFF Research Database (Denmark)

    Poulsen, O M; Breum, N O; Ebbehøj, N

    1995-01-01

    In order to reduce the strain on the environment from the deposition of waste in landfills and combustion at incineration plants, several governments throughout the industrialized world have planned greatly increased recycling of domestic waste by the turn of the millennium. To implement the plans......, new waste recycling facilities are to be built and the number of workers involved in waste sorting and recycling will increase steadily during the next decade. Several studies have reinforced the hypothesis that exposure to airborne microorganisms and the toxic products thereof are important factors...... causing a multitude of health problems among workers at waste sorting and recycling plants. Workers at transfer stations, landfills and incineration plants may experience an increased risk of pulmonary disorders and gastrointestinal problems. High concentrations of total airborne dust, bacteria, faecal...

  6. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  7. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    Science.gov (United States)

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  8. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Chung

    2017-11-01

    Full Text Available Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM, X-ray computed tomography (CT, and automated image analysis (RapidAir. The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  9. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  10. The potential environmental gains from recycling waste plastics: simulation of transferring recycling and recovery technologies to Shenyang, China.

    Science.gov (United States)

    Chen, Xudong; Xi, Fengming; Geng, Yong; Fujita, Tsuyoshi

    2011-01-01

    With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO(2)e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kg ce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Households’ Perception of Financial Incentives in Endorsing Sustainable Waste Recycling in Nigeria

    Directory of Open Access Journals (Sweden)

    Beatrice Abila

    2018-06-01

    Full Text Available Recycling is viewed as a central aspect in sustainability and mainly as pro-environmental consumer behavior. The purpose of this study is to examine the perception of households on financial incentives in endorsing sustainable recycling for municipal solid waste in Nigeria. The study was conducted in the Shomolu Local Government Area, Lagos State, Nigeria. The study also covers drivers for household willingness to recycle municipal solid waste on environmental risk, behavioral economics, resource value, economic benefit, convenience, knowledge, legislation, and belief. The result from the study asserts the hypothesis that financial incentives for recycling are vital for reducing and managing municipal solid waste sustainably. The most important driver for household willingness to recycle municipal solid waste is the detrimental environmental impacts. A moderate to positive relationship exists between households’ perception of financial incentives for recycling and drivers for household willingness to recycle municipal solid waste. The study recommends adopting the extended producer responsibility (EPR model, reverse vending options, amongst other approaches, in an effort to promote recycling culture among citizens and residents in Nigeria.

  12. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  13. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  14. Development for recycle of dismantled metal wastes by decommissioning of NPP

    International Nuclear Information System (INIS)

    Asami, Tomohiro; Sato, Hiroshi; Hatakeyama, Mutsuo

    2007-01-01

    For recycle of dismantled metal wastes generated by the decommissioning of nuclear power plant, we examined a melting test for melting characterization of stainless steel scrap, designed the conceptual process to produce the recycle products, and developed a recycle cost evaluation code which is useful to make a rational planning for the waste management program (cost, determination of process, etc.) of these metal wastes. This report gives the summary of these development carried out from 2001 to 2005. This work was performed under the sponsorship of Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  15. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  16. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    Science.gov (United States)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  17. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  18. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  19. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  20. Production of a High-Level Waste Glass from Hanford Waste Samples

    International Nuclear Information System (INIS)

    Crawford, C.L.; Farrara, D.M.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  1. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    Science.gov (United States)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  2. Glass Formulation Development for INEEL Sodium-Bearing Waste

    International Nuclear Information System (INIS)

    Vienna, J.D.; Schweiger, M.J.; Smith, D.E.; Smith, H.D.; Crum, J.V.; Peeler, D.K.; Reamer, I.A.; Musick, C.A.; Tillotson, R.D.

    1999-01-01

    For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO 2 , 14.26 mass% B 2 O 3 , 11.31 mass% Fe 2 O 3 , 3.08 mass% TiO 2 , and 2.67 mass % Li 2 O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa·s, is nearly ideal for waste-glass processing in

  3. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-01-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the U.S. Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the immiscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the open-quotes alkaliclose quotes corner of the NBS submixture

  4. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the ''alkali'' corner of the NBS submixture

  5. Ceramics and glasses for radioactive waste storage

    International Nuclear Information System (INIS)

    Baudin, G.

    1984-06-01

    Borosilicate glasses are mainly choosen for the confinement of fission products; industrial plants are either in operation (AVM) or in construction. Studies of ceramics as a matrix haven't received real application [fr

  6. Influence of Waste Brick Powder in the Mechanical Properties of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Viviana Letelier

    2018-03-01

    Full Text Available Brick and concrete are the main materials contributing to demolition and construction waste. Considering this precedent, the effects of using both residuals in medium strength concretes are analyzed. Waste brick powder is used as a cement replacement in three different levels: 5%, 10%, and 15%, and it is tested in concretes with no recycled aggregates and concretes with 30% of recycled coarse aggregates replacing natural ones. The compressive strength, the flexural strength, and modulus of elasticity are calculated and compared to a control concrete with no brick powder and no recycled aggregates. The effects of the simultaneous use of both residuals on the physical properties of the recycled concrete are highlighted. Results show that 15% of cement can be replaced by waste brick powder together with 30% of recycled aggregates without suffering significant losses in the strength of the final material when compared to a control concrete.

  7. Characterization of Airborne Particles in an Electronic Waste Recycling Facility and Their Toxicity Assessment

    Science.gov (United States)

    Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...

  8. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  9. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  10. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  11. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  12. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  13. Using of borosilicate glass waste as a cement additive

    International Nuclear Information System (INIS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-01-01

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm"−"1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  14. Using of borosilicate glass waste as a cement additive

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weiwei [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Tao, E-mail: sunt@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Li, Xinping [Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Sun, Mian [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Lu, Yani [Urban Construction Institute, Hubei Engineering University, Xiaogan, Hubei 432000 (China)

    2016-08-15

    Highlights: • Borosilicate glass waste used as cement additive can improves its radiation shielding. • When content is 14.8%, the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d. • From 0 to 22.2%, linear attenuation coefficient firstly increase and then decrease. - Abstract: Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm{sup −1} after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  15. Fracture during cooling of cast borosilicate glass containing nuclear wastes

    International Nuclear Information System (INIS)

    Smith, P.K.; Baxter, C.A.

    1981-09-01

    Procedures and techniques were evaluated to mitigate thermal stress fracture in waste glass as the glass cools after casting. The two principal causes of fracture identified in small-scale testing are internal thermal stresses arising from excessive thermal gradients when cooled too fast, and shear fracturing in the surface of the glass because the stainless steel canister shrinks faster than the glass on cooling. Acoustic emission and ceramographic techniques were used to outline an annealing schedule that requires at least three weeks of controlled cooling below 550 0 C to avoid excessive thermal gradients and corresponding stresses. Fracture arising from canister interactions cannot be relieved by slow cooling, but can be eliminated for stainless steel canisters by using ceramic paper, ceramic or graphite paste linings, or by choosing a canister material with a thermal expansion coefficient comparable to, or less than, that of the glass

  16. Low leach rate glasses for immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Chick, L.A.; Buckwalter, C.Q.

    1980-10-01

    Improved defense and commercial waste glass have about one order of magnitude lower leach rates at 90 0 C in static deionized water than reference glasses. This durability difference diminishes as the leaching temperature is raised, but at repository temperature less than 150 0 C, the improved compositions would have considerable advantages over reference glases. At the melting temperatures necessary for most of the high-durability glasses, volatility was found to be higher than that experienced in processing current reference glases. Higher volatilities might be compensated for by specific design of the off-gas system for improved off-gas treatment and volatile materials recovery. 6 figures, 2 tables

  17. Recycling of post-consumer waste in South Africa: Prospects for growth

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available and recycling, in response to the increasing complexity of products and related wastes. Figure 4: Comparison of recycling rates between countries. (Adapted from: EUROPEN (2014); USEPA (2010), APC (2011); BMI (2013); Chagas and Neto (2011)) Note: Metal figures...

  18. Solid Waste Educational Resources and Activities: Let's Reduce, Reuse, and Recycle. [CD-ROM].

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Solid Waste and Emergency Response.

    This contains games, activities, publications, and resources for students and teachers on how to reduce, reuse, recycle, and properly manage waste. It also contains a screen saver featuring runners-up from the Earth Day 2000 art contest. Activities and games include titles such as "Planet Protectors,""Recycle City,""Trash…

  19. Numerical modelling of the dehydration of waste concrete fines : An attempt to close the recycling loop

    NARCIS (Netherlands)

    Teklay, Abraham; Vahidi, A.; Lotfi, Somayeh; Di Maio, F.; Rem, P.C.; Di Maio, F.; Lotfi, S.; Bakker, M.; Hu, M.; Vahidi, A.

    2017-01-01

    The ever-increasing interest on sustainable raw materials has urged the quest for recycled materials that can be used as a partial or total replacement of fine fractions in the production of concrete. This paper demonstrates a modelling study of recycled concrete waste fines and the possibility of

  20. Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.

    Science.gov (United States)

    Hamilton, Helen A; Peverill, M Samantha; Müller, Daniel B; Brattebø, Helge

    2015-12-15

    Food waste (FW) generates large upstream and downstream emissions to the environment and unnecessarily consumes natural resources, potentially affecting future food security. The ecological impacts of FW can be addressed by the upstream strategies of FW prevention or by downstream strategies of FW recycling, including energy and nutrient recovery. While FW recycling is often prioritized in practice, the ecological implications of the two strategies remain poorly understood from a quantitative systems perspective. Here, we develop a multilayer systems framework and scenarios to quantify the implications of food waste strategies on national biomass, energy, and phosphorus (P) cycles, using Norway as a case study. We found that (i) avoidable food waste in Norway accounts for 17% of sold food; (ii) 10% of the avoidable food waste occurs at the consumption stage, while industry and retailers account for only 7%; (iii) the theoretical potential for systems-wide net process energy savings is 16% for FW prevention and 8% for FW recycling; (iv) the theoretical potential for systems-wide P savings is 21% for FW prevention and 9% for FW recycling; (v) while FW recycling results in exclusively domestic nutrient and energy savings, FW prevention leads to domestic and international savings due to large food imports; (vi) most effective is a combination of prevention and recycling, however, FW prevention reduces the potential for FW recycling and therefore needs to be prioritized to avoid potential overcapacities for FW recycling.

  1. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  2. Comparative study of seven glasses for solidification of nuclear wastes

    International Nuclear Information System (INIS)

    Nogues, J.L.; Hench, L.L.; Zarzycki, J.

    1982-06-01

    The relative leaching behavior of seven alkali borosilicate glasses considered for immobilization of high level radioactive wastes was compared using a static 90 0 C leach test. Leaching times studied were 1, 3, 7, 14 and 28 days with ratios of glass surface area (SA) to solution volume (V) being SA/V = 1.0 cm -1 and 0.1 cm -1 . With the range of glass compositions studied, it was not possible to determine the effect of each element on leaching behavior, however some conclusions regarding the general influence of the glass network formers can be made: the addition of Al 2 O 3 , results in a large increase in the chemical durability of the glass. The presence of Fe 2 O 3 , is necessary to develop with Al 2 O 3 a second protective layer on top of the silica-rich film that results from rapid dealkalization. The difference between the results obtained at SA/V = 1.0 cm -1 and 0.1 cm -1 shows the importance of understanding both the effects of glass composition and solution concentrations on the behavior of nuclear waste glasses

  3. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  4. A necessity for research in the recycling of concrete waste from the decommissioning

    International Nuclear Information System (INIS)

    Seo, Ha Na; Whang, Joo Ho

    2009-01-01

    Construction of the I/LLW disposal site is now underway in Gyeongju. When completed it will be able to store 100,000 radioactive waste drums in a geologically deep disposal site; hence, a method for disposing of another 700,000 drums will be discussed. Kori-1 is continuously being safely operated even after passing its 30 years designated life span. However, because 12 more nuclear power plants will operate past their designated life span by 2030, the necessity for research about their decommissioning will increase. Approximately 6,200 tons of radioactive waste will be generated from each decommissioned plant. It will be difficult to store all of the waste in Gyeongju due to cost and efficiency issues. For these reasons it is needed to discuss recycling methods for minimizing radioactive waste during decommissioning. This study suggests a scenario for recycling concrete waste of a decommissioned disposal site as crushed rock and also presents prior research for concrete waste recycling

  5. Recycling in SA – How does the National Domestic Waste Collection Standards affect consumers?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2011-10-01

    Full Text Available -packaging materials that are recyclable include: textiles, scrap metal, used oils, tyres, old household appliances, batteries, car bodies, electronic equipment (e.g. computers, cell phones, video games etc.) and construction and demolition waste. Biodegradable...

  6. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes.

    Science.gov (United States)

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Ortega, José Marcos; Parra, Carlos; Sánchez, Isidro

    2017-11-30

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  7. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes

    Directory of Open Access Journals (Sweden)

    Carlos Rodríguez

    2017-11-01

    Full Text Available In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30% of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  8. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  9. Development of dense glass-ceramic from recycled soda-lime-silicate glass and fly ash for tiling

    Science.gov (United States)

    Mustaffar, Mohd Idham; Mahmud, Mohamad Haniza; Hassan, Mahadi Abu

    2017-12-01

    Dense glass-ceramics were prepared by sinter-crystallization process from a combination of soda-lime-silicate glass waste and fly ash. Bentonite clay that acted as a binder was also added in a prepared formulation. The powder mixture of soda-lime glass, fly ash and bentonite clay were compacted by using uniaxial hydraulic press machine and sintered at six (6) various temperatures namely 750, 800, 850, 900, 950 and 1000 °C. The heating rate and sintering time were set at 5 °C/min and 30 minutes respectively. The results revealed that modulus of rupture (MOR), density and linear shrinkage increase first from 750 to 800 °C but decrease later after 800 to 1000 °C. In the meantime, water absorption was showing completely an opposite trend. The glass-ceramic sintered at 800 °C was found to have the best combination of physical-mechanical properties and has the potential to be applied in the construction industry particularly as floor and wall tiles because of the simple manufacturing process at low temperature.

  10. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  11. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  12. Reliable classification of moving waste materials with LIBS in concrete recycling.

    Science.gov (United States)

    Xia, Han; Bakker, M C M

    2014-03-01

    Effective discrimination between different waste materials is of paramount importance for inline quality inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement paste. For each material, up to three different types were considered, while thirty particles of each material were selected. Proposed is a reliable classification methodology based on integration of the LIBS spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi class) and the hybrid combination PCA-Adaboost (binary class) were investigated as efficient classifiers. In addition, mean centre and auto scaling approaches were compared for both classifiers. Using 72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA, the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology, which converged with 59 PC. The degree of success in practical testing will depend on the quality of the training set and the implications of the possibly remaining false positives. © 2013 Published by Elsevier B.V.

  13. The study on the recycle condition for existence of the decommissioning waste in the nuclear power station

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Ozaki, Sachio; Hirai, Mitsuyuki; Sakamoto, Hiroyuki; Usui, Tatsuo; Simizu, Yasuo; Ogane, Daisuke

    2000-01-01

    To establish the technique of the recycle for concrete waste, this paper describes the recycle condition for existence of the decommissioning concrete waste in the nuclear power plant and considers the durability of cask yard concrete constructed at about twenty years ago. The authors examine the recycle system of concrete in the power plant. (author)

  14. Recycling behaviour in healthcare: waste handling at work.

    Science.gov (United States)

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  15. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1976-01-01

    This review paper briefly discusses the reactor types being considered in the United States for the purpose of actinide waste recycling. The reactor types include thermal reactors operating on the 3.3% 235 U- 238 U and the 233 U- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors and fusion reactors. This paper also discusses cross section measurements in progress or planned toward providing basic data for testing the recycle concept. (author)

  16. Some activities in the United States concerning the physics aspects of actinide waste recycling

    International Nuclear Information System (INIS)

    Raman, S.

    1975-01-01

    Reactor types being considered in the United States for the purpose of actinide waste recycling are discussed briefly. The reactor types include thermal reactors operating on the 3.3 percent 235 U-- 238 U and the 233 U-- 232 Th fuel cycles, liquid metal fast breeder reactors, reactors fueled entirely by actinide wastes, gaseous fuel reactors, and fusion reactors. Cross section measurements in progress or planned toward providing basic data for testing the recycle concept are also discussed

  17. Recycling industrial waste in brick manufacture. Part 1

    Directory of Open Access Journals (Sweden)

    Andreola, F.

    2005-12-01

    Full Text Available The ongoing accumulation of industrial waste speaks to the need to seek cost-effective disposal methods. Brick manufacture would appear to be particularly promising in this regard. The present study analyzes the possibility of recycling the sludge generated in porcelain tile polishing, as well as coal, steel and municipal incinerator ash to make a special type of facing brick whose properties readily accommodate a full analysis of all the problems deriving from the incorporation of residue in its manufacture. Physical-chemical, mechanical and structural analyses were performed on bricks made with varying percentages of the different types of waste considered. This first paper reports the results of the physical arid technological characterization of the products; the second part of the research will address their chemical, mechanical and structural properties.

    El continuo aumento de la cantidad de residuos (desechos que se generan en los procesos industriales induce a buscar nuevos métodos alternativos a la disposición final que sean altamente eficientes y a bajo costo. La industria manufac turera de ladrillos resulta muy prometedora desde este punto de vista. En este trabajo ha sido investigada la posibilidad de usar distintos residuos industriales, entre ellos barros de pulido del gres porcelánico. cenizas de carbón, cenizas de acerías y de incinerador municipal para la fabricación de ladrillos de exteriores. Fueron analizados los problemas que podrían derivar al introducir estos residuos en la pasta. En particular, en esta primera parte del trabajo se muestran los resultados derivados de la introducción de los residuos considerados, en distintos porcentajes, sobre las propiedades físicas y tecnológicas del producto final. En la segunda parte se desarrollarán los efectos causados sobre las propiedades químicas, mecánicas y microestructurales.

  18. Poultry feather wastes recycling possibility as soil nutrient

    Directory of Open Access Journals (Sweden)

    Lili Mézes

    2015-10-01

    Full Text Available Poultry feathers are produced in large amounts as a waste in poultry slaughterhouses. Only 60-70% of the poultry slaughterhouse products are edible for human being. This means more million tons annually worldwide (Papadopoulus et al., 1986; Williams et al., 1991; Hegedűs et al., 1998. The keratin-content of feather can be difficulty digested, so physical, chemical and/or biological pre-treatment are needed in practice, which have to be set according to the utilization method. Feather was enzymatic degraded, and then fermented in separated bioreactors. The anaerobic bioreactor system (4 digesters with 6 litre volume was controlled by ACE SCADA software running on Linux platforms. Pot scale seed germination tests were established to suggest the quantity of digested slurry to be utilized. The chosen test plants were lettuce (Lactuca sativa. In case of reproduction test Student’s t-test was applied to examine significant differences between the root lengths of the control and the treated plant species. In case of pot seed germination variance analysis with Tukey B’s and Duncan test was applied to examine significant differences between the root lengths of plants, grown on different treatments. The effect of treatments on germination ability of the plant species was expressed in the percentage of the controls. According to Student’s t-test significant difference was found between root lengths of different treatments. Based on variance analysis with Tukey B’s and Duncan tests could be detected a significant difference between the treatments. Utilization of the fermented material reduces the use of fertilizers and because of its large moisture content it reduces the watering costs. Recycle of the slaughterhouse feather and different agricultural wastes and by-products can solve three main problems: disposal of harmful materials, producing of renewable energy and soil nutrient, measuring reflectance at the certain spectral range, which can

  19. Electrical resistivities of glass melts containing simulated SRP waste sludges

    International Nuclear Information System (INIS)

    Wiley, J.R.

    1978-08-01

    One option for the long-term management of radioactive waste at the Savannah River Plant is to solidify the waste in borosilicate glass by using a continuous, joule-heated, ceramic melter. Electrical resistivities that are needed for melter design were measured for melts of two borosilicate, glass-forming mixtures, each of which was combined with various amounts of several simulated-waste sludges. The simulated sludge spanned the composition range of actual sludges sampled from SRP waste tanks. Resistivities ranged from 6 to 10 ohm-cm at 500 0 C. Melt composition and temperature were correlated with resistivity. Resistivity was not a simple function of viscosity. 15 figures, 4 tables

  20. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tang, Ming [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rim, Jung Ho [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-24

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulations and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution

  1. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  2. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  3. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  4. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    Science.gov (United States)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  5. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  6. Glass-crystalline materials for active waste incorporation

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Krylova, N.V.; Vlasov, V.I.; Polyakov, A.S.

    1979-01-01

    This paper presents the results of investigations into the possibility and conditions for using glass-crystalline materials for the incorporation of radionuclides. Materials of a cast pyroxene type that are obtained by smelting calcined wastes with acid blast furnace slags are described. A study was also made of materials of a basalt type prepared from wastes with and without alkali metal salt. Changes in the structure and properties of materials in the process of storage at different temperatures have been studied

  7. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  8. Leaching of actinides from simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Pickering, S.; Walker, C.T.; Offermann, P.

    1982-01-01

    Two types of simulated nuclear waste glass doped with actinides were leached at 200 0 C in distilled water and salt solutions. Am, Np, Pu and U were all preferentially retained in the surface layer on the glass. Leaching ratios of 0.1 to 0.2 for Np and approx. 0.02 for Am were measured. The losses of Am and Np to the leachant were proportional to the total weight loss of the glass and were larger at 10 ml leachant/cm 2 glass than at 5 ml/cm 2 . Weight loss from the glass occurred only at the start of the experiments for periods ranging from 10 h to 10 days according to leachant composition and volume. Wt losses from the C31-3-EC glass were much greater in saturated NaCl solution than in distilled water. Enrichment in the outer surface layer of Al or Ca according to glass type could be correlated with leachant pH, glass composition and weight loss measurements

  9. Investigation of waste glass pouring behavior over a knife edge

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  10. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90 degrees C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials

  11. Immobilization of radioactive wastes in glasses and ceramics

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1983-01-01

    A large amount of radioactive liquid wastes arises from the reprocessing of spent nuclear fuels to recover uranium and plutonium. Immobilization of such wastes in solid form and disposal of the solidified wastes in safe places, to prevent contamination of the human environment, are topics of considerable interest for both the scientific community and the public in general. The great majority of materials candidate for the encapsulation of radioactive wastes are inorganic non-metalic, such as glasses, glass-ceramics, special cements, calcined ceramics and few more. Among these materials, certain glasses have received special attention, and are being studied for over twenty years. It is estimated that about US$2 billion have already been spent in these studies. The disposal (long term storage) of these solid wastes may be possible in deep geological formations, salt mines, the ocean bed, by evacuation to the outer space, etc. A brief review on the several options avaiable for encapsulation and disposal of high level radioactive liquid wastes is presented, along with the relative merits and disadvantages of the candidate materials for encapsulation. A few suggestions for the solution of the Brazilian problem are advanced. (Author) [pt

  12. Method and apparatus for glass solidification porcessing for radioactive liquid waste

    International Nuclear Information System (INIS)

    Torada, Shin-ichiro; Masaki, Toshio; Sakai, Akira.

    1989-01-01

    Glass material supplied to a glass melting furnace is made in the form of a glass container. Then, radioactive liquid wastes are directly injected into the glass vessel and the glass vessel injected with the radioactive liquid wastes is charged into the glass melting furnace. The glass material and the radioactive liquid wastes are supplied simultaneously to the glass melting furnace. Then, corresponding to the amount of the glass material used for the glass vessel, the amount of the radioactive liquid wastes injected to the inside thereof is controlled to thereby set the mixing ratio between the glass material and the radioactive liquid wastes. Further, by controlling the number of the glass vessels injected with the radioactive liquid wastes to be charged into the glass melting furnace, the amount of supplying the radioactive liquid wastes and the glass material is controlled. This can easily maintain constant the amount of the glass material and the radioacative liquid wastes supplied to the glass melting furnace and the mixing ratio thereof. (T.M.)

  13. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    International Nuclear Information System (INIS)

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  14. Foaming of CRT panel glass powder with Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    melt, while Na2O becomes incorporated into the glass structure. We have quantified the melt expansion through density measurements and the Na2O incorporation is indicated by the decrease of the glass transition temperature (Tg) of the final foam glass. The glass foaming quality depends on the foaming......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  15. Consolidated waste forms: glass marbles and ceramic pellets

    International Nuclear Information System (INIS)

    Treat, R.L.; Rusin, J.M.

    1982-05-01

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes

  16. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  17. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  18. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  19. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes

    International Nuclear Information System (INIS)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-01-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  20. Utilization of waste glass in translucent and photocatalytic concrete

    NARCIS (Netherlands)

    Spiesz, P.; Rouvas, S.; Brouwers, H.J.H.

    2016-01-01

    Abstract This article addresses the development of a translucent and air purifying concrete containing waste glass. The concrete composition was optimized applying the modified Andreasen & Andersen model to obtain a densely packed system of granular ingredients. Both untreated (unwashed) and washed

  1. Utilization of borosilicate glass for transuranic waste immobilization

    International Nuclear Information System (INIS)

    Ledford, J.A.; Williams, P.M.

    1979-01-01

    Incinerated transuranic waste and other low-level residues have been successfully vitrified by mixing with boric acid and sodium carbonate and heating to 1050 0 C in a bench-scale continuous melter. The resulting borosilicate glass demonstrates excellent mechanical durability and chemical stability

  2. Incorporation of tv tube glass waste in aluminous porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J.N.F.; Santos, T.F.; Paes Junior, H.R. [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil)

    2016-07-01

    Full test: This work analyzes the reuse of TV tube glass waste as a method to provide alternative raw material for aluminous porcelain, through of replacement of natural sodic feldspar by up to 30 wt.%. Aluminous porcelain formulations containing TV tube glass waste were pressed and fired in air at 1300 deg C using a fast-firing cycle. Ceramic pieces were characterized by X-ray diffraction, scanning electron microscopy, linear shrinkage, apparent density, apparent porosity, water absorption, and electrical resistivity. XRD and SEM results indicated that all aluminous porcelain pieces are composed essentially of mullite, quartz, and ?-alumina embedded in a vitreous matrix. The results also showed that the aluminous porcelain pieces containing TV tube glass waste presented low water absorption values between 0.42 and 0.45 %, apparent density between 2.44 and 2.46 g/cm3, and volume electrical resistivity between 1.91 and 2.93 x 1011 ?.cm. Thus, the TV tube glass waste could be used into aluminous porcelain formulations, in the range up to 30 wt.%, as a replacement for traditional flux material (sodic feldspar). (author)

  3. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  4. A new viscosity model for waste glass formulations

    International Nuclear Information System (INIS)

    Sadler, A.L.K.

    1996-01-01

    Waste glass formulation requires prediction, with reasonable accuracy, of properties over much wider ranges of composition than are typically encountered in any single industrial application. Melt viscosity is one such property whose behavior must be predicted in formulating new waste glasses. A model was developed for silicate glasses which relates the Arrhenius activation energy for flow to an open-quotes effectiveclose quotes measure of non-bridging oxygen content in the melt, NBO eff . The NBO eff parameter incorporates the differing effects of modifying cations on the depolymerization of the silicate network. The activation energy-composition relationship implied by the model is in accordance with experimental behavior. The model was validated against two different databases, with satisfactory results

  5. Radiation and Thermal Ageing of Nuclear Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  6. Recycling and management of waste lead-acid batteries: A mini-review.

    Science.gov (United States)

    Li, Malan; Liu, Junsheng; Han, Wei

    2016-04-01

    As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.

  7. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  8. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs

  9. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  10. Co-Benefits of Household Waste Recycling for Local Community’s Sustainable Waste Management in Thailand

    Directory of Open Access Journals (Sweden)

    Amornchai Challcharoenwattana

    2015-06-01

    Full Text Available The study aimed to evaluate co-benefits in term of GHG reduction, and avoided landfill costs by implementing a community-based management (CBM program for municipal solid waste (MSW. Two towns of peri-urban settlement in Thailand were investigated in case studies to compare eco-performance between the towns with and without implementation of the CBM program. MSW mass flows together with MSW utilization records were analyzed based on data in year 2013. Climate co-benefits from waste utilization activities were examined. Results from the study indicated that waste banks in the CBM program can effectively divert most of recyclables from entering landfills. The performance of “waste bank—recyclable recovery program” recycling rate from the case study with CBM is 172.20 kg per member per year, which is about 926% higher than average CBMs with MSW recycling in Thailand, and the success of CBM can be attributed to its curbside pickup service and fair-pricing of recyclables. The study also found that if the town decided to divert wastes from landfilling, carbon intensity of the MSW system would be 0.47 tons of CO2-eq per ton of collected MSW. The landfilling cost would be approximately 7.41 USD per ton of MSW as landfilling cost. With CBM programs, current MSW reutilization rate has achieved 9.68% of generated waste, and 16.80% of GHG emission has been avoided, along with a reduction in landfill costs of 11.57%. Two scenarios of waste utilization in Thailand were explored and compared, in terms of which scenarios yielded the highest co-benefits. The study demonstrates that by allowing local mechanism and community involvement programs to develop with operational waste banks, the efficiency of collecting recycling wastes increased. A similar system can be applied to other communities in other countries.

  11. Research on Recycling and Utilization of Solid Waste in Civil Airport

    Science.gov (United States)

    Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei

    2018-05-01

    The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.

  12. Waste paper recycling opportunities for government action. Vol. 4, corrugated waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.; Love, P.

    1978-01-01

    This study analyzes current and expected corrugated waste market conditions in Canada, with the objective of identifying government initiatives which could permanently increase recovery levels. Short-term, practical measures are featured. National and regional demand, generation and recovery levels are examined, along with imports and exports to the USA. Over 70% of corrugated waste is consumed in Ontario and Quebec, and most of this waste is generated in those two provinces. Average recovery rates in most major urban areas are estimated at 30-40%. Future demand, generation, and recovery are estimated, and it is suggested that there will be enough domestic demand to permit reclamation of nearly 35% of Canada's total corrugated wastes. This potential level is not expected to change significantly, and new demand opportunities appear minimal. Examination of the potential for future imports from the USA indicates that availability will tighten over the medium term, necessitating a search for new corrugated waste supply sources. Possible sources include supermakets, retail chains and large assembly manufacturing establishments; one of the most promising of these sources is shopping malls, and a study is appended which examines the feasibility of a corrugated waste source separation program within a hypothetical mall. Possible government actions are outlined to improve reclamation and recycling of corrugated waste in Canada, including the improvement of local recovery capabilities in British Columbia, Ontario and Quebec, and the reduction of freight costs for moving corrugated waste from low-recovery areas to high-demand areas. 26 refs., 9 figs., 31 tabs.

  13. Recycling of non-metallic fractions from waste printed circuit boards: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jiuyong; Guo Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Env