WorldWideScience

Sample records for waste generation rates

  1. Estimation of restaurant solid waste generation rates

    International Nuclear Information System (INIS)

    Heck, H.H.; Major, I.

    2002-01-01

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  2. Impact of socioeconomic status on municipal solid waste generation rate.

    Science.gov (United States)

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    Science.gov (United States)

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  4. Assessment of healthcare waste generation rate and its ...

    African Journals Online (AJOL)

    Assessment of healthcare waste generation rate and its management system in health centers of Bench Maji Zone. ... Background: It is known that the basic role of healthcare system is to preserve the health of patients and protect the public from diseases. However, in the process of performing these activities, health ...

  5. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    Science.gov (United States)

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m -2 , the mixed-construction method has a waste generation rate of 3.29 t 100 m -2 , and demolition projects have a waste generation rate of 104.28 t 100 m -2 . © The Author(s) 2016.

  6. Developing models for the prediction of hospital healthcare waste generation rate.

    Science.gov (United States)

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  7. Source segregation of food waste in office areas: Factors affecting waste generation rates and quality

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    2015-01-01

    Existing legislation mandates that the amount of waste being recycled should be increased. Among others, in its Resource Strategy Plan, the Danish Government decided that at least 60% of food waste generated by the service sector, including in office areas, should be source-sorted and collected...... separately by 2018. To assess the achievability of these targets, source-sorted food waste and residual waste from office areas was collected and weighed on a daily basis during 133 working days. Waste composition analyses were conducted every week to investigate the efficiency of the source-sorting campaign...... and the purity of the source-sorted food waste. The moisture content of source-sorted food waste and residual waste fractions, and potential methane production from source-sorted food waste, was also investigated.Food waste generation equated to 23. ±. 5. kg/employee/year, of which 20. ±. 5. kg...

  8. Assessment of Healthcare Waste Generation Rate and Its ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... reliable records of the quantity and nature of healthcare wastes ... construction, and 224 health posts, totally 272 health facilities ..... Procedia - Social and Behavioral. Sciences. 2012 ... Asian Journal Of Applied Science And.

  9. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China

    International Nuclear Information System (INIS)

    Lu Weisheng; Yuan Hongping; Li Jingru; Hao, Jane J.L.; Mi Xuming; Ding Zhikun

    2011-01-01

    The construction and demolition waste generation rates (C and D WGRs) is an important factor in decision-making and management of material waste in any construction site. The present study investigated WGRs by conducting on-site waste sorting and weighing in four ongoing construction projects in Shenzhen city of South China. The results revealed that WGRs ranged from 3.275 to 8.791 kg/m 2 and miscellaneous waste, timber for formwork and falsework, and concrete were the three largest components amongst the generated waste. Based on the WGRs derived from the research, the paper also discussed the main causes of waste in the construction industry and attempted to connect waste generation with specific construction practices. It was recommended that measures mainly including performing waste sorting at source, employing skilful workers, uploading and storing materials properly, promoting waste management capacity, replacing current timber formwork with metal formwork and launching an incentive reward program to encourage waste reduction could be potential solutions to reducing current WGRs in Shenzhen. Although these results were derived from a relatively small sample and so cannot justifiably be generalized, they do however add to the body of knowledge that is currently available for understanding the status of the art of C and D waste management in China.

  10. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China.

    Science.gov (United States)

    Lu, Weisheng; Yuan, Hongping; Li, Jingru; Hao, Jane J L; Mi, Xuming; Ding, Zhikun

    2011-04-01

    The construction and demolition waste generation rates (C&D WGRs) is an important factor in decision-making and management of material waste in any construction site. The present study investigated WGRs by conducting on-site waste sorting and weighing in four ongoing construction projects in Shenzhen city of South China. The results revealed that WGRs ranged from 3.275 to 8.791 kg/m(2) and miscellaneous waste, timber for formwork and falsework, and concrete were the three largest components amongst the generated waste. Based on the WGRs derived from the research, the paper also discussed the main causes of waste in the construction industry and attempted to connect waste generation with specific construction practices. It was recommended that measures mainly including performing waste sorting at source, employing skilful workers, uploading and storing materials properly, promoting waste management capacity, replacing current timber formwork with metal formwork and launching an incentive reward program to encourage waste reduction could be potential solutions to reducing current WGRs in Shenzhen. Although these results were derived from a relatively small sample and so cannot justifiably be generalized, they do however add to the body of knowledge that is currently available for understanding the status of the art of C&D waste management in China. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  12. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  13. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  14. Hazardous medical waste generation rates of different categories of health-care facilities

    International Nuclear Information System (INIS)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-01-01

    Highlights: ► We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. ► Based on a 22-month study period, HMWGR were highly skewed to the right. ► The HMWGR varied from 0.00124 to 0.718 kg bed −1 d −1 . ► A positive correlation existed between the HMWGR and the number of hospital beds. ► We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed −1 d −1 , using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed −1 d −1 , for the public psychiatric hospitals, to up to 0.72 kg bed −1 d −1 , for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed −1 d −1 , for the psychiatric clinics, to up to 0.49 kg bed −1 d −1 , for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  15. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  16. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-10-01

    Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    Directory of Open Access Journals (Sweden)

    Debere Mesfin Kote

    2013-01-01

    Full Text Available Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public, were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private. Results The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1. Public hospitals generated high proportion of total health care wastes (59.22% in comparison with private hospitals (40.48%. The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001. The amount of waste was positively correlated with the number of patients (p Conclusion These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  18. Household solid waste generation rate and physical composition analysis: case of Sekondi-Takoradi Metropolis in the western region, Ghana

    Directory of Open Access Journals (Sweden)

    Eugene Atta Nyankson

    2015-06-01

    Full Text Available Sekondi-Takoradi Metropolis, one of the rapidly expanding cities of Ghana has been facing serious problems with solid waste management. This is mainly due to the lack of available information about the types and quantity of solid waste generation in the area. Hence, the objective of this study was to determine the rate of household solid waste generation and its composition in the aforesaid city. The methodology and procedures for this study were derived from the Standard Test Method for Determination of the Composition of Unprocessed MSW (ASTM D 5231-92. All samples were hand sorted into 6 waste categories (paper, plastic, organics, metals, glass, and other waste. The study revealed that by weight, organic wastes constitutes the largest proportion of household solid waste (38% followed by 19% plastics, 7% papers, 4% metals, 4% glass and 28% other wastes (comprising of sand, stones, ash, inert substances. The rate of daily waste generation per capita in the low, middle and high income households were 0.27±0.19, 0.4±0.19 and 0.58±0.24 kg/cap/day, respectively. The study revealed that there is no waste treatment or recovery facility established within the metropolis hence no significant waste recovery and reuse activities exist. The study showed that more than 38 % of the waste generated in Sekondi-Takoradi Metropolis is decomposable organic matter that can be re-used through composting as well as 34% of the waste having recycling potential thereby considerably mitigating the solid waste problem. DOI: http://dx.doi.org/10.3126/ije.v4i2.12644 International Journal of Environment Vol.4(2 2015: 221-235

  19. Healthcare waste management in Uganda: management and generation rates in public and private hospitals in Kampala

    NARCIS (Netherlands)

    Mugambe, R.K.; Ssempebwa, J.C.; Tumwesigye, N.M.; Vliet, van B.J.M.; Adedimeji, A.

    2012-01-01

    Aim The aim of this study was to assess the management, characteristics and generation of healthcare waste (HCW) in public and private hospitals in Kampala City, Uganda. Methods We employed mainly qualitative methods through the use of a waste inventory, observations, document review and key

  20. Municipal solid waste generation rates and its management at Yusmarg forest ecosystem, a tourist resort in Kashmir.

    Science.gov (United States)

    Bhat, Rouf Ahmad; Nazir, Rumisa; Ashraf, Samia; Ali, Mudasir; Bandh, Suhaib A; Kamili, Azra N

    2014-02-01

    The present study was carried out at Yusmarg, a forest ecosystem and tourist resort, in the Kashmir valley during 2012 with the objectives of determining the municipal solid waste (MSW) generation rates per capita and on a daily basis, and assessing the existing MSW system. It was estimated that daily generation of MSW at Yusmarg by tourists, as well as residents, was 107.74 kg; on average, the MSW generated at each site was about 36.48 kg/day. The per capita generation of MSW was highest (0.97 kg/person/day) at site 1 followed by 0.288 kg/person/day at site 2 and 0.201 kg/person/day at site 3, with an average per capita MSW generation rate of 0.484 kg/person/day. Manual segregation of the collected wastes showed that it comprised some recyclable, combustible, compostable and inert materials. Among the different waste categories, 56% of waste was recyclable materials, 29% was compostable wastes, 9% was combustible wastes and 6% was inert materials. The present study infers that MSW management in Yusmarg was inappropriate, and infrastructure, skilled manpower and a proper scientific disposal mechanism is lacking in the area. In order to conserve the forest wealth of the area there is a great need to focus on the solid waste problem of the tourist resort.

  1. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    International Nuclear Information System (INIS)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari; Askarian, Mehrdad; Movahedi, Mohammad Mehdi; Hosseini, Somayyeh; Jahandideh, Mina

    2009-01-01

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R 2 were used to evaluate performance of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R 2 confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.

  2. Generation of Domestic Solid Waste in Tikrit City and The Effects of Family Size and Incomes Level on the Rate of Generation

    Directory of Open Access Journals (Sweden)

    Waleed M. Al Abed Raba

    2013-04-01

    Full Text Available     This research included collection and analysis of (2800 samples from four different neighborhoods in Tikrit over the seasons of the year to cover seasonal changes in the generation rate of domestic solid waste. The generation rate of domestic solid waste is (0.460 kg / person / day. The results also showed that summer season is the most season that produced solid waste (0.487 kg / person / day. While winter is the lowest season (0.422 kg / person / day. The results indicated that Friday and Saturday are the most producing days (0.629 , 0.557 kg / person / days, respectively. The results showed the impact of rural character of Aalam region in reducing the rate of generation of domestic solid waste as the rate of generation of the neighborhoods of the four studied areas was (0.460 kg / person / day. SPSS program using has been adopted as a method of statistical analysis to study the effect of family size and income level have on the generation rate in the city, where the results showed that family size adversely affects the generation rate of solid waste, also the lowest generation rate was recorded for families with high income level.                                                                                                                                  

  3. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    International Nuclear Information System (INIS)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-01-01

    Highlights: ► Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. ► Traditional non-spatial regression models may not provide sufficient information for better solid waste management. ► Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. ► Significances of global parameters may diminish at local scale for some provinces. ► GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global

  4. Factors affecting the rural domestic waste generation

    Directory of Open Access Journals (Sweden)

    A.R. Darban Astane

    2017-12-01

    Full Text Available The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the quality and quantity of the rural domestic waste, waste production was classified into 12 groups and 2 main groups of organic waste and solid waste. Moreover, kriging interpolation technique in ARC-GIS software was used to evaluate the spatial distribution of the generated domestic waste and ultimately multiple regression analysis was used to evaluate the factors affecting the generation of domestic waste. The results of this study showed that the average waste generated by each person was 0.588 kilograms per day. with the share of organic waste generated by each person being 0.409 kilograms per day and the share of solid waste generated by each person being 0.179 kilograms per day. The results from spatial distribution of waste generation showed a certain pattern in three groups and a higher rate of waste generation in the northern and northwestern parts, especially in the subdistrict. The results of multiple regression analysis showed that the households’ income, assets, age, and personal attitude are respectively the most important variables affecting waste generation. The housholds’ attitude and indigenous knowledge on efficient use of materials are also the key factors which can help reducing waste generation.

  5. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  6. Waste Generation Overview, Course 23263

    International Nuclear Information System (INIS)

    Simpson, Lewis Edward

    2016-01-01

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  7. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  8. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  9. Waste generator services implementation plan

    International Nuclear Information System (INIS)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999

  10. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  11. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  12. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    Science.gov (United States)

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Model for future waste generation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov; Stenmarck, Aasa; Ekvall, Tomas

    2010-06-15

    The research presented in this report is part of the effort to estimate future Swedish waste quantities in the research programme Towards Sustainable Waste Management. More specifically, we estimate future waste coefficients that are designed to be fed into EMEC, which describes the Swedish economy in terms of 26 industrial sectors, a public sector, and households. Production in the model of industry and public sector requires input of labour, capital, energy, and other commodities. With waste-intensity coefficients added to each production parameter in each sector, EMEC can calculate the future waste quantities generated in different economic scenarios. To produce the waste-intensity coefficients, we make a survey of the current Swedish waste statistics. For each waste category from each sector we estimate whether the quantity depends primarily on the production in the sector, on the inputs of commodities, on the depreciation of capital goods, or on the size of the workforce in the sector. We calculate current waste-intensity coefficients by dividing the waste quantities by the parameter(s) to which they are assigned. We also present five different scenarios to describe how the waste intensity can develop until the year 2030. As far as possible and when deemed to be relevant, we have set the industrial waste generation to depend on the use of a commodity or an energy carrier. The quantity of spent vehicles and most equipment is set to depend on the depreciation of capital goods. Some wastes have been allocated to the staff, for example household waste from business. The quantities of wastes from households have a similar approach where every waste category is assigned to a combination of 26 different commodities

  15. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  16. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Jansson, S.

    2014-01-01

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed...... characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements......, polychlorinated dibenzo-. p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections...

  17. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    International Nuclear Information System (INIS)

    Allegrini, E.; Boldrin, A.; Jansson, S.; Lundtorp, K.; Fruergaard Astrup, T.

    2014-01-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits

  18. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  19. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    Science.gov (United States)

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  1. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  2. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12 tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food...... waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...... ± 10 kg per year was food waste. Unavoidable food waste amounted to 80 ± 6 kg per household per year, and avoidable food waste was 103 ± 9 kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results...

  3. Waste Generation Overview Refresher, Course 21464

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  4. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  5. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  6. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  7. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  8. Assessment of national waste generation in EU Member States’ efficiency

    OpenAIRE

    Halkos, George; Petrou, Kleoniki Natalia

    2018-01-01

    Waste generation and management may be considered as either a by-product of economic actions or even used as input to economic activity like energy recovery. Every country produces different amounts of municipal solid waste (MSW) and with different composition. This paper deals with the efficiency of 28 EU Member States for the years 2008, 2010 and 2012 by employing Data Envelopment Analysis (DEA) and by using eight parameters, namely waste generation, employment rate, capital formation, GDP,...

  9. Implementation of a multi-variable regression analysis in the assessment of the generation rate and composition of hospital solid waste for the design of a sustainable management system in developing countries.

    Science.gov (United States)

    Al-Khatib, Issam A; Abu Fkhidah, Ismail; Khatib, Jumana I; Kontogianni, Stamatia

    2016-03-01

    Forecasting of hospital solid waste generation is a critical challenge for future planning. The composition and generation rate of hospital solid waste in hospital units was the field where the proposed methodology of the present article was applied in order to validate the results and secure the outcomes of the management plan in national hospitals. A set of three multiple-variable regression models has been derived for estimating the daily total hospital waste, general hospital waste, and total hazardous waste as a function of number of inpatients, number of total patients, and number of beds. The application of several key indicators and validation procedures indicates the high significance and reliability of the developed models in predicting the hospital solid waste of any hospital. Methodology data were drawn from existent scientific literature. Also, useful raw data were retrieved from international organisations and the investigated hospitals' personnel. The primal generation outcomes are compared with other local hospitals and also with hospitals from other countries. The main outcome, which is the developed model results, are presented and analysed thoroughly. The goal is this model to act as leverage in the discussions among governmental authorities on the implementation of a national plan for safe hospital waste management in Palestine. © The Author(s) 2016.

  10. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  11. Reduced waste generation technical work plan

    International Nuclear Information System (INIS)

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states ''Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction

  12. analysis of the measured medical waste generation at amana

    African Journals Online (AJOL)

    kagonji

    2011-08-16

    Aug 16, 2011 ... In this study the medical waste generation rates at Amana and Ligula hospitals ...... making the situation difficult to administrators to plan and budget. ..... Management Meeting, Peacock Hotel, Dar es Salaam, 9th-11th June,.

  13. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    Science.gov (United States)

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  14. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  15. The UK waste input-output table: Linking waste generation to the UK economy.

    Science.gov (United States)

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  16. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  17. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  18. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...

  19. Charging for waste motivates generators to optimize waste control at the source

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to generators creates an incentive to optimize processes so that less waste is produced, and it provides a basis for determining the cost effectiveness of capital improvements so that the mature phase of waste management can be attained. Improving waste management practices requires a long-range commitment and consistent administration. Making this commitment and providing adequate funding for proper waste disposal are most cost-effective measures than the alternative of paying for remedial actions after improper disposal. This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  20. Waste Generation in Denmark 1994-2005

    DEFF Research Database (Denmark)

    Brix, Louise Lykke; Bentzen, Jan Børsen

    In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions. In this p......In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions....... In this paper the methodology is transferred to the topic of waste generation and is used to analyse why the amount of business waste is increasing. The empirical application is related to data for the volumes of waste generated in the Danish economy for the main sectors as well as the manufacturing sector...... covering the time span 1994-2005 has been included. By means of the Log-Mean Divisia Index Method (LMDI) an algebraic decomposition of the data for the waste amounts generated is performed. This methodology separates the increases in waste amounts into effects related to economic activity, industrial...

  1. Factors determining waste generation in Spanish towns and cities.

    Science.gov (United States)

    Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria

    2015-01-01

    This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.

  2. Methodology for generating waste volume estimates

    International Nuclear Information System (INIS)

    Miller, J.Q.; Hale, T.; Miller, D.

    1991-09-01

    This document describes the methodology that will be used to calculate waste volume estimates for site characterization and remedial design/remedial action activities at each of the DOE Field Office, Oak Ridge (DOE-OR) facilities. This standardized methodology is designed to ensure consistency in waste estimating across the various sites and organizations that are involved in environmental restoration activities. The criteria and assumptions that are provided for generating these waste estimates will be implemented across all DOE-OR facilities and are subject to change based on comments received and actual waste volumes measured during future sampling and remediation activities. 7 figs., 8 tabs

  3. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  4. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  5. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  6. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  7. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    Arthur, S.

    2004-01-01

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  8. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes

  9. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  10. Can we always ignore ship-generated food waste?

    International Nuclear Information System (INIS)

    Polglaze, John

    2003-01-01

    Considerable quantities of food waste can be generated at a rapid rate in ships, particularly those with large numbers of people onboard. By virtue of the amounts involved and its nature, food waste is potentially the most difficult to manage component of a ship's garbage stream, however, in most sea areas it may be dealt with by the simple expedient of direct discharge to sea. As a consequence, only minimal attention is paid to food waste management by many ship and port operators and advisory bodies, and there is a paucity of information in the available literature. The determination that management of ships' food waste is inconsequential is, however, incorrect in many circumstances. Disposal to sea is not always possible due to restrictions imposed by MARPOL 73/78 and other marine pollution control instruments. Effective management of food waste can be critical for ships that operate in areas where disposal is restricted or totally prohibited

  11. Radioactive waste assessment using 'minimum waste generation' scenario - summary report March 1984

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1984-11-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation - Scheme 1. Scheme 1 assumes a minimum waste generation scenario with raw waste arisings from 3 main groups; (i) existing and committed commercial reactors; (ii) fuel reprocessing plants, (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment and indicates the type of information that can be generated. (author)

  12. Current Status of Municipal Solid Waste Generation in Malaysia

    OpenAIRE

    Budhiarta, Iwan; Siwar, Chamhuri; Basri, Hassan

    2012-01-01

    Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009). With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a da...

  13. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  14. Determining leach rates of monolithic waste forms

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Dole, L.R.

    1986-01-01

    The ANS 16.1 Leach Procedure provides a conservative means of predicting long-term release from monolithic waste forms, offering a simple and relatively quick means of determining effective solid diffusion coefficients. As presented here, these coefficients can be used in a simple model to predict maximum release rates or be used in more complex site-specific models to predict actual site performance. For waste forms that pass the structural integrity test, this model also allows the prediction of EP-Tox leachate concentrations from these coefficients. Thus, the results of the ANS 16.1 Leach Procedure provide a powerful tool that can be used to predict the waste concentration limits in order to comply with the EP-Toxicity criteria for characteristically nonhazardous waste. 12 refs., 3 figs

  15. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  16. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  17. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  18. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  19. Generation of electronic waste in India: Current scenario, dilemmas ...

    African Journals Online (AJOL)

    This paper tries to quantify the amount of E-waste generated in India with the related stakeholder involvement. Electronic waste (E-waste) or waste electrical and electronic equipments (WEEE), which is relatively a recent addition to the hazardous waste stream, is drawing rapid attention across the globe as the quantity ...

  20. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  1. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  2. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  3. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  4. Waste tank ventilation rates measured with a tracer gas method

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  5. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  6. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  7. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  8. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  9. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  10. The local authority rating of independent generators

    International Nuclear Information System (INIS)

    Chapman, G.C.

    1991-01-01

    A brief history of the rating is given covering the public utilities. Formula rating of the nationalised electricity supply industry is described with independent generators' rates, the effect of privatisation and the longer term outlook considered. The need to convince the UK government that power generating machinery should no more be rated than any manufacturing or process machinery, and that all power producers should be treated the same is noted. (Author)

  11. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    International Nuclear Information System (INIS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-01-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval

  12. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Science.gov (United States)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  13. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Energy Technology Data Exchange (ETDEWEB)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  14. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  15. Annual report of waste generation and pollution prevention progress 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments

  16. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  17. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-11-01

    The detailed radiological assessment of any proposed operations for the disposal of heat-generating radioactive waste in deep ocean sediments would require data describing expected embedment depths and spacing of the waste. In this study a theoretical model which predicts penetrator trajectories from launch through to rest in the sediment has been produced and has been used to generate data for environmental models. The trajectory model has been used to study the effects of small imperfections and launch parameters on the motion of a reference penetrator through water and sediment. The model predicts that the horizontal displacements of the penetrators' final resting places in the sediment from their launch positions at the ocean surface could be limited to less than 15m by twisting their tail fins uniformly by just one degree to induce spinning. The reference penetrator is predicted to achieve satisfactory embedment depth for all the cases considered including allowance for the effect of curved penetration paths in the seabed. However, the ability of the model to represent highly non-linear sediment penetration paths is demonstrated. Distribution histograms of seabed impact points relative to specific release points are presented. The area of seabed required is calculated. (author)

  18. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  19. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  20. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  1. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  2. Study on reducing the generation of general waste

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Aoki, Isao; Watahiki, Masatoshi

    2000-04-01

    On August 1999, the Director of Tokai Work proposed an activity regarding recycling and reuse of general waste generated from Tokai Works. The activity was initiated by the Waste Management and Fuel Cycle Research Center, and is now being in progress through out the Tokai Works. In the course of this activity, Plutonium Fuel Center had settled the working Group and the issues related to the waste reductive have been examined. This report collects the problems that became obvious through the survey of existing segregation method, treatment process, and the amount of the waste generation, and accounts for the concrete methodology for the recycling and reuse of general waste. In order to reduce waste, it is necessary to aware of the facing issues and adopt the countermeasures proposed in this report whenever possible. The activity will then leads us to reduce waste generation, which in turn will enable us to make 100% waste recycling possible. (author)

  3. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  4. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  5. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  6. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  7. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Hoon, E-mail: mrchoijh@kaeri.re.kr; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-15

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO{sub 2}−Al{sub 2}O{sub 3}−B{sub 2}O{sub 3} glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  8. Agricultural waste concept, generation, utilization and management ...

    African Journals Online (AJOL)

    Agricultural wastes are non-product outputs of production and processing of ... less than the cost of collection, transportation, and processing for beneficial use. ... Agricultural waste management system (AWMS) was discussed and a typical ...

  9. Future trends in computer waste generation in India.

    Science.gov (United States)

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  11. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  13. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Estimation of construction waste generation and management in Thailand.

    Science.gov (United States)

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  15. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  16. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  17. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran

    Directory of Open Access Journals (Sweden)

    Habibe Momeni

    2018-01-01

    Full Text Available Background: The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as “hazardous waste.” Objective: To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. Methods: 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. Results: The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year and toxic waste had the lowest quantity (9.275 kg/year. Components with the highest amounts in dentistry waste products were nylon gloves (16.7%, paper and cardboard (13.4%, latex gloves (10.8%, and pharmaceuticals (10.2%. Waste separation was restricted to sharp and cutting waste. More than half (57% of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. Conclusion: This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  18. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.

    Science.gov (United States)

    Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham

    2018-01-01

    The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  19. Guidelines for developing certification programs for newly generated TRU waste

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included

  20. The effect of gender and age structure on municipal waste generation in Poland

    International Nuclear Information System (INIS)

    Talalaj, Izabela Anna; Walery, Maria

    2015-01-01

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior

  1. The effect of gender and age structure on municipal waste generation in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl

    2015-06-15

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.

  2. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  3. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    International Nuclear Information System (INIS)

    Waste Management Group

    2006-01-01

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management

  4. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  5. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  6. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  7. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced

  8. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  10. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Leach rate characterization of solid radioactive waste forms

    International Nuclear Information System (INIS)

    Flynn, K.F.; Barletta, R.E.; Jardine, L.J.; Steindler, M.J.

    1978-01-01

    Leach rates were measured using distilled water on four types of waste forms: spray calcined waste mixed with silica and borosilicate glass and sintered, the same pulverized, the same in a lead matrix, and waste glass containing U. Twenty isotopes ranging from 22 Na to 239 Np were measured using activation analysis. Leach rates were also measured for a variety of matrix materials (Zircaloy, Al, Pb, glass, Pb 3 RE 6 (SiO 4 ) 6 ), using one isotope each. 2 tables

  12. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    Science.gov (United States)

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  14. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  15. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    Science.gov (United States)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  16. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  17. Release rates from waste packages in a salt repository

    International Nuclear Information System (INIS)

    Chambre, P.L.; Hwang, Y.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    In this report we present estimates of radionuclide release rates from waste packages into salt. This conservative and bounding analysis shows that release rates from waste packages in salt are well below the US Nuclear Regulatory Commission's performance objectives for the engineered barrier system. 2 refs., 2 figs

  18. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  19. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  20. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  1. Medical and biohazardous waste generator`s guide: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste.

  2. Quantifying and analysing food waste generated by Indonesian undergraduate students

    Science.gov (United States)

    Mandasari, P.

    2018-03-01

    Despite the fact that environmental consequences derived from food waste have been widely known, studies on the amount of food waste and its influencing factors have relatively been paid little attention. Addressing this shortage, this paper aimed to quantify monthly avoidable food waste generated by Indonesian undergraduate students and analyse factors influencing the occurrence of avoidable food waste. Based on data from 106 undergraduate students, descriptive statistics and logistic regression were applied in this study. The results indicated that 4,987.5 g of food waste was generated in a month (equal to 59,850 g yearly); or 47.05 g per person monthly (equal to 564.62 g per person per a year). Meanwhile, eating out frequency and gender were found to be significant predictors of food waste occurrence.

  3. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  4. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  5. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  6. Biogas generation in landfills. Equilibria, rates and yields

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, M

    1997-05-01

    Landfilling in `cells` has become more common in recent years. Different waste streams are guided to different cells, among which the biocell is a landfill designed for biogas production. In this thesis, the dependence of biogas generation on waste composition was investigated. Six 8,000 m{sup 3} test cells, with contents ranging from mainly commercial waste to pure domestic waste and equipped with gas extraction systems and bottom plastic liners, were monitored for seven years. Great emphasis was given to the characterization of conversion processes and governing mechanism in the topics of bio-energetics, kinetics and capacities. A thermodynamic model, in which the oxidations of volatile fatty acids (VFA) (2rates and internal conditions observed during a two year period, demonstrated that high biogas rates corresponded with low VFA levels. To explain the discrepancies between theoretical methane potentials and quantified yields (in this study found to be 150-200 and 40-70 Nm{sup 3}/dry tonne, respectively), the possible nutritional limitation was investigated. Pools and emissions of chemical oxygen demand, N, P and K were quantified. Biomass pools were estimated from methane yields, growth yield coefficients, and bacterial mineral contents. However, results from commercial waste test cells showed that the assimilation of P exceeded the refuse content, which suggests the turnover of microbial biomass and questions the notion of nutritional limitation. In sum, the results showed that the advantages of a reduced content of readily biodegradable material, achieved by guidance or pretreatment, encompass several aspects of the performance. 84 refs, 6 figs, 1 tab

  7. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  8. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  9. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  10. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  11. Characterization Of Solid Wastes Generated By A Community In ...

    African Journals Online (AJOL)

    on and organic fertilizers from household wastes could be transferred to the community to create jobs and gener-ate income. Landfills and relocation of refuse dumps far from the community were suggested as alternative disposal methods to ...

  12. Adverse Effects of Waste Generation in Calabar Urban, Nigeria ...

    African Journals Online (AJOL)

    Adverse Effects of Waste Generation in Calabar Urban, Nigeria. ... degradation, blocking of drainage and emission of greenhouse gases. We found a number of health hazards, ranging from pollution to diseases on both human and animals.

  13. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  14. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  15. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  16. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  17. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  18. Data analytics approach to create waste generation profiles for waste management and collection.

    Science.gov (United States)

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  20. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  1. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  2. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  3. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  5. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  6. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  7. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  8. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    International Nuclear Information System (INIS)

    Delgado Otoniel, Buenrostro; Liliana, Marquez-Benavides; Gaona Francelia, Pinette

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied

  9. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation and development of a policy for waste generation control - electric and electronic waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    Although a policy to reduce waste amount and promote recycling for large electric appliances was introduced, it is still in the initial stage operated in a form of recommendation and the general management system of electric and electronic waste has not established yet. In this study, the generation and disposal of electric and electronic waste were examined and the effectiveness of present policy was evaluated. Based on the analysis, a policy for the more appropriate electric and electronic waste management was presented. 34 refs., 4 figs., 51 tabs.

  11. Generation and management of medical waste in Serbia: A review

    Directory of Open Access Journals (Sweden)

    Šerović Radmila M.

    2016-01-01

    Full Text Available This study presents generation, quantities and medical waste (MW management in Serbia. It represents assessment methods and total annual MW generation by categories. It was concluded that pharmaceutical (64% and infectious (32% MW production is the largest. According to available data, MW management in Serbia is currently at low level, except when it comes to infectious waste. Research proposed simpler treatment methods in existing autoclaves and complex methods (incineration and plasma-pyrolysis, as well as short-term and long-term solutions. Predicted MW growing amount requires existing capacity increase for processing and new solutions application. Installed autoclaves capacity could be increased by increasing working time, in order to avoid additional investment. However, treatment in autoclave is only suitable for infectious MW. For other medical waste, which main fractions are pharmaceutical and chemical waste, there is no infrastructure. As temporary solution, pharmaceutical waste is treated abroad which in longer period is not financially feasible. Considering that MW treatment in Serbia currently is based on health facilities network equipped with autoclaves, as central (CTF and local (LTF treatments facilities for infectious waste treatment, it is recommended additional capacity implementation for treatment of non-infectious waste to this network, with simultaneous management level optimization of whole MW.

  12. Extreme E-waste generated from successful Operations Management?

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Zhilyaev, Dmitry; Parajuly, Keshav

    This paper identifies how research in the field of Operations Management (OM) has been extremely successful in reducing costs for the manufacturing of electrical and electronic equipment by focusing on design for assembly and manufacturing. The downside is the generation of extreme amounts of e......-waste. Based on a literature survey, 2251 kg of e-waste and on case study, this research identifies the need to extend product lifetimes to drive down e-waste. The study concludes that more research is needed on designs for disassembly, repair, refurbishment, and remanufacturing to meet future requirements...

  13. Food waste generation and industrial uses: A review.

    Science.gov (United States)

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  15. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  16. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  17. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  18. Electrical and Electronical Waste Generation in Turkey: Bursa Case Study

    Directory of Open Access Journals (Sweden)

    Güray SALİHOĞLU

    2016-10-01

    Full Text Available Electrical and electronical equipment that gradually take more place in our daily life, spend their service life in short times and become an e-waste problem to be solved.  Because of the hazardous components they contain, e-waste can cause environmental and human health threats if they are not properly managed. If they are managed properly, they can be a valuable raw material source, since they contain valuable metals such as copper, silver, gold, palladium and recyclable components such as plastics and metals. According to a research conducted in 2014, the global e-waste amount accounts to a source worth 52 billion $; however, only 16% of this source has been properly recycled. It is important to know the potential e-waste amount and the behaviors of people in the production of e-waste to realize a proper e-waste management in our country. The amount and property of electrical and electronic equipment and e-waste generation potential per person in Bursa was investigated in this study. A questionnaire was prepared and applied to a group of people including 31 families (100 person. The questions were to investigate the behaviors in the use, replacement, and management of electrical and electronical equipment. The findings showed that usage of lamps (fluorescent and others were higher than the other equipment, and usage of mobile phones were found to be highest in terms of devices. It was also found that when the mobiles become e-waste since the owners do not want to use them, they are not just thrown away and kept at homes instead. E-waste generation potential of a person from the families investigated was estimated to be 8.14 kg/year.

  19. Examining of solid waste generation and community awareness between city center and suburban area in Medan City, Indonesia

    Science.gov (United States)

    Khair, H.; Putri, C. N.; Dalimunthe, R. A.; Matsumoto, T.

    2018-02-01

    Municipal solid waste (MSW) management is still an issue in many cities in Indonesia including Medan. Understanding the waste generation, its characteristic and communities involvement could provide effective solid waste management. This research compares waste generation from people who live in the city center and suburban area. The research also examines the willingness and participation of community about environmental aspect, especially solid waste management. The method of waste generation used Indonesian Nasional Standard 19-3964-1994. The city center generates 0.295 kg/person/day of solid waste and 0.180 kg/person/day for suburbs. The result showed that there are the common amount of waste compositions between the city center and suburban area. The majority waste composition was an organic fraction. Questionnaires were distributed to examine the community awareness. The descriptive statistic used to analyze the data. The result showed that people living in the city center are slightly higher in community awareness than in the suburb. This paper highlights that area of living could give some effect to solid waste generation, waste composition and rate of awareness.

  20. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  1. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  2. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  3. Forecasting generation of urban solid waste in developing countries--a case study in Mexico.

    Science.gov (United States)

    Buenrostro, O; Bocco, G; Vence, J

    2001-01-01

    Based on a study of the composition of urban solid waste (USW) and of socioeconomic variables in Morelia, Mexico, generation rates were estimated. In addition, the generation of residential solid waste (RSW) and nonresidential solid waste (NRSW) was forecasted by means of a multiple linear regression (MLR) analysis. For residential sources, the independent variables analyzed were monthly wages, persons per dwelling, age, and educational level of the heads of the household. For nonresidential sources, variables analyzed were number of employees, area of facilities, number of working days, and working hours per day. The forecasted values for residential waste were similar to those observed. This approach may be applied to areas in which available data are scarce, and in which there is an urgent need for the planning of adequate management of USW.

  4. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    and street cleansing waste) and temporarily stored combustible waste were sampled and characterized in terms of TS, VS, TC, TOC, and biochemical methane potential (BMP). Decay rates (k values), were determined by conducting anaerobic degradation experiments and applying FOD equations to the experimental...

  5. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  6. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  7. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  8. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  9. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  10. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  11. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Science.gov (United States)

    2010-07-01

    ... conditionally exempt small quantity generator waste. 273.8 Section 273.8 Protection of Environment ENVIRONMENTAL....8 Applicability—household and conditionally exempt small quantity generator waste. (a) Persons... universal wastes defined at § 273.9; and/or (2) Conditionally exempt small quantity generator wastes that...

  12. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE: STATUS AND DIRECTION

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Gray, M.F.; Calmus, R.B.; Edge, J.A.; Garrett, B.G.

    2011-01-01

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  13. Steam generation by combustion of processed waste fats

    Energy Technology Data Exchange (ETDEWEB)

    Pudel, F.; Lengenfeld, P. [OEHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  14. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... of an environmental risk to health care workers, the public and the environment at large. ... Only four out of ten health centers used local type of incinerators, while ...

  15. Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…

  16. Generation and collection of restaurant waste: Characterization and evaluation at a case study in Italy.

    Science.gov (United States)

    Tatàno, Fabio; Caramiello, Cristina; Paolini, Tonino; Tripolone, Luca

    2017-03-01

    high working pressure or the closing of a seasonal business (typical for restaurants in tourist areas); and the monthly variation of the separate collection level is inversely correlated with that of the unit generation of total waste per meal. The interception rates of the different restaurant waste fractions collected separately presented a ranking order (i.e., 96.0% for glass, 67.7% for paper/cardboard, 34.4% for food, 20.6% for metal, and 17.9% for plastic) similar to the order of efficiencies achievable at both small and large urban levels. Finally, the original concept of the customer equivalent person (P ce ) was introduced and behaviorally evaluated at the case study restaurant, providing the values of 0.42 and 0.39kgP ce -1 day -1 for the food waste generation and the landfilling of biodegradable waste by the customer equivalent person, respectively. These values were compared, respectively, with the food waste generation per person at the household level and the landfilling of biodegradable waste per inhabitant at the territorial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radioactive solid waste management study of generated in the source production laboratory for brachytherapy

    International Nuclear Information System (INIS)

    Barbosa, Nayane K.O.; Carvalho, Vitória S.; Marques, José R.O.; Costa, Osvaldo L.; Baptista, Tatyana S.; Vicente, Roberto; Rostelato, M.E.C.M.; Zeituni, Carlos A.; Souza, Daiane C.B.

    2017-01-01

    A management system for radioactive solid wastes generated during seed production in the Laboratório de Produção de Fontes para Radioterapia (LPFRT) was developed. For this, the volume and the mass of each item of solid wastes generated in Glove box were estimated. It is possible to estimate, per week, how much reject will enter the warehouse, what space it will occupy and also its weight. In the final step of the characterization, the decay calculation is applied to define the time the reject will be stored for later disposal in the collection system. After the characterization process, it is noticed that the rate of volume and radioactivity decreases as the retention time of the rejects increases due to the release of the materials, and also, there is the decay of the radioactivity present in the reservoir. It is also observed that the rate of entry and exit of the wastes is proportional

  18. Estimation of methane emission rate changes using age-defined waste in a landfill site.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru

    2013-09-01

    Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  20. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Huckaby, J.L.; Bryan, S.A.; Johnson, G.D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report

  1. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report

  2. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  3. Environmental impact statement on management of commercially generated radioactive wastes

    International Nuclear Information System (INIS)

    Shupe, M.W.; Kreiter, M.R.

    1979-01-01

    This report describes the generic environmental impact statement on the management of generated high-level and transuranic radioactive wastes. The contents of the statement are summarized. The alternatives considered include: geologic disposal; chemical resynthesis; very deep hole disposal; rock melting concept; island disposal; subseabed disposal; icesheet disposal; reverse well disposal; transmutation treatment; and space disposal concepts. The types and quantities of wastes considered are from 3 different fuel cycles for the LWR reactor: once through; uranium-only recycle; and uranium and platinum recycle

  4. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  5. Systematic characterization of generation and management of e-waste in China.

    Science.gov (United States)

    Duan, Huabo; Hu, Jiukun; Tan, Quanyin; Liu, Lili; Wang, Yanjie; Li, Jinhui

    2016-01-01

    Over the last decade, there has been much effort to promote the management of e-waste in China. Policies have been affected to prohibit imports and to control pollution. Research has been conducted in laboratories and on large-scale industrial operations. A subsidy system to support sound e-waste recycling has been put in place. However, the handling of e-waste is still a concern in China and the issue remains unresolved. There has been relatively little work to follow up this issue or to interpret continuing problems from the perspective of sustainable development. This paper first provides a brief overview of conventional and emerging environmental pollution in Chinese "famous" e-waste dismantling areas, including Guiyu in Guangdong and Wenling in Zhejiang. Environmentalists have repeatedly proven that these areas are significantly polluted. Importing and backyard recycling are decreasing but are ongoing. Most importantly, no work is being done to treat or remediate the contaminated environmental media. The situation is exacerbated by the rising tide of e-waste generated by domestic update of various electronics. This study, therefore, employs a Sales Obsolescence Model approach to predict the generation of e-waste. When accounting for weight, approximately 8 million tons of e-waste will be generated domestically in 2015, of which around 50% is ferrous metals, followed by miscellaneous plastic (30%), copper metal and cables (8%), aluminum (5%), and others (7%). Of this, 3.6% will come from scrap PCBs and 0.2% from lead CRT glass. While more and more end-of-life electronics have been collected and treated by formal or licensed recyclers in China in terms of our analysis, many of them only have dismantling and separation activities. Hazardous e-wastes, including those from PCBs, CRT glass, and brominated flame retardant (BFR) plastics, have become problematic and probably flow to small or backyard recyclers without environmentally sound management. Traditional

  6. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1995-09-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP(Monte Carlo N-Particle) computer code and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time

  7. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1996-01-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP (Monte Carlo N-Particle) computer code (Briesmeister 1993) and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time. copyright 1996 American Institute of Physics

  8. Quantitative analysis of the radioactive wastes to be generated in the Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Santos, Jose Mauro Esteves dos

    1979-01-01

    In the nuclear fuel cycle radioactive waste requiring special treatment (processing, transportation and disposal) is produced. For the implementation of a waste management program, parameters such as volume, specific activity, thermal power, gamma power, (alpha,η) and spontaneous fission neutron production rates are required. In this work, we have calculated: a) The specific activity, thermal power, gamma power and neutron production rate for the irradiated fuel of Angra II; b) The volumes of radioactive waste that will be produced in the nuclear fuel cycle in Brazil; c) The specific activity, thermal power, gamma power and neutron production rate for the high-level waste that will be produced during fuel reprocessing. In the short-term it is concluded that the major problems that will require solution will be the disposal of the low-level waste (volume V L ) and the interim storage of the irradiated fuel elements (volume V F ) generated in the nuclear power plants. For the years 1990 and 2010 these volumes are: (1990) V L = 16149 m 3 ; V F = 1287 m 3 and (2010) V L = 690506 m 3 , V F = 55051 m 3 . In the medium-term the problem of the interim storage of the high-level waste (volume V H ) must be solved. The volumes of this waste we have calculated for the years 2000 and 2010 are: (2000) V H = 50 m 3 and (2010) V H = 1265 m 3 . Long term evaluation of high-level waste disposal must be analysed to aid in initial studies of this problem. Several parameters of this waste have been calculated as a function of time after reprocessing. (author)

  9. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  10. Continuous organic waste digester and methane gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Araneta, V.A.

    1979-01-01

    A patent on the construction of a utility model of an industrial product of a continuous organic-waste digester and methane-gas generator is described. It comprises an airtight chamber to receive slurry of organic waste; a gas-water scrubber to purge carbon dioxide, odor-omitting gases and froth or scrum from newly formed methane gas evolving from said slurry of organic wastes; and two dually functioning slurry-feed and -discharge pipes connected to a reversible pump. It has one pipe with an opening at the base of an airtight chamber and the other pipe with up-ended openings below the fluid level of the slurry to be accumulated in the airtight chamber.

  11. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  12. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and Pu released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution

  13. Long-term leach rates of glasses containing actual waste

    International Nuclear Information System (INIS)

    Wiley, J.R.; LeRoy, J.H.

    1979-01-01

    Leach rates of borosilicate glasses that contained actual Savannah River Plant waste were measured. Leaching was done by water and by buffer solutions of pH 4, 7, and 9. Leach rates were then determined from the amount of 137 Cs, 90 Sr, and plutonium released into the leach solutions. The cumulative fractions leached were fit to a mathematical model that included leaching by diffusion and glass dissolution. 5 figures, 3 tables

  14. ANALYZING CERTAIN CHRACTERISTICS OF MUNICIPAL SOLID WASTE GENERATION IN THE PROCES S OF WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Gábriel Györgyi T #336;ZSÉR

    2010-01-01

    Full Text Available Based on the regulations of Act XLIII/2000 on Waste Management to implement the strategic objectives and targets in the Act for the prevalence of the basic waste management principles a National Waste Management Plan II will be worked out and then accepted by the Parliament as part of the National Environmental Protection Programme. On the basis of the national plan the administrative bodies of environmental protection in accordance with the regional settlement and d evelopment programmes make a regional waste management project with the inclusion of the regional, local authorities, and other authorities concerned as well as the non governmental organisations for environmental protection. In our research we analyze the correlation between municipal solid waste per capita and urbanisation level. We have conducted similar calculations in the filed of population density and income. The study was carried out on a micro region level. Our analysis can help determine the framework conditions and factors that influence waste generation, and therefore should be taken into consideration when designing waste policies .

  15. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  16. Reducing waste generation and radiation exposure by analytical method modification

    International Nuclear Information System (INIS)

    Ekechukwu, A.A.

    1996-01-01

    The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications

  17. Evaluation of kerma rate in radioactive waste disposal

    International Nuclear Information System (INIS)

    Rosa, Rodolfo O.; Silva, Joao C.P.; Santos, Joao R. dos

    2014-01-01

    This study aims to assess the progression of kerma rate levels in the air due to the increase of collection, storing and storage of radioactive waste in the new building (after expansion) of the radioactive waste disposal (RWD) of the Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Brazil. This review is carried out every six months at IEN with thermoluminescent dosimeter lithium fluoride LiF: Mg, Cu, P (TLD-100H). Here are the average values of kerma rate for the period 2008- 2012. In this context, the methodology used for selection and choices of detectors used in dosimeters is presented. The detectors were chosen through homogeneity criteria of the pack, standardization factor and coefficient of variation (CV%). The monitoring points and the exposure time of the detectors are chosen considering various factors, including the rate of occupation and indoor and outdoor positions to RWD. These evaluations showed that the contribution of the new waste disposal in increasing kerma rate of IEN, has proved to be insignificant, that is, the presence of RWD does not contribute to increased environmental kerma rate in the region around this installation

  18. High rate composting of herbal pharmaceutical industry solid waste.

    Science.gov (United States)

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  19. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  20. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  1. Steam generators lay-up optimization and derived wastes reduction

    International Nuclear Information System (INIS)

    Rabeau, A.M.; Viricel, L.; Foct, F.; Lemaire, P.; Moreaux, D.

    2002-01-01

    Today, EDF plants face a new release permit after a steam generators (SGs) wet lay-up, so that the legal authorizations for wastes release to the environment, renewed or being renewed by the safety authorities, allow smallest quantities of wastes than earlier. In this context, EDF studies the optimization of SGs lay-up conditions, and especially of the hydrazine concentration, in order to reduce the liquid wastes releases to the environment, while keeping low corrosion conditions. At the same time, EDF examines a treatment for hydrazine elimination in liquid wastes before their releases. An experimental study has been conducted in order to evaluate the efficiency of hydrazine to control materials corrosion and of nitrogen gas phase to deaerate water. The consequences of lay-up conditions on carbon steel corrosion has also been studied. In the absence of an efficient alternative reagent, hydrazine remains necessary but implies a great care due to its carcinogenic risks and to its toxicity for aquatic organisms. This choice implies studying a method for hydrazine elimination before its release to the environment. The hydrazine elimination from SGs lay-up wastes could be achieved within about one day, by adding about 700 to 800 liters of 30% hydrogen peroxide solution to eliminate 100 kg hydrazine. Copper sulfate would have to be added if copper is not present in the wastes; the copper content in the wastes should be around 100 to 200 μg/kg for the reaction to be fast enough, which is consistent with the legal authorization for copper release to the environment. The nuclear power plants would have to adjust the quantity of hydrogen peroxide to add to the wastes to be treated, based on the quantity of hydrazine to eliminate, in order to avoid any excess of hydrogen peroxide in the wastes at the end of the treatment, since this species is not allowed to be released to the environment. Moreover, the hydrogen peroxide treatment should not have any significant impact on

  2. Assessment and quantification of plastics waste generation in major 60 cities of India.

    Science.gov (United States)

    Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K

    2013-04-01

    Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.

  3. The CANDU-PHW generating system waste arisings

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1979-03-01

    In this report, the volume of material and level of contained radioactive nuclides are tabulated for wastes arising from four fuel cycles which might be operated in CANDU-PHW (CANada Deuterium Uranium - Pressurized Heavy Water) reactors. The data presented, based on Canadian experience and/or studies, cover the range of conditioned waste volumes which could be expected from steady-state (no growth), CANDU-PHW-powered electrical generating systems. The wastes arising from operation and decommissioning of facilities in each phase of each fuel cycle are estimated. Each fuel cycle is considered to operate in isolation with the data given in terms of quantities per gigawatt-year of electricity produced. Three of the fuel cycles for which data are presented, the natural uranium once-through cycle, the plutonium-enriched uranium cycle (plutonium recycle) and the low-burnup uranium-enriched thorium cycle (thorium and uranium recycle), were studied by INFCE WG.7 (the International Nuclear Fuel Cycle Evaluation, Working Group 7) as fuel cycles 4, 5 and 6. The high-burnup uranium-enriched thorium cycle is included for comparison. INFCE WG.7 selected many common reference parameters which are applied uniformly to all seven INFCE WG.7 reference fuel cycles in determining waste arisings. Where these parameters differ from the data of Canadian origin given in the body of this report, the INFCE WG.7 data are given in an appendix. The waste management costs associated with operation of each INFCE WG.7 reference fuel cycle were calculated and compared by the working group. An arbitrary set of costing parameters and disposal technologies was selected by the working group for application to each of the reference fuel cycles. The waste management and disposal costs for the PHW reactor fuel cycles based on these arbitrary cost parameters are given in an appendix. (author)

  4. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    International Nuclear Information System (INIS)

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-01-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  5. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  6. Composition, production rate and characterization of Greek dental solid waste.

    Science.gov (United States)

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  8. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    Science.gov (United States)

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Estimating the possible range of recycling rates achieved by dump waste pickers: The case of Bantar Gebang in Indonesia.

    Science.gov (United States)

    Sasaki, Shunsuke; Araki, Tetsuya

    2014-06-01

    This article presents informal recycling contributions made by scavengers in the surrounding area of Bantar Gebang final disposal site for municipal solid waste generated in Jakarta. Preliminary fieldwork was conducted through daily conversations with scavengers to identify recycling actors at the site, and then quantitative field surveys were conducted twice. The first survey (n = 504 households) covered 33% of all households in the area, and the second survey (n = 69 households) was conducted to quantify transactions of recyclables among scavengers. Mathematical equations were formulated with assumptions made to estimate the possible range of recycling rates achieved by dump waste pickers. Slightly over 60% of all respondents were involved in informal recycling and over 80% of heads of households were waste pickers, normally referred to as live-in waste pickers and live-out waste pickers at the site. The largest percentage of their spouses were family workers, followed by waste pickers and housewives. Over 95% of all households of respondents had at least one waste picker or one small boss who has a coequal status of a waste picker. Average weight of recyclables collected by waste pickers at the site was estimated to be approximately 100 kg day(-1) per household on the net weight basis. The recycling rate of solid wastes collected by all scavengers at the site was estimated to be in the range of 2.8-7.5% of all solid wastes transported to the site. © The Author(s) 2014.

  10. The global economic and regulatory determinants of household food waste generation: A cross-country analysis.

    Science.gov (United States)

    Chalak, Ali; Abou-Daher, Chaza; Chaaban, Jad; Abiad, Mohamad G

    2016-02-01

    Food is generally wasted all along the supply chain, with an estimated loss of 35percent generated at the consumer level. Consequently, household food waste constitutes a sizable proportion of the total waste generated throughout the food supply chain. Yet such wastes vary drastically between developed and developing countries. Using data collected from 44 countries with various income levels, this paper investigates the impact of legislation and economic incentives on household food waste generation. The obtained results indicate that well-defined regulations, policies and strategies are more effective than fiscal measures in mitigating household food waste generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  12. Leach rate studies on glass containing actual radioactive waste

    International Nuclear Information System (INIS)

    Walker, D.D.; Wiley, J.R.; Dukes, M.D.; LeRoy, J.H.

    1980-01-01

    Borosilicate glass containing radioactive wastes from the Savannah River Plant have been leached for 900 days. The International Standards Organization's (ISO) static leach test procedure was used on glass buttons in various leachants. Leach rates based on 90 Sr and 137 Cs analyses were similar: 2 x 10 -8 to 3 x 10 -8 g/(cm 2 )(d) in distilled water, 1 x 10 -8 to 3 x 10 -7 g/(cm 2 )(d) in pH 7 buffer, 3 x 10 -7 to 7 x 10 -7 g/(cm 2 )(d) in pH 9 buffer, and 7 x 10 -6 to 8 x 10 -5 g/(cm 2 )(d) in pH 4 buffer. Rates based on Pu analyses were the same as above in distilled water and pH 9 buffer, but were lower by an order of magnitude in pH 4 and pH 7 buffers. Almost all leach rates remained constant between 200 and 900 days of leaching. Increasing the concentration of the buffering agents had no effect on the leach rates at pH 7 (phosphate) and pH 9 (carbonate), but dramatically increased the rates at pH 4 (acetate). Leach rates did not differ significantly between high aluminum and high iron waste glasses

  13. FRIDA: A model for the generation and handling of solid waste in Denmark

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Møller Andersen, Frits

    2012-01-01

    Since 1994, Danish waste treatment plants have been obliged to report to the Danish EPA the annual amounts of waste treated. Applying these data, we analyse the development, link amounts of waste to economic and demographic variables, and present a model for the generation and treatment of waste...... in Denmark. Using the model and official projections of the economic development, a baseline projection for the generation and treatment of waste is presented. © 2012 Elsevier B.V. All rights reserved....

  14. Reduction of waste solution volume generated on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Koo, Dae-Seo; Kim, Seung-Soo; Jeong, Jung-Whan; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, for the reduction of volume of metal oxides generated in cathode chamber, the optimum pH of waste electrolyte in cathode chamber were drawn out through several experiments with the manufactured electrokinetic decontamination equipment. Also, the required time to reach to below the clearance concentration level for self- disposal was estimated through experiments using the manufactured electrokinetic decontamination equipment. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out. The optimum pH of waste electrolyte in cathode chamber for the reduction of volume of metal oxides was below 2.35. Also, when the initial uranium concentration of the soils were 7-20 Bq/g, the required times to reach to below the clearance concentration level for self- disposal were 25-40 days. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out.

  15. Radioactive wastes: a problem of morality between generations

    International Nuclear Information System (INIS)

    MacLean, D.

    1984-01-01

    Nowhere are the intergenerational moral issues posed more explicitly that in debates over nuclear power and the disposal of radioactive wastes. A survey of some of the ethical issues covers energy supply and risk and the problem of determining a cost-benefit of resources use and conservation that maximizes supply and minimizes risk. The author identifies three arguments against energy policy based on cost-benefit analysis: 1 reliability, 2 fairness, and 3 the lack of subjective value. All three suggest the need to determine not only what our obligations to future generations are, but also the underlying basis of these obligations in our system of values. The radioactive waste issue has an urgency, for options are opening and closing. 13 references

  16. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Hu, T.A.

    2007-01-01

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

  17. Healthcare Waste Generation Worldwide and Its Dependence on Socio-Economic and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Minas Minoglou

    2017-02-01

    Full Text Available This paper examines the dependence of the healthcare waste (HCW generation rate on several social-economic and environmental parameters. Correlations were calculated between the quantities of healthcare waste generated (expressed in kg/bed/day versus economic indices (GDP, healthcare expenditure per capita, social indices (HDI, IHDI, MPI, life expectancy, mean years of schooling, HIV prevalence, deaths due to tuberculosis and malaria, and under five mortality rate, and an environmental sustainability index (total CO2 emissions from 42 countries worldwide. The statistical analysis included the examination of the normality of the data and the formation of linear multiple regression models to further investigate the correlation between those indices and HCW generation rates. Pearson and Spearman correlation coefficients were also calculated for all pairwise comparisons. Results showed that the life expectancy, the HDI, the mean years of schooling and the CO2 emissions positively affect the HCW generation rates and can be used as statistical predictors of those rates. The resulting best reduced regression model included the life expectancy and the CO2 emissions and explained 85% of the variability of the response.

  18. Basic diagnosis of solid waste generated at Agua Blanca State Park to propose waste management strategies.

    Science.gov (United States)

    Laines Canepa, José Ramón; Zequeira Larios, Carolina; Valadez Treviño, Maria Elena Macías; Garduza Sánchez, Diana Ivett

    2012-03-01

    State parks are highly sensitive areas of great natural importance and tourism value. Herein a case study involving a basic survey of solid waste which was carried out in 2006 in Agua Blanca State Park, Macuspana, Tabasco, Mexico with two sampling periods representing the high and low tourist season is presented. The survey had five objectives: to find out the number of visitors in the different seasons, to consider the daily generation of solid waste from tourist activities, to determine bulk density, to select and quantify sub-products; and to suggest a possible treatment. A daily average of 368 people visited the park: 18,862 people in 14 days during the high season holiday (in just one day, Easter Sunday, up to 4425 visitors) and 2092 visitors in 43 days during the low season. The average weight of the generated solid waste was 61.267 kg day(-1) and the generated solid waste average per person was 0.155 kg person(-1 ) day(-1). During the high season, the average increased to 0.188 kg person(-1 ) day(-1) and during the low season, the average decreased to 0.144 kg person(-1 ) day(-1). The bulk density average was 75.014 kg m(-3), the maximum value was 92.472 kg m(-3) and the minimum was 68.274 kg m(-3). The sub-products comprised 54.52% inorganic matter; 32.03% organic matter, 10.60% non-recyclable and 2.85% others. Based on these results, waste management strategies such as reuse/recycling, aerobic and anaerobic digestion, the construction of a manual landfill and the employment of a specialist firm were suggested.

  19. Generation and composition of medical wastes from private medical microbiology laboratories.

    Science.gov (United States)

    Komilis, Dimitrios; Makroleivaditis, Nikolaos; Nikolakopoulou, Eftychia

    2017-03-01

    A study on the generation rate and the composition of solid medical wastes (MW) produced by private medical microbiology laboratories (PMML) was conducted in Greece. The novelty of the work is that no such information exists in the literature for this type of laboratories worldwide. Seven laboratories were selected with capacities that ranged from 8 to 88 examinees per day. The study lasted 6months and daily recording of MW weights was done over 30days during that period. The rates were correlated to the number of examinees, examinations and personnel. Results indicated that on average 35% of the total MW was hazardous (infectious) medical wastes (IFMW). The IFMW generation rates ranged from 11.5 to 32.5g examinee -1 d -1 while an average value from all 7 labs was 19.6±9.6g examinee -1 d -1 or 2.27±1.11g examination -1 d -1 . The average urban type medical waste generation rate was 44.2±32.5g examinee -1 d -1 . Using basic regression modeling, it was shown that the number of examinees and examinations can be predictors of the IFMW generation, but not of the urban type MW generation. The number of examinations was a better predictor of the MW amounts than the number of examinees. Statistical comparison of the means of the 7PMML was done with standard ANOVA techniques after checking the normality of the data and after doing the appropriate transformations. Based on the results of this work, it is approximated that 580 tonnes of infectious MW are generated annually by the PMML in Greece. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  1. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  2. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  3. Effect of liquid waste discharges from steam generating facilities

    International Nuclear Information System (INIS)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides

  4. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  5. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  6. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  7. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  8. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  9. Investigation on the characteristics of liquid wastes depending on their generation sources and study on optimum treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Guk; Kim, Dong Chan; Shin, Dae Hyun; Son, Seung Geun; Roh, Nam Sun; Woo, Je Kyung [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The major research contents conducted this year are as follows: (1) environmental regulation with respect to the treatment of the liquid waste in the U.S.A., (2) the present status of the generation and treatment of liquid wastes for large producers(>1,000 ton/year), (3) analysis for heating value element, heavy metal content, halogenated species on collected samples, (4) investigation on estimation method of energy recovery rate from liquid waste, (5) design of a lab. scale reactor which could be capable of conducting thermal decomposition test with small quantity of sample. In this study, present status of liquid waste generation and treatment is investigated, and thermal decomposition characteristics are studied using a lab. scale thermal reactor. The purpose of this research is to divide liquid waste into groups and to present best treatment method for their each group. (author). 24 refs., 21 figs., 23 tabs.

  10. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    International Nuclear Information System (INIS)

    Poineau, Frederic; Tamalis, Dimitri

    2016-01-01

    The isotope 99 Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β - = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99 Tc ( 99 Tc → 99 Ru + β - ). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational modeling

  11. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    Energy Technology Data Exchange (ETDEWEB)

    Poineau, Frederic [Univ. of Nevada, Las Vegas, NV (United States); Tamalis, Dimitri [Florida Memorial Univ., Miami Gardens, FL (United States)

    2016-08-01

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t1/2 = 2.13 ∙ 105 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium waste forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc (99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the

  12. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  13. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  14. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  15. Measurements of waste tank passive ventilation rates using tracer gases

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  16. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  17. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  18. Low leach rate glasses for immobilization of nuclear wastes

    International Nuclear Information System (INIS)

    Chick, L.A.; Buckwalter, C.Q.

    1980-10-01

    Improved defense and commercial waste glass have about one order of magnitude lower leach rates at 90 0 C in static deionized water than reference glasses. This durability difference diminishes as the leaching temperature is raised, but at repository temperature less than 150 0 C, the improved compositions would have considerable advantages over reference glases. At the melting temperatures necessary for most of the high-durability glasses, volatility was found to be higher than that experienced in processing current reference glases. Higher volatilities might be compensated for by specific design of the off-gas system for improved off-gas treatment and volatile materials recovery. 6 figures, 2 tables

  19. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Trans generational ethics: protecting future generations against nuclear waste hazards. Some ethical considerations

    International Nuclear Information System (INIS)

    Cornelis, G.C.

    2002-01-01

    This paper describes the activities launched at SCK x CEN, intended to explore ethical and other non-technical aspects when dealing with the time scales considered in the high-level waste disposal program. Especially the issues of retrievability and precaution will be focused on which will be philosophically contextualised. Many questions will be raised in order to sensitize all stakeholders for the trans-disciplinary character of the trans-generational problem at hand. (author)

  1. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  2. Just-in-time characterization and certification of DOE-generated wastes

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Primozic, F.J.; Robinson, M.A.

    1995-01-01

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D ampersand D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D ampersand D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation

  3. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  4. Managing California's low-level waste: state policy and waste generators

    International Nuclear Information System (INIS)

    Pasternak, A.D.; Cramer, E.N.

    1985-01-01

    Since 1982, public and private organizations in California that use radioactive materials and generate low-level radioactive waste have worked together through the California Radioactive Materials Management Forum (CRMMF) to assure the continued safe disposal of low-level waste (LLW). The forum's corporate and institutional members include electric utilities, universities, hospitals, industries, professional societies, and firms engaged in biological research and the manufacture of radiopharmaceuticals. In addition, over 200 individuals are members. The objectives of CRMMF are: (a) establishing a disposal facility for LLW in California and (b) maintaining access to the existing disposal sites in Washington, Nevada, and South Carolina until a California site is licensed and operating. This paper describes the forum's programs in the areas of legislation, litigation, and public information that contribute to the achievement of these objectives

  5. Influence of Groundwater Flow Rate on Nuclide Releases from Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2011-01-01

    Since the early 2000s several template programs for the safety assessment of a high-level radioactive waste repository as well as a low- and intermediate level radioactive waste repository systems have been developed by utilizing GoldSim and AMBER at KAERI. Very recently, another template program for a conceptual hybrid-typed repository system, called 'A-KRS' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from pyroprocessing of PWR nuclear spent fuels has been developed and are to be disposed of by separate disposal strategies. The A-KRS is considered to be constructed at two different depths in geological media: 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and 500m depth, believed to be in the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of waste package and canister. To quantify a nuclide release and transport through the possible various pathways especially in the near-fields of the A-KRS repository system, some illustrative evaluations have been made through the study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  6. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  7. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  8. Determination of cost effective waste management system receipt rates

    International Nuclear Information System (INIS)

    McKee, R.W.; Huber, H.D.

    1991-01-01

    A comprehensive logistics and cost analysis has been carried out to determine if there are potential benefits to the high-level waste management system for receipt rates other than the current 3000 MTU/yr design-basis. The analysis includes both a Repository-Only System and a Storage-Only System. Repository startup dates of 2010 and 2015 and MRS startup dates of 1988 and three years prior to the repository have been evaluated. Receipt rates ranging from 1,500 to 6, 000 MTU/yr have been considered. Higher receipt rates appear to be economically justified, for either system, minimum costs are found at a repository receipt rate of 6000 MTU/yr. However, the MRS receipt rate for minimum system costs depends on the MRS startup date. With a 1988 MRS and a 2010 repository, the added cost of providing the MRS is offset by at-reactor storage cost reductions and the total system cost of $10.0 billion is virtually the same as for the repository- only system. 9 refs., 8 figs., 3 tabs

  9. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  10. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    International Nuclear Information System (INIS)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.; Enriquez, Alejandro E.; Carson, Peter H.

    2013-01-01

    Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for 238 Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)

  11. Can producer currency pricing models generate volatile real exchange rates?

    OpenAIRE

    Povoledo, L.

    2012-01-01

    If the elasticities of substitution between traded and nontraded and between Home and Foreign traded goods are sufficiently low, then the real exchange rate generated by a model with full producer currency pricing is as volatile as in the data.

  12. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    International Nuclear Information System (INIS)

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H 2 generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H 2 generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H 2 in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H 2 monitors were recommended to the DWPF to control the generation of H 2 during melter feed preparation by fuel dilution

  13. Thirty-year solid waste generation forecast for facilities at SRS

    International Nuclear Information System (INIS)

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D ampersand D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast

  14. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  15. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  16. Determination of cost effective waste management system receipt rates

    International Nuclear Information System (INIS)

    McKee, R.W.; Huber, H.D.

    1991-01-01

    A comprehensive logistics and cost analysis has been carried out to determine if there are potential benefits to the high-level waste management system for receipt rates other than the current 3,000 MTU/yr design-basis receipt rate. The scope of the analysis includes both a Repository-Only System and a Storage-Only or Basic MRS System. To allow for current uncertainties in facility startup scheduling, cases considering repository startup dates of 2010 and 2015 and MRS startup dates of 1998 and three years prior to the repository have been evaluated. Receipt rates ranging from 1,500 to 6,000 MTU/yr have been considered for both the MRS and the repository. Higher receipt rates appear to be economically justified for both the repository and an MRS. For a repository-only system, minimum costs are found at a repository receipt rate of 6,000 MTU/yr. When a storage-only MRS is included in the system, minimum system costs are also achieved at a repository receipt rate of 6,000 MTU/yr. However, the MRS receipt rate for minimum system costs depends on the MRS startup date and ranges from 3,500 to 6,000 MTU/yr. With a 1998 MRS and a 2010 repository, the added cost of providing the MRS is offset by at-reactor storage cost reductions and the total system cost of $10.0 billion is virtually the same as for the repository-only system

  17. Precipitation-filtering technology for uranium waste solution generated on washing-electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam, E-mail: kimsum@kaeri.re.kr; Park, Uk-Ryang; Kim, Seung-Soo; Moon, Jei-Kwon

    2015-05-15

    Graphical abstract: A recycling process diagram for the volume reduction of waste solution generated from washing-electrokinetic decontamination. - Highlights: • A process for recycling a waste solution generated was developed. • The total metal precipitation rate by NaOH in a supernatant after precipitation was the highest at pH 9. • The uranium radioactivity in the treated solution upon injection of 0.2 g of alum was lower. • After drying, the volume of sludge was reduced to 35% of the initial sludge volume. - Abstract: Large volumes of uranium waste solution are generated during the operation of washing-electrokinetic decontamination equipment used to remove uranium from radioactive soil. A treatment technology for uranium waste solution generated upon washing-electrokinetic decontamination for soil contaminated with uranium has been developed. The results of laboratory-size precipitation experiments were as follows. The total amount of metal precipitation by NaOH for waste solution was highest at pH 11. Ca(II), K(I), and Al(III) ions in the supernatant partially remained after precipitation, whereas the concentration of uranium in the supernatant was below 0.2 ppm. Also, when NaOH was used as a precipitant, the majority of the K(I) ions in the treated solution remained. The problem of CaO is to need a long dissolution time in the precipitation tank, while Ca(OH){sub 2} can save a dissolution time. However, the volume of the waste solution generated when using Ca(OH){sub 2} increased by 8 mL/100 mL (waste solution) compared to that generated when using CaO. NaOH precipitant required lower an injection volume lower than that required for Ca(OH){sub 2} or CaO. When CaO was used as a precipitant, the uranium radioactivity in the treated solution at pH 11 reached its lowest value, compared to values of uranium radioactivity at pH 9 and pH 5. Also, the uranium radioactivity in the treated solution upon injection of 0.2 g of alum with CaO or Ca(OH){sub 2} was

  18. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  19. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    International Nuclear Information System (INIS)

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-01-01

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites

  20. Renewable electricity generation in India—A learning rate analysis

    International Nuclear Information System (INIS)

    Partridge, Ian

    2013-01-01

    The cost of electricity generation using renewable technologies is widely assumed to be higher than the cost for conventional generation technologies, but likely to fall with growing experience of the technologies concerned. This paper tests the second part of that statement using learning rate analysis, based on large samples of wind and small hydro projects in India, and projects likely changes in these costs through 2020. It is the first study of learning rates for renewable generation technologies in India, and only the second in any developing country—it provides valuable input to the development of Indian energy policy and will be relevant to policy makers in other developing countries. The paper considers some potential problems with learning rate analysis raised by Nordhaus (2009. The Perils of the Learning Model for Modeling Endogenous Technological Change. National Bureau of Economic Research Working Paper Series No. 14638). By taking account of these issues, it is possible both to improve the models used for making cost projections and to examine the potential impact of remaining forecasting problems. - Highlights: • The first learning rate analysis of wind generation costs in India. • Only the second learning rate analysis for wind in any developing country. • Reviews missing variable and related issues in learning rate analysis. • Finds a 17.7% learning rate for wind generation costs in India. • Finds no significant learning effect for small hydro

  1. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  2. Moment generating function approach to pricing interest rate and foreign exchange rate claims

    NARCIS (Netherlands)

    Dijkstra, T.K.; Yao, Y.

    2002-01-01

    This paper uses moment generating functions to provide a general framework to model international term structures and to price interest rate and foreign exchange rate claims. When moment generating functions of state variables have a closed-form formula, closed-form formulas for bond prices are

  3. Micronuclei rate in workers of Novi Han radioactive waste repository

    International Nuclear Information System (INIS)

    Atamasova, P.; Hadjidekova, V.

    2003-01-01

    A cytogenetic study has been carried out by the micronucleus test of lymphocytes from the peripheral blood of 30 workers from the Novi Han radioactive waste repository. The results are compared to the results of a control group of 6 persons from the administrative staff, and to outside group of 39 healthy persons. All persons are questioned through a special questionnaire about their occupational, medical, and social status. The rate of the cells with micronuclei and the total number of the micronuclei are analysed in the peripheral blood lymphocytes using the cytogenesis-block micronucleus test. The comparison of the results does not show an increase of the lymphocytes with micronuclei in the workers

  4. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  5. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  6. Potential Co-Generation of Electrical Energy from Mill Waste: A Case Study of the Malaysian Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2016-04-01

    Full Text Available Furniture manufacturing in Malaysia is an established industry driven primarily by the availability of raw materials and labor. However, the industry suffers from the low-recovery rate of its materials, as it produces a substantial amount of waste during the manufacturing process. Although smaller waste fragments, or off-cuts, are recovered for other purposes, the splinters, shavings, and coarse dust have little economic value and are often discarded. Because wood is a well-established source of bioenergy, this study investigated the potential use of mill waste from the furniture-manufacturing industry for electrical energy generation. Waste from the rubberwood, bamboo, and rattan furniture industries was evaluated for its potential electrical energy generation, and the amount was compared with the electrical energy that was consumed by the furniture industry. The study also compared the emission of greenhouse gases from the combustion of these waste materials against fossil fuels used to generate electricity to assess its potential in terms of the environmental benefits. In conclusion, such mill waste could be utilized as substitute for fossil fuel to generate energy in the furniture industry.

  7. The current waste generation and management trends in South Africa: A Review

    CSIR Research Space (South Africa)

    Nkosi, N

    2013-04-01

    Full Text Available This paper, a continuation and expansion of the work of Muzenda et al, 2012 [1] looks at the current waste generation and management trends in South Africa. The waste tyre problem in South Africa is also briefly discussed. Solid waste management...

  8. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  9. Management of radioactive waste generated from nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    Jeong-Mook Kim

    2000-01-01

    Fundamental objectives and efforts to safely manage radioactive wastes generating from the expanding nuclear power industry in the Republic of Korea are described. Management, treatment and storage of radioactive wastes arising in different form are addressed. A long tern plan to reduce the volume of solid waste is outlined. (author)

  10. Conceptual framework for the study of food waste generation and prevention in the hospitality sector

    NARCIS (Netherlands)

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo|info:eu-repo/dai/nl/36412380X; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-01-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation,

  11. Evaluation of Solid Waste Generation, Categories and Disposal ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Journal of Applied Sciences and Environmental Management ... collection service and waste management regulations, respectively; while 28.4% separated their solid wastes at source ...

  12. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  13. Análise da produção e taxa de geração de resíduos sólidos de serviços de saúde do Hospital Universitário Regional de Maringá = Production analysis and generation rate of solid health-care waste at Maringá Regional University Hospital

    Directory of Open Access Journals (Sweden)

    Lucila Akiko Nagashima

    2007-07-01

    Full Text Available Os resíduos sólidos de serviços de saúde (RSSS representam reduzida parcela do total dos resíduos sólidos urbanos gerados diariamente por uma cidade. Considerando a própria origem, parte desses resíduos apresenta riscos e dificuldades especiais em seu manejo, devido especialmente ao caráter infeccioso de alguns componentes. Estasconstatações associadas à necessidade de conhecer a situação dos RSSS do Hospital Universitário Regional de Maringá motivaram a elaboração do estudo. A pesquisa buscou identificar as diferentes fontes geradoras, caracterizar qualitativa e quantitativamente osresíduos gerados determinando a taxa de geração diária. A caracterização foi efetuada mediante a pesagem dos resíduos, acompanhamento das atividades internas do hospital, quanto aos procedimentos de coleta, armazenamento interno e externo e transporte de seus resíduos sólidos. Constatou-se que do total de resíduos gerados, cerca de 53% são considerados contaminados, percentual creditado como não-satisfatório para uma parcela significante de bibliografia consultada.Solid health-care waste (SHCW represents only a small fraction of the total urban solid waste generated daily in a city. Taking its origin into consideration, part of this waste presents risks and special difficulties in handling, especially due to the infectious aspects of some components. The elaboration of study was motivated by these findings, associated with the need to find out the conditions of the SHCW from the Maringá Regional University Hospital. The research attempted to identify the different generating sources, quantifying and qualifying the generated waste, and determining the daily generated rate. The characterization was done by weighing the waste, observing internal hospital activities regarding collection procedures, internal and external storage and transportation of the waste. It was verified that from the total generated waste, around 53% is considered

  14. Application of the flotation process in the silver recovery from the wastes generated during the silvery semi-products manufacturing

    OpenAIRE

    B. Oleksiak; A. Blacha-Grzechnik; G. Siwiec

    2012-01-01

    In this work, the results of the flotation process application in the silver recovery from the wastes generated during the silvery semi-products manufacturing, are shown. The flotation process parameters, i.e. time of process, rotation frequency, gas flow rate and flotation reagents, were optimized.

  15. Application of the flotation process in the silver recovery from the wastes generated during the silvery semi-products manufacturing

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-07-01

    Full Text Available In this work, the results of the flotation process application in the silver recovery from the wastes generated during the silvery semi-products manufacturing, are shown. The flotation process parameters, i.e. time of process, rotation frequency, gas flow rate and flotation reagents, were optimized.

  16. A Study of Hospital Waste Generation and Management Practice in ...

    African Journals Online (AJOL)

    This study was carried out in Akure, the capital of Ondo State, Nigeria to assess the current practice of hospital wastes management, the magnitude and variety of wastes and the awareness of the stakeholders on the implications of their activities. The composition of wastes found in the 20 healthcare facilities visited ...

  17. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  18. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    Science.gov (United States)

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Conceptual framework for the study of food waste generation and prevention in the hospitality sector.

    Science.gov (United States)

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-03-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem. This paper proposes a novel conceptual framework to identify and explain the patterns and drivers of food waste generation in the hospitality sector, with the aim of identifying food waste prevention measures. This conceptual framework integrates data collection and analysis methods from ethnography and grounded theory, complemented with concepts and tools from industrial ecology for the analysis of quantitative data. A case study of food waste generation at a hotel restaurant in Malaysia is used as an example to illustrate how this conceptual framework can be applied. The conceptual framework links the biophysical and economic flows of food provisioning and waste generation, with the social and cultural practices associated with food preparation and consumption. The case study demonstrates that food waste is intrinsically linked to the way we provision and consume food, the material and socio-cultural context of food consumption and food waste generation. Food provisioning, food consumption and food waste generation should be studied together in order to fully understand how, where and most importantly why food waste is generated. This understanding will then enable to draw detailed, case specific food waste prevention plans addressing the material and socio-economic aspects of food waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    Science.gov (United States)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  1. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  2. The impact of regulatory compliance behavior on hazardous waste generation in European private healthcare facilities

    OpenAIRE

    Botelho, Anabela

    2013-01-01

    Along with the increased provision of healthcare by private outpatient healthcare facilities within the EU countries, there is also an increase on waste generation from these facilities. A significant fraction of this waste is amongst the most hazardous of all wastes arising in communities, posing significant risks to people and the environment if inappropriately managed. The growing awareness that mismanagement of healthcare waste has serious environmental and public health consequences is r...

  3. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  4. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    Science.gov (United States)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  5. Radioactive Waste Management Produced from the Generator Tc-99m Products

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Affan Ahmad; Tuyono

    2012-01-01

    Generator Tc-99m product is used in hospitals will result in radioactive waste both solid waste in the form of a column compacted Tc-99m Generator, bottles vials and bottles of saline fluid path series: burning of solid waste in the form of paper straw, hand gloves, and cardboard (vial packing boxes and wrapping Generator) and liquid waste form leaching results lead pot and enclosure. So that these wastes pose no radiological consequences for both humans and the environment, it must be properly managed in accordance with the provisions. In order to realize these expectations should be made so that the radioactive waste management system can be handled effectively, optimal, economical, safe and secure and in accordance with applicable regulations. Management system is in it include: procedures for handling radioactive waste, solid waste compacted, burning of solid waste management, liquid waste handling, shipment of radioactive waste and determination of the amount of radiation doses received by workers who handle radioactive waste. (author)

  6. Exposure rates from concrete covered cylindrical units containing radioactive waste

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1983-03-01

    Exposure rates from cylindrical waste units containing the nuclides 60 Co, 134 Cs and 137 Cs homogeneously mixed in a solidification product have been calculated. Analyses have been made for single drums and for two disposal geometries, one with the units placed below ground near the surface in a circular geometry, and one with the units placed on the ground in a pile behind a concrete wall. Due to self-shielding of the units, the exposure rate from the two geometries will be a factor of only 10 - 20 higher than from a single unit, even without soil or wall shielding. With one meter of soil above the circular pile below ground, a reduction factor of 5.10 3 to 5.10 4 can be achieved, depending on the nuclide considered. Placing a one-meter concrete wall in front of the drum pile on the ground gives rise to a reduction factor in the range of 5.10 5 to 2.10 7 . (author)

  7. Development of a gas-generation model for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Brush, L.H.; Storz, L.J.; Garner, J.W.

    1993-01-01

    Design-basis transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico may generate significant quantities of gas, which may affect the performance of the WIPP with respect to regulations for radioactive and/or chemically hazardous waste constituents. We are developing a model to predict gas generation in WIPP disposal rooms during and after filling and sealing. Currently, the model includes: (1) oxic and anoxic corrosion of steels and other Fe-base alloys, including passivation and depassivation; (2) microbial degradation of cellulosics with O 2 , NO 3 - , FeO(OH), SO 4 2- , or CO 2 as the electron acceptor; (3) α radiolysis of brine; (4) consumption of CO 2 and, perhaps, H 2 S by Ca(OH) 2 (in cementitious materials) and CaO (a potential backfill additive). The code simulates these processes and interactions among them by converting reactants (steels, cellulosics, etc.) to gases and other products at experimentally observed or estimated rates and plotting temporal reaction paths in three-dimensional phase diagrams for solids in the Fe-H 2 O-CO 2 -H 2 -H 2 S system

  8. Policy and practices in the United States of America for DOE-generated nuclear wastes

    International Nuclear Information System (INIS)

    Gilbert, F.C.

    1984-01-01

    Throughout the history of attempts to utilize atomic power in the USA, health and safety have been primary considerations in programme policy formulation. A brief historical review of the US nuclear waste management policy formulation over the years aids understanding of our current management strategy for government-generated (primarily defence-related) nuclear wastes. Scientists involved in the Manhattan project during World War II were aware of the dangers of radioactive wastes. The first reaction to this concern was the establishment of a health physics programme to monitor radioactive hazards in Manhattan District Laboratories. The Atomic Energy Act of 1946, which established the Atomic Energy Commission, called for protection of the health and safety of the public as well as atomic workers. That concept has been continued and strengthened, throughout the history of nuclear waste management in the USA. Passage of the Atomic Energy Act of 1954 required consideration of radioactive wastes generated by private industry as well as those produced by the Manhattan projects. Commercial waste management policy was based on the already established policy for management of government-generated wastes and is the subject of a separate paper at this symposium. Current US policy is to maintain separate but complementary programmes for nuclear wastes generated by government activities and those from commercial sources. US policy and practices for management of government-generated radioactive waste are summarized. Key organizational structure relating to waste management responsibility is presented. (author)

  9. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  10. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  11. Standard data report. 1997 annual report on waste generation and waste minimization progress

    International Nuclear Information System (INIS)

    Wilburn, D.

    1998-01-01

    The Laboratory's central mission of Reducing the Global Nuclear Danger supports core competencies that enable the Laboratory to contribute to defense, civilian, and industrial needs. In turn, the intellectual challenges of civilian and industrial problems strengthen and help support the core competencies required for the national security mission. The ability to do great science underpins all of the applied work. There are five core competencies which support this mission: (1) Stockpile Stewardship ensures the US has safe, secure and reliable nuclear weapons; (2) Stockpile Management provides capabilities ranging from dismantling to remanufacturing of the enduring stockpile; (3) Nuclear Materials Management ensures the availability and safe disposition of plutonium, highly enriched uranium, and tritium; (4) Nonproliferation and Counterproliferation help to deter, detect, and respond to the proliferation of weapons of mass destruction; and (5) Environmental Stewardship provides for the remediation and reduction of wastes from the nuclear weapons complex. This report contains data on volumes of waste generated as part of routine and cleanup/stabilization activities of the lab

  12. A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion.

    Science.gov (United States)

    Yu, Meijuan; Zhao, Mingxing; Huang, Zhenxing; Xi, Kezhong; Shi, Wansheng; Ruan, Wenquan

    2018-02-01

    A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R 2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g -1  TS and 545.29 mL g -1  TS with the model, while the experimental values were 527.47 mL g -1  TS and 522.1 mL g -1  TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    Science.gov (United States)

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  14. Methodology for quantification of waste generated in Spanish railway construction works

    International Nuclear Information System (INIS)

    Guzmán Báez, Ana de; Villoria Sáez, Paola; Río Merino, Mercedes del; García Navarro, Justo

    2012-01-01

    Highlights: ► Two equations for C and D waste estimation in railway construction works are developed. ► Mixed C and D waste is the most generated category during railway construction works. ► Tunnel construction is essential to quantify the waste generated during the works. ► There is a relationship between C and D waste generated and railway functional units. ► The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006, Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.

  15. Materials and wastes from power generation of nuclear origin

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Guillemette, Andre; Laponche, Bernard; Zerbib, Jean-Claude

    2014-01-01

    In most countries, spent nuclear fuel is directly stored in pools and constitute the bulk of highly radioactive waste. In France, reprocessing separates spent fuel into three categories: uranium, plutonium, minor actinides and fission products. Hence, a vast amount of very diverse radioactive materials are stored in various sites and conditions, under two denominations: 'nuclear materials' (which can be or are partly recycled) and 'radioactive waste' which should be permanently disposed of. The production of highly radioactive and long-lived waste raise legitimate questions on the use of nuclear energy for power production and many people think that it's a sufficient reason for giving up this technique. Concerning existing radioactive waste, the alternative to deep disposal should be: a) dry storage of spent fuel and other existing waste in protected sites (bunkers or hills), and b) more active research on the possibilities to reduce both radioactivity and the lifetime of radioactive waste. (authors)

  16. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes; FINAL

    International Nuclear Information System (INIS)

    Barry Scheetz; Johnson Olanrewaju

    2001-01-01

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  17. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Barry Scheetz; Johnson Olanrewaju

    2001-10-15

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  18. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    International Nuclear Information System (INIS)

    Orchard, B.J.; Harvego, L.A.; Carlson, T.L.; Grant, R.P.

    2009-01-01

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation's expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratory's NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL's contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL's TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: (1

  19. Quantitative assessment of medical waste generation in the capital city of Bangladesh

    International Nuclear Information System (INIS)

    Patwary, Masum A.; O'Hare, William Thomas; Street, Graham; Maudood Elahi, K.; Hossain, Syed Shahadat; Sarker, Mosharraf H.

    2009-01-01

    There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 ± 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.

  20. Medical and Biohazardous Waste Generator's Guide (Revision2)

    Energy Technology Data Exchange (ETDEWEB)

    Waste Management Group

    2006-11-29

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management.

  1. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  2. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  3. Planning for the Management and Disposition of Newly Generated TRU Waste from REDC

    International Nuclear Information System (INIS)

    Coffey, D. E.; Forrester, T. W.; Krause, T.

    2002-01-01

    This paper describes the waste characteristics of newly generated transuranic waste from the Radiochemical Engineering and Development Center at the Oak Ridge National Laboratory and the basic certification structure that will be proposed by the University of Tennessee-Battelle and Bechtel Jacobs Company LLC to the Waste Isolation Pilot Plant for this waste stream. The characterization approach uses information derived from the active production operations as acceptable knowledge for the Radiochemical Engineering and Development Center transuranic waste. The characterization approach includes smear data taken from processing and waste staging hot cells, as well as analytical data on product and liquid waste streams going to liquid waste disposal. Bechtel Jacobs Company and University of Tennessee-Battelle are currently developing the elements of a Waste Isolation Pilot Plant-compliant program with a plan to be certified by the Waste Isolation Pilot Plant for shipment of newly generated transuranic waste in the next few years. The current activities include developing interface plans, program documents, and waste stream specific procedures

  4. Estimating the magnitude of food waste generated in South Africa

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2012-08-01

    Full Text Available Throughout the developed world, food is treated as a disposable commodity. Between one third and half of all food produced for human consumption globally is estimated to be wasted. However, attempts to quantify the actual magnitude of food wasted...

  5. A Study of Hospital Waste Generation and Management Practice in ...

    African Journals Online (AJOL)

    Nekky Umera

    The composition of wastes found in the 20 healthcare facilities visited included garbage, ... and allied, clothing materials, wastewater with blood traces and the likes. ... personally controlled. ... containers or recapped and stored in a special safety box kept ... Finally disinfection of waste before any kind of contact was done.

  6. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  7. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  8. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    International Nuclear Information System (INIS)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-01-01

    Highlights: ► We studied pharmaceutical and chemical waste production in a Greek hospital. ► Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. ► Unit production rate for total pharmaceutical waste was 12.4 ± 3.90 g/patient/d. ► Chemical waste comprised 1.8% w/w of total hazardous medical waste. ► Unit production rate for total chemical waste was 5.8 ± 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and “other”. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and

  9. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report

  10. Power generation using the solid wastes in Eskisehir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Bakis, R.; Kurban, M. [Anadolu Univ., Eskisehir (Turkey)

    2007-07-01

    Non-renewable fossil-fuel energy resources such as petroleum, coal and natural gas cause environmental damage as a result of carbon dioxide emissions. Due to the trend of increasing energy consumption, air pollution is becoming a significant environmental concern for the future. In order to protect the ecological equilibrium of the natural environment, alternative energy sources must be sought and further developed. In Turkey, hydraulic, solar, and geothermal and biomass (wood, animal and plant wastes and solid wastes), biogas (methane) are potential renewable energy resources. Turkey does not have enough energy resources and is in need of a solution to reduce, re-use or recycle solid wastes. This paper evaluated the amount of solid wastes in Eskisehir, Turkey for producing electricity using the build, operate and transfer (BOT) model. The purpose of the study was to develop an economically useful approach to using wastes while preventing harmful effects on the environment. The paper discussed the burning waste situation in Turkey and other countries and the costs of establishing burning garbage foundations. It was concluded that electricity production from Eskisehir's garbage wastes with benefit the community from both a health angle and economical angle. 17 refs., 8 tabs., 2 figs.

  11. Evaluation of alternatives for a second-generation transportation system for Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    1984-01-01

    Department of Energy (DOE) waste storage sites will ship their contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) beginning FY 1989. The CH-TRU waste will be shipped in the Transuranic Package Transported (TRUPACT-I), a new packaging being developed by Sandia National Laboratories, Albuquerque/Transportation Technology Center. Some of the DOE TRU waste, however, might be unsuitable for shipment in TRUPACT-I, and is designated special-shipped (SS) TRU waste. The purposes of this study were to: (1) identify the quantity and characteristics of SS-TRU waste stored and generated at DOE facilities; (2) identify alternatives for managing the SS-TRU waste; and (3) make overall recommendations for managing the SS-TRU waste. Data on quantity and characteristics were gathered through coordinating visits to the sites and extracting information from each site's records. Representatives of DOE organizations and contractors set objectives for managing the SS-TRU waste. Alternative shipping systems were then identified for CH SS-TRU waste and RH SS-TRU waste. Evaluations of these alternatives considered how well they would satisfy each objective, and associated potential problems. The study recommends delaying the decision on how best to transport the CH SS-TRU waste to WIPP until the amount of SS-TRU processed waste in heavy drums is known. These conditions and choices are presented: a relatively small number of processed, heavy drums could be shipped most economically via TRUPACT-I, mixed with lighter drums of unprocessed waste. If a large number of heavy drums is to be shipped, a shorter and narrower version of TRUPACT-I would be preferred alternative. The Defense High-Level Waste cask is the recommended alternative system for shipping RH SS-TRU waste. 12 references, 15 figures, 22 tables

  12. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  13. Study of physical properties, gas generation and gas retention in simulated Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1993-04-01

    The purpose of this study was to establish the chemical and physical processes responsible for the generation and retention of gases within high-level waste from Tank 101-SY on the Hanford Site. This research, conducted using simulated waste on a laboratory scale, supports the development of mitigation/remediation strategies for Tank 101-SY. Simulated waste formulations are based on actual waste compositions. Selected physical properties of the simulated waste are compared to properties of actual Tank 101-SY waste samples. Laboratory studies using aged simulated waste show that significant gas generation occurs thermally at current tank temperatures (∼60 degrees C). Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the simulated waste. Retention of gases in the simulated waste is in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) of the simulated waste. A mechanism is discussed that relates the gas bubble/particle interactions to the partially hydrophobic surface produced on the solids by the organic constituents

  14. The concept of responsibility to future generations for the management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Vial, E.

    2004-01-01

    Recognition of the concept of responsibility to future generations seems, to imply the need to assume responsibility today for radioactive waste legacy of the past as well as for the waste that is currently being generated. However, this view of things, or more precisely this interpretation, is clouded by the lack of a clear definition of the concept of responsibility towards future generations. The concept has been used mainly in connection with long-lived radioactive wastes, which pose the greatest management problem as it so so far exceeds any human scale of reference. Consideration for future generations has to be a factor in the management of all types of radioactive waste, be it short, medium or long-lived waste or very low, low, intermediate or highly radioactive waste. As a general rule the concept of responsibility has made focus on long lived waste, whatever its level of radioactivity. The current alternatives for the management of radioactive waste may be: interim storage, final disposal, incineration, transmutation, to lower the radioactivity of the wastes. These different alternatives are discussed because they are not all genuine solutions and need to be deepened. (N.C.)

  15. Immobilized High-Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report - second Generation Implementing Architecture

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document

  16. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    Science.gov (United States)

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  17. Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.; Giles, M.R.

    1997-03-01

    Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 micromol/g cellulose/day in anaerobic samples without nutrients, 0.05 micromol/g cellulose/day in the presence of nutrients, and 0.2 micromol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N 2 O in the headspace (200 micromol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO 2 production to 0.3 micromol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO 2 at a rate of 0.2 micromol/g cellulose/day in the absence of nutrients, and 1 micromol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber

  18. Annual report of waste generation and pollution prevention progress 1998; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities

  19. Quantity & quality analysis and associated management practices of solid waste generated in the general dentistry offices in the city of Arak, 2015

    Directory of Open Access Journals (Sweden)

    Ali Koolivand

    2016-10-01

    Full Text Available Abstract Background: As dental solid waste are among the most important environmental pollutants due to its high contents of toxic and hazardous agents, suitable treatment and management of it are of great importance. The objective of this study was to quantity & quality analyses of dental solid waste and associated management practices in the general dentistry offices in the city of Arak. Materials and Methods: 15 samples of solid waste were taken from the 5 selected general dentistry offices, classified into 66 components and 4 fractions, and then the quantity & quality characteristics were evaluated. Management practices of the solid waste were also investigated by using a questionnaire. Results: According to the results, per capita and the average generation rate of each dentistry office were 66.71 g/day-patient and 1340.45 g/day, respectively. Potential infectious, domestic-type, chemical & pharmaceutical, and toxic wastes consisted of 54.25%, 35.14%, 8.19%, and 2.14% of the waste generated, respectively. 10 components including latex gloves, nylon & plastic, saliva & blood-contaminated kleenex, paper & cardboard, used ampoules, saliva ejector tubes, gypsum, food waste, saliva & blood-contaminated dental rolls, and nylon gloves were responsible for more than 80% of the total waste generated, respectively. Conclusion: Each fraction of dental solid waste (toxic, chemical & pharmaceutical, potential infectious and domestic-type wastes should be separately collected and disposed of according to the related criteria.

  20. Medical and biohazardous waste generator's guide: Revision 1

    International Nuclear Information System (INIS)

    1994-09-01

    This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste

  1. Estimation of construction and demolition waste volume generation in new residential buildings in Spain.

    Science.gov (United States)

    Villoria Sáez, Paola; del Río Merino, Mercedes; Porras-Amores, César

    2012-02-01

    The management planning of construction and demolition (C&D) waste uses a single indicator which does not provide enough detailed information. Therefore the determination and implementation of other innovative and precise indicators should be determined. The aim of this research work is to improve existing C&D waste quantification tools in the construction of new residential buildings in Spain. For this purpose, several housing projects were studied to determine an estimation of C&D waste generated during their construction process. This paper determines the values of three indicators to estimate the generation of C&D waste in new residential buildings in Spain, itemizing types of waste and construction stages. The inclusion of two more accurate indicators, in addition to the global one commonly in use, provides a significant improvement in C&D waste quantification tools and management planning.

  2. Power generation potential using landfill gas from Ontario municipal solid waste landfills. Appendix B2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twenty-six landfill sites have been identified in Ontario with potential gas production rates suitable for recovery and use in power plant applications. If 70% of the gas naturally generated from these sites was collected and utilized, ca 88 MW could be produced in 1991 (declining to 74 MW by 2001) from the gas generated. Assuming the current average generation rate of one tonne per capita, an estimated nine million tonnes of municipal refuse is produced annually in Ontario, and landfilling is expected to continue to play a major role. It is suggested that the level of gas generation identified for the year 1991 will be sustainable given that as old landfills are spent, new ones are built. The accuracy of the prediction depends largely on future government policies regarding incineration, the effects of present waste reduction programs, and approval of new landfill sites. Due to the combined costs of the gas collection system, auxiliary equipment, and gas processing system, installed cost of a landfill-gas fired power plant is high relative to that of conventional natural gas-fired plants. For landfills presently without a gas collection system, the high initial capital investment for gas field test programs and for the installation of a collection system is a barrier that deters municipalities from tapping this energy potential. 2 figs., 3 tabs

  3. Determination of LEDs degradation with entropy generation rate

    Science.gov (United States)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  4. Fixation of waste materials in grouts: Part 3, Equation for critical flow rate

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.; Dodson, K.E.

    1986-12-01

    Critical flow rate data for grouts prepared from three distinctly different nuclear waste materials have been correlated. The wastes include Oak Ridge National Laboratory (ORNL) low-level waste (LLW) solution, Hanford Facility waste (HFW) solution, and cladding removal waste (CRW) slurry. Data for the three wastes have been correlated with a 0.96 coefficient of correlation by the following equation: log V/sub E/ = 0.289 + 0.707 log μ/sub E/, where V/sub E/ and μ/sub E/ denote critical flow rate in m 3 /min and apparent viscosity in Pa.s, respectively. The equation may be used to estimate critical flow rate for grouts prepared within the compositional range of the investigation. 5 refs., 4 figs., 7 tabs

  5. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills.

    Science.gov (United States)

    Thompson, Shirley; Sawyer, Jennifer; Bonam, Rathan; Valdivia, J E

    2009-07-01

    The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOC(f)) were applied in all models. Most models performed better when the DOC(f) was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOC(f) and 171%, 115%, and 81% at 0.77 DOC(f). The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOC(f) and 0.77 DOC(f) the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 +/- 45% and 2.3 yielding 57 +/- 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.

  6. Decree 2211: Standards to control the generation and handling of dangerous wastes

    International Nuclear Information System (INIS)

    1992-01-01

    This Decree has for object to establish the conditions under which should be carried out the activities of generation and handling of dangerous waste, in order to prevent damages to health and to the atmosphere. It includes: definitions; a list of sources of waste; a list of constituent of dangerous waste; the characteristics of danger; a lists of maximum permissible concentrations in leachates, handling of dangerous waste, criterion for transport, monitoring form, storage areas, treatment and final disposition, storage, elimination, incineration, recycling, reuse and recovery, installation and operation of security backfilling, book of waste record, control of activities, obligations in charge of those who manage dangerous waste, and trans border movements of dangerous waste [es

  7. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  8. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor....../NO ratios (waste product, together with its demonstrated NOx reduction capability and its calorific value contribution, makes it attractive as an additive...

  9. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  10. Baseline for food waste generation - A case study in Universiti Tun Hussein Onn Malaysia cafeterias

    Science.gov (United States)

    Alias, A. R.; Mokhlis, N. A. Mohd; Zainun, N. Y.

    2017-11-01

    Increasing population and economy status have contributed to the increasing volume of solid wastes produced in Malaysia and it creates problems on the existing solid waste management system. Ineffective waste management system was one of the issues that often discussed. The purpose of this study was to suggest the best method for managing food waste in Universiti Tun Hussein Onn Malaysia (UTHM) cafeterias. The scope of the study was to identify the type and quantity of waste generated in each cafeteria. The study area was carried out at six cafeteria in UTHM including residential college cafeteria which are Tun Dr. Ismail (TDI), Tun Fatimah (TF) and Tun Syed Nasir (TSN), G3’s cafeteria, Arked, and Dr. Munie’s cafeteria located at the Faculty of Civil and Environmental Engineering (FKAAS). In this study, food waste was quantified in unit of kilogram (kg). Results of the study showed that total food waste in selected UTHM’s cafeterias was 6197.5 kg for two months. Food waste generated in G3’s cafeteria was the highest value with 1823.5 kg among another cafeteria. This is due to strategic location for students and staff to take meals, the variety of food sold and reasonable price were major factors of generating food waste. Meanwhile, the Dr. Munie's Cafeteria located in FKAAS recorded the least total production of food waste as staffs and students take their meals at others cafeterias. Through literature review, there are list of methods on waste management were identified and composting method was suggested for food waste management in UTHM since the waste was produce in very large quantity.

  11. Public comments on the draft generic environmental impact statement for management of commercially generated radioactive waste

    International Nuclear Information System (INIS)

    Kreiter, M.R.; Unruh, C.M.; McCallum, R.F.

    1980-01-01

    The US Department of Energy has the responsibility for developing the technology required for managing commercial radioactive wastes in an environmentally acceptable manner. As part of this responsibility, DOE has prepared a draft environmental impact statement on the management of commercially generated radioactive waste. The draft was issued for public comment in April of 1979; five public hearings were held. The draft GEIS is intended to provide environmental input for the selection of an appropriate program strategy for the permanent isolation of commercially generated high-level and transuranic wastes. The scope of such a strategy includes research and development into alternative treatment processes and emplacement media, site investigations into candidate media, and the examination of advanced waste management technologies. The draft statement describes the commercial radioactive wastes that would have to be managed for very long periods of time from an assumed nuclear generation scenario of 10,000 GWe-yr of power over a 65-year period ending in 2040

  12. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  13. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  14. Methodology for quantification of waste generated in Spanish railway construction works.

    Science.gov (United States)

    de Guzmán Báez, Ana; Villoria Sáez, Paola; del Río Merino, Mercedes; García Navarro, Justo

    2012-05-01

    In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C&D) waste. Specifically, in 2006, Spain generated roughly 47million tons of C&D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C&D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C&D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C&D waste management in railway projects, by developing a model for C&D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C&D waste likely to be generated in railway construction projects, including the category of C&D waste generated for the entire project. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Development of high-efficiency wastes-burning electric power generating technology. Volume 2. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In high-efficiency power generation using general wastes and combustible industrial wastes as fuel, development has been performed on a wastes gasifying and melting power generation technology. This technology is capable of suppressing generation of dioxines, recovering slag that can be utilized effectively, and reducing ash volume, by thermally decomposing the wastes and melting combustion ash at elevated temperatures by using thermally decomposed gases. With regard to the evaluation on high temperature corrosiveness of SH materials and the development of a high temperature dust removing system, a steam heater was designed, fabricated, and installed in a model plant, wherein the operation test has been performed for about 1,620 hours. For the technology of dechlorination during a thermal decomposition process, dechlorination rate of 90% was confirmed at 425 degrees C or higher in a demonstration plant. In addition, developments were made on a low temperature denitration device to avoid re-heating of waste gases, a stable wastes supply system to reduce quantity of self-heated melt limiting heat generation, and a waste plastics blowing technology to reduce external fuel charge quantity. Furthermore, a survey was carried out on the trends in wastes electric power generation technologies. (NEDO)

  16. The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste

    Directory of Open Access Journals (Sweden)

    Gi-Wook Cha

    2017-10-01

    Full Text Available The roles of both the data collection method (including proper classification and the behavior of workers on the generation of demolition waste (DW are important. By analyzing the effect of the data collection method used to estimate DW, and by investigating how workers’ behavior can affect the total amount of DW generated during an actual demolition process, it was possible to identify strategies that could improve the prediction of DW. Therefore, this study surveyed demolition waste generation rates (DWGRs for different types of building by conducting on-site surveys immediately before demolition in order to collect adequate and reliable data. In addition, the effects of DW management strategies and of monitoring the behavior of workers on the actual generation of DW were analyzed. The results showed that when monitoring was implemented, the estimates of DW obtained from the DWGRs that were surveyed immediately before demolition and the actual quantities of DW reported by the demolition contractors had an error rate of 0.63% when the results were compared. Therefore, this study has shown that the proper data collection method (i.e., data were collected immediately before demolition applied in this paper and monitoring on the demolition site have a significant impact on waste generation.

  17. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    International Nuclear Information System (INIS)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  18. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  19. Methodology of site generation for evaluation of the behaviour of radioactive waste storage

    International Nuclear Information System (INIS)

    Ruiz Rivas, C.; Eguilior Diez, S.

    1997-01-01

    The present report summarizes the purpose of methodology for the site generation in the evaluation of high-level radioactive waste storage for long-term. This work is developed into the project Safety analysis long-term of high-level radioactive waste. This project is carried on for CIEMAT and ENRESA

  20. The situation of generation, treatment and supervision of common industrial solid wastes in China

    Science.gov (United States)

    Xu, Shumin

    2018-02-01

    From the point of view of location and sources, an analysis is done for the generation, utilization, treatment and storage of common industrial solid wastes in China. Based on the current situations, suggestions are given to the treatment and supervision polices in China for the utilization of common industrial solid wastes.

  1. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    International Nuclear Information System (INIS)

    Kajikawa, T.; Ito, M.; Katsube, I.; Shibuya, E.

    1994-01-01

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 (μW/cm K2) in power factor at 800 K. copyright 1995 American Institute of Physics

  2. The S-curve for forecasting waste generation in construction projects.

    Science.gov (United States)

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    Science.gov (United States)

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  4. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe.

    Science.gov (United States)

    Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril

    2013-12-01

    A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.

  5. Generation of Electricity from Abattoir Waste Water with the Aid of a ...

    African Journals Online (AJOL)

    Michael Horsfall

    Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap. Source of Catholyte ... in recent times is the microbial fuel cell technology. This technology ..... fuel cell in the presence and absence of a proton exchange.

  6. Factors contributing to the waste generation in building projects of Pakistan

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, F.A.

    2016-01-01

    Generation of construction waste is a worldwide issue that concerns not only governments but also the building actors involved in construction industry. For developing countries like Pakistan, rising levels of waste generation, due to the rapid growth of towns and cities have become critical issue. Therefore this study is aimed to detect the factors, which are the main causes of construction waste generation. Questionnaire survey has been conducted to achieve this task and RIW (Relative Importance Weight) method has been used to analyze the results of this study. The important factors contributing to the generation of construction as identified in this study are: frequent changes/ revision in design during construction process; poor scheduling; unavailability of storage; poor workmanship; poor layout; inefficient planning and scheduling of resources and lack of coordination among supervision staff deployed at site. Based on the identified factors, the study also has presented some suggestions for the reduction of construction waste in building construction projects of Pakistan. (author)

  7. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  8. Treatment rate improvement of the ozone oxidation method for laundry waste water

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi

    2001-01-01

    Radioactive laundry waste water generated in nuclear power plants includes organic compounds to be removed, for which ozone oxidation treatment is a possibility. To verify the applicability, its total organic carbon concentration (TOC) lowering rate improvement was examined in 0.5x10 -3 m 3 batch and 3x10 -2 m 3 pilot equipment experiments. In the batch experiments, ozone at a concentration of 200 g/Nm 3 was dispersed into 0.5x10 -3 m 3 of Simulated Laundry Waste Water (SLWW) with TOC of 11 mM. Total organic carbon concentration was measured every hour to see the effects of the temperature, and the initial concentrations of both H 2 O 2 and NaOH which were added to urge OH radical generation from ozone. In the pilot equipment experiments, 1x10 -2 to 3x10 -2 m 3 of the SLWW were circulated using an ejector to disperse the ozone. The influences of the flow rate and the SLWW volume on lowering TOC were examined, because they were related to the ejector dispersion performance and the appropriate ozone addition per SLWW volume. Appropriate initial H 2 O 2 and NaOH concentrations in the batch experiments were 14.7 mM and 1 mM, respectively. Lowering of TOC became faster at higher temperatures, because ozone self-decomposition and OH radial diffusion to the organic compound molecules were promoted. Lowering of TOC also became faster at higher flow rates, while the influence of the volume became saturated. (author)

  9. Gas generation by self-radiolysis of tritiated waste materials

    International Nuclear Information System (INIS)

    Tadlock, W.E.; Abell, G.C.; Steinmeyer, R.H.

    1980-01-01

    Studies simulating the effect of self-radiolysis in disposal packages containing tritiated waste materials show hydrogen to be the dominant gas-phase product. Pressure buildup and gas composition over various tritiated octane and tritiated water samples are designed to give worst case results. One effect of tritium fixation agents is to reduce pressure buildup. The results show that development of explosive gas mixtures is unlikely and that maximum pressure buildup in typical Mound Facility waste packages can be expected to be <0.25 MPa

  10. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  11. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  12. Testing various types of agricultural wastes for the production of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B

    1982-05-08

    The aim of the project was to get an improved basis for the assessment of aretes which was required for use in a Swedish gas generator. It was found that waste which possessed high contents of ashes with a low melting point were unsuitable as a fuel. Four types of waste were tested. The shells of coconuts were applicable as fuel. The design of the generator had to be modified in order to use pellets of straw or compressed sugar-canes.

  13. CAN WE CONSIDER WASTES GENERATED DURING RADIOIMMUNOASSAYS AS A RADIOACTIVE WASTE?

    Directory of Open Access Journals (Sweden)

    V. V. Shapilov

    2010-01-01

    Full Text Available The work presents issues of the radiation protection provision for the management of radioactive waste produced by the radioimmunological analysis with the use of 125I marker, calculated and experimental data on radioactive waste specific activities are analyzed.

  14. Aspects on the gas generation and migration in repositories for high level waste in salt formations

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Meleshyn, Artur; Moenig, Joerg; Spiessl, Sabine

    2013-07-01

    In a deep geological repository for high-level waste, gases may be produced during the post-closure phase by several processes. The generated gases can potentially affect safety relevant features and processes of the repository, like the barrier integrity, the transport of liquids and gases in the repository and the release of gaseous radionuclides from the repository into the biosphere. German long-term safety assessments for repositories for high-level waste in salt which were performed prior 2010 did not explicitly consider gas transport and the consequences from release of volatile radionuclides. Selected aspects of the generation and migration of gases in repositories for high-level waste in a salt formation are studied in this report from the viewpoint of the performance assessment. The knowledge on the availability of water in the repository, in particular the migration of salt rock internal fluids in the temperature field of the radioactive waste repository towards the emplacement drifts, was compiled and the amount of water was roughly estimated. Two other processes studied in this report are on the one hand the release of gaseous radionuclides from the repository and their potential impact in the biosphere and on the other hand the transport of gases along the drifts and shafts of the repository and their interaction with the fluid flow. The results presented show that there is some gas production expected to occur in the repository due to corrosion of container material from water disposed of with the backfill and inflowing from the host rock during the thermal phase. If not dedicated gas storage areas are foreseen in the repository concept, these gases might exceed the storage capacity for gases in the repository. Consequently, an outflow of gases from the repository could occur. If there are failed containers for spent fuel, radioactive gases might be released from the containers into the gas space of the backfill and subsequently transported together

  15. the development of new generation of solid waste refuse incinerators

    African Journals Online (AJOL)

    Apart from town refuse, there are wastes from agriculturally based industries especially ... depends on careful control of the 3T's (time, temperature and turbulence). ... These activities cause serious public health risks ... The modifications to the old bottle incinerators were developed by carefully assessing the failure modes.

  16. Fresh, frozen, or ambient food equivalents and their impact on food waste generation in Dutch households.

    Science.gov (United States)

    Janssen, Anke M; Nijenhuis-de Vries, Mariska A; Boer, Eric P J; Kremer, Stefanie

    2017-09-01

    In Europe, it is estimated that more than 50% of total food waste - of which most is avoidable - is generated at household level. Little attention has been paid to the impact on food waste generation of consuming food products that differ in their method of food preservation. This exploratory study surveyed product-specific possible impacts of different methods of food preservation on food waste generation in Dutch households. To this end, a food waste index was calculated to enable relative comparisons of the amounts of food waste from the same type of foods with different preservation methods on an annual basis. The results show that, for the majority of frozen food equivalents, smaller amounts were wasted compared to their fresh or ambient equivalents. The waste index (WI) proposed in the current paper confirms the hypothesis that it may be possible to reduce the amount of food waste at household level by encouraging Dutch consumers to use (certain) foods more frequently in a frozen form (instead of fresh or ambient). However, before this approach can be scaled to population level, a more detailed understanding of the underlying behavioural causes with regard to food provisioning and handling and possible interactions is required. Copyright © 2017. Published by Elsevier Ltd.

  17. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  18. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations. Volume 1: Sections 1-9

    International Nuclear Information System (INIS)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report

  19. Status and integration of studies of gas generation in Hanford wastes

    International Nuclear Information System (INIS)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments

  20. Generation of organic waste from institutions in Denmark: case study of the Technical University of Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    at least 60% of organic waste – that cannot be prevented or reduced –generated by service sector, should be source-segregated and collected separately. In order to establish the baseline of the current situation, and to allow for any evaluation of performance against target indicators, data on solid waste...... generation and composition are required. The overall aim of this study was to quantify the potential for source-segregated organic waste as well as mixed waste from institution. This study was carried at the Department of Environmental Engineering at Technical University of Denmark. In the course...... and public holidays, when the offices were officially closed. Furthermore, the composition of source-segregated organic waste was analysed to investigate its purity. During the sampling period, the number of employees coming to work at the department was recorded. These data were used to investigate any...

  1. Status and integration of studies of gas generation in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments.

  2. A Basic Accounting of Variation in Municipal Solid-Waste Generation at the County Level in Texas, 2006: Groundwork for Applying Metabolic-Rift Theory to Waste Generation

    Science.gov (United States)

    Clement, Matthew Thomas

    2009-01-01

    Environmental social scientists debate whether or not modern development reduces society's impact on the biosphere. The empirical research informing the discussion has not yet adequately examined the social determinants of municipal solid-waste (MSW) generation, an increasingly relevant issue, both ecologically and sociologically. A primary…

  3. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  4. Effect of phosphate ion on filtration characteristics of solids generated in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.

    1998-01-01

    The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers. (authors)

  5. Rate Structures for Customers With Onsite Generation: Practice and Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, L.; Takahashi, K.; Weston, F.; Murray, C.

    2005-12-01

    Recognizing that innovation and good public policy do not always proclaim themselves, Synapse Energy Economics and the Regulatory Assistance Project, under a contract with the California Energy Commission (CEC) and the National Renewable Energy Laboratory (NREL), undertook a survey of state policies on rates for partial-requirements customers with onsite distributed generation. The survey investigated a dozen or so states. These varied in geography and the structures of their electric industries. By reviewing regulatory proceedings, tariffs, publications, and interviews, the researchers identified a number of approaches to standby and associated rates--many promising but some that are perhaps not--that deserve policymakers' attention if they are to promote the deployment of cost-effective DG in their states.

  6. THE PILOT STUDY OF CHARACTERISTICS OF HOUSEHOLD WASTE GENERATED IN SUBURBAN PARTS OF RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Aleksandra Steinhoff-Wrześniewska

    2015-02-01

    Full Text Available The subject of the studies were waste generated in suburban households, in 3-bag system. The sum of wastes generated during the four analyzed seasons (spring, summer, autumn, winter – 1 year, in the households under study, per 1 person, amounted to 170,3 kg (in wet mass basis. For 1 person, most domestic waste was generated in autumn – 45,5 kg per capita and the least in winter – 39,0 kg per capita. The analysis performed of sieved composition (size fraction showed that fractions: >100 mm, 40–100 mm, 20–40 mm constituted totally 80% of the mass of wastes (average in a year. The lowest fraction (<10 mm, whose significant part constitutes ashes, varied depending on the season of year: from 3.5% to 12.8%. In the morphological composition of the households analyzed (on average in 4 seasons, biowastes totally formed over 53% of the whole mass of wastes. A significant part of waste generated were also glass waste (10,7% average per year and disposable nappies (8,3% average per year. The analysis of basic chemical components of biowastes showed that in case of utilizing them for production of compost, it would be necessary to modify (correct the ratios C/N and C/P. Analysis of the chemical composition showed that the biowastes were characterized by very high moisture content and neutral pH.

  7. Waste isolation safety assessment program. Collection and generation of transport data

    International Nuclear Information System (INIS)

    Apps, J.A.

    1977-01-01

    A project devoted to evaluation of mechanisms and rates of radioactive waste transport in igneous, metamorphic and sedimentary rocks is described. The research effort includes/ (1) calculation of the range of concentration expected for different radionuclides in given geologic environments by computer simulation of the groundwater chemistry; (2) development of a comprehensive theory relating exchange constants (K/sub D/s) to significant variables; (3) fabrication of test equipment to measure waste radionuclide transport rates in rock samples; (4) identification of transport rate controlling mechanisms; (5) experiments to determine K/sub D/ values for important radioactive waste elements for a variety of rock types and environmental conditions

  8. Radioactive waste generation in the nuclear reactors in Romania

    International Nuclear Information System (INIS)

    Popescu, I.V.

    2002-01-01

    The successful use of nuclear fission as major source of energy for this century is based upon the technological capabilities acquired to face the issue of radioactive waste and spent fuel. The management of radioactive waste is complex and implies solving the following major problems: - isolation of the radioisotopes from the complex of effluents released in the environment; - processing the separated radioisotopes for subsequent storing and final disposal; - transport of processed and conditioned wastes towards disposal repository; - selecting the sites for storage and final disposal. During reactor operation liquid and gaseous effluents are released to the environment as well as radioactive materials. All these may have an dangerous impact upon the environment when the international regulations, i.e. the ALARA principle are not strictly observed. The maximal values for the radioactive release are established by national regulations which are concordant with the IAEA principles. The amount of radioactive materials released depends of the reactor type and the measures adopted to reduce these releases. The average values of these releases during the normal operation of the reactor constitute the 'source term'. Its calculation implies several factors such as: the reactor type; the radionuclide concentration in the primary cooling systems; the transport mechanisms and leaks resulting in liquid and gaseous radionuclide emissions; the efficiency of the barriers and engineered safety systems built to reduce the amounts of radionuclide in the effluents. The concentration of radionuclides in the primary cooling circuit depends on the reactor power level, fuel burnup, fuel sheath type, tightness of the fuel cans, impurity concentration, chemical additives in the fluid of the primary cooling system, the total volume of this fluid, as well as its purification system. The methods applied to facilitate the calculation of the source term are described. In 1998 the spent fuel

  9. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  10. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    Science.gov (United States)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  11. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  12. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  13. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  14. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  15. Generation and management of solid waste resulting from tourist activities of the Porto de Galinhas - P

    Directory of Open Access Journals (Sweden)

    Jaqueline Guimarães Santos

    2015-04-01

    Full Text Available The significant solid waste generation, coupled with the lack of proper management of the waste generated, has been one of the issues of concern and conducting research on the part of scholars in the field. Tourism as an activity that positively impacts and negativity a given location, has emerged as an activity that can generate a lot of waste, especially in periods of high season, considering the increase of people moving to the tourist destinations. Accordingly, this study aims to analyze the generation and management of solid waste resulting from tourism in Porto de Galinhas, PE. We performed an exploratory, descriptive, qualitative study, conducted in the form of a case study in Porto de Galinhas, PE. The data collection was done interviews together social actors, as well as non-participant observation during data collection. The results showed that tourism activities in Porto de Galinhas result in a high amount of solid waste, and these are directed to inappropriate places. Although fate presents a combination of recyclable materials, RECYCLE, reuses this not a significant amount, given the proportion of waste generated.

  16. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    International Nuclear Information System (INIS)

    Araújo, Marcelo Guimarães; Magrini, Alessandra; Mahler, Cláudio Fernando; Bilitewski, Bernd

    2012-01-01

    Highlights: ► Literature of WEEE generation in developing countries is reviewed. ► We analyse existing estimates of WEEE generation for Brazil. ► We present a model for WEEE generation estimate. ► WEEE generation of 3.77 kg/capita year for 2008 is estimated. ► Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the “boom” in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  17. The effect of inflation rate on the cost of medical waste management system

    Science.gov (United States)

    Jolanta Walery, Maria

    2017-11-01

    This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).

  18. Generating Fast and Accurate Compliance Reports for Various Data Rates

    Science.gov (United States)

    Penugonda, Srinath

    As the demands on the industry data rates have increased there is a need for interoperable interfaces to function flawlessly. Added to this complexity, the number of I/O data lines are also increasing making it more time consuming to design and test. This in general leads to creating of compliance standards to which interfaces must adhere. The goal of this theses is to aid the Signal Integrity Engineers with a better and fast way of rendering a full picture of the interface compliance parameters. Three different interfaces at various data rates were chosen. They are: 25Gbps Very Short Reach (VSR) based on Optical Internetworking Forum (OIF), Mobile Industry Processer Interface (MIPI) particularly for camera based on MIPI Alliance organization upto 1.5Gbps and for a passive Universal Serial Bus (USB) Type-C cable based on USB organization particularly for generation-I with data rate of 10Gbps. After a full understanding of each of the interfaces, a complete end-to-end reports for each of the interfaces were developed with an easy to use user interface. A standard one-to-one comparison is done with commercially available software tools for the above mentioned interfaces. The tools were developed in MATLAB and Python. Data was usually obtained by probing at interconnect, from either an oscilloscope or vector network analyzer.

  19. Generation of and control measures for, e-waste in Hong Kong

    International Nuclear Information System (INIS)

    Chung Shanshan; Lau Kayan; Zhang Chan

    2011-01-01

    While accurately estimating electrical and electronic waste (e-waste) generation is important for building appropriate infrastructure for its collection and recycling, making reliable estimates of this kind is difficult in Hong Kong owing to the fact that neither accurate trade statistics nor sales data of relevant products are available. In view of this, data of e-products consumption at household level was collected by a tailor-made questionnaire survey from the public for obtaining a reasonable e-waste generation estimate. It was estimated that on average no more than 80,443 tonnes (11.5 kg/capita) of waste is generated from non-plasma and non-liquid crystal display televisions, refrigerators, washing machines, air-conditioners and personal computers each year by Hong Kong households. However, not more than 17% of this is disposed as waste despite a producer responsibility scheme (PRS) not being in place because of the existence of a vibrant e-waste trading sector. The form of PRS control that can possibly win most public support is one that would involve the current e-waste traders as a major party in providing the reverse logistics with a visible recycling charge levied at the point of importation. This reverse logistic service should be convenient, reliable and highly accessible to the consumers.

  20. Survey of a technology to introduce the waste-fueled power generation. Basic manual for introduction of the waste-fueled power generation; Haikibutsu hatsuden donyu gijutsu chosa. Haikibutsu hatsuden donyu kihon manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Local government offices, etc., which are expected to shoulder responsibility for introducing the waste-fueled power generation, want to need exact information on technical information concerning the waste-fueled power generation and the method to materialize the introduction plan, etc. Therefore, Electric Power Development Co. surveyed and studied it under the contract with NEDO. The results were collected together as a basic manual for introduction of the waste-fueled power generation. As an outline of the waste-fueled power generation, the manual explains the significance, the present situation and potentials, the waste-fueled power system, an outline of working out the waste-fueled power generation plan, an outline of construction and operation/maintenance of the waste-fueled power generation, an outline of various systems relating to the waste-fueled power generation, etc. As the items for the study of making a concrete plan for power generation equipment, the manual explains the amount of refuse to be incinerated, the present status of generation capacity as viewed from the quality of refuse, the quality of refuse and the design of power generation equipment, boiler efficiency, power generation efficiency, construction cost and operation cost, etc. In addition, the paper describes a case study of the waste-fueled power generation plan. 118 figs., 39 tabs.

  1. Comparison of predicted versus measured dose rates for low-level radioactive waste cask shipments

    International Nuclear Information System (INIS)

    Macher, Martin S.

    1992-01-01

    Shippers of low-level radioactive waste must select casks which will provide sufficient shielding to keep dose rates below the federal limit of 10 mr/hr at 2 meters from the vehicle. Chem-Nuclear Systems, Inc. uses a cask selection methodology which is based on shielding analysis code predictions with an additional factor of safety applied to compensate for inhomogeneities in the waste, uncertainties in waste characterization, and inaccuracy in the calculational methods. This proven cask selection methodology is explained and suggested factors of safety are presented based on comparisons of predicted and measured dose rates. A safety factor of 2 is shown to be generally appropriate for relatively homogeneous waste and a safety factor of between 3 and 4 is shown to be generally appropriate for relatively inhomogeneous wastes. (author)

  2. Investigating composition and production rate of healthcare waste and associated management practices in Bandar Abbass, Iran.

    Science.gov (United States)

    Koolivand, Ali; Mahvi, Amir Hossein; Alipoor, Vali; Azizi, Kourosh; Binavapour, Mohammad

    2012-06-01

    The objective of this study was to identify the composition and production rate of healthcare waste and associated management practices in healthcare centres in Bandar Abbas, southern Iran. A total of 90 centres, including 30 physician offices, 30 dental offices and 30 clinics were selected in random way. Two samples in summer and two samples in winter were taken and weighed from each selected centre at the end of successive working day on Mondays and Tuesdays. Results showed that the mean of daily production rate for each clinic, dental and physician office were 2125.3, 498.3 and 374.9 g, respectively. Domestic-type and potentially infectious waste had the highest and chemical and pharmaceutical waste and sharps had the lowest percentages in all centres. Questionnaire results indicated that there were no effective activity for waste minimization, separation, reuse and recycling in healthcare centres and management of sharps, potentially infectious and other hazardous waste was poor.

  3. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1993-09-01

    The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO 2 , H 2 S, and H 2 . Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. No significant reaction took place on any material in any environment in the vapor-phase exposures

  4. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  5. Risk analysis of radioactive waste repository based on the time dependent hazard rate

    International Nuclear Information System (INIS)

    Chang, S.H.; Cho, W.J.

    1984-01-01

    For the probabilistic risk analysis of the radioactive high level waste repository, the simplified method based on the time dependent hazard rate is proposed. The obtained results are compared with those from the time independent hazard rate. The estimation of the failure probability of the waste repository through this method gives more conservative results, especially when the half-life of nuclide is larger and retardation factors of nuclide is smaller. (Auth.)

  6. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece.

    Science.gov (United States)

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-01

    The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective

  7. Seasonal analysis of the generation and composition of solid waste: potential use--a case study.

    Science.gov (United States)

    Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Ojeda-Benítez, Sara

    2013-06-01

    Ensenada health officials lack pertinent information on the sustainable management of solid waste, as do health officials from other developing countries. The aims of this research are: (a) to quantify and analyze the household solid wastes generated in the city of Ensenada, Mexico, and (b) to project biogas production and estimate generation of electrical energy. The characterization study was conducted by socioeconomic stratification in two seasonal periods, and the biogas and electrical energy projections were performed using the version 2.0 Mexico Biogas Model. Per capita solid waste generation was 0.779 ± 0.019 kg per person per day within a 98 % confidence interval. Waste composition is composed mainly of food scraps at 36.25 %, followed by paper and cardboard at 21.85 %, plastic at 12.30 %, disposable diapers at 6.26 %, and textiles at 6.28 %. The maximum capacity for power generation is projected to be 1.90 MW in 2019. Waste generated could be used as an intermediate in different processes such as recycling (41.04 %) and energy recovery (46.63 %). The electrical energy that could be obtained using the biogas generated at the Ensenada sanitary landfill would provide roughly 60 % of the energy needed for street lighting.

  8. Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Olugbemiro M. Akande

    2018-03-01

    Full Text Available The conversion of biomass to high-density briquettes is a potential solution to solid waste problems as well as to a high dependence on fuel wood in developing countries. In this study, the potential of converting vegetable waste to briquettes using waste paper as a binder was investigated. A sample size of 30 respondents was interviewed using a self-administered questionnaire at the D-line fruit and vegetable market in Port Harcourt, Nigeria. Carrot and cabbage leaves were selected for briquetting based on their availability and heating value. This waste was sun-dried, pulverized, torrefied and fermented. Briquettes were produced with a manual briquette press after the processed vegetable waste was mixed with waste paper in four paper:waste ratios, i.e., 10:90, 15:85, 20:80 and 25:75. The moisture content, densities and cooking efficiency of the briquettes were determined using the oven-drying method, the water-displacement method, and the water-boiling test, respectively. There was no observed trend in moisture content values of the briquettes, which varied significantly between 3.0% and 8.5%. There was no significant variation in the densities, which ranged from 0.79 g/cm3 to 0.96 g/cm3 for all the briquette types. A degree of compaction above 300% was achieved for all the briquette types. Water-boiling test results revealed that 10:90 paper:sun-dried cabbage briquettes had the highest ignitability of 0.32 min. Torrefied carrot briquettes with 25% paper had the least boiling time and the highest burning rates of 9.21 min and 4.89 g/min, respectively. It was concluded that cabbage and carrot waste can best be converted into good-quality briquettes after torrefaction.

  9. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  10. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  11. Power generation with ORC machines using low-grade waste heat or renewable energy

    International Nuclear Information System (INIS)

    Minea, Vasile

    2014-01-01

    By 2030, global energy consumption is projected to grow by 71%. At the same time, energy-related carbon dioxide emissions are expected to rise by more than 40%. In this context, waste and renewable energy sources may represent alternatives to help reduce fossil primary energy consumption. This paper focuses on the technical feasibility, efficiency and reliability of a heat-to-electricity conversion, laboratory beta-prototype, 50 kW Organic Rankine Cycle (ORC) machine using industrial waste or renewable energy sources at temperatures varying between 85 °C and 116 °C. The thermodynamic cycle along with the selected working fluid, components and control strategy, as well as the main experimental results, are presented. The study shows that the power generated and the overall net conversion efficiency rate of the machine mainly depends on such parameters as the inlet temperatures of the waste (or renewable) heat and cooling fluid, as well as on the control strategy and amount of parasitic electrical power required. It also indicates that after more than 3000 h of continuous operation, the ORC-50 beta-prototype machine has shown itself to be reliable and robust, and ready for industrial market deployment. - Highlights: •A laboratory-scale beta-prototype Organic Rankine Cycle machine has been studied. •Cycle efficiency with feed pump at variable full range speed has been determined. •Energetic and exergetic conversion efficiencies have been experimentally evaluated. •Various effects of evaporator superheating on the cycle efficiency have been analysed. •Several cycle improvements and potential industrial application were identified

  12. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  13. Generation of transportation fuel from solid municipal waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin

    2010-09-15

    Transportation fuels derived from fossil fuels are subjected to the price fluctuations of the global marketplace, and constitute a major expense in the operation of a vehicle. Emissions from the evaporation and combustion of these fuels contribute to a range of environmental problems, causing poor air quality and emitting greenhouse gases that contribute to global warming. Alternative fuels created from domestic sources have been proposed as a solution to these problems, and many fuels are being developed based on biomass and other renewable sources. Natural State Research, Inc. developed different alternative hydrocarbon fuel which is produced from waste plastic materials.

  14. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  15. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  16. Green Nanotechnology from Waste Carbon-Polyaniline Composite: Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detection

    KAUST Repository

    Goswami, Sumita; Nandy, Suman; Deuermeier, Jonas; Marques, Ana C.; Nunes, Daniela; Patole, Shashikant P.; Da Costa, Pedro M. F. J.; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    This study reports on the qualitative analysis of photoluminescence effect generated from waste carbon of cooking oven by facile cost-effective material engineering. The waste carbon product as a form of carbon nanoparticles (CNPs) is incorporated

  17. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  18. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  19. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  20. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  1. Microbial gas generation under expected Waste Isolation Pilot Plant repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Gillow, J.B.; Giles, M.R. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

    1997-03-01

    Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository was investigated at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) was examined. The rate of gas production from cellulose biodegradation in inundated samples incubated for 1,228 days at 30 C was biphasic, with an initial rapid rate up to approximately 600 days incubation, followed by a slower rate. The rate of total gas production in anaerobic samples containing mixed inoculum was as follows: 0.002 mL/g cellulose/day without nutrients; 0.004 mL/g cellulose/day with nutrients; and 0.01 mL/g cellulose/day in the presence of excess nitrate. Carbon dioxide production proceeded at a rate of 0.009 {micro}mol/g cellulose/day in anaerobic samples without nutrients, 0.05 {micro}mol/g cellulose/day in the presence of nutrients, and 0.2 {micro}mol/g cellulose/day with excess nitrate. Adding nutrients and excess nitrate stimulated denitrification, as evidenced by the accumulation of N{sub 2}O in the headspace (200 {micro}mol/g cellulose). The addition of the potential backfill bentonite increased the rate of CO{sub 2} production to 0.3 {micro}mol/g cellulose/day in anaerobic samples with excess nitrate. Analysis of the solution showed that lactic, acetic, propionic, butyric, and valeric acids were produced due to cellulose degradation. Samples incubated under anaerobic humid conditions for 415 days produced CO{sub 2} at a rate of 0.2 {micro}mol/g cellulose/day in the absence of nutrients, and 1 {micro}mol/g cellulose/day in the presence of bentonite and nutrients. There was no evidence of biodegradation of electron-beam irradiated plastic and rubber.

  2. Systematic analysis method for radioactive wastes generated from nuclear research facilities

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki

    2011-01-01

    Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)

  3. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  4. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    International Nuclear Information System (INIS)

    Kawamura, Hiroko; Hirata, Yasuki

    2002-01-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m 3 at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  5. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Taguchi, Kenji [Riken Co. Ltd., Kitakyushu, Fukuoka (Japan)

    2002-03-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m{sup 3} at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  6. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  7. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    Energy Technology Data Exchange (ETDEWEB)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-05-15

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.

  8. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    International Nuclear Information System (INIS)

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-01-01

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation

  9. Management of waste generation in the oil refining industry. The PETROBRAS - Henrique Lage Refinery experience

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.I.; Machado, J.B.; Linhares, C.A.; Mazarino, P.R. [PETROBRAS, Sao Jose dos Campos, SP (Brazil). REVAP. Refinaria Henrique Lage

    1993-12-31

    The PETROBRAS - Henrique Lages Refinery - located in Sao Paulo State (Southeast Brazil), has been developing for many years a systematic program for solid, liquid and gaseous wastes generation reduction. The waste minimization management program success has been built due to the structure behavioural modifications due to the new environment protection and quality politics; the training and equipment investments, and operational procedures changes. (author). 7 figs., 3 tabs.

  10. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  11. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  12. Management of waste generation in the oil refining industry. The PETROBRAS - Henrique Lage Refinery experience

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J I; Machado, J B; Linhares, C A; Mazarino, P R [PETROBRAS, Sao Jose dos Campos, SP (Brazil). REVAP. Refinaria Henrique Lage

    1994-12-31

    The PETROBRAS - Henrique Lages Refinery - located in Sao Paulo State (Southeast Brazil), has been developing for many years a systematic program for solid, liquid and gaseous wastes generation reduction. The waste minimization management program success has been built due to the structure behavioural modifications due to the new environment protection and quality politics; the training and equipment investments, and operational procedures changes. (author). 7 figs., 3 tabs.

  13. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. © The Author(s) 2015.

  14. Urban solid waste generation and disposal in Mexico: a case study.

    Science.gov (United States)

    Buenrostro, O; Bocco, G; Bernache, G

    2001-04-01

    The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.

  15. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-01-01

    The study aimed at development and demonstration of volume reduction and solidification of CANDU reactor wastes has been underway at Chalk River Nuclear Laboratories in the Province of Ontario, Canada. The study comprises membrane separation processes, evaporator appraisal and immobilization of concentrated wastes in bitumen. This paper discusses the development work with a wiped-film evaporator and the successful completion of demonstration tests at Douglas Point Nuclear Generating Station. Heavy water from the moderator system was purified and wastes arising from pump bowl decontamination were immobilized in bitumen with the wiped-film evaporator that was used in the development tests at Chalk River

  17. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  18. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  19. Sensitivity Analysis of Population in The Generation of Hazardous and Non-Harzardous Wastes, and Gas from Dumpsites of Ogbomosoland in Nigeria

    Directory of Open Access Journals (Sweden)

    Samson O. Ojoawo

    2013-01-01

    Full Text Available This paper applies the principles of system dynamics modeling in studying the pattern of population changes and the corresponding non-hazardous wastes and gas being generated from the dumpsites of Ogbomosoland, Nigeria. The five (5 Local government Areas (LGAs of Ogbomosoland were categorized as Urban (Ogbomoso North and Ogbomoso South and Rural (Oriire, Ogo Oluwa and Suurulere based on the size, population of residents, consumption pattern and socio-economic activities of the area. A sensitivity analysis of the simulated variables i.e the population, wastes and gas, was performed by employing the developed model results. Findings showed that the wastes and gas increased with the increased population in the 1000 years period. Also, gas production exceeds wastes generation rates for the rural LGAs in all cases. After a 25 years benchmark, when the simulated population of the urban and rural LGAs are respectively 303,411 and 344,735, the rates of waste generation are 3.33x106 and 6.22 x106 m 3 , while the corresponding rates of gas production is 2.44x103 and 6.47x103 m 3 in same order. The study concludes that wastes and gas generation from dumpsites are highly sensitive to population growth. It also concluded that the rate of gas generation is higher in organic wastes of the rural LGAs. The maximum population permissible in the model is 300,000 thus design of full-fledge landfills is recommended to replace the existing dumpsites in the study area.

  20. A Short History of Hanford Waste Generation, Storage, and Release

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  1. Utilization of waste heat from electricity generating stations

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1977-06-01

    Historically the nuclear power station has been designed solely as an electricity producer. But in Canada today only 15 percent of our energy consumption is as electricity. The non-electrical needs today are supplied almost entirely by natural gas and oil. There is an incentive to see whether a nuclear station could supply energy for some of these non-electrical needs, thus freeing gas and oil for uses for which they may be more valuable and suitable, especially in transportation. A group located at the Whiteshell Nuclear Research Establishment undertook a series of studies to examine this problem. These studies were done in sufficient depth to provide technological and economic answers, and as a result several reports have been published on various topics. In this report, the findings from these studies are drawn together in an assessment of the potential in Canada for using waste heat. (author)

  2. Volume reduction of radioactive concrete waste generated from KRR-2 and UCP

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Park, J. W.; Lee, K. W.

    2009-01-01

    As a part of a technical development for the volume reduction and stabilization of contaminated concrete wastes generated by dismantling a research reactor and uranium conversion plant, we have developed the volume reduction technology and immobilization of fine powder applicable to an activated heavy weight concrete generated by dismantling KRR-2 and a uranium contaminated light weight concrete produced from a UCP decommissioning. During a decommissioning of nuclear plants and facilities, large quantities of contaminated concrete wastes are generated. The decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant has been under way. In Korea, two decommissioning projects such as the decommissioning of the retired research reactors (KRR-1 and 2) and a uranium conversion plant (UCP) at the Korea Atomic Energy Research Institute (KAERI) has been carried out. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes are generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds are generated in UCP decommissioning up to now. The volume reduction and recycling of the wastes is essential to reduce the waste management cost with expecting that an approximate disposal cost for low level radioactive waste will be more than 5,000 US dollars per 200 liter waste drum in Korea. It is well known that most of the radioactivity exist in cement mortar and paste composed of concrete. In this context, the volume reduction of concrete waste is based on the separation of radioactive concrete into a clean recyclable aggregates and a radioactive fine cement powder, which can be readily performed by heating to weaken the adherence force between the cement matrix and the aggregates followed by mechanical crushing and milling processes. In this study, we have investigated the characteristics of separation of aggregates and the distribution of radioactivity into

  3. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    Science.gov (United States)

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  4. Major factors contributing to the construction waste generation in building projects of Iraq

    Directory of Open Access Journals (Sweden)

    Khaleel Tareq

    2018-01-01

    Full Text Available Due to the economic growth and improvement of the construction industry witnessed by most countries, there has become a crucial need for employing modern possibilities in the construction sector to build taller, longer and deeper structures. However, one aspect that heads forward with the same intensity is the generation of 100 million tons of construction waste every year. This generation has occurred due to several factors with different levels of importance. Hence, this study reveals 15 factors influencing construction waste generation and categorizes them into 3 groups, (materials management on site, (materials handling, transportation and storage and (site management and practices. A questionnaire survey of 100 respondents was distributed among different engineers to assess the construction waste factors. Results showed that damage of materials on site, double handling of materials and incompetent contractor’s technical staff were the most significant factors of each category with Relative Importance Indexes (RII of 0.866, 0.844 and 0.83, respectively. These findings will help the practitioners to reduce construction waste quantities in sites and improve waste management performance factors to control the construction waste problems.

  5. The effect of devitrification on leaching rate of glass containing simulated high level liquid waste (HLLW)

    International Nuclear Information System (INIS)

    Suryantoro; Sumarbagiono; Martono, H.

    1996-01-01

    Effect of devitrification on leaching rate of glass named G1 and G2 each contains 20 wt% and 30wt% of waste has been studied. devitrification of waste - glass has been carried out by heating those specimens at 850 o C for 10, 18, 26, 34, 42 and 50 hours respectively. The weight percentage of crystal in waste glass was determined by X-ray diffractometer and leaching rate was determined by soxhlet apparatus at 100 o C for 24 hours. The longer heating time, the more weight percentage of crystal is formed. The results show that leaching rate of G2 specimens are higher than those of G1. For G1 the leaching rate at 850 o C in 20 times than without heating, and for G2 leaching rate is 15.7 times than without heating. (author)

  6. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    International Nuclear Information System (INIS)

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-01-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri R ArcGIS R scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus R -MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel R 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  7. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  8. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  9. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    International Nuclear Information System (INIS)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW e IFR capacity for every three MW e Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years)

  10. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  11. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  12. Characteristics and Generation of Household Hazardous Waste (HHW) in Semarang City Indonesia

    Science.gov (United States)

    Fikri, Elanda; Purwanto; Sunoko, Henna Rya

    2018-02-01

    Most of Household Hazardous Waste (HHW) is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%), then poisonous (13%), combustible (6%) and corrosive materials (2%). The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW) in Semarang (linear equations : y=1,278x+82,00 (volume), y=0,216x+13,89 (weight).

  13. Waste Minimization Measurement and Progress Reporting

    International Nuclear Information System (INIS)

    Stone, K.A.

    1995-01-01

    Westinghouse Savannah River Company is implementing productivity improvement concepts into the Waste Minimization Program by focusing on the positive initiatives taken to reduce waste generation at the Savannah River Site. Previous performance measures, based only on waste generation rates, proved to be an ineffective metric for measuring performance and promoting continuous improvements within the Program. Impacts of mission changes and non-routine operations impeded development of baseline waste generation rates and often negated waste generation trending reports. A system was developed to quantify, document and track innovative activities that impact waste volume and radioactivity/toxicity reductions. This system coupled with Management-driven waste disposal avoidance goals is proving to be a powerful tool to promote waste minimization awareness and the implementation of waste reduction initiatives. Measurement of waste not generated, in addition to waste generated, increases the credibility of the Waste Minimization Program, improves sharing of success stories, and supports development of regulatory and management reports

  14. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.

    Science.gov (United States)

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-19

    Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  15. Environmental justice implications of industrial hazardous waste generation in India: a national scale analysis

    Science.gov (United States)

    Basu, Pratyusha; Chakraborty, Jayajit

    2016-12-01

    While rising air and water pollution have become issues of widespread public concern in India, the relationship between spatial distribution of environmental pollution and social disadvantage has received less attention. This lack of attention becomes particularly relevant in the context of industrial pollution, as India continues to pursue industrial development policies without sufficient regard to its adverse social impacts. This letter examines industrial pollution in India from an environmental justice (EJ) perspective by presenting a national scale study of social inequities in the distribution of industrial hazardous waste generation. Our analysis connects district-level data from the 2009 National Inventory of Hazardous Waste Generating Industries with variables representing urbanization, social disadvantage, and socioeconomic status from the 2011 Census of India. Our results indicate that more urbanized and densely populated districts with a higher proportion of socially and economically disadvantaged residents are significantly more likely to generate hazardous waste. The quantity of hazardous waste generated is significantly higher in more urbanized but sparsely populated districts with a higher proportion of economically disadvantaged households, after accounting for other relevant explanatory factors such as literacy and social disadvantage. These findings underscore the growing need to incorporate EJ considerations in future industrial development and waste management in India.

  16. Potential of Power Generation from Biogas. Part II: Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Vera-Romero Iván

    2015-07-01

    Full Text Available The objective of this work is to estimate the amount of biogas that could be obtained from the anaerobic decomposition of the organic fraction of the municipal solid waste (MSW disposed in a sanitary landfill, by capturing and taking advantage of it to generate electricity which can be consumed by Ciénega Region of Chapala in the state of Michoacán, México. To estimate the biogas captured, the Mexican Model of Biogas version 2.0 was used; capturing MSW for 11 years with a project life of 21 years. For the analysis of power generation an average cost for schedule rate 5-A from the CFE for public service was used. Four possible scenarios were evaluated: optimal, intermediate optimal, intermediate pessimistic and pessimistic; varying characteristics such as adequate handling site, fire presence, coverage, leachate, among others. Each of the scenarios, economically justify the construction of an inter-municipal landfill obtaining substantial long-term economic benefits. (26.5×106 USD, 22.8×106 , 17.9×106 and 11.7×106 respectively, while contributing to climate change mitigation and prevention of diseases.

  17. Design/build/mockup of the Waste Isolation Pilot Plant gas generation experiment glovebox

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.

    1996-01-01

    A glovebox was designed, fabricated, and mocked-up for the WIPP Gas Generation Experiments (GGE) being conducted at ANL-W. GGE will determine the gas generation rates from materials in contact handled transuranic waste at likely long term repository temperature and pressure conditions. Since the customer's schedule did not permit time for performing R ampersand D of the support systems, designing the glovebox, and fabricating the glovebox in a serial fashion, a parallel approach was undertaken. As R ampersand D of the sampling system and other support systems was initiated, a specification was written concurrently for contracting a manufacturer to design and build the glovebox and support equipment. The contractor understood that the R ampersand D being performed at ANL-W would add additional functional requirements to the glovebox design. Initially, the contractor had sufficient information to design the glovebox shell. Once the shell design was approved, ANL-W built a full scale mockup of the shell out of plywood and metal framing; support systems were mocked up and resultant information was forwarded to the glovebox contractor to incorporate into the design. This approach resulted in a glovebox being delivered to ANL-W on schedule and within budget

  18. Treatment of Lagoon sludge waste generated from Uranium Conversion Plant

    International Nuclear Information System (INIS)

    Hwang, D.S.; Oh, J.H.; Lee, K.I.; Choi, Y.D.; Hwang, S.T.; Park, J.H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the desalination process by water and the drying property of residual solid after separating nitrates in a series of processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97 % at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue. These were decomposed over 600 deg. C while calcium carbonate, which was a main compound of residual solid, was decomposed into calcium oxide over 750 deg. C. The residual solid has to be decomposed over 800 deg. C to converse uranyl nitrate of six values into the stable U 3 O 8 of four values. As a result of removing the nitrates at the adding ratio of 2.5 and drying the residue over 900 deg. C, volume of the sludge waste decreased over 80 %. (authors)

  19. Developments in, and environmental impacts of, electricity generation from municipal solid waste and landfill gas combustion

    International Nuclear Information System (INIS)

    Porteous, A.

    1993-01-01

    The 1991 NFFO allocations for renewable energy generation are reviewed with emphasis on electricity from municipal solid waste (MSW) and landfill gas (LFG) combustion tranches. The implications of materials recovery on the calorific value of MSW are considered, as are the environmental impacts of both MSW and LFG combustion with special reference to air pollutant emissions. The performance and economics of state of the art incineration and LFG power generating plants are examined. It is shown that energy recovery from these wastes can be both cost effective and environmentally desirable. (Author)

  20. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  1. Assessments of conditioned radioactive waste arisings from existing and committed nuclear installations and assuming a moderate growth in nuclear electricity generation - June 1985

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Goodill, D.R.; Tymons, B.J.

    1985-03-01

    This report describes an assessment of conditioned radioactive waste arisings from existing and committed nuclear installations, DOE Revised Scheme 1, and from an assumed nuclear power generation scenario, DOE Revised Scheme 3, representing a moderate growth in nuclear generation. Radioactive waste arise from 3 main groups of installations and activities: i. existing and committed commercial reactors; ii. fuel reprocessing plants, iii. research, industrial and medical activities. Stage 2 decommissioning wastes are considered together with WAGR decommissioning and the 1983 Sea Dump Consignment. The study uses the SIMULATION 2 code which models waste material flows through a system of waste treatment and packaging to disposal. With a knowledge of the accumulations and average production rates of untreated wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data for the inventory calculations have previously been documented. Some recent revisions and assumptions concerning future operation of nuclear facilities are presented in this report. (author)

  2. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N 2 , CO 2 , H 2 S, and H 2 . Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Addition of H 2 S to a CO 2 -passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO 2 to an H 2 S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO 2 or H 2 S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures

  3. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  4. Sources, production rates and characteristics of ERDA low-level wastes

    International Nuclear Information System (INIS)

    Dieckhoner, J.E.

    1979-01-01

    In recent critical reviews of the long-standing practice of disposing of solid non-high-level radioactive waste by shallow earth burial, one recurring identified need was for better source-term information. As the major employer of this particular radioactive waste management technique for the past 30 years, ERDA recognizes the value of this type of information and has systematically collected it. The system used by the AEC and ERDA in the past was admittedly cumbersome, so in FY 1976 an improved, automated information management system was developed. This new system, called SWIMS (Solid Waste Information Management System), was designed to replace the older system and accept more detailed information from all ERDA solid, non-high-level radioactive waste generation, retrievable storage and shallow land burial activities. In FY 1977, SWIMS is in a trial phase in which modifications and clarifications are being made. In FY 1978, it will be fully operational. This paper presents data concerning the sources and characteristics of waste generated by ERDA facilities. Information on the cumulative status of ERDA's waste is presented, along with a comparison of the types of data collected under the old system and the new system

  5. Regulatory and management requirements for investigation-derived waste generated during environmental investigations and cleanups

    International Nuclear Information System (INIS)

    Clary, M.B.

    1994-01-01

    Environmental cleanup efforts often result in the generation of waste materials, such as soil samples, drill cuttings, decontamination water, drilling muds, personal protective equipment, and disposable sampling equipment. The management of associated with site characterization and remediation issues is a complicated issue at many CERCLA/RCRA facilities throughout the country, primarily because of the federal hazardous waste regulations. The hazardous waste regulations were intended to apply to the active generation of hazardous waste at industrial facilities and do not often make sense when applied to sites con by poor disposal practices of the past. In order to manage investigation derived waste in a more rational, logical manner, EPA issued guidance on the management of investigation-derived waste (IDW) at Superfund sites in January, 1992. The basic intent of the EPA guidance is to provide Superfund Site Managers with options for handling, managing, and disposing of IDW. The second part of this paper provides a detailed analysis of current IDW practices at various Department of Energy (DOE) facilities and Superfund sites across the nation. Some sites, particularly the DOE facilities, with more complicated on-going cleanup efforts have developed site-specific written procedures for managing IDW, often incorporating risk assessment. In come cases, these site-specific policies are going farther than the current EPA and Colorado policies in terms of conservatively managing IDW

  6. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  7. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  8. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  9. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT The composition of organic waste (OW and its effect on soil processes may change soil fertility and electrical conductivity (EC. The side effects of waste use in crop fertilization are poorly understood for Brazilian soils. This study examined the effect of the addition of 15 different organic wastes to Oxisols and a Neosol on pH, base saturation, EC, cation exchange capacity (CEC at pH 7, and the availability of Al, macro (P, K, Ca2+, Mg2+ and S and micronutrients (B, Fe2+, Mn2+, Cu2+ and Zn2+. Soil samples (150 g were treated with chicken, pig, horse, cattle, and quail manures, sewage sludge 1 and 2, eucalyptus sawdust, plant substrate, coconut fiber, pine bark, coffee husk, peat, limed compost, and biochar. Wastes were added considering a fixed amount of C (2 g kg-1, which resulted in waste rates ranging from 2.5 to 25.6 Mg ha-1. The soil-waste mixtures were incubated for 330 days in laboratory conditions. The waste liming or acidification values were soil-dependent. The use of some manures and compost increased the pH to levels above of those considered adequate for plant growth. The soil EC was slightly increased in the Neosol and in the medium textured Oxisol, but it was sharply changed (from 195 to 394 µS cm-1 by the addition of organic wastes in the clayey Oxisol, although the EC values were below the range considered safe for plant growth. Changes in the soil availability of P, K+, Ca2+ and Zn2+ were highly related to the inputs of these nutrients by the wastes, and other factors in soil changed due to waste use. Organic waste use simultaneously affects different soil fertility attributes; thus, in addition to the target nutrient added to the soil, the soil acidity buffering capacity and the waste liming and agronomic value must be taken into account in the waste rate definition.

  10. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  11. Lixiviation of plutonium contaminated solid wastes by aqueous solution of electro-generated reducing agents

    International Nuclear Information System (INIS)

    Agarande, Michelle

    1991-01-01

    This study concerns the development of the new concept for the decontamination of plutonium bearing solid wastes, based on the lixiviation of the wastes using electro-generated reducing agents. First, a comparative study of the kinetics of the dissolution of pure PuO 2 (prepared by calcination of Pu (IV) oxalate at 450 C) in sulfuric acid media, with different reducing agents, was realized. Qualitatively these reagents can be sorted in three groups: 1 / fast kinetics for Cr(II), V(II) and U(III); 2 / slow kinetics for Ti(III); 3 / very slow kinetics for V(III) and U(VI). In order to contribute to the design of an electrochemical reactor for the generation of the reducing agents usable for the lixiviation of plutonium bearing solid wastes, the study of the diffusion coefficients of both oxidized and reduced forms of different redox couples, at different temperatures, was undertaken. The results of this study also permits, from the knowledge of the diffusional activation energy of the ions, to conclude that the dissolution of pure plutonium dioxide under the action of these reducing agents is not diffusion limited. The feasibility of the plutonium decontamination treatment of synthetic or real solid wastes was then studied at laboratory scale using electro-generated V(II), which is with Cr(II) among the best reagents. The efficiency of the treatment was good, (80 pc Pu solubilisation yield), especially in the case of cellulosic or miscellaneous organic wastes. (author) [fr

  12. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  13. 1994 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1

    International Nuclear Information System (INIS)

    Irwin, E.F.; Poligone, S.E.

    1995-01-01

    The Y-12 Plant serves as a key manufacturing technology center for the development and demonstration of unique materials, components, and services of importance to the Department of Energy (DOE) and the nation. This is accomplished through the reclamation and storage of nuclear materials, manufacture of nuclear materials, manufacture of components for the nation's defense capabilities, support to national security programs, and services provided to other customers as approved by DOE. We are recognized by our people, the community, and our customers as innovative, responsive, and responsible. We are a leader in worker health and safety, environmental protection, and stewardship of our national resources. As a DOE facility, Y-12 also supports DOE's waste minimization mission. Data contained in this report represents waste generation in Tennessee

  14. Experimental and numerical study of waste heat recovery characteristics of direct contact thermoelectric generator

    International Nuclear Information System (INIS)

    Kim, Tae Young; Negash, Assmelash; Cho, Gyubaek

    2017-01-01

    Highlights: • Energy harvesting performance of direct contact thermoelectric generator was studied. • Power-current and voltage-current curves were given for various operating conditions. • Output power prediction using numerical results and empirical correlation was verified. • A 1.0–2.0% conversion efficiency and 5.7–11.1% heat recovery efficiency were obtained. • A 0.25% increase in efficiency was found with a 10 K decrease in coolant temperature. - Abstract: In this study, waste heat recovery performance of a direct contact thermoelectric generator (DCTEG) is experimentally investigated on a diesel engine. In order to conduct an insightful analysis of the DCTEG characteristics, three experimental parameters—engine load, rotation speed, and coolant temperature—are chosen to vary over ranges during the experiments. Experimental results show that higher temp