WorldWideScience

Sample records for waste fired plants

  1. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  2. Combating corrosion in biomass and waste fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Pamela [Vattenfall AB, Stockholm (Sweden). Research and Development; Hjoernhede, Anders [Vattenfall AB, Gothenburg (Sweden). Power Consultant

    2010-07-01

    Many biomass- or waste-fired plants have problems with high temperature corrosion especially if the steam temperature is greater than 500 C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest in reducing the costs associated with high temperature corrosion and at the same time there exists a desire to improve the electrical efficiency of a plant by the use of higher steam temperatures. Assuming that the fuel is well-mixed and that there is good combustion control, there are in addition a number of other measures which can be used to reduce superheater corrosion in biomass and waste fired plants, and these are described in this paper. These include the use of fuel additives, specifically sulphur-containing ones; design aspects like placing superheaters in less corrosive positions in a boiler, using tube shielding, a wider pitch between the tubes; operational considerations such as more controlled soot-blowing and the use of better materials. (orig.)

  3. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  4. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  5. Fire prevention in nuclear plants

    International Nuclear Information System (INIS)

    Cayla, J.P.; Jacquet-Francillon, J.; Matarozzo, F.

    2014-01-01

    About 80 fire starts are reported in EDF nuclear power plants every year but only 3 or 4 turn into a real fire and none has, so far, has led to a major safety failure of a nuclear plant. A new regulation has been implemented in july 2014 that strengthens the concept of defense in depth, proposes an approach that is proportionate to the stakes and risks, this proportionality means that the requirements for a power reactor are not the same as for a nuclear laboratory, and imposes an obligation or result rather than of means. The second article deals with the fire that broke out in the waste silo number 130 at La Hague plant in january 1981. The investigation showed that the flammability of the silo content had been underestimated. The third article presents the consequences of the fire that broke out in a power transformer at the Cattenom plant in june 2013. The fire was rapidly brought under control thanks to the immediate triggering of the emergency plan. The article details also the feedback experience of this event. (A.C.)

  6. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  7. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  8. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  9. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  10. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  11. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  12. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  13. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  14. Survey of minipower plant for municipal solid waste firing

    International Nuclear Information System (INIS)

    Merkkiniemi, R.; Hyoety, P.; Saiha, E.

    1999-01-01

    Dumping of municipal waste to disposal areas has caused environmental problems, and this has led to more sophisticated disposal systems and high prices. That and a general demand to reduce the quantity of waste require new solutions, and a question has been arisen whether combustion could be used to treat waste. This project is concentrating to bum waste in a small-scale power plant. The background is one 10-MW pilot in Tampere city based on smelting furnace and a 0.3-MW pyrolyse furnace. The results of these from the viewpoint of operation and effluent were satisfactory and the burning process used is in line with the latest regulations. The second aspect is the economy of waste handling. The minipower plant is designed for reasonable small municipalities, abt 20 000 inhabitants or 1 - 20 MW heat input. According to several feasibility studies this method is the cheapest way to handle waste. A local heat demand is used to support the economy. The prices of products, heat and power, and cost are of the same level as the market prices. Thus, we expect a economical and environmentally safe operation with the minipower plant and it will also give a hint to solve a higher capacity demand of one unit. (orig.)

  15. Waste management plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    This waste management plan defines the procedures for control and management of waste generated as a result of the removal action of the YS-86O Firing Ranges site at the Oak Ridge Y-12 Plant. This document includes plan objectives; remediation activities; key personnel; waste generation activities; and waste treatment, storage, transportation, and disposal. Methods of control and characterization of waste generated as a result of remediation activities will be within the guidelines and procedures outlined herein. ENTECH personnel will make every effort when conducting remediation and decontamination activities to minimize the amount of generated waste

  16. Permitting a biomass-fired power plant in California -- A case study

    International Nuclear Information System (INIS)

    Reisman, J.I.; Needham, G.A.

    1995-01-01

    This paper describes the process of preparing an air permit application for a proposed biomass-fired power plant. The plant is designed to produce a net electric power output of 16 megawatts (MW) for sale to Pacific Gas and Electric Company. The biomass fuel will consist of urban wood waste, construction wood waste, and waste from agricultural products, such as tree prunings and fruit pits. The site is located in an industrial park in Soledad, California

  17. Ecotoxicity of waste water from industrial fires fighting

    Science.gov (United States)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  18. Natural Radionuclides in Slag/Ash Pile from Coal-Fired Power Plant Plomin

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Marovic, G.; Sencar, J.

    2001-01-01

    Full text: The coal slag/ash pile contains about one million tons of different (bottom ash, filter ash, gypsum) waste material deposited in vicinity of Plomin coal-fired power plant. Activities of 40 K, 228 Ra, 226 Ra and 238 U in materials deposited on slag/ash pile as well as in used coals were occasionally measured during past more than two and half decades of Plomin coal-fired plant operation. The radionuclides content in deposited bottom and filter ash material are related with radionuclide activities and mineral matter fraction in coals used. Up to the middle of nineties, the majority of coal used was anthracite from Istrian local mines. In that period, deposited waste material was characterised with relatively high 226 Ra and 238 U activities while potassium and thorium content was very low. When Istrian coal has been completely substituted with imported coal, uranium series radionuclide concentrations in deposited waste materials decreased significantly. Meanwhile, potassium and thorium activities in slag/ash pile material increased. It seems that slag/ash pile material generated in the last several years of Plomin coal-fired power plant operation could be generally used in cement industry without any special restriction. (author)

  19. Co-firing of biomass and other wastes in fluidised bed systems

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Lopes, H.; Boavida, D.; Abelha, P. [INETI/DEECA, Lisboa (Portugal); Werther, J.; Hartge, E.-U.; Wischnewski, R. [TU Hamburg-Harburg (Georgia); Leckner, B.; Amand, L.-E.; Davidsson, K. [Chalmers Univ. of Technology (Sweden); Salatino, P.; Chirone, R.; Scala, F.; Urciuolo, M. [Dipartimento di Ingegneria Chimica, Universita di Napoli Frederico II and Istituto di Ricerche sulla Combustione (Italy); Oliveira, J.F.; Lapa, N.

    2006-07-01

    A project on co-firing in large-scale power plants burning coal is currently funded by the European Commission. It is called COPOWER. The project involves 10 organisations from 6 countries. The project involves combustion studies over the full spectrum of equipment size, ranging from small laboratory-scale reactors and pilot plants, to investigate fundamentals and operating parameters, to proving trials on a commercial power plant in Duisburg. The power plant uses a circulating fluidized bed boiler. The results to be obtained are to be compared as function of scale-up. There are two different coals, 3 types of biomass and 2 kinds of waste materials are to be used for blending with coal for co-firing tests. The baseline values are obtained during a campaign of one month at the power station and the results are used for comparison with those to be obtained in other units of various sizes. Future tests will be implemented with the objective to achieve improvement on baseline values. The fuels to be used are already characterized. There are ongoing studies to determine reactivities of fuels and chars produced from the fuels. Reactivities are determined not only for individual fuels but also for blends to be used. Presently pilot-scale combustion tests are also undertaken to study the effect of blending coal with different types of biomass and waste materials. The potential for synergy to improve combustion is investigated. Simultaneously, studies to verify the availability of biomass and waste materials in Portugal, Turkey and Italy have been undertaken. Techno-economic barriers for the future use of biomass and other waste materials are identified. The potential of using these materials in coal fired power stations has been assessed. The conclusions will also be reported.

  20. Solid waste drum array fire performance

    International Nuclear Information System (INIS)

    Louie, R.L.; Haecker, C.F.; Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L.

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided

  1. Leachability of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  2. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    Science.gov (United States)

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  3. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  4. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  5. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  6. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  7. Cogeneration from poultry industry wastes: Indirectly fired gas turbine application

    International Nuclear Information System (INIS)

    Bianchi, M.; Cherubini, F.; De Pascale, A.; Peretto, A.; Elmegaard, B.

    2006-01-01

    The availability of wet biomass as waste from a lot of industrial processes, from agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on biomass characteristics, namely water content, density, organic content, heating value, etc. In particular, some of these wastes can be burnt in special plants, using them as energy supply for different processes. The study carried out with this paper is concerned with the promising utilization of the organic wastes from an existing poultry industry as fuel. Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant, which can consist of an indirectly fired gas turbine. Moreover, a steam turbine plant or a simplified system for the supply of the only technological steam are investigated and compared. Thermodynamic and economic analysis have been carried out for the examined configurations in order to outline the basic differences in terms of energy savings/production and of return of the investments

  8. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  9. Cogeneration from Poultry Industry Wastes -- Part I: Indirectly Fired Gas Turbine Application

    DEFF Research Database (Denmark)

    Peretto, A.; Bianchi, M.; Cherubini, F.

    2003-01-01

    The availability of wet biomass as waste from a agriculture and farms and the need to meet the environmental standards force to investigate all options in order to dispose this waste. The possible treatments usually strongly depend on the biomass characteristics, namely water content, density....... Different plant configurations have been considered in order to make use of the oil and of the meat and bone meal, which are the by-products of the chicken cooking process. In particular, the process plant can be integrated with an energy supply plant which can consist of a Indirectly Fired Gas Turbine....../production and of return of the investments (Part II). Keywords: biomass, cogeneration, Gas Turbine, IFGT...

  10. Pre-fire planning for nuclear power plants

    International Nuclear Information System (INIS)

    Talbert, J.H.

    1980-01-01

    Regardless of the fire prevention measures which are taken, plant experience indicates that fires will occur in a nuclear power plant. When a fire occurs, the plant staff must handle the fire emergency. Pre-fire planning is a method of developing detailed fire attack plans and salvage operations to protect equipment from damage due to fire and fire fighting operations. This paper describes the purpose and use of a pre-fire plan to achieve these goals in nuclear power plants

  11. Additive for reducing operational problems in waste fired grate boilers; Additiv foer att minska driftproblem vid rostfoerbraenning av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Davidsson, Kent; Hermansson, Sven; Liske, Jesper; Larsson, Erik; Jonsson, Torbjoern; Zhao, Dongmei

    2013-09-01

    The combustion of waste implies a risk for deposits and corrosion in different parts of the combustion facility. In recent years, research and tests have been performed in order to find ways to mitigate these problems in waste-fired plants. Most waste-fired plants in Sweden are grates whereas most of the research has been carried out in fluidized bed plants. The purpose of this project is to examine whether co-firing of sewage sludge and waste can reduce deposition and corrosion also in grate-fired boilers as has been shown in fludised beds. The objective is to determine the deposit growth and its composition as well as describing the initial corrosion attack. Representing sulphur-rich waste, elementary sulphur is also added to the waste and thereby compared with sludge as an additive. The target groups for this project are plant owners, researchers, consultants and authorities. Tests were performed in a 15 MWth waste-fired boiler with moving grate at Gaerstadverket, Tekniska Verken (Linkoeping). The boiler produces saturated steam of 17 bars and 207 deg C, and the normal fuel mixture contains of household and industry waste. The results show that co-firing with as heigh as 20 weight-% SLF (25 energy-%) was possible from an operational point of view, but the deposit rate increased especially at the two warmest positions. Generally the deposit rate was highest in the position closest to the boiler and decreased further downstream. During the tests a lot higher amount of SLF than normal was used (recommended mix is 5-10 % of SLF) this to be able to see effects of the different measures. Up to 23 weight-% of the rather moist sewage sludge was possible to fire when co-firing waste and SLF, without addition of oil. By adding sludge the deposit rate decreased but the increase upon adding SLF to ordinary waste was not totally eliminated. In the tests 'Avfall and SLF' the deposits were rich in chlorine. High concentrations of metal chlorides were found in the

  12. Properties of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  13. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  14. Fire safety in atomic power plants

    International Nuclear Information System (INIS)

    Kench, R.L.; British Insurance

    1988-01-01

    The main reactor types are described briefly - Magnox, advanced gas cooled, pressurized water and fast reactors. Fire risks exist at fuel stores and spent fuel storage facilities. Simple fire prevention measures are suggested. Solid radioactive wastes can also be combustible. Various fire prevention measures for the different storage methods, eg compaction, are given. Gaseous and liquid wastes are also considered. The main types of reactor accident are described and the causes of four incidents - at Chernobyl, Windscale, Brownsferry and Three Mile Island, are examined. (U.K.)

  15. Fire testing of 55 gallon metal waste drums for dry waste storage

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1993-07-01

    The primary goal of this test program was to conduct a series of fire test to provide information on the fire performance of 55 gallon metal waste drums used for solid waste disposal at Department Of Energy (DOE) facilities. This program was limited in focus to three different types of 55 gallon drums, one radiant heat source, and one specific fire size. The initial test was a single empty 55 gallon drum exposed to a standard ASTME-119 time temperature curve for over 10 minutes. The full scale tests involved metal drums exposed to a 6' diameter flammable liquid fire for a prescribed period of time. The drums contained simulated dry waste materials of primarily class A combustibles. The test results showed that a conventional 55 gallon drum with a 1in. bung would blow its lid consistently

  16. Fire scenarios in nuclear power plant

    International Nuclear Information System (INIS)

    Asp, I.B.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    This report defines a Design Base Fire and looks at 3 major areas of a hypothetical model for a Nuclear Power Plant. In each of these areas a Design Base Fire was developed and explained. In addition, guidance is given for comparing fire conditions of a given Nuclear Power Plant with the model plant described. Since there is such a wide variation in nuclear plant layouts, model areas were chosen for simplicity. The areas were not patterned after any existing plant area; rather several plant layouts were reviewed and a simplified model developed. The developed models considered several types of fires. The fire selected was considered to be the dominant one for the case in point. In general, the dominant fire selected is time dependent and starts at a specific location. After these models were developed, a comparison was drawn between the model and an operating plant for items such as area, cable numbers and weight, tray sizes and lengths. The heat loads of the model plant are summarized by area and compared with those of an actual operating plant. This document is intended to be used as a guide in the evaluation of fire hazards in nuclear power stations and a summarization of one acceptable analytical methodology to accomplish this

  17. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Directory of Open Access Journals (Sweden)

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  18. Potential fire or explosion risks in reprocessing plants

    International Nuclear Information System (INIS)

    Lefort, G.

    1983-05-01

    Installation for reprocessing are large chemical plants handling large quantities of inflammable solvents and products allowing large risk of fire. Further, the chemical process involves the use of oxidizer and reducer agents which can have a very strong chemical activity and by certain circumstances create overpressures or large explosions. This paper shows the principal radioactive consequences we can retain in safety analyses. As an example the combustion phenomenon involved in a solid waste storage silo with irradiated uranium traces is described [fr

  19. Wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill applications. Phase 2. Site-specific preliminary engineering and financial analysis

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    The use of conventional steam/electricity cogeneration systems is not generally economical at the sawmill scale of operation. This paper describes an evaluation of a wood-waste fueled and, indirectly, gas fired turbine cogeneration plant aimed at developing a cost-effective wood-waste fired power generation and dry kiln heating system for sawmill applications. A preliminary engineering design and financial analysis of the system was prepared for a demonstration site in British Columbia. A number of alternative system configurations were identified and preliminary engineering designs prepared for each. In the first option , wood wastes combusted in a wet cell hot gas generator powered a 600 kW turbine, and produced 7,000 kW for the drying kilns. The second option provided the same electrical and heat output but used a down-fired suspension burner unit fuelled by clean, dried sawdust, together with an integral air heater heat exchanger. The third option represented a commercial-scale configuration with an electrical output of 1,800 kW, and sufficient heat output for the dry kilns. A financial analyis based on a computerized feasibility model was carried out on the last two options. Low electricity rates in British Columbia combined with the small scale of a demonstration project provide an inadequate rate of return at the site without substantial outside support. At a commercial scale of operation and with the higher electricity prices that exist outside of British Columbia the financial analysis indicates that the incremental investment in the electric generation portion of the system provides very attractive rates of return for the 3 options. 11 figs., 10 tabs.

  20. Wildland fire in ecosystems: fire and nonnative invasive plants

    Science.gov (United States)

    Kristin Zouhar; Jane Kapler Smith; Steve Sutherland; Matthew L. Brooks

    2008-01-01

    This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradication or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between...

  1. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  2. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  3. SCR in biomass and waste fuelled plants. Benchmarking of Swedish and European plants; SCR i biobraensle- och avfallseldade anlaeggningar. Erfarenheter fraan svenska och europeiska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Olsson, Henrik; Lindstroem, Erica

    2010-11-15

    In this report the state-of-art of SCR technology in biomass and waste fired plants is investigated. The aim of the investigation is to answer the question why new Swedish biomass combustion and co-combustion plants often prefer SNCR technology, whilst European waste combustion plants often choose SCR technology. In the report positives and negatives of various types of SCR installations are discussed, high-dust versus tail-end, 'normal' SCR versus low-temperature SCR, etc. Experiences, e g catalyst lifetime, deactivation and maintenance requirement, are discussed. The investigation is based partly on literature, but mainly on interviews with plant owners and with suppliers of SCR installations. The interviewed suppliers are mentioned in the reference list and the interviewed plant owners are mentioned in appendix A and B. The experiences from the Swedish and European plants are quite similar. Tail-end SCR is often operated without serious problems in both biomass and waste fuelled plants. The catalyst lifetimes are as long or even longer than for coal fired plants with high-dust SCR. In waste incineration plants high-dust SCR causes big problems and these plants are almost always equipped with tail-end SCR. In co-combustion boilers, where coal and biomass is co-combusted, high-dust SCR is more common, especially if the boilers were originally coal fired. In plants with both SNCR and high-dust SCR, i.e. slip-SCR, the SCR installation is considered to be much less of a problem. Although the activity loss of the catalyst is as quick as in conventional high-dust SCR, the catalyst can be changed less often. This is due to the fact that installed slip-SCR catalysts often are as large as conventional SCR catalysts, although less NO{sub x} reduction is required after the initial SNCR step. Thus, the catalyst lifetime is prolonged.

  4. Fire prevention in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    The causes and frequency of fires at nuclear power plants in various countries are briefly given. Methods are described of fire hazard assessment at nuclear power plants, such as Gretener's method and the probabilistic methods. Approaches to the management of nuclear reactor fire protection in various countries as well as the provisions to secure such protection are dealt with. An overview and the basic characteristics of fire detection and extinguishing systems is presented. (Z.S.). 1 tab

  5. Low-level radioactive waste management in EDF nuclear power plants (FRANCE)

    International Nuclear Information System (INIS)

    Boussard, C.

    1991-01-01

    This paper shows some recent examples of Low-level radioactive waste management in EDF nuclear power plants: - Radioactive liquid wastes proceeding from steam generators leaching (NOGENT SUR SEINE-1 REACTOR) - Thermal insulation proceeding from heat exchanger and blower (CHINON-2 REACTOR) - Old iron from reactor dismantling (CHINON-3 REACTOR, MARCOULE G1 REACTOR, MARCOULE G2-G3 REACTORS) - fresh air filter and fire detector - CHINON-2 REACTOR breaker chambers

  6. Applicability of the 'constructional fire prevention for industrial plants' to power plants

    International Nuclear Information System (INIS)

    Hammacher, P.

    1978-01-01

    Power plants, especially nuclear power plants, are considered because of their high value and large construction volume to be among the most important industrial constructions of our time. They have a very exposed position from the point of view of fire prevention because of their constructional and operational concept. The efforts in the Federal Republic of Germany to standardize laws and regulations for fire prevention in industrial plants (industrial construction code, DIN 18230) must be supported if only because they would simplify the licensing procedure. However these regulations cannot be applied in many cases and especially in the main buildings of thermal power plants without restricting or even endangering the function or the safety of such plants. At the present state of the art many parts of the power plant can surely be defined as 'fire safe'. Fire endangered plant components and rooms are protected according to their importance by different measures (constructional measures, fire-fighting equipments, extractors for flue gases and for heat, fire-brigade of the plant). (orig.) [de

  7. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  8. Analysis of fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Schneider, U.

    1982-01-01

    Regulations and test specifications for fire prevention in nuclear power plants are presented as well as the fire protection measures in a newly constructed nuclear power plant. Although the emphasis is placed differently, all rules are based on the following single measures: Fire prevention, fire detection, fire fighting, fire checking, attack, flight, and rescue, organisational measures. (orig./GL) [de

  9. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  10. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  11. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  12. Fires: what plant locations should we really protect

    International Nuclear Information System (INIS)

    Berry, D.L.

    1980-01-01

    A fire protection analysis technique was developed from earlier work involving the protection of nuclear power plants against acts of sabotage. Characteristics unique to fire phenomena were used to modify the sabotage analysis methodology. These characteristics include the effects of fuel loads, ventilation rates, heat loss areas, barrier ratings, and plant locations. The new fire analysis technique was applied to an example nuclear power plant having 85 different plant areas. It was found that some safety and nonsafety areas were both highly vulnerable to fire spread and important to overall safety, while other areas were found to be of marginal importance to fire safety

  13. Hazard caused by radioactive wastes from nuclear power plants in comparison with both natural hazards and those caused by solid wastes from coal-fired plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1988-01-01

    The risks concerned with radioactive solid wastes deposited deeply underground as well as with low-, intermediate- and high-level radioactive wastes are compared with natural radioactivity and thermal plants solid wastes threats. 17 refs., 5 figs., 4 tabs. (A.S.)

  14. FIREDATA, Nuclear Power Plant Fire Event Data Base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    2001-01-01

    1 - Description of program or function: FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean 'and' or 'or' logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name of calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information. 2 - Method of solution: The six database files used to store nuclear power plant fire event information, FIRE, DESC, SUM, OPEXPER, OPEXBWR, and EXPERPWR, are accessed by software to display information meeting user-specified criteria or to perform numerical calculations (e.g., to determine the operating experience of a nuclear plant). FIRE contains specific searchable data relating to each of 354 fire events. A keyword concept is used to search each of the 31 separate entries or fields. DESC contains written descriptions of each of the fire events. SUM holds basic plant information for all plants proposed, under construction, in operation, or decommissioned. This includes the initial criticality and commercial operation dates, the physical location of the plant, and its operating capacity. OPEXPER contains date information and data on how various plant locations are

  15. Leaching and geochemical behavior of fired bricks containing coal wastes.

    Science.gov (United States)

    Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid

    2018-03-01

    High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fire protection at nuclear power plants

    International Nuclear Information System (INIS)

    1999-11-01

    The guide presents specific requirements for the design and implementation of fire protection arrangements at nuclear power plants and for the documents relating to the fire protection that are to be submitted to STUK (Finnish Radiation and Nuclear Safety Authority). Inspections of the fire protection arrangements to be conducted by STUK during the construction and operation of the power plants are also described in this guide. The guide can also be followed at other nuclear facilities

  17. Nuclear power plants: a unique challenge to fire safety

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1992-01-01

    The evaluation of fire safety in a nuclear power plant must include the consideration of the impact of a fire on the operability of plant safety equipment and systems. This issue is not typical of the life safety and property protection issues which dominate traditional fire safety concerns. This paper provides a general discussion of the issue of nuclear power plant fire safety as it currently exists in the USA. Included is a discussion of the past history of nuclear power plant fire events, the development of nuclear industry specific fire safety guidelines, the adverse experience associated with the inadvertent operation of fire suppression systems, and the anticipated direction of fire safety requirements for future reactor designs in the USA. (Author)

  18. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    Science.gov (United States)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  19. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0568] NUREG-1934, Nuclear Power Plant Fire Modeling... 1023259), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft Report for...), ``Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Second Draft for Comment,'' is...

  20. Co-firing of coal with biomass and waste in full-scale suspension-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, Kim; Frandsen, Flemming J.; Jensen, Peter A.; Jensen, Anker D. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of chemical and Biochemical Engineering

    2013-07-01

    The energy policy in Denmark has for many years focused on lowering the net CO{sub 2} emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam cycles with steam temperatures close to 600 C, providing power efficiencies close to 50% (Hein KRG, Sustainable energy supply and environment protection - strategies, resources and technologies. In: Gupta R, Wall T, Hupa M, Wigley F, Tillman D, Frandsen FJ (eds) Proceedings of international conference on impact of fuel quality on power production and the environment, Banff Conference Centre, Banff, Alberta, Canada, 29 Sept-4 Oct, 2008). For 25 years the CHEC (Combustion and Harmful Emission Control) Research Centre at DTU Chemical Engineering, has attained a leading role in research, supporting power producing industry, plant owners and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools. The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This chapter provides an overview of research activities, aiming at increasing biomass shares during co-firing in suspension, conducted in close collaboration with

  1. Fighting fires in nuclear plants

    International Nuclear Information System (INIS)

    Fantom, L.F.; Weldon, G.E.

    1978-01-01

    Since the Browns Ferry incident, the specter of fires at nuclear plants has been the focus of attention by NRC, the utilities, and the public. There are sophisticated hardware and software available - in the form of fire-protection systems and equipment and training and fire-protection programs. Potential fire losses at nuclear faclities can be staggering. Thus, it behooves all those involved to maximize fire-protection security while simultaneously minimizing the chance of human error, which cancels out the effectiveness of the most up-to-date protective systems and devices

  2. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  3. Fire protection at the Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Molnarova, Zuzana; Zeman, Peter

    2009-01-01

    A succinct account is given of current situation in fire prevention at the Mochovce NPP and of past fire events. The fact is stressed that no fire ever occurred at any technological facility of the plant since the startup of the reactor units. Steps required to improve fire safety at a nuclear power plant are highlighted. (orig.)

  4. Integrated approach to fire safety at the Krsko nuclear power plant - fire protection action plan

    International Nuclear Information System (INIS)

    Lambright, J.A.; Cerjak, J.; Spiler, J.; Ioannidi, J.

    1998-01-01

    Nuclear Power Plant Krsko (NPP Krsko) is a Westinghouse design, single-unit, 1882 Megawatt thermal (MWt), two-loop, pressurized water nuclear power plant. The fire protection program at NPP Krsko has been reviewed and reports issued recommending changes and modifications to the program, plant systems and structures. Three reports were issued, the NPP Krsko Fire Hazard Analysis (Safe Shout down Separation Analysis Report), the ICISA Analysis of Core Damage Frequency Due to Fire at the NPP Krsko and IPEEE (Individual Plant External Event Examination) related to fire risk. The Fire Hazard Analysis Report utilizes a compliance - based deterministic approach to identification of fire area hazards. This report focuses on strict compliance from the perspective of US Nuclear Regulatory Commission (USNRC), standards, guidelines and acceptance criteria and does not consider variations to comply with the intent of the regulations. The probabilistic analysis methide used in the ICISA and IPEEE report utilizes a risk based nad intent based approach in determining critical at-risk fire areas. NPP Krsko has already completed the following suggestions/recommendations from the above and OSART reports in order to comply with Appendix R: Installation of smoke detectors in the Control Room; Installation of Emergency Lighting in some plant areas and of Remote Shout down panels; Extension of Sound Power Communication System; Installation of Fire Annunciator Panel at the On-site Fire Brigade Station; Installation of Smoke Detection System in the (a) Main Control Room Panels, (b) Essential Service Water Building. (c) Component Cooling Building pump area, chiller area and HVAC area, (d) Auxiliary Building Safety pump rooms, (e) Fuel Handling room, (f) Intermediate Building AFFW area and compressor room, and (g) Tadwaste building; inclusion of Auxiliary operators in the Fire Brigade; training of Fire Brigade Members in Plant Operation (9 week course); Development of Fire Door Inspection and

  5. Fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The Safety Guide gives design and some operational guidance for protection from fire and fire-related explosions in nuclear power plants (NPP). It confines itself to fire protection of items important to safety, leaving the aspects of fire protection not related to safety in NPP to be decided upon the basis of the national practices and regulations

  6. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  7. Fires can benefit plants by disrupting antagonistic interactions.

    Science.gov (United States)

    García, Y; Castellanos, M C; Pausas, J G

    2016-12-01

    Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant-insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires. In A. ramosus we also studied the generalist herbivores. We sampled the interactions in burned and adjacent unburned areas during 2 years by estimating seed predation, number of herbivores and fruit set. To assess the effect of the distance to unburned vegetation we sampled plots at two distance classes from the fire perimeter. Even 3 years after the fires, Ulex plants experienced lower seed damage by specialists in burned sites. The presence of herbivores on Asphodelus decreased in burned locations, and the variability in their presence was significantly related to fruit set. Generalist herbivores were unaffected. We show that plants can benefit from fire through the disruption of their antagonistic interactions with specialist seed predators for at least a few years. In environments with a long fire history, this effect might be one additional mechanism underlying the success of fire-adapted plants.

  8. Improvement of fire protection measures for nuclear power plants

    International Nuclear Information System (INIS)

    2012-01-01

    Improvements of fire protection measures for nuclear power plants were performed as following items: Development of fire hazard analysis method. Application of developed Fire Dynamic tool to actual plants, With regard to fire tests for the fire data acquisition, cable fire test and oil fire test were performed. Implementation of fire hazard analysis code and simulation were performed as following items: Fire analysis codes FDS, SYLVIA, CFAST were implemented in order to analyze the fire progression phenomena, Trial simulation of fire hazard as Metal-Clad Switch Gear Fire of ONAGAWA NPP in Tohoku earthquake (HEAF accident). (author)

  9. The FIRAC code - its applicability and boundary conditions for fire accident analysis in a reprocessing plant

    International Nuclear Information System (INIS)

    Roewekamp, M.

    1991-01-01

    After a short description of the modelling capabilities and the implementation of the computer code the possible applications of FIRAC are demonstrated by means of two test-examples. The so gained experiences with respect to the variation of different parameters, convergency criteria, etc. can be used for the simulation of a fire accident in the storage area for unconditioned combustible low active waste (LAW) of the planned reprocessing plant at Wackersdorf. The code is prepared for calculating direct effects (of the fire) in the fire room as well as particularly effects on adjacent rooms and ventilation systems. Source terms for the release of radioactive particles outside a building can also be investigated. The temperature and pressure curves for the fire room as well as for other areas in the facility show that no damages caused by temperature effects are expected for the considered fire of low active waste. As a result of the calculated mass and volumetric flows radioactive aerosole particles could be transported into normally non-active areas. The FIRAC code renders the possibility of a more detailed analysis of those parameters relevant for fire accidents and by this means completes the so far phenomenological procedure of the fire hazard analysis in nuclear facilities. (orig.) [de

  10. Trend analysis of fire events at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2007-01-01

    We performed trend analyses to compare fire events occurring overseas (1995-2005) and in Japan (1966-2006). We decided to do this after extracting data on incidents (storms, heavy rain, tsunamis, fires, etc.) occurring at overseas nuclear power plants from the Events Occurred at Overseas Nuclear Power Plants recorded in the Nuclear Information Database at the Institute of Nuclear Safety System (INSS) and finding that fires were the most common of the incidents. Analyses compared the number of fires occurring domestically and overseas and analyzed their causes and the effect of the fires on the power plants. As a result, we found that electrical fires caused by such things as current overheating and electric arcing, account for over one half of the domestic and overseas incidents of fire, which indicates that maintenance management of electric facilities is the most important aspect of fire prevention. Also, roughly the same number of operational fires occurred at domestic and overseas plants, judging from the figures for annual occurrences per unit. However, the overall number of fires per unit at domestic facilities is one fourth that of overseas facilities. We surmise that, while management of operations that utilizes fire is comparable for overseas and domestic plants, this disparity results from differences in the way maintenance is carried out at facilities. (author)

  11. Improvement of fire protection measures for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvements of fire protection measures for nuclear power plants were performed as following items: Development of fire hazard analysis method. Application of developed Fire Dynamic Tool to actual plants (FDT{sup S}), With regard to fire tests for the fire data acquisition, cable fire test and High Energy Arcing Faults (HEAF) fire test were performed. Implementation of fire hazard analysis code and simulation were performed as following items: Fire analysis codes FDS, SYLVIA, and CFAST were implemented in order to analyze the fire progression phenomena. Trial simulation of HEAF accident of Onagawa NPP in Tohoku earthquake. (author)

  12. Fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    The Code on Design (Safety Series 50-C-D (Rev. 1)) within the NUSS (Nuclear Safety Standards) programme of the IAEA points out the necessity of measures for protecting plant items which are important to safety against fires of internal and external origin. Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice. Figs, 1 tab

  13. Fire fighting precautions at Bohunice Atomic Power Plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Some shortcomings are discussed of the project design of fire protection at the V-1 and V-2 nuclear power plants. The basic shortcoming of the system is insufficient division of the units for fire protection. Fire fighting measures are described for cable areas, switch houses and outside transformers, primary and secondary circuits and auxiliary units. Measures are presented for increasing fire safety in Jaslovske Bohunice proceedi.ng from experience gained with a fire which had occurred at a nuclear power plant in Armenia. (E.S.)

  14. Radionuclide emissions from a coal-fired power plant

    International Nuclear Information System (INIS)

    Amin, Y.M.; Uddin Khandaker, Mayeen; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A.

    2013-01-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of 226 Ra, 232 Th and 40 K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Ra eq ) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. - Highlights: • Detailed studies on naturally occuring radionuclide emissions due to a 2420 MW coal-fired power plant in Malaysia. • Assessment of radiation exposures to the public around the power plant due to an intake of the radionuclides. • The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. • The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste

  15. Experience gained from fires in nuclear power plants: Lessons learned

    International Nuclear Information System (INIS)

    2004-11-01

    In 1993, the IAEA launched a programme to assist Member States in improving fire safety in nuclear power plants (NPPs). The review of fire safety assessment in many plants has shown that fire is one of the most important risk contributors for NPPs. Moreover, operational experience has confirmed that many events have a similar root cause, initiation and development mechanism. Therefore, many States have improved the analysis of their operational experience and its feedback. States that operate NPPs play an important role in the effort to improve fire safety by circulating their experience internationally - this exchange of information can effectively prevent potential events. When operating experience is well organized and made accessible, it can feed an improved fire hazard assessment on a probabilistic basis. The practice of exchanging operational experience seems to be bearing fruit: serious events initiated by fire are on the decline at plants in operating States. However, to maximize this effort, means for communicating operational experience need to be continuously improved and the pool of recipients of operational experience data enlarged. The present publication is the third in a series started in 1998 on fire events, the first two were: Root Cause Analysis for Fire Events (IAEA-TECDOC-1112) and Use of Operational Experience in Fire Safety Assessment of Nuclear Power Plants (IAEA-TECDOC-1134). This TECDOC summarizes the experience gained and lessons learned from fire events at operating plants, supplemented by specific Member State experiences. In addition, it provides a possible structure of an international fire and explosion event database aimed at the analysis of experience from fire events and the evaluation of fire hazard. The intended readership of this is operators of plants and regulators. The present report includes a detailed analysis of the most recent events compiled with the IAEA databases and other bibliographic sources. It represents a

  16. Natural radioactivity around the coal-fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Bajlo, M.

    1996-01-01

    By far the greatest part of the radiation received by the worlds population comes from natural sources, in some situations the exposure to natural radiation sources is enhanced as a result of technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Extensive investigations have been performed in the coal-fired power plant (CFPP) Plomin in Croatia, using an anthracite coal with a higher than usual uranium content and normal thorium content. A network of TL dosimeters (TLD), working levels (WL) measurements, air pollution monitoring and monitoring of waste pile were organized. Some of the measurements have been repeated, and the results have shown decreased contamination. (author)

  17. Cable fire risk of a nuclear power plant

    International Nuclear Information System (INIS)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined

  18. Fire protection maintenance at Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Kern, J.R.

    1989-01-01

    This paper describes two approaches to staffing and organizing a fire protection maintenance group. Both have been used at Browns Ferry Nuclear Plant. One takes traditional craft functions and relocates them from the plant maintenance department to the fire protection section. The other expands the role to include response to fire, medical, and hazardous material emergencies. Both approaches remove the fire protection supervisor from a purely staff role, and involve him/her in direct-line management functions. This results in improved technical direction to the craftsmen, improved quality of the work performed, and improved craft morale. It also assures the fire protection supervisor of much more detailed knowledge of the overall status of the fire protection systems

  19. Fire protection in power plants

    International Nuclear Information System (INIS)

    Penot, J.

    1986-01-01

    Graphex-CK 23 is a unique sodium fire extinction product. Minimum amounts of powder are required for very fast action. The sodium can be put to use again, when the fire has been extinguished. It can be applied in other industrial branches and with other metals, e.g. sodium/potassium circuits or lithium coolant in power plants. [de

  20. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    International Nuclear Information System (INIS)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  1. Thermodynamic analysis and economic evaluation of a 1000 MW bituminous coal fired power plant incorporating low-temperature pre-drying (LTPD)

    International Nuclear Information System (INIS)

    Xu, Cheng; Xu, Gang; Zhu, Mingming; Dong, Wei; Zhang, Yang; Yang, Yongping; Zhang, Dongke

    2016-01-01

    Highlights: • An improved design of coal pre-drying using flue gas waste heat was proposed. • 0.4% energy efficiency increase was achieved with the proposed system. • The additional net economic benefit of the proposed system is $1.91 M per year. • Proposed concept can be widely applied to improve coal-fired power plant efficiency. - Abstract: Low-temperature pre-drying (LTPD) of lignite has been identified as an effective approach to improve the efficiency of lignite fired power plants. In this study, an improved concept for the pre-drying of medium moisture bituminous coals using flue gas waste heat was proposed and its feasibility was assessed. In the proposed configuration, the boiler exhaust flue gas is drawn to dryers to heat and pre-dry the raw coal, removing a large proportion of the coal moisture and leading to an improvement in the energy efficiency of the power plant. Thermodynamic analysis and economic evaluation were performed based on a typical 1000 MW bituminous coal fired power plant incorporating the proposed LTPD concept. The results showed that the net power plant efficiency gain is as much as 0.4 percentage point with additional net power output of 9.3 MW as compared to the reference plant without coal pre-drying. This was attributed to the reduction in the moisture content from 10.3 to 2.7 wt%. The additional net economic benefit attained due to the coal pre-drying was estimated to reach $1.91 M per year. This work provides a broadly applicable and economically feasible approach to further improve the energy efficiency of power plants firing coals with medium moisture contents.

  2. Nuclear power plant fire protection: philosophy and analysis

    International Nuclear Information System (INIS)

    Berry, D.L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method

  3. Nuclear power plant fire protection: fire detection (subsystems study Task 2)

    International Nuclear Information System (INIS)

    Berry, D.L.

    1977-12-01

    This report examines the adequacy of fire detection in the context of nuclear power plant safety. Topics considered are: (1) establishing area detection requirements, (2) selecting specific detector types, (3) locating and spacing detectors, and (4) performing installation tests and maintenance. Based on a thorough review of fire detection codes and standards and fire detection literature, the report concludes that current design and regulatory guidelines alone are insufficient to ensure satisfactory fire detection system performance. To assure adequate fire detection, this report recommends the use of in-place testing of detectors under conditions expected to occur normally in areas being protected

  4. Materials for higher steam temperatures (up to 600 deg C) in biomass and waste fired plant. A review of present knowledge; Material foer hoegre aangtemperaturer (upp till 600 grader C) i bio- och avfallseldade anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Staalenheim, Annika; Henderson, Pamela

    2011-02-15

    A goal for the Swedish power industry is to build a demonstration biomass-fired plant with 600 deg C steam data in 2015. Vaermeforsk also has a goal to identify materials that can be used in such a plant. This project involves a survey of present knowledge and published articles concerning materials that are suitable for use in biomass and wastefired plants with steam data up to 600 deg C. The information has been gathered from plants presently in operation, and from field tests previously performed with probes. Plants firing only household waste are excluded. The components considered are waterwalls/furnace walls (affected because of higher steam pressures) and superheaters. Fireside corrosion and steam-side oxidation are dealt with. Candidate materials (or coatings) are suggested and areas for further research have been identified. The purpose of this project is to give state-of-the-art information on what materials could be used in biomass and waste-fired plant to reach a maximum steam temperature of 600 deg C. This report is aimed at suppliers of boilers and materials, energy utility companies and others involved in building new plant with higher steam data. In accordance with the goals of this project: - Materials suitable for use at higher steam temperatures (up to 600 deg C steam) in wood-based biomass and waste-fired plant have been identified. Austenitic stainless steels HR3C, TP 347 HFG and AC66 all have adequate strength, steam-side oxidation and fireside corrosion resistance for use as superheaters. AC66 and HR3C have better steam-side oxidation resistance than TP 347 HFG , but TP 347 HFG has better fireside corrosion resistance. It is recommended that TP 347 HFG be shot-peened on the inside to improve the oxidation resistance if in service with steam temperatures above 580 deg C. - Furnace walls coated with Ni-based alloys or a mixture of Ni- alloy and ceramic show good corrosion resistance at lower temperatures and should be evaluated at higher

  5. Nuclear plant fire incident data file

    International Nuclear Information System (INIS)

    Sideris, A.G.; Hockenbury, R.W.; Yeater, M.L.; Vesely, W.E.

    1979-01-01

    A computerized nuclear plant fire incident data file was developed by American Nuclear Insurers and was further analyzed by Rensselaer Polytechnic Institute with technical and monetary support provided by the Nuclear Regulatory Commission. Data on 214 fires that occurred at nuclear facilities have been entered in the file. A computer program has been developed to sort the fire incidents according to various parameters. The parametric sorts that are presented in this article are significant since they are the most comprehensive statistics presently available on fires that have occurred at nuclear facilities

  6. The durability of fired brick incorporating textile factory waste ash and basaltic pumice

    Energy Technology Data Exchange (ETDEWEB)

    Binici, Hanifi [Kahramanmaras Sutcu Imam Univ., Kahramanmaras (Turkey). Dept. of Civil Engineering; Yardim, Yavuz [Epoka Univ., Tirana (Albania). Dept. of Civil Engineering

    2012-07-15

    This study investigates the durability of fired brick produced with additives of textile factories' waste ash and basaltic pumice. The effects of incorporating waste ash and basaltic pumice on durability and mechanical properties of the clay bricks were studied. Samples were produced with different ratios of the textile factories' waste ash and basaltic pumice added and at different fire temperatures of 700, 900, and 1 050 C for 8 h. The bricks with additives were produced by adding equal amounts of textile factories' waste ash and basaltic pumice, separately and together, with rates of 5, 10 and 20 wt.%. The produced samples were kept one year in sodium sulphate and sodium nitrate and tested under freezing - unfreezing and drying - wetting conditions. Then compression strength and mass loss of the samples with and without additives were investigated. The test results were compared with standards and results obtained from control specimens. The results showed that incorporations up to 10 wt.% of textile factories' waste ash and basaltic pumice is beneficial to the fired brick. Both textile factories' waste ash and basaltic pumice were suitable additives and could be used for more durable clay brick production at 900 C fire temperature. (orig.)

  7. Particular features of fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, W.

    1985-01-01

    The particular features of fire protection in nuclear power plants that are connected with the need to ensure nuclear and radiation safety even during an emergency are outlined followed by the recommendation to lay them down in special fire protection standards. These, in conjunction with comprehensive fire hazard analyses, could serve to work out complex concepts for the fire protection of individual nuclear power plants. Such concepts would be very useful for review and assessment of the fire protection design during the licensing process and for later inspections. (author)

  8. Feasibility study on utilization of palm fibre waste into fired clay brick

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.

  9. Fire risk analysis for nuclear power plants: Methodological developments and applications

    International Nuclear Information System (INIS)

    Kazarians, M.; Apostolakis, G.; Siv, N.O.

    1985-01-01

    A methodology to quantify the risk from fires in nuclear power plants is described. This methodology combines engineering judgment, statistical evidence, fire phenomenology, and plant system analysis. It can be divided into two major parts: (1) fire scenario identification and quantification, and (2) analysis of the impact on plant safety. This article primarily concentrates on the first part. Statistical analysis of fire occurrence data is used to establish the likelihood of ignition. The temporal behaviors of the two competing phenomena, fire propagation and fire detection and suppression, are studied and their characteristic times are compared. Severity measures are used to further specialize the frequency of the fire scenario. The methodology is applied to a switchgear room of a nuclear power plant

  10. Impact assessment of the forest fires on Oarai Research and Development Center Waste Treatment Facility

    International Nuclear Information System (INIS)

    Shimomura, Yusuke; Kitamura, Ryoichi; Hanari, Akira; Sato, Isamu

    2016-03-01

    In response to new standards for regulating waste treatment facility ('new regulatory standards'; December 18, 2013 enforcement), it was carried out impact assessment of forest fires on the Waste Treatment Facility existed in Oarai Research and Development Center of Japan Atomic Energy Agency. At first, a fire spread scenario of forest fires was assumed. The intensity of forest fires was evaluated from field surveys, forest fire evaluation models and so on. As models of forest fire intensity evaluation, Rothermel Model and Canadian Forest Fire Behavior Prediction (FBP) System were used. Impact assessment of radiant heat to the facility was carried out, and temperature change of outer walls for the assumed forest fires was estimated. The outer wall temperature of facility was estimated around 160degC at the maximum, it was revealed that it doesn't reach allowable temperature limit. Consequently, it doesn't influence the strength of concrete. In addition, a probability of fire breach was estimated to be about 20%. This report illustrates an example of evaluation of forest fires for the new regulatory standards through impact assessment of the forest fires on the Waste Treatment Facility. (author)

  11. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de; Aguiar, Laís Alencar de

    2017-01-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  12. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de, E-mail: erica.ndomingos@gmail.com, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, Laís Alencar de, E-mail: laguiars@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  13. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  14. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  15. Crisis management with applicability on fire fighting plants

    Science.gov (United States)

    Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.

    2017-08-01

    The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.

  16. Fighting and preventing post-earthquake fires in nuclear power plant

    International Nuclear Information System (INIS)

    Lu Xuefeng; Zhang Xin

    2011-01-01

    Nuclear power plant post-earthquake fires will cause not only personnel injury, severe economic loss, but also serious environmental pollution. For the moment, nuclear power is in a position of rapid development in China. Considering the earthquake-prone characteristics of our country, it is of great engineering importance to investigate the nuclear power plant post-earthquake fires. This article analyzes the cause, influential factors and development characteristics of nuclear power plant post-earthquake fires in details, and summarizes the three principles should be followed in fighting and preventing nuclear power plant post-earthquake fires, such as solving problems in order of importance and urgency, isolation prior to prevention, immediate repair and regular patrol. Three aspects were pointed out that should be paid attention in fighting and preventing post-earthquake fires. (authors)

  17. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  18. Recycled blocks with improved sound and fire insulation containing construction and demolition waste.

    Science.gov (United States)

    Leiva, Carlos; Solís-Guzmán, Jaime; Marrero, Madelyn; García Arenas, Celia

    2013-03-01

    The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fire hazard analysis of the radioactive mixed waste trenchs

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation's activity. Transient flammables and combustibles present that support the operation's activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0

  20. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  1. Waste incineration on its way to the power plants; Muellverbrennung auf dem Weg zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J. [STEAG encotec GmbH, Essen (Germany); Neukirchen, B. [STEAG AG, Essen (Germany)

    2004-07-01

    Looking at the year 2005 and the end of disposal of untreated domestic waste the politic hopes that the prognosticated lack of waste treatment capacity is remedied by coal-fired power plants. The classical municipal waste incinerators by contrast want to get recognition as energetic recycler in comparison with power stations. The decision of the European Court of Justice concerning recycling and disposal of domestic waste by incineration has started the discussion and competition on fuel-rich commercial waste. Are municipal waste incineration plants power stations or must power plants be regarded as incinerators? These questions are still open. (orig.) [German] Mit Blick auf das Jahr 2005 und das Ende der Ablagerung von unbehandeltem Siedlungsabfall hofft die Politik, dass der prognostizierte Mangel an Vorbehandlungskapazitaeten von den Kohlekraftwerken behoben wird. Die klassischen Muellverbrennungsanlagen wollen dagegen mit dem Kraftwerksvergleich die Anerkennung als energetische Verwerter erreichen. Das EuGH-Urteil zur Verwertung oder Beseitigung von Siedlungsabfall durch Verbrennen hat in diesem Jahr die Diskussion und den Kampf um den heizwertreichen Gewerbeabfall angeheizt. Die Frage, wie weit in Zukunft die Muellverbrennungsanlagen als Kraftwerke, aber auch die Kraftwerke als Muellverbrennungsanlagen angesehen werden muessen, ist noch offen. (orig.)

  2. Assessment of Fire Growth and Mitigation in Submarine Plastic Waste Stowage Compartments

    National Research Council Canada - National Science Library

    Ndubizu, Chuka

    2000-01-01

    This report presents the results of tests to assess the fire growth characteristics and the ease of fire control in the proposed Virginia-class and the Ohio-class submarine plastic waste stowage compartments...

  3. Nuclear Power Plant Fire Protection Research Program

    International Nuclear Information System (INIS)

    Datta, A.

    1985-07-01

    The goal is to develop test data and analytical capabilities to support the evaluation of: (1) the contribution of fires to the risk from nuclear power plants; (2) the effects of fires on control room equipment and operations; and (3) the effects of actuation of fire suppression systems on safety equipment. A range of fire sources will be characterized with respect to their energy and mass evolution, including smoke, corrosion products, and electrically conductive products of combustion. An analytical method for determining the environment resulting from fire will be developed. This method will account for the source characteristics, the suppression action following detection of the fire, and certain parameters specific to the plant enclosure in which the fire originates, such as the geometry of the enclosure and the ventilation rate. The developing local environment in the vicinity of safety-related equipment will be expressed in terms of temperatures, temperature rise rates, heat fluxes, and moisture and certain species content. The response of certain safe shutdown equipment and components to the environmental conditions will be studied. The objective will be to determine the limits of environmental conditions that a component may be exposed to without impairment of its ability to function

  4. Environment protection by coupling of a municipal waste incinerator to an existing coal fire steam boiler

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.; Stanescu, P.D.O.; Gruescu, C.; Savu, A.; Ungureanu, C. [University of Politehnic Timisoara, Timisoara (Romania)

    2006-12-15

    The paper offers an analysis of the potential coupling of a municipal waste incinerator in Romania, to an existing coal fired steam boiler. Considering the retention of heavy metals as well as HCl from the waste flue gases before entering the boiler, the simulation analysis of the boiler, under the situation that the gases from the scrubber are introduced, are presented As general conclusion one notes that it is possible to apply the concept even if the analysed case is of less importance, but more potential application are viewed for larger industrial application, for new concepts of modern power plants, to meet EU environmental regulations, especially for CO{sub 2} reduction.

  5. Protection against fire hazards in French nuclear power plants

    International Nuclear Information System (INIS)

    Chapus, J.

    2000-01-01

    The prevention of fire in French nuclear power plants has followed the evolution of safety regulations. Today fire hazards are no longer considered as classical industrial risks but as specific risks that deserve to be studied thoroughly and in a more formalized form. In the beginning of the eighties EDF was committed to the redaction of a technical referential against fire gathering all the directives applicable to the N4-type plant (1450 MW). In 1994 this technical referential was reconsidered and enlarged in order to involve 900 MW and 1300 MW units. In each nuclear power plant a PAI (plan against fire) has been elaborated so that the installation can be progressively upgraded according to the last standard defined by the technical referential. (A.C.)

  6. The economics of coal-fired power plants

    International Nuclear Information System (INIS)

    2008-10-01

    Coal-fired plants are the most polluting way to produce electricity due to their high CO2 emissions. But are they a good choice from an economic point of view? According to Greenpeace the answer is no: the price of coal is rising, construction costs are increasing and CO2 emissions will be priced. Nevertheless, E.On is developing plans for a new coal-fired plant at the Maasvlakte with the support of the Dutch government. [mk] [nl

  7. Environmental impacts of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Horyna, J.; Horynova, H.

    1984-01-01

    The current situation in the development of nuclear power in the world and in Czechoslovakia is briefly outlined and the possibilities are discussed of alternative energy resources. The environmental impact is described of conventional power plants firing coal; sulphur and nitrogen oxides are mentioned and their environmental impacts shown. Their quantities and the quantities of other gaseous, liquid and soid wastes produced by coal power plants are given. Annual estimates are presented of radioactive material emissions; trace amount emissions of toxic metals and their ecological risks are shown. Concern over the increasing concentration of CO 2 in the atmosphere is voiced. For nuclear power plants, the amount of radionuclides in stack emission and of those released into water flows is tabulated. Their effect on the aqueous ecosystem is characterized as is thermal pollution of water flows and the environmental impact of cooling towers. Other factors are also mentioned, such as the increased industrial land use, the effect of high voltage transmission lines and aesthetic effects. The conclusion is arrived at that the construction of nuclear power plants will eliminate the adverse environmental impact of emissions while the other impacts of the two types of power plants are comparable. (A.K.)

  8. Fire protection of nuclear power plant cable ducts

    International Nuclear Information System (INIS)

    Kandrac, J.; Lukac, L.

    1987-01-01

    Fire protection of cable ducts in the Bohunice and Dukovany V-2 nuclear power plants is of a fourtier type. The first level consists in preventive measures incorporated in the power plant design and layout. The second level consists in early detection and a quick repressive action provided by an electric fire alarm system and a stationary spray system, respectively. Fire partitions and glands represent the third level while special spray, paint and lining materials represent the fourth level of the protection. Briefly discussed are the results of an analysis of the stationary spray system and the effects reducing the efficiency of a fire-fighting action using this system. The analysis showed the need of putting off cable duct fires using mobile facilities in case the stationary spray system cannot cope any longer. (Z.M.). 3 figs., 2 refs

  9. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  10. What is more dangerous: Nuclear power plants or carbon fired power plants?

    Energy Technology Data Exchange (ETDEWEB)

    Kuruc, J [Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia)

    1999-12-31

    In this paper environmental impacts of radionuclides and other pollutants released into environment from nuclear power plants (NPP) and coal fired power plants (CFPP) are compared. Assuming coal contains uranium and thorium concentrations of 1.3 ppm and 3.2 ppm, respectively, each typical 1000 MW{sub e} CFPP released 5.2 tons of uranium (containing 36.92 kg of U-235) and 12.8 tons of thorium. Total releases in 1990 from worldwide combustion of {approx}3300 million tons of coal totaled {approx}4552 tons of uranium (contains {approx}32317 kg of uranium-235) and {approx}10860 tons of thorium are estimated. Based on the predicted combustion of 12,580 million tons worldly during the year 2040, cumulative releases for the 100 years of coal combustion following 1937 were predicted to be Planetary release (from combustion of 637,409 million tons): uranium: 828,632 tons (containing 5883 tons of uranium-235); thorium: 2,039,709 tons. According to the NCRP, the average radioactivity is 427 {mu}Ci/t of coal. This value was used to calculate the average expected radioactivity release from coal combustion. For 1990 the total release of radioactivity from worldwide 3300 million tons coal combustion was, therefore about 1,41 MCi. Another unrecognized problem is the gradual production of plutonium 239 through the exposure of uranium-238 in coal waste to neutrons from the cosmic rays. Other environmental impacts from NPP and CFPP are discussed. The fact that large quantities of uranium and thorium are released from CFPPs without restriction increases a paradoxical situation. Considering that the nuclear power industry has been compelled to invest in expensive measures to greatly reduce releases of radionuclides from nuclear fuel and fission products to the environment, should coal-fired power plants be allowed to do so without constraints. (J.K.) 1 tab., 15 refs.

  11. What is more dangerous: Nuclear power plants or carbon fired power plants?

    International Nuclear Information System (INIS)

    Kuruc, J.

    1998-01-01

    In this paper environmental impacts of radionuclides and other pollutants released into environment from nuclear power plants (NPP) and coal fired power plants (CFPP) are compared. Assuming coal contains uranium and thorium concentrations of 1.3 ppm and 3.2 ppm, respectively, each typical 1000 MW e CFPP released 5.2 tons of uranium (containing 36.92 kg of U-235) and 12.8 tons of thorium. Total releases in 1990 from worldwide combustion of ∼3300 million tons of coal totaled ∼4552 tons of uranium (contains ∼32317 kg of uranium-235) and ∼10860 tons of thorium are estimated. Based on the predicted combustion of 12,580 million tons worldly during the year 2040, cumulative releases for the 100 years of coal combustion following 1937 were predicted to be Planetary release (from combustion of 637,409 million tons): uranium: 828,632 tons (containing 5883 tons of uranium-235); thorium: 2,039,709 tons. According to the NCRP, the average radioactivity is 427 μCi/t of coal. This value was used to calculate the average expected radioactivity release from coal combustion. For 1990 the total release of radioactivity from worldwide 3300 million tons coal combustion was, therefore about 1,41 MCi. Another unrecognized problem is the gradual production of plutonium 239 through the exposure of uranium-238 in coal waste to neutrons from the cosmic rays. Other environmental impacts from NPP and CFPP are discussed. The fact that large quantities of uranium and thorium are released from CFPPs without restriction increases a paradoxical situation. Considering that the nuclear power industry has been compelled to invest in expensive measures to greatly reduce releases of radionuclides from nuclear fuel and fission products to the environment, should coal-fired power plants be allowed to do so without constraints. (J.K.)

  12. Study of waste-heat recovery and utilization at the Farmington Municipal Power Plant. Final report, December 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, G.G.; Edgel, W.R.; Feldman, K.T. Jr.; Moss, E.J.

    1982-03-01

    An examination was made of the technical and economc feasibility of utilizing waste heat from the Farmington Municipal Power Plant. First, the production cycles of the natural-gas-fired plant were assessed to determine the quantity and quality of recoverable waste heat created by the plant during its operation. Possibilities for utilizing waste heat from the exhaust gases and the cooling water were then reviewed. Hot water systems that can be used to retrieve heat from hot flue gases were investigated; the heated water can then be used for space heating of nearby buildings. The potential use of waste heat to operate a refrigeration plant was also analyzed. The use of discharged cooling water for hydroelectric generation was studied, as well as its application for commercial agricultural and aquaculture enterprises.

  13. Fire Risk Scoping Study: Investigation of nuclear power plant fire risk, including previously unaddressed issues

    International Nuclear Information System (INIS)

    Lambright, J.A.; Nowlen, S.P.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    An investigation of nuclear power plant fire risk issues raised as a result of the USNRC sponsored Fire Protection Research Program at Sandia National Laboratories has been performed. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments (PRAs) in light of updated data bases made available as a result of USNRC sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. In performance of the fire risk scenario requantifications several important insights were gained. It was found that utilization of a more extensive operational experience base resulted in both fire occurrence frequencies and fire duration times (i.e., time required for fire suppression) increasing significantly over those assumed in the original works. Additionally, some thermal damage threshold limits assumed in the original works were identified as being nonconservative based on more recent experimental data. Finally, application of the COMPBRN III fire growth model resulted in calculation of considerably longer fire damage times than those calculated in the original works using COMPBRN I. 14 refs., 2 figs., 16 tabs

  14. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  15. Training of fire protection personnel in nuclear power plants

    International Nuclear Information System (INIS)

    Blaser, W.

    1980-01-01

    Training of fire protection personnel in nuclear power plants is divided up in three categories: training of fire protection commissioners which is mostly carried out externally; training of fire fighting personnel in the form of basic and repeated training usually by the fire protection commissioner; training of other employers with regard to behaviour in case of fire and during work involving a fire hazard. (orig.) [de

  16. Plant functional traits in relation to fire in crown-fire ecosystems

    Science.gov (United States)

    Pausas, Juli G.; Bradstock, Ross A.; Keith, David A.; Keeley, Jon E.

    2004-01-01

    Disturbance is a dominant factor in many ecosystems, and the disturbance regime is likely to change over the next decades in response to land-use changes and global warming. We assume that predictions of vegetation dynamics can be made on the basis of a set of life-history traits that characterize the response of a species to disturbance. For crown-fire ecosystems, the main plant traits related to postfire persistence are the ability to resprout (persistence of individuals) and the ability to retain a persistent seed bank (persistence of populations). In this context, we asked (1) to what extent do different life-history traits co-occur with the ability to resprout and/or the ability to retain a persistent seed bank among differing ecosystems and (2) to what extent do combinations of fire-related traits (fire syndromes) change in a fire regime gradient? We explored these questions by reviewing the literature and analyzing databases compiled from different crown-fire ecosystems (mainly eastern Australia, California, and the Mediterranean basin). The review suggests that the pattern of correlation between the two basic postfire persistent traits and other plant traits varies between continents and ecosystems. From these results we predict, for instance, that not all resprouters respond in a similar way everywhere because the associated plant traits of resprouter species vary in different places. Thus, attempts to generalize predictions on the basis of the resprouting capacity may have limited power at a global scale. An example is presented for Australian heathlands. Considering the combination of persistence at individual (resprouting) and at population (seed bank) level, the predictive power at local scale was significantly increased.

  17. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  18. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2000-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period

  19. A probabilistic method for optimization of fire safety in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Sprey, W.

    1986-01-01

    As part of a comprehensive fire safety study for German Nuclear Power Plants a probabilistic method for the analysis and optimization of fire safety has been developed. It follows the general line of the American fire hazard analysis, with more or less important modifications in detail. At first, fire event trees in selected critical plant areas are established taking into account active and passive fire protection measures and safety systems endangered by the fire. Failure models for fire protection measures and safety systems are formulated depending on common parameters like time after ignition and fire effects. These dependences are properly taken into account in the analysis of the fire event trees with the help of first-order system reliability theory. In addition to frequencies of fire-induced safety system failures relative weights of event paths, fire protection measures within these paths and parameters of the failure models are calculated as functions of time. Based on these information optimization of fire safety is achieved by modifying primarily event paths, fire protection measures and parameters with the greatest relative weights. This procedure is illustrated using as an example a German 1300 MW PWR reference plant. It is shown that the recommended modifications also reduce the risk to plant personnel and fire damage

  20. Input of biomass in power plants or the power generation. Calculation of the financial gap

    International Nuclear Information System (INIS)

    De Vries, H.J.; Van Tilburg, X.; Pfeiffer, A.E.; Cleijne, H.

    2005-09-01

    The project on the title subject concerns two questions: (1) Are projects in which wood-pellets are co-fired in a coalfired power plant representative for bio-oil fueled co-firing projects in a gas-fired plant?; and (2) are new projects representative for existing projects? To answer those questions the financial gaps have been calculated for five different situations: Co-firing bio-oil in a gas-fired power plant; Co-firing bio-oil in a coal-fired power plant; Co-firing wood pellets in a coal-fired power plant; Co-firing agro-residues in a coal-fired power plant; and Co-firing waste-wood (A- and B-grade) in a coal-fired power plant. The ranges and reference cases in this report show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that by using waste wood or agro-residues, the financial gaps can decrease [nl

  1. Case study of the effects of public safety regulation on the construction costs of coal-fired and nuclear power plants

    International Nuclear Information System (INIS)

    Morris, C.D.

    1987-01-01

    Regulations intended to reduce the number of accidents at nuclear plants and the discharge of sulfur and particulate wastes at coal-fired power plants have become an important cause of construction cost escalation. Measuring the costs of these regulatory interventions is a difficult research task. The three-unit Bruce Mansfield coal-fired plant and the two-unit Beaver Valley nuclear power station located in Shippingport, Pennsylvania, provide a unique opportunity for a case study of the costs of regulation in the construction of both kinds of plants. The units of each plant were built sequentially over a period of intensifying regulation. The method used to measure the costs of public safety regulation in the construction of each kind of plant is to determine the connections between the issuances of the regulatory agencies (EPA and NRC) and cost escalations of succeeding units. The small cost escalations of the Mansfield 3 unit, in comparison to the massive costs of the Beaver Valley 2 unit, suggest that the design and construction of new coal-fired plants are not disrupted by regulatory interventions nearly as extensively as are nuclear units. Certain technical features of Beaver Valley 2, especially its small size and a design that is identical to the first unit's, further contribute to its cost escalations

  2. Fire creates host plant patches for monarch butterflies

    Science.gov (United States)

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  3. Waste treatment plant

    International Nuclear Information System (INIS)

    Adesanmi, C.A

    2009-01-01

    Waste Treatment Plant (WTP) is designed to provide appropriate systems for processing, immobilization and storage of low and medium radioactive waste arising from the operation of the research facilities of the Nuclear Technology Centre (NTC). It will serve as central collection station processing active waste generated through application of radionuclide in science, medicine and industry in the country. WTP building and structures will house the main waste processing systems and supporting facilities. All facilities will be interconnected. The interim storage building for processed waste drums will be located separately nearby. The separate interim storage building is located near the waste treatment building. Considering the low radiation level of the waste, storage building is large with no solid partitioning walls and with no services or extra facilities other than lighting and smoke alarm sensors. The building will be designed such that drums(200-1)are stacked 3 units high using handling by fork lift truck. To prevent radiation exposure to on-site personnel, the interim storage building will be erected apart from waste treatment plant or other buildings. The interim storage building will also be ready for buffer storage of unconditioned waste waiting for processing or decay and for storage material from the WTP

  4. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  5. Combining mechanical-biological residual waste treatment plants with grate firing; Kombination MBA mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, E. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1998-09-01

    The promulgation of the Technical Code on Household Waste obliges the local authorities responsible for waste disposal to review existing and prepare new waste management plans. Given the present state of the art the Code`s limit value for loss due to burning of 5% makes thermal treatment of the residual waste practically compulsory. In preparation of these developments and in order to lower costs in general and be able respond flexibly to customer demands ABB is currently undertaking great efforts to provide thermal residual waste treatment plants with a modular design. [Deutsch] Mit Veroeffentlichung der TASi wurden die entsorgungspflichtigen Gebietskoerperschaften gezwungen, bereits vorhandene Abfall-Wirtschaftsplaene zu ueberarbeiten bzw. neue zu erstellen. Technisch laeuft nach derzeitigem Wissensstand der in der TASi vorgegebene maximale Gluehverlust von 5% darauf hinaus, dass eine thermische Behandlung des Restabfalls zwingend vorgegeben ist. Um hierfuer geruestet zu sein, aber auch um generell Kosten zu senken unf flexibel auf Kundenwuensche eingehen zu koennen, unternimmt ABB grosse Abstrengungen, den Aufbau von Anlagen zur thermischen Restabfallbehandlung modular zu gestalten. (orig./SR)

  6. Fire protection programme during construction of the Chashma nuclear power plant

    International Nuclear Information System (INIS)

    Mian Umer, M.

    1998-01-01

    A clear view is given of several measures that have been taken with regard to fire prevention, protection and fire fighting during all phases of the construction, installation and commissioning of the Chasma nuclear power plant to protect personnel and equipment so that any delays in plant operation as a result of fire incident can be avoided. These measures include the precautions taken, the provisions made for fire extinguishers and hydrants, and the setting up of a fire brigade. An overview is also given of the fire incidents that have occurred. (author)

  7. Inspection of fire protection measures and fire fighting capability at nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1994-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire protection of nuclear power plants. The publication outlines practices for inspecting the fire protection measures at nuclear power plants in accordance with Safety Series No.50-SG-D2(Rev.1), Fire Protection in Nuclear Power Plants, and includes a comprehensive fire safety inspection checklist of the specific elements to be addressed when evaluating the adequacy and effectiveness of the fire protection measures and manual fire fighting capability available at operating nuclear power plants. The publication will be useful not only to regulators and safety assessors but also to operators and designers. The book addresses a specialized topic and it is recommended that it be used in conjunction with Safety Guide No.50-SG-D2(Rev.1)

  8. Evaluation of fire probabilistic safety assessment for a PWR plant

    International Nuclear Information System (INIS)

    Wu, C.H.; Lin, T.J.; Kao, T.M.

    2001-01-01

    The internal fire analysis of the level 1 power operation probability safety assessment (PSA) for Maanshan (PWR) Nuclear Power Plant (MNPP) was updated. The fire analysis adopted a scenario-based PSA approach to systematically evaluate fire and smoke hazards and their associated risk impact to MNPP. The result shows that the core damage frequency (CDF) due to fire is about six times lower than the previous one analyzed by the Atomic Energy Council (AEC), Republic of China in 1987. The plant model was modified to reflect the impact of human events and recovery actions during fire. Many tabulated EXCEL spread-sheets were used for evaluation of the fire risk. The fire-induced CDF for MNPP is found to be 2.1 E-6 per year in this study. The relative results of the fire analysis will provide the bases for further risk-informed fire protection evaluation in the near future. (author)

  9. FDS3 simulations of indoor hydrocarbon fires engulfing radioactive waste packages

    International Nuclear Information System (INIS)

    Bruecher, W.; Roewekamp, M.; Kunze, V.

    2004-01-01

    The thermal environment of a hypothetical large indoor hydrocarbon pool fire is more complex compared to outdoor fires and can be more severe for engulfed objects. In order to analyze potential thermal environments for interim storage of spent fuel casks or low-level radioactive waste packages engulfed in pool fires numerical simulations with the CFD fire code FDS3 were carried out for different storage configurations. In addition, data of indoor pool fire experiments were used to validate the model for this type of application. A series of pool fire experiments under different ventilation conditions and varied pool surface (1 m 2 - 4 m 2 ) inside a compartment of 3.6 m x 3.6 m x 5.7 m was conducted at iBMB (Institut fuer Baustoffe, Massivbau und Brandschutz) of Braunschweig University of Technology, Germany. The instrumentation included thermocouples, heatflux and pressure gauges, bi-directional flow probes and gas concentration measurements. A mock low-level waste drum equipped with outside and inside thermocouples was positioned as an additional heat sink near the fire source. Two of these experiments have recently been used for benchmarking a number of fire simulation codes within the International Collaborative Fire Model Project (ICFMP). FDS3 simulations by GRS of some of the above mentioned experiments will be presented showing the ability of the model to sufficiently well represent the fire environment in most cases. Further simulations were performed for hypothetical pool fire environments in interim storage facilities for German spent fuel transport and storage casks. The resulting temperature curves were then used for the thermomechanical analysis of the cask reaction performed by BAM (Bundesanstalt fuer Materialforschung und -pruefung, see corresponding conference paper by Wieser et al.). The FDS3 pool fire simulations show that the fire environment is strongly influenced by the ventilation conditions and cooling effects depending on the number and

  10. Fire protection guidelines for nuclear power plants

    International Nuclear Information System (INIS)

    1976-06-01

    Guidelines acceptable to the NRC staff for implementing in the development of a fire protection program for nuclear power plants. The purpose of the fire protection program is to ensure the capability to shut down the reactor and maintain it in a safe shutdown condition and to minimize radioactive releases to the environment in the event of a fire. If designs or methods different from the guidelines presented herein are used, they must provide fire protection comparable to that recommended in the guidelines. Suitable bases and justification should be provided for alternative approaches to establish acceptable implementaion of General Design Criterion 3

  11. Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70

  12. Cable fire risk of a nuclear power plant; Ydinvoimalaitoksen kaapelipaloriski

    Energy Technology Data Exchange (ETDEWEB)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined. 62 refs.

  13. Upgrading of fire safety in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1998-01-01

    Indian nuclear power programme started with the installation of 2 nos. of Boiling Water Reactor (BWR) at Tarapur (TAPS I and II) of 210 MWe each commissioned in the year 1996. The Pressurized Heavy Water Reactor (PHWR) programme in the country started with the installation of 2x220 MWe stations at Rawatbhatta near Kota (RAPS I and II) in the State of Rajasthan in the sixties. At the present moment, the country has 10 stations in operation. Construction is going on for 4 more units of 220 MWe where as work on two more 500 MWe units is going to start soon. Fire safety systems for the earlier units were engineered as per the state-of-art knowledge available then. The need for review of fire protection systems in the Indian nuclear power plants has also been felt since long almost after Brown's Ferry fire in 1975 itself. Task forces consisting of fire experts, systems design engineers, O and M personnel as well as the Fire Protection engineers at the plant were constituted for each plant to review the existing fire safety provisions in details and highlight the upgradation needed for meeting the latest requirements as per the national as well as international practices. The recommendations made by three such task forces for the three plants are proposed to be reviewed in this paper. The paper also highlights the recommendations to be implemented immediately as well as on long-term basis over a period of time

  14. Interactive firing and control station simulation of a waste incineration plant with grate firing; Interaktive Feuerungsbetriebs- und Leitstandssimulation einer Abfallverbrennungsanlage mit Rostfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Boller, M.; Urban, A.I. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In the course of several years` work in the area of waste engineering a model was developed which maps the dynamic behaviour of the plant from waste delivery to deslagging, crude gas output, and steam generation, thus providing a unique solution in terms of function and scope. This was made possible by the use of the semi-empirical approach of ``System Dynamics``. The approach presupposes that the model has already been adapted to reality by means of comparative studies. Expensive as it is, this procedure is necessary for waste incineration plants because theoretical analyses can never model the behaviour of the plant as a whole but only individual stages. [Deutsch] Durch mehrjaehrige Arbeiten ist im Fachgebiet Abfalltechnik ein Modell einer Abfallverbrennungsanlage enstanden, welches das dynamische Verhalten der Anlage von der Abfallaufgabe bis zur Entschlackung, dem Rohgasausgang und der Dampfproduktion abbildet und damit vom Umfang und der Funktion einmalig ist. Dies war moeglich, da der halbempirische Ansatz `System Dynamics` gewaehlt wurde, der das Anpassen des Modells an die Realitaet durch vergleichende Untersuchungen voraussetzt. Eine solche Vorgehensweise ist zwar aufwendig, im Bereich der MVA aber notwendig, da sich mit theoretischen Analysen nie das gesamte Anlagenverhalten erfassen laesst, sondern immer nur einzelne Ausschnitte. (orig.)

  15. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants......Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly...

  16. Course in fire protection training for nuclear power plant personnel

    International Nuclear Information System (INIS)

    Walker, K.L.; Bates, E.F.; Randall, J.D.

    1979-01-01

    Proposed Regulatory Guide 1.120, entitled ''Fire Protection Guidelines for Nuclear Power Plants,'' provides detailed requirements for the overall fire protection programs at nuclear power plant sites in the United States. An essential element in such a program in the training of plant fire brigade personnel is the use of proper firefighting techniques and equipment. The Texas A and M University Nuclear Science Center (NSC) in conjunction with the Fire Protection Training Division of the Texas Engineering Extension Service has developed a one-week course to meet this training need. The program emphasizes hands-on exercises. The course is designed for up to 18 students with all protective clothing provided. Fire instructors are certified by the State of Texas, and registered nuclear engineers and certified health physicists supervise the radiological safety exercises. The first course was conducted during the week of January 8--12, 1979

  17. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  18. Plutonium Finishing Plant Treatment and Storage Unit Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    2000-01-01

    The training program for personnel performing waste management duties pertaining to the Plutonium Finishing Plant (PFP) Treatment and Storage Unit is governed by the general requirements established in the Plutonium Finishing Plant Dangerous Waste Training Plan (PFP DWTP). The PFP Treatment and Storage Unit DWTP presented below incorporates all of the components of the PFP DWTP by reference. The discussion presented in this document identifies aspects of the training program specific to the PFP Treatment and Storage Unit. The training program includes specifications for personnel instruction through both classroom and on-the-job training. Training is developed specific to waste management duties. Hanford Facility personnel directly involved with the PFP Treatment and Storage Unit will receive training to container management practices, spill response, and emergency response. These will include, for example, training in the cementation process and training pertaining to applicable elements of WAC 173-303-330(1)(d). Applicable elements from WAC 173-303-330(1)(d) for the PFP Treatment and Storage Unit include: procedures for inspecting, repairing, and replacing facility emergency and monitoring equipment; communications and alarm systems; response to fires or explosions; and shutdown of operations

  19. Model of fire spread around Krsko Power Plant

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2001-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. The study is based on thermodynamics, heat transfer and the study of hydrodynamics and combustion, which represent the bases of fire dynamics. The article shows a practical example of a leak of hazardous chemicals from a tank. Because of the inflammability of the fluid, fire may start. We have tried to model fire propagation around the Krsko power plant, and show what extended surrounding area could be affected. The model also considers weather conditions, in particular wind speed and direction. For this purpose we have used the computer code Safer Trace, which is based on zone models. That means that phenomena are described by physical and empirical equations. An imperfection in this computer code is the inability to consider ground topology. However in the case of the Krsko power plant, topology is not so important, as the plan is located in a relatively flat region. Mathematical models are presented. They show the propagation of hazardous fluid in the environment considering meteorological data. The work also shows which data are essential to define fire spread and shows the main considerations of Probabilistic Safety Assessment for external fire event.(author)

  20. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    Science.gov (United States)

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full

  1. Fire safety study of Dodewaard and Borssele nuclear power plants

    International Nuclear Information System (INIS)

    1988-03-01

    From the nuclear and conventional fire safety audits of both Dutch nuclear power plants performed under supervision of the Nuclear Safety Inspectorate and the Inspectorate for the Fire Services it turns out that the fire safety is sufficient however amenable for improvement. Besides a detailed description of the method of examination, the study 'Fire Safety' contains the results of the audit and 14 respectively 15 recommendations for improvement of the fire safety in Dodewaard and Borssele. The suggested recommendations which are applicable to both power plants are the following: fire fighting training for operators and guards, a complete emergency ventilation system of the control room, increase in the number of detectors and alarms, an increase in the quantity of water available for high-pressure fire fighting, improvement of fire barriers between several redundancies of nuclear safety systems, an investigation and possible improvement of the heat and radiation protection offered by presently used fire fighting suits. For Dodewaard a closed emergency staircase in the reactor building (secondary containment) is deemed necessary for personnel emergency escape routes and continued fire fighting if required

  2. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  3. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-09-11

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  4. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    Fire hazard has been identified as a major contributor to a plant's operational risk and the international nuclear power industry has been studying and developing tools for defending against this hazard. Considerable progress in design and regulatory requirements for fire safety, in fire protection technology and in related analytical techniques has been made in the past two decades. Substantial efforts have been undertaken worldwide to implement these advances in the interest of improving fire safety both at new and existing nuclear power plants. To assist in these efforts, the IAEA initiated a programme on fire safety that was intended to provide assistance to Member States in improving fire safety in nuclear power plants. In order to achieve this general objective, the IAEA programme aimed at the development of guidelines and good practices, the promotion of advanced fire safety assessment techniques, the exchange of state of the art information between practitioners and the provision of engineering safety advisory services and training in the implementation of internationally accepted practices. During the period 1993-1994, the IAEA activities related to fire safety concentrated on the development of guidelines and good practice documents related to fire safety and fire protection of operating plants. One of the first tasks was the development of a Safety Guide that formulates specific requirements with regard to the fire safety of operating nuclear power plants. Several documents, which provide advice on fire safety inspection, were developed to assist in its implementation. In the period 1995-1996, the programme focused on the preparation of guidelines for the systematic analysis of fire safety at nuclear power plants (NPPs). The IAEA programme on fire safety for 1997-1998 includes tasks aimed at promoting systematic assessment of fire safety related occurrences and dissemination of essential insights from this assessment. One of the topics addressed is the

  5. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Science.gov (United States)

    2013-07-29

    ... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... caused by impaired fire protection features at nuclear power plants. The report documents the history of...

  6. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  7. Numerical simulation methods of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Heikkilae, L.

    1992-01-01

    Fire is a significant hazard to the safety of nuclear power plants (NPP). Fire may be serious accident as such, but even small fire at a critical point in a NPP may cause an accident much more serious than fire itself. According to risk assessments a fire may be an initial cause or a contributing factor in a large part of reactor accidents. At the Fire Technology and the the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) fire safety research for NPPs has been carried out in a large extent since 1985. During years 1988-92 a project Advanced Numerical Modelling in Nuclear Power Plants (PALOME) was carried out. In the project the level of numerical modelling for fire research in Finland was improved by acquiring, preparing for use and developing numerical fire simulation programs. Large scale test data of the German experimental program (PHDR Sicherheitsprogramm in Kernforschungscentral Karlsruhe) has been as reference. The large scale tests were simulated by numerical codes and results were compared to calculations carried out by others. Scientific interaction with outstanding foreign laboratories and scientists has been an important part of the project. This report describes the work of PALOME-project carried out at the Fire Technology Laboratory only. A report on the work at the Nuclear Engineering Laboratory will be published separatively. (au)

  8. Health and environmental effects of coal-fired electric power plants

    International Nuclear Information System (INIS)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables

  9. Safety guide on fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the Safety Guide is to give specific design and operational guidance for protection from fire and explosion in nuclear power plants, based on the general guidance given in the relevant sections of the 'Safety Code of Practice - Design' and the 'Safety Code of Practice - Operation' of the International Atomic Energy Agency. The guide will confine itself to fire protection of safety systems and items important to safety, leaving the non-safety matters of fire protection in nuclear power plants to be decided upon the basis of the various available national and international practices and regulations. (HP) [de

  10. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    Science.gov (United States)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  11. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  12. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  13. Improvement of environmentally relevant qualities of slags from waste-to-energy plants; Verbesserung der umweltrelevanten Qualitaeten von Schlacken aus Abfallverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Alwast, Holger [Prognos AG, Berlin (Germany); Riemann, Axel [RSP GmbH, Herne (Germany)

    2010-10-15

    This expert opinion describes options for improving slag quality (further measures for processing slag, as well as improvements of grate firing in terms of firing-technology), to ensure a slag recovery that is as sustainable as possible. In the context of this project, the term ''slag'' serves as a synonym for solid incineration residues that are generated during the incineration of wastes or of refuse derived fuels and that are separated there (e.g. from the deslagger). The term ''slags'' is also used as a synonym for grate ashes. The main focus of this expertise is on resource and climate protection issues with respect to slag processing. Resource protection refers to the saving of resources and natural raw materials, such as, for example, water and metal ores. Climate protection in this context means CO{sub 2} mitigation through a high specific net energy generation in waste incineration plants, as well as a reduced energy use due to avoided new production of metals, which can be recycled from slag processing. The main measure for improving climate and resource protection in slag processing consists therefore of separating as much metal as possible from slags. By recycling those separated slags, the energy that is needed for the extraction from ores and the raw material ore itself can be saved. This advantage in terms of energy, however, can be partially compensated by the energy use potentially needed for the improvement of slag processing. Further important aspects include the protection of water and soils, as well as the suitability of processed slag for an adequate recovery. These last criteria, however, are not central for this expertise. Currently, 69 municipal solid waste incinerators, hereinafter referred to as Waste-to-Energy (WTE) plants, and 23 refuse derived fuel (RDF) power plants with grate firing are in operation in Germany. Their total capacity amounts to more than 21 million Mg per year. Another 13 RDF

  14. Alien plant dynamics following fire in mediterranean-climate California shrublands

    Science.gov (United States)

    Keeley, J.E.; Baer-Keeley, M.; Fotheringham, C.J.

    2005-01-01

    Over 75 species of alien plants were recorded during the first five years after fire in southern California shrublands, most of which were European annuals. Both cover and richness of aliens varied between years and plant association. Alien cover was lowest in the first postfire year in all plant associations and remained low during succession in chaparral but increased in sage scrub. Alien cover and richness were significantly correlated with year (time since disturbance) and with precipitation in both coastal and interior sage scrub associations. Hypothesized factors determining alien dominance were tested with structural equation modeling. Models that included nitrogen deposition and distance from the coast were not significant, but with those variables removed we obtained a significant model that gave an R2 = 0.60 for the response variable of fifth year alien dominance. Factors directly affecting alien dominance were (1) woody canopy closure and (2) alien seed banks. Significant indirect effects were (3) fire intensity, (4) fire history, (5) prefire stand structure, (6) aridity, and (7) community type. According to this model the most critical factor influencing aliens is the rapid return of the shrub and subshrub canopy. Thus, in these communities a single functional type (woody plants) appears to the most critical element controlling alien invasion and persistence. Fire history is an important indirect factor because it affects both prefire stand structure and postfire alien seed banks. Despite being fire-prone ecosystems, these shrublands are not adapted to fire per se, but rather to a particular fire regime. Alterations in the fire regime produce a very different selective environment, and high fire frequency changes the selective regime to favor aliens. This study does not support the widely held belief that prescription burning is a viable management practice for controlling alien species on semiarid landscapes. ?? 2005 by the Ecological Society of

  15. Probabilistic analysis of fires in nuclear plants

    International Nuclear Information System (INIS)

    Unione, A.; Teichmann, T.

    1985-01-01

    The aim of this paper is to describe a multilevel (i.e., staged) probabilistic analysis of fire risks in nuclear plants (as part of a general PRA) which maximizes the benefits of the FRA (fire risk assessment) in a cost effective way. The approach uses several stages of screening, physical modeling of clearly dominant risk contributors, searches for direct (e.g., equipment dependences) and secondary (e.g., fire induced internal flooding) interactions, and relies on lessons learned and available data from and surrogate FRAs. The general methodology is outlined. 6 figs., 10 tabs

  16. State of the art of large combustion plants and reference plants in Austria

    International Nuclear Information System (INIS)

    Boehmer, S.; Schindler, I.; Szednyj, I.; Winter, B.

    2003-01-01

    The aim of this study is to describe the state of the art of large combustion plants with respect to the European directive on integrated pollution prevention and control (IPPC-Directive 96/61/EG). For this purpose 10 sites where one or more thermal power or district heating plants with a rated thermal input of > 50 MW are operated were selected and described in detail. Only coal and oil fired power plants were chosen because of the larger environmental impacts compared to gas fired combustion units. Large industrial combustion plants, where in addition to regular fuels also special fuels and wastes are combusted (e.g. power plants from refineries and from the pulp and paper industry), and waste incineration plants are not treated in this study. The depiction of power plants comprises the whole chain of operation, starting from the description of the type and composition of fuels, the pretreatment and introduction into the boiler, the firing technology, measures for emission reduction (both into air and water) and treatment of solid waste and residues from combustion. Furthermore possibilities to increase energy efficiency and economic aspects are examined in this study. Also legal aspects are shortly described at the beginning of the respective chapters. An actual topic is co-combustion of biomass and waste in thermal power plants. Results of trial operation in Austrian power plants are summarized and conclusions were drawn with respect to environmental impacts of co-incineration, such as emissions into air and water, quality of solid wastes and residues from co-incineration. Important aspects such as shifting of pollutants and dilution effects are discussed. The study concludes with the chapter 'State of the art for power plants', which gives a survey of the relevant measures with particular attention to above mentioned crucial points. (author)

  17. Forum for fire protection and safety in power plants[Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference contains 16 presentations on topics in the fields of fire protection and safety in plants in Western Norway, reorganization and reconstruction of power systems and plants in Norway, various aspects of risk and vulnerability analysis, technological aspects of plant management and construction and problems and risks with particularly transformers. Some views on challenges of the fire departments and the new Norwegian regulations for electrical power supply systems are included. One presentation deals with challenges for Icelandic power production plants.

  18. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  19. General conditions for gas-fired power plants in Europe

    International Nuclear Information System (INIS)

    Hugi, Ch.; Fuessler, J.; Sommerhalder, M.

    2006-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the general conditions for the installation of gas-fired power plants in Europe. Combined cycle power stations are characterised and the associated power production costs are discussed. Also, the prices resulting from the internalisation of external costs are noted. The problems associated with carbon dioxide emissions are discussed and the trading of emission certificates is looked at. Also, nitrogen oxide emissions are examined and discussed. The use of waste heat from the combined cycle power stations is also examined. Further topics include subsidies and special credits for the gas industry in Europe and the granting of permission for the planning, construction, operation and dismantling of the power station facilities. The situation in various European countries is examined and the associated market distortion is commented on

  20. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  1. The recovery of waste and off-gas in Large Combustion Plants subject to IPPC National Permit in Italy.

    Science.gov (United States)

    Di Marco, Giuseppe; Manuzzi, Raffaella

    2018-03-01

    good compliance with European coal- and lignite-fired combustion plants co-incinerating waste and with BAT-AELs reported in the BREF document. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  3. Waste Immobilisation Plant (WIP), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Waste Immobilization Plant (WIP), Trombay is designed and constructed for the management of radioactive liquid wastes generated during reprocessing of spent nuclear fuel from research reactors at Bhabha Atomic Research Centre. In common with such facilities elsewhere, the objective here is to manage the wastes in such a way as to protect human health and the environment and to limit any burden on future generations. The plant has several facilities for the handling and treatment of the three classes of waste, viz., high, intermediate and low level, a classification based on their radioactivity content. In keeping with the general objective of radioactive waste management, the focus is on concentration and confinement of radioactivity. Strict adherence to the universal principles of radiation protection during operation of the plant ensures that radiation exposure is always kept as low as reasonably achievable (ALARA) under the prescribed limits

  4. Trigeneration in waste to energy plants for expanding the efficiency; Kraft-Waerme-Kaelte-Kopplung bei Muellverbrennungsanlagen zur erweiterten Energieeffizienzsteigerung

    Energy Technology Data Exchange (ETDEWEB)

    Reil, Eberhard [Fernwaerme Wien GmbH, Wien (Austria)

    2010-05-15

    An impressive metamorphosis changed Waste to Energy plants from originally environmental risky plants to high sophisticated end of pipe technology sites to finally high efficient Energy production plants. Such described plants are situated in urban places to aware the connections into efficient power grids and district heating networks to provide the base load the whole year round. Nowadays the request for cooling is steady rising and again Waste to energy plants, connected to a district cooling network, takes over an important role for the supply. Such concepts are only marketable, if the required criteria's for efficiency are fulfilled. Such criteria's within Europe are the greenhouse gas emission factor and the primary energy factor. Both proof the efficiency of a system according to sustainability and environmental acceptance. Such criteria's are the result of the EU target to enhance the renewable within the energy supply while a more efficient use of site energy should take place. The Vienna Model was chosen as best practice sample. The district heating network is connected to all Waste to energy plants as well to the gas fired CHP plants in Vienna. The peak demand for the supply is realized by gas fired hot water boilers. In 2006 Fernwaerme Wien started to set up a district cooling network. The base load for the cooling derives from absorption chillers driven by heat from the waste to energy plants. According the EN standard 15316 part 4 and 5, method for calculation of system energy requirements and system efficiencies, the primary energy factor and CO2 factor has been defined for the Vienna model and as a consequence of that also for the waste to energy plant Pfaffenau. The average primary energy factor of the Vienna model calculated for the years 2006 to 2008 is 0,21 for the renewable part. According to the result the savings on primary energy have been 42 % and equates to 6,9 TWh/a. The reduc tion of the greenhouse gas emissions has been

  5. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Soil to plant transfer factor in the vicinity of coal fired power plants

    International Nuclear Information System (INIS)

    Nikolic, J.; Todorovic, D.; Jankovic, M.; Radenkovic, M.; Joksic, J.

    2009-01-01

    In this paper, the monitoring of working and living environment results in 5 coal fired powered plants, for the period from 2004. to 2009. are presented. Soil-plant transfer factor, suitable for estimation of possible contamination of food chain was chosen, as a measure of influence of power plants on the environment. The results gathered over the years of monitoring of working and living environment in the vicinity of the coal fired power plant were analyzed, and it was determined that no significant discrepancy exists comparing to the results reported in world literature. Also, the basic mathematical analysis was conducted, in order to assess the model of the behavior of the results in respect to the frequency count. (author) [sr

  7. Modeling issues in nuclear plant fire risk analysis

    International Nuclear Information System (INIS)

    Siu, N.

    1989-01-01

    This paper discusses various issues associated with current models for analyzing the risk due to fires in nuclear power plants. Particular emphasis is placed on the fire growth and suppression models, these being unique to the fire portion of the overall risk analysis. Potentially significant modeling improvements are identified; also discussed are a variety of modeling issues where improvements will help the credibility of the analysis, without necessarily changing the computed risk significantly. The mechanistic modeling of fire initiation is identified as a particularly promising improvement for reducing the uncertainties in the predicted risk. 17 refs., 5 figs. 2 tabs

  8. Manual fire fighting tactics at Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Moon, Chan Kook

    2012-01-01

    The general requirements of fire protection at nuclear power plant (NPP) are fire protection program, fire hazard analysis, and fire prevention features. In addition, specific fire protection requirements such as water supplies, fire detection, fire protection of safe related equipment, and safe shutdown capabilities must be provided. Particularly, manual fire fighting is required as specific requirements with the provisions to secure manual fire suppression, fire brigade and its training, and administrative controls for manual fire fighting. If a fire is alarmed and confirmed to be a real fire, the fire brigade must take manual fire fighting activities as requested at fire protection program. According to the present requirements in itself, there is not any specific manual fire fighting ways or practical strategies. In general, fire zones or compartments at NPPs are built in a confined condition. In theory, the fire condition will change from a combustible-controlled fire to a ventilation-governing fire with the time duration. In case of pool fire with the abundant oxygen and flammable liquid, it can take just a few minutes for the flash-over to occur. For the well-confined fire zone, it will change from a flame fire to a smoldering state before the entrance door is opened by the fire brigade. In this context, the manual fire fighting activities must be based on a quantitative analysis and a fire risk evaluation. At this paper, it was suggested that the fire zones at NPPs should be grouped on the inherent functions and fire characteristics. Based on the fire risk characteristics and the fire zone grouping, the manual fire fighting tactics are suggested as an advanced fire fighting solution

  9. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  10. Waste to Energy : The Waste Incineration Directive and its Implementation in the Netherlands

    NARCIS (Netherlands)

    Duman, Murat; Boels, Luciaan

    2007-01-01

    Essent operates a coal-fired power plant, called AC-9, in Geertruidenberg. A gasifier connected to AC-9 thermally treats waste wood through gasification. The waste wood Essent used is demolition and construction wood, the so-called B-wood. The gas produced through gasification is fed into the

  11. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  12. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  13. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  14. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  15. Ashes from straw and wood-chip fired plants for agricultural usage. Pilot project

    International Nuclear Information System (INIS)

    Morsing, M.; Westborg, S.

    1994-08-01

    The content of nutrients and heavy metals in ashes from the combustion of straw and wood chips at district heating plants is studied, on the basis of results of analyses from Danish municipalities, to determine whether such ashes are suitable for use as fertilizers. Results of the analysis of ashes from 9 wood-chip fired and 26 straw-fired plants are presented. They show significant variations in nutrient and heavy metal content which could be caused by combustion and operational conditions and/or testing methods. On condition that the phosphorous content of straw and wood-chip ashes amount to 1% of the dry matter, 50%-75% of the straw ashes and under 50% of wood chip ashes analyses are within the limit for cadmium stipulated in the Danish Ministry of the Environment's Executive Order no. 736 on the use of wastes for agricultural purposes. This is found to be unsatisfactory. It is suggested that a closer investigation should be undertaken in order to determine which amount of straw and wood-chip ashes can be accepted for use as fertilizers in consideration of the stipulated limits for cadmium content of wastes to be used for agricultural purposes. In addition the technological and economic potentials of dosing of these ashes for this use should be investigated. Fly ash and slag were also included in the analysis results studied and it was found that the cadmium content of slag did not prevent its use as fertilizer, but that the distribution of cadmium in slag, in fly ash and in slam from flue gas cleaning systems related to the combustion of wood chips should be further investigated. (AB)

  16. Hanford Waste Vitrification Plant technology progress

    International Nuclear Information System (INIS)

    Wolfe, B.A.; Scott, J.L.; Allen, C.R.

    1989-10-01

    The Hanford Waste Vitrification Plant (HWVP) is currently being designed to safely process and temporarily store immobilized defense liquid high-level wastes from the Hanford Site. These wastes will be immobilized in a borosilicate glass waste form in the HWVP and stored onsite until a qualified geologic waste repository is ready for permanent disposal. Because of the diversity of wastes to be disposed of, specific technical issues are being addressed so that the plant can be designed and operated to produce a waste form that meets the requirements for permanent disposal in a geologic repository. This paper reports the progress to date in addressing these issues. 2 figs., 3 tabs

  17. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment

  18. Potential for a solids fire during an ITP waste tank deflagration and the impact on gas pressure

    International Nuclear Information System (INIS)

    Thomas, J.K.

    1993-07-01

    During the In-Tank Precipitation (ITP) process, solid deposits may form at the water-line on internal waste tank surfaces. These solids may be combustible due to the presence of tetraphenylborate compounds and hence there is a potential that a waste tank deflagration could ignite a solids fire. The work described in this report evaluates the potential for a waste tank deflagration to ignite a solids fire and the subsequent effect on gas pressure. Thermal analyses were performed using a one-dimensional conduction model, radiative heat flux values calculated with the Deflagration Pressure Analysis Code (DPAC), and effective deposit properties calculated from the component properties. It was shown that a solids fire could only be ignited by a waste tank deflagration for a limited range of cases. For the best-estimate mixtures, a solids fire could not be ignited prior to the time the peak gas pressure is reached and would not increase the peak pressure. For the upper-bound mixtures, the thickness of the solid layer which could be ignited is insufficient to increase the energy released by the deflagration by a significant amount. It was also shown that these conclusions are relatively insensitive to uncertainties related to deposit composition. Thus, the contribution from a solids fire to the gas pressure resulting from a waste tank deflagration may be neglected

  19. The turbine oil fire in the nuclear power plant, Muehleberg

    International Nuclear Information System (INIS)

    Lutz, H.R.

    1972-01-01

    At 21.15 hours on the evening of the 28th July 1971, a turbine oil fire broke out in the Nuclear Power Plant Muehleberg of the Bernische Kraftwerke AG, resulting in damage amounting to around 20 million Swiss Francs and a delay of some ten months in putting the plant into operation. The plant is equipped with a General Electric boiling water reactor and two BBC saturated steam turbines. Up to the time of the fire, both turbo-sets had already been run singly up to their full capacity of 160 MWe and the initial trials with both sets working parallel were shortly due to be carried out. Following the outbreak of fire, the causes of which are described in the contributions of the authors Hagn, L. and H. Huppmann and Christian, H. and H. Grupp, fire fighting action was immediately taken, in line with the emergency measures laid down in the operating regulations. With the assistance of the Berne City Fire Brigade, the blaze in the roof of the turbine hall was first extinguished and the spreading cable conflagration then fought, using foam and water. (orig.) [de

  20. Fire protection for nuclear power plants. Part 1. Fundamental approaches. Version 6/99

    International Nuclear Information System (INIS)

    1999-06-01

    The KTA nuclear safety code sets out the fundamental approaches and principles for the prevention of fires in nuclear power plants, addressing aspects such as initiation, spreading, and effects of a fire: (a) Fire load and ignition sources, (b) structural and plant engineering conditions, (c) ways and means relating to fire call and fire fighting. Relevant technical and organisational measures are defined. Scope and quality of fire prevention measures to be taken, as well the relevant in-service inspection activities are determined according to the protective goals pursued in each case. (orig./CB) [de

  1. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Science.gov (United States)

    2010-02-02

    ..., Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment AGENCY... 1019195), Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG), Draft Report for Comment... exists in both the general fire protection and the nuclear power plant (NPP) fire protection communities...

  2. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  3. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  4. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  5. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  6. Characterisation of solid recovered fuels for direct co-firing in large-scale PF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunnu, Gregory

    2013-04-01

    Solid Recovered Fuels are solid fuels prepared from high calorific fractions of non-hazardous waste materials intended to be co-fired in coal power plants and industrial furnaces (CEN/TC 343). They are composed of a variety of materials of which some, although recyclable in theory, may be in a form that makes their recycling an unsound option. The SRF with a typical size range of 3 mm through 25 mm are to be directly co-fired in an existing pulverised coal power plant. In comparison to pulverised coal, the particle size distribution of the SRF is of several magnitudes higher, resulting in a different burnout behaviour. Size reduction of the SRF to a fraction similar to coal is not economically feasible. The aim here is, therefore, the direct co-firing of the solid recovered fuels in the boilers without any further size reduction. This approach, however, bears the risk of incomplete combustion if the injection points of the solid recovered fuels are not optimally selected. Accordingly, the prediction of the burner levels, at which the solid recovered fuels should be injected and whether or not a complete combustion will be achieved under full load condition, is the primary objective of this dissertation. In this research work, laboratory experiments have been conducted to forecast the success of co-firing the SRF in a commercial pulverised coal power plant. It involves the analyses of the fuel and its intermediate chars generated at conditions comparable to boiler conditions to determine some characteristic parameters, namely the burnout time, the aerodynamic lift velocity, the drag coefficient and the apparent densities. The data gathered from the laboratory experiments are transferred to boiler conditions to determine the particle trajectories and the maximum distance likely to travel before they are completely converted in the boiler. Different scenarios are examined and based on the results the best boiler injection points are predicted. Furthermore, an on

  7. Users' guide for a personal-computer-based nuclear power plant fire data base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    1986-08-01

    The Nuclear Power Plant Fire Data Base has been developed for use with an IBM XT (or with a compatible system). Nuclear power plant fire data is located in many diverse references, making it both costly and time-consuming to obtain. The purpose of this Fire Data Base is to collect and to make easily accessible nuclear power plant fire data. This users' guide discusses in depth the specific features and capabilities of the various options found in the data base. Capabilities include the ability to search several database fields simultaneously to meet user-defined conditions, display basic plant information, and determine the operating experience (in years) for several nuclear power plant locations. Step-by-step examples are included for each option to allow the user to learn how to access the data

  8. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  9. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper

  10. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper Refs, figs, tabs

  11. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  12. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  13. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  14. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  15. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    Thermal analysis of a small scale solid waste-fired steam generator is presented in this paper. The analysis was based on the chosen design specifications which are operating steam ... include: wind, bio-energy, geothermal, solar thermal,.

  16. Waste statistics 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-07

    The 2004 reporting to the ISAG comprises 394 plants owned by 256 enterprises. In 2003, reports covered 403 plants owned by 273 enterprises. Waste generation in 2004 is compared to targets for 2008 in the government's Waste Strategy 2005-2008. The following summarises waste generation in 2004: 1) In 2004, total reported waste arisings amounted to 13,359,000 tonnes, which is 745,000 tonnes, or 6 per cent, more than in 2003. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2004 were 12,179,000 tonnes, which is a 9 per cent increase from 2003. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2004 amounted to 7,684,000 tonnes, which is 328,000 tonnes, or 4 per cent, more than in 2002. In other words, there has been an increase in total waste arisings, if residues and waste from building and construction are excluded. Waste from the building and construction sector is more sensitive to economic change than most other waste. 4) The total rate of recycling was 65 per cent. The 2008 target for recycling is 65 per cent. The rate of recycling in 2003 was also 65 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2003. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point better than the overall landfill target of a maximum of 9 per cent landfilling in 2008. Also in 2003, 8 per cent of the waste was landfilled. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being

  17. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  18. Economy of straw-fired heating plants

    International Nuclear Information System (INIS)

    1991-10-01

    The aim was to produce a detailed survey of the economical aspects of the operation of individual Danish straw-fired heating plants and to compare the results. It is hoped the operators of these plants will thus be encouraged to work together when atttempting to solve problems in this respect and that the gathered information could be used by consultants. The collected data from the survey is presented in the form of tables and graphs. (AB)

  19. When Smokey says "No": Fire-less methods for growing plants adapted to cultural fire regimes

    Science.gov (United States)

    Daniela Shebitz; Justine E. James

    2010-01-01

    Two culturally-significant plants (sweetgrass [Anthoxanthum nitens] and beargrass [Xerophyllum tenax]) are used as case studies for investigating methods of restoring plant populations that are adapted to indigenous burning practices without using fire. Reports from tribal members that the plants of interest were declining in traditional gathering areas provided the...

  20. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  1. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  2. Little evidence for fire-adapted plant traits in Mediterranean climate regions.

    Science.gov (United States)

    Bradshaw, S Don; Dixon, Kingsley W; Hopper, Stephen D; Lambers, Hans; Turner, Shane R

    2011-02-01

    As climate change increases vegetation combustibility, humans are impacted by wildfires through loss of lives and property, leading to an increased emphasis on prescribed burning practices to reduce hazards. A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally burnt because plants are fire adapted. In this opinion article, we explore the concept of plant traits adapted to fire in Mediterranean climates. In the light of major threats to biodiversity conservation, we recommend caution in deliberately increasing fire frequencies if ecosystem degradation and plant extinctions are to be averted as a result of the practice. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  3. Assessment of the overall fire safety arrangements at nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire safety of nuclear power plants. The publication comprises a detailed checklist of the specific elements to be addressed when assessing the adequacy and effectiveness of the overall fire safety arrangements of operating nuclear power plants. The publication will be useful not only to regulators and safety assessors but also to operators and designers. The book addresses a specialized topic outlined in Safety Guide No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and it is recommended that it be used in conjunction with this Safety Series publication

  4. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  5. Study of the Radiological Impact of the Coal Fired Power Plants on the Environment. The As Pontes coal-fired Power Plant

    International Nuclear Information System (INIS)

    Cancio, D.; Robles, B.; Mora, J. C.

    2009-01-01

    As part of the Study carried out to determine the radiological impact of the four main Spanish coal-fired power plants, the Study on the As Pontes Coal-Fired Coal Power Plant was finalized. In the Report containing the study are included every measurement performed, as well as the modelling and evaluations carried out in order to assess the radiological impact. The general conclusion obtained is that under a radiological point of view, the impact of this installation on the public and the environment is very small. Also the radiological impact on the workers of the installation was assessed, obtaining too very small increases over the natural background. (Author) 61 refs.

  6. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  7. Evaluation of fire hazard analyses for nuclear power plants. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1995-01-01

    The present publication has been developed with the help of experts from regulatory, operating and engineering organizations, all with practical experience in the field of fire safety of nuclear power plants. The publication supplements the broad concepts of Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, by providing a detailed list of the issues, and some of the limitations, to be considered when evaluating the adequacy and effectiveness of the fire hazard analysis of a nuclear power plant. The publication is intended for assessors of fire hazard analyses, including regulators, independent assessors or plant assessors, and gives a broad description of the methodology to be used by operators in preparing a fire hazard analysis for their own plant. 1 fig

  8. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  9. Optimization of fire protection measures and quality controls in nuclear power plants

    International Nuclear Information System (INIS)

    Brenig, H.; Holtschmidt, H.; Liemersdorf, H.; Suetterlin, L.; Dobbernack, R.; Hahn, C.; Hosser, D.; Kordina, K.; Schneider, U.; Sprey, W.; Wesche, H.

    1985-09-01

    This study presents theoretical and experimental investigations on the evaluation of fire hazards and the optimization of fire protection measures in German nuclear power plants. Differences between the method presented here and the US ''Fire Hazard Analysis'' result from the inclusion of the stringent redundancy concept of German nuclear power plants and the emphasis placed on passive structural fire protection measures. The method includes a time-dependent quantification of fire-specific event sequences. Fire occurrence frequencies and the reliabilities of active fire protection measures were derived from German experiences and literature abroad. The reliability data of passive fire protection measures were obtained by an evaluation of experiments and probabilistic analyses. For the calculation of fire sequences fundamental experiments were taken into consideration. For the quantification of the time-dependent event trees a methodology was applied which permits an evaluation of the influence of the individual measures. The consequences of fire were investigated for ten fire events identified as decisive, and the fire sequence paths important in terms of safety were quantified. Their annual frequencies are within a range of 10 -3 to 8.10 -6 . (orig./HP) [de

  10. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  11. Comparison of inhalation risks : oil- versus gas-fired urban power plants

    International Nuclear Information System (INIS)

    Levin, L.

    2000-01-01

    The risks due to inhalation of emitted trace substances from natural gas-fired power plants tend to be significantly lower than those from oil- or coal-fired plants. A 1994 study suggested that the median inhalation life-time cancer risk from gas-fired plants was about 4 in one billion. This is an acceptable risk range according to the United States Environmental Protection Agency (US EPA) classification of risks. In the same study, median oil plant risks were 8 in one billion. coal plant median risks ranged from 2 to 3 in one billion depending on the grade of coal being burned. The US EPA classifies risks from 1 to one million to one to 10,000 as being in an acceptable risk range. In some cases, gas plants were shown to exhibit higher inhalation risks than oil plants due to terrain, air circulation patterns, enhanced stack or building downwash or mechanical turbulence. Higher concentrations of very potent trace substances could also result in high inhalation risks. An examination of several power plants in an urban area showed that initial judgements about risk can often be incorrect

  12. Need for a probabilistic fire analysis at nuclear power plants

    International Nuclear Information System (INIS)

    Calabuig Beneyto, J. L.; Ibanez Aparicio, J.

    1993-01-01

    Although fire protection standards for nuclear power plants cover a wide scope and are constantly being updated, the existence of certain constraints makes it difficult to precisely evaluate plant response to different postulatable fires. These constraints involve limitations such as: - Physical obstacles which impede the implementation of standards in certain cases; - Absence of general standards which cover all the situations which could arise in practice; - Possible temporary noncompliance of safety measures owing to unforeseen circumstances; - The fact that a fire protection standard cannot possibly take into account additional damages occurring simultaneously with the fire; Based on the experience of the ASCO NPP PSA developed within the framework of the joint venture, INITEC-INYPSA-EMPRESARIOS AGRUPADOS, this paper seeks to justify the need for a probabilistic analysis to overcome the limitations detected in general application of prevailing standards. (author)

  13. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  14. Fire protection guidelines for nuclear power plants, June 1976

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Guidelines acceptable to the NRC staff for implementing in the development of a fire protection program for nuclear power plants. The purpose of the fire protection program is to ensure the capability to shut down the reactor and maintain it in a safe shutdown condition and to minimize radioactive releases to the environment in the event of a fire. If designs or methods different from the guidelines presented herein are used, they must provide fire protection comparable to that recommended in the guidelines. Suitable bases and justification should be provided for alternative approaches to establish acceptable implementation of General Design Criterion 3

  15. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  16. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  17. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    International Nuclear Information System (INIS)

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-01-01

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation

  18. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  19. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  20. Y-12 Plant waste minimization strategy

    International Nuclear Information System (INIS)

    Kane, M.A.

    1987-01-01

    The 1984 Amendments to the Resource Conservation and Recovery Act (RCRA) mandate that waste minimization be a major element of hazardous waste management. In response to this mandate and the increasing costs for waste treatment, storage, and disposal, the Oak Ridge Y-12 Plant developed a waste minimization program to encompass all types of wastes. Thus, waste minimization has become an integral part of the overall waste management program. Unlike traditional approaches, waste minimization focuses on controlling waste at the beginning of production instead of the end. This approach includes: (1) substituting nonhazardous process materials for hazardous ones, (2) recycling or reusing waste effluents, (3) segregating nonhazardous waste from hazardous and radioactive waste, and (4) modifying processes to generate less waste or less toxic waste. An effective waste minimization program must provide the appropriate incentives for generators to reduce their waste and provide the necessary support mechanisms to identify opportunities for waste minimization. This presentation focuses on the Y-12 Plant's strategy to implement a comprehensive waste minimization program. This approach consists of four major program elements: (1) promotional campaign, (2) process evaluation for waste minimization opportunities, (3) waste generation tracking system, and (4) information exchange network. The presentation also examines some of the accomplishments of the program and issues which need to be resolved

  1. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  2. Waste statistics 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 2003 reporting to the ISAG comprises 403 plants owned by 273 enterprises. In 2002, reports covered 407 plants owned by 296 enterprises. Waste generation in 2003 is compared to targets from 2008 in the government's Waste Strategy 2005-2008. The following can be said to summarise waste generation in 2003: 1) In 2003, total reported waste arisings amounted to 12,835,000 tonnes, which is 270,000 tonnes, or 2 per cent, less than in 2002. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2003 were 11,597,000 tonnes, which is a 2 per cent increase from 2002. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2003 amounted to 7,814,000 tonnes, which is 19,000 tonnes, or 1 per cent, less than in 2002. In other words, there has been a fall in total waste arisings, if residues and waste from building and construction are excluded. 4) The overall rate of recycling amounted to 66 per cent, which is one percentage point above the overall recycling target of 65 per cent for 2008. In 2002 the total rate of recycling was 64 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2002. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point below the overall landfill target of a maximum of 9 per cent landfilling in 2008. In 2002, 9 per cent was led to landfill. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being led to landfill. (au)

  3. Fire and invasive exotic plant species in eastern oak communities: an assessment of current knowledge

    Science.gov (United States)

    Cynthia D. Huebner

    2006-01-01

    Successful regeneration of oak-dominated communities in the Eastern United States historically requires disturbance such as fire, making them vulnerable to invasion by exotic plants. Little is currently known about the effects of fire on invasive plant species and the effects of invasive plant species on fire regimes of this region. Seventeen common eastern invaders...

  4. Overview of IAEA guidelines for fire safety inspection and operation in nuclear power plants

    International Nuclear Information System (INIS)

    Mowrer, D.S.

    1998-01-01

    In 1992, the International Atomic Energy Agency began an ambitious project on fire safety in nuclear power plants. The purpose of this ongoing project is to provide specific guidance on compliance with the requirements set forth through the IAEA Nuclear Safety Standards program established in 1974. The scope of the Fire Safety project encompasses several tasks, including the development of new standards and guidelines to assist Member States in assessing the level of fire safety in existing plants. Five new Safety Practices, one new Safety Guide and a Technical Document have been developed for use by the fire safety community. The primary intent of these new documents is to provide detailed guidance and a consistent format for the assessment of the overall level of fire safety being provided in existing nuclear power plants around the world and especially in developing countries. Sufficient detail is provided in the Safety Guide and Safety Practices to allow technically knowledgeable plant personnel, outside consultants or other technical experts to assess the adequacy of fire safety within the plant facilities. This paper describes topics addressed by each of the IAEA Fire Safety documents and discussed the relationship of each document to others in the series. (author)

  5. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  6. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    OpenAIRE

    Joanna Kazimierowicz

    2014-01-01

    Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  7. PCB transformer fires: the risk in nuclear power plants

    International Nuclear Information System (INIS)

    Blackmon, K.

    1988-01-01

    It is estimated that 1/2 of the present nuclear power plants operate with PCB-filled transformer equipment. In an attempt to obtain better estimates of clean-up costs in a nuclear power plant under reasonable-loss scenarios, a study was commissioned. This study was a joint venture between Blackmon-Mooring Steamatic Technologies, Inc., (BMS-TECH) and M and M Protection Consultants. This joint study was conducted at a typical pressurized-water reactor plant consisting of two 1000-MW units. Three specific scenarios were selected and analyzed for this typical power plant. These scenarios were: (1) an electrical failure of a transformer in an isolated switch gear room; (2) a transformer exposed to a 55-gallon transient combustion oil fire in the auxiliary building; and (3) a PCB transformer involved in a major turbine lube fire in the turbine building. Based on results of this study, the insurance carriers for this industry implemented an adjustment in their rate structures for nuclear power plants that have PCB equipment

  8. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  9. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  10. Analytical and experimental evaluation of solid waste drum fire performance volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, C.F., [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Rhodes, B.T.; Beitel, J.J.; Gottuk, D.T.; Beyler, C.L.; Rosenbaum, E.R., [Hughes Associates, Inc., Columbia, MD (United States)

    1995-04-28

    Fire hazards associated with drum storage of radioactively contaminated wastes are a major concern in DOE facilities design for long term storage of solid wastes in drums. These facilities include drums stored in pallet arrays and in rack storage systems. This report details testing in this area

  11. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  12. Reliability data of fire protection equipment and features in German nuclear power plants

    International Nuclear Information System (INIS)

    Roewekamp, M.; Riekert, T.; Sehrbrock, W.

    1997-01-01

    In order to perform probabilistic fire safety analyses, a comprehensive data base is needed including physical characteristics of fire compartments and their inventory, fire occurrence frequencies, technical reliability data for all fire-related equipment, human actions and human error probabilities, etc. In order to provide updated and realistic reliability data, the operational behaviour of different fire protection features in two German nuclear power plants was analysed in the framework of the study presented here. The analyses are based on the examination of reported results of the regular inspection and maintenance programs for nuclear power plants. Besides a plant specific assessment of the reliability data a generic assessment for an application as input data for fault tree analyses in the framework of probabilistic risk studies for other German plants was carried out. The analyses of failures and unavailabilities gave the impression that most of them are single failures without relevance for the plant safety. The data gained from NPPs were compared to reliability data of the German insurance companies for the same protection features installed in non-nuclear installations and to older nuclear specific reliability data. This comparison showed up a higher reliability. (orig.) [de

  13. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  14. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  15. Application of fire models for risk analysis in french nuclear power plants

    International Nuclear Information System (INIS)

    Brauns, P.

    1989-04-01

    Numerical simulations of compartment fires have been carried out in the French 900 MW and 1 300 MW nuclear power plants, to obtain quantitative data about this particular kind of risk: characteristic spreading times from one redundant electrical train to the other one, behaviour of important electrical components... The main stages of both studies were the following: selection of rooms, the location or function of which are essential for the plant safety in case of fire, on-site inspections to collect information about these rooms (amount of fuel, openings...), definition of fire scenarios, improvement of the fire model VESTA-PLUS, and, finally calculations using this computer code. The simulations have shown two major trends: i) the spreading times, without taking into account any external intervention, are always greater than half an hour, and ii) the specific design of the 1 300 MW power plants generally prevents one of the redundant train from being damaged due to a fire occurring in a room containing the other one. Examples of typical results obtained are given, showing the capability of application of the improved fire model to complex problems

  16. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  17. Evaluation of AFBC co-firing of coal and hospital wastes

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  18. High temperature corrosion in biomass- and waste fired boilers. A status report; Kunskapslaeget betraeffande hoegtemperaturkorrosion i aangpannor foer biobraensle och avfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, P; Ifwer, K; Staalenheim, A; Montgomery, M; Hoegberg, J; Hjoernhede, A

    2006-12-15

    Many biomass- or waste-fired plants have problems with high temperature corrosion on the furnace walls or at the superheaters, especially if the steam temperature is greater than 500 deg C. An increase in the combustion of waste fuels means that an increasing number of boilers have had problems. Therefore, there is great interest from plant owners to reduce the costs associated with high temperature corrosion. At the same time there exists a considerable driving force towards improving the electrical efficiency of a plant by the use of more advanced steam data. The purpose of the work presented here was to answer three main questions: What can be done to reduce high temperature corrosion with current fuel blends and steam temperatures? How can more waste fuels be burnt without an increased risk for corrosion? What needs to be done to reach higher steam temperatures in the future? The level of knowledge of high temperature corrosion in biomass- and waste-fired boilers has been described and summarised. The following measures are recommended to reduce corrosion in existing plant: Make sure that the fuel is well mixed and improve fuel feeding to obtain a more even spread of the fuel over the cross-section of the boiler. Use combustion technology methods to stabilize the oxygen content of the flue gases near the membrane walls and other heat transfer surfaces. Experiment with additives and/or supplementary fuels which contain sulphur in some form, for example peat. Reduce the flue gas temperature at the superheaters. Review soot-blowing procedures or protect heat transfer surfaces from soot blowers. Evaluate coated membrane wall panels in parts of the furnace that experience the worst corrosion. Test more highly alloyed steels suitable for superheaters and when replacing a superheater change to a more highly alloyed steel. For the future, the following should be considered: The role of sulphur needs to be investigated more and other additives should be investigated

  19. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  20. Fire hazards analysis of the Radioactive Waste Management Complex Air Support Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.L.; Satterwhite, D.G.

    1989-09-01

    This report describes the methods, analyses, results, and conclusions of a fire hazards risk analysis performed for the RWMC Air Support Buildings. An evaluation of the impact for adding a sprinkler system is also presented. Event and fault trees were used to model and analyze the waste storage process. Tables are presented indicating the fire initiators providing the highest potential for release of radioactive materials into the environment. Engineering insights drawn form the data are also provided.

  1. Fire hazards analysis of the Radioactive Waste Management Complex Air Support Buildings

    International Nuclear Information System (INIS)

    Davis, M.L.; Satterwhite, D.G.

    1989-09-01

    This report describes the methods, analyses, results, and conclusions of a fire hazards risk analysis performed for the RWMC Air Support Buildings. An evaluation of the impact for adding a sprinkler system is also presented. Event and fault trees were used to model and analyze the waste storage process. Tables are presented indicating the fire initiators providing the highest potential for release of radioactive materials into the environment. Engineering insights drawn form the data are also provided

  2. Radiological risk associated with a fire scenario in a radioactive waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, E.N.; Lima, Z.R. de, E-mail: erica.ndomingos@gmail.com, E-mail: zelmolima@yahoo.com.br [Instituto de Engenharia Nuclear (PPGIEN/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, L.A., E-mail: aguiar.lais@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro-RJ (Brazil)

    2017-07-01

    A fire at the disposal of radioactive waste can result in significant damage, as well as serious risks to the environment and the health of the general public. The norms of CNEN (Comissão Nacional de Energia Nuclear), CNEN 2.03; CNEN 2.04 and CNEN 8.02 include fire protection regulations and have criteria and requirements that aim to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive and/or toxic mate-rial present in the installations. For decision making due to a fire scenario containing radioactive material, it is fundamental to have information that can allow the estimate of the dose to which the population will be submitted. This work proposes to identify the radiological risk of cancer in the respiratory system using the BEIR V model, associated with a fire scenario containing radioactive material generated in the Hotspot code. (author)

  3. Safety in waste management plants: An Indian perspective

    International Nuclear Information System (INIS)

    Shekhar, P.; Ozarde, P.D.; Gandhi, P.M.

    2000-01-01

    Assurance of safety of public and plant workers and protection of the environment are prime objectives in the design and construction of Waste Management Plants. In India, waste management principles and strategies have been evolved in accordance with national and international regulations and standards for radiation protection. The regulations governing radiation protection have a far-reaching impact on the management of the radioactive waste. The wastes arise at each stages of the fuel cycle with varying chemical nature, generation rate and specific activity levels depending upon the type of the facility. Segregation of waste based on its chemical nature and specific activity levels is an essential feature, as its aids in selection of treatment and conditioning process. Selection of the process, equipment and materials in the plant, are governed by safety consideration alongside factors like efficiency and simplicity. The plant design considerations like physical separation, general arrangement, ventilation zoning, access control, remote handling, process piping routing, decontamination etc. have major role in realizing waste safety. Stringent quality control measures during all stages of construction have helped in achieving the design intended safety. These aspects together with operating experience gained form basis for the improved safety features in the design and construction of waste management plants. The comprehensive safety is derived from adoption of waste management strategies and appropriate plant design considerations. The paper briefly brings safety in waste management programme in India, in its current perspective. (author)

  4. Ecological modeling of pollutants in accidental fire at the landfill waste

    Directory of Open Access Journals (Sweden)

    Stefanov Sonja B.

    2013-01-01

    Full Text Available Paper presents tyre as flammable material and some examples of tyre fires in the world. Uncontrolled tyre fires produce a lot of smoke and air pollutants, including benzene and polycyclic aromatic hydrocarbons (PAH. Great heat leads to the generation of pyrolytic oil which, when mixed with the fire extinguishing agent, contaminates the surrounding soil, surface water and underground water. Paper analyzes and presents in particular the emission factors of incomplete burning of waste car tyres. Metal dust emissions have been presented, volatile organic compund (VOC emissions, slightly volatile organic compound (SVOC emissions and emissions of polycyclic aromatic hydrocarbons (PAH. Evaluation of the effect on the air quality has been graphically presented by modelling of uncotrolled tyre burning by using EPA "SCREEN 3 MODEL".

  5. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Hai-Wei Wei

    Full Text Available Plant nitrogen (N use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2 yr(-1 and prescribed fire (annual burning on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP, inorganic N, and N uptake, decreased N response efficiency (NRE, but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  6. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  8. Natural radioactivity level in coal and ash collected from Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Jia Xiaodan; Lu Xinwei

    2006-01-01

    Specific activities of natural radionuclides 226 Ra, 232 Th and 40 K were assessed in coal (3 samples), fly ash (17 samples) and bottom ash (6 samples) collected from Baoji coal-fired power plant. This paper analyzed the characteristics of 226 Ra, 232 Th and 40 K contents in bottom ash and fly ash, and studied the concentration factors of these radionuclides in ash in relation to those in coal. The level of natural radionuclides 226 Ra, 232 Th and 40 K of coal collected from Baoji coal-fired power plant are in the range of radionuclides contents of Chinese coal. The natural radioactivity level of fly ash collected from Baoji coal-fired power plant is close to Beijing and Shanghai coal-fired power plants. The paper farther assessed the possibility of fly ash of Baoji coal-fired power plant used as building materials according to the state standard. The results show that there are 29% samples exceeding the state limit when fly ash used as building materials. So the usage of fly ash in building material should be controlled. (authors)

  9. Radiological Impact Study of the Coal-Fired Power Plant of Narcea

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. a.; Corbacho, J. a.; Trueba, C.; Guillen, J.; Rodriguez, Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Narcea coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  10. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  11. Fire Alters Emergence of Invasive Plant Species from Soil Surface-Deposited Seeds

    Science.gov (United States)

    1. Fire is recognized as an important process controlling ecosystem structure and function. Restoration of fire regimes is complicated by global concerns about exotic plants invasions, yet little is known of how the two may interact. Characterizing relationships between fire conditions and the vi...

  12. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  13. The state of art of internal fire PSA in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Xinli; Zhao Bo; Zheng Xiangyang

    2010-01-01

    The operational experiences of nuclear power plants (NPPs) show that the internal fires challenge effectively the nuclear safety of NPPs. Thus, the authorities having jurisdiction in the world have enhanced the supervision on fire safety in NPPs, asking the licensees to perform fire hazard analysis and evaluate the fire risk. This article mainly describes the state of art of internal fire probabilistic safety assessment (PSA) in the world, and compares the main methods and standards for internal fire PSA. (authors)

  14. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  15. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  16. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  17. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  18. Hanford Waste Vitrification Plant technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version

  19. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  20. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  1. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  2. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  3. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  4. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  5. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  6. A new proposed approach for future large-scale de-carbonization coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Liang, Feifei; Wu, Ying; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2015-01-01

    The post-combustion CO 2 capture technology provides a feasible and promising method for large-scale CO 2 capture in coal-fired power plants. However, the large-scale CO 2 capture in conventionally designed coal-fired power plants is confronted with various problems, such as the selection of the steam extraction point and steam parameter mismatch. To resolve these problems, an improved design idea for the future coal-fired power plant with large-scale de-carbonization is proposed. A main characteristic of the proposed design is the adoption of a back-pressure steam turbine, which extracts the suitable steam for CO 2 capture and ensures the stability of the integrated system. A new let-down steam turbine generator is introduced to retrieve the surplus energy from the exhaust steam of the back-pressure steam turbine when CO 2 capture is cut off. Results show that the net plant efficiency of the improved design is 2.56% points higher than that of the conventional one when CO 2 capture ratio reaches 80%. Meanwhile, the net plant efficiency of the improved design maintains the same level to that of the conventional design when CO 2 capture is cut off. Finally, the match between the extracted steam and the heat demand of the reboiler is significantly increased, which solves the steam parameter mismatch problem. The techno-economic analysis indicates that the proposed design is a cost-effective approach for the large-scale CO 2 capture in coal-fired power plants. - Highlights: • Problems caused by CO 2 capture in the power plant are deeply analyzed. • An improved design idea for coal-fired power plants with CO 2 capture is proposed. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the proposed coal-fired power plant design idea

  7. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  8. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  9. Sustainable waste management: Waste to energy plant as an alternative to landfill

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2017-01-01

    Highlights: • WTE plant is a reasonable and sustainable alternative technology to landfill. • A 150 kt plant in the only electrical configuration for Abruzzo region. • The percentage of energy recovery ranges from 21% to 25% in examined scenarios. • Financial Net Present Value is equal to 25.4 € per kiloton of treated waste. • The annual reduction of emissions is equal to 370 kgCO_2eq per ton of treated waste. - Abstract: The management of municipal solid waste (MSW) has been identified as one of the global challenges that must be carefully faced in order to achieve sustainability goals. European Union (EU) has defined as Waste to Energy (WTE) technology is able to create synergies with EU energy and climate policy, without compromising the achievement of higher reuse and recycling rates. The methodology used in this paper is based on two levels. A strategy analysis defines the amount of waste to incinerate with energy recovery considering different approaches based on unsorted waste, landfilled waste and separated collection rate, respectively. Consequently, it is evaluated the sustainability of a WTE plant as an alternative to landfill for a specific area. Two indicators are used: the Reduction of the Emissions of equivalent Carbon Dioxide (ER_C_O_2_e_q) and Financial Net Present Value (FNPV). Furthermore, a social analysis is conducted through interviews to identify the most critical elements determining the aversion toward the WTE realization. The obtained results show the opportunity to realize a 150 kt plant in the only electrical configuration. In fact, the cogenerative configuration reaches better environmental performances, but it is not profitable for this size. Profits are equal to 25.4 € per kiloton of treated waste and 370 kgCO_2eq per ton of treated waste are avoided using a WTE plant as an alternative to landfill. In this way, the percentage of energy recovery ranges from 21% to 25% in examined scenarios and disposal waste is minimised

  10. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  11. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  12. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  13. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  14. Recovery and removal of uranium by using plant wastes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Sakaguchi, Takashi

    1990-01-01

    The uranium-adsorbing abilities of seven plant wastes were investigated. High abilities to adsorb uranium from non-saline water containing 10 mg dm -3 of uranium were observed with a number of plant wastes tested. However, with seawater supplemented with 10 mg dm -3 of uranium, similar results were found only with chestnut residues. When the plant wastes were immobilized with formaldehyde, their ability to adsorb uranium was increased. Uranium and copper ions were more readily adsorbed by all plant wastes tested than other metal ions from a solution containing a mixture of seven different heavy metals. The selective adsorption of heavy metal ions differs with different species of plant wastes. The immobilization of peanut inner skin, orange peel and grapefruit peel increased the selectivity for uranium. (author)

  15. Mesh influence on the fire computer modeling in nuclear power plants

    Directory of Open Access Journals (Sweden)

    D. Lázaro

    2018-04-01

    Full Text Available Fire computer models allow to study real fire scenarios consequences. Its use in nuclear power plants has increased with the new regulations to apply risk informed performance-based methods for the analysis and design of fire safety solutions. The selection of the cell side factor is very important in these kinds of models. The mesh must establish a compromise between the geometry adjustment, the resolution of the equations and the computation times. This paper aims to study the impact of several cell sizes, using the fire computer model FDS, to evaluate the relative affectation in the final simulation results. In order to validate that, we have employed several scenarios of interest for nuclear power plants. Conclusions offer relevant data for users and show some cell sizes that can be selected to guarantee the quality of the simulations and reduce the results uncertainty.

  16. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    Energy Technology Data Exchange (ETDEWEB)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  17. Relations between combustion, deposition, flue gas temperatures and corrosion in straw-fired boilers

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    2004-01-01

    ABSTRACT: Additives trials in three different plants, Sønderborg waste incineration plant and Ensted woodchip and straw firing boiler, are described. Both aluminium silicate containing additives and ammonium sulphate was tested. At Sønderborg, there was a drastic decrease in Cl deposition when...... using an aluminium silicate additive, however the relative chlorine content of the deposits was unchanged. At Ensted woodchip plant, a dosage level of additives was reached which reduced the chlorine flux. For straw firing where the chlorine level in the fuel is higher and the fuel load is greater...

  18. Fire hazard analysis for WWER nuclear power plants. Report of the IAEA extrabudgetary programme on the safety of WWER nuclear power plants

    International Nuclear Information System (INIS)

    1994-12-01

    This status report presents an overview of the different techniques available to carry out a fire hazard analysis, from qualitative criteria to quantitative methodologies of different purposes and basis; and then, it details a simplified methodology based on a screening approach which could be used in former Soviet designed nuclear power plants. The methodology presented in this report is an adequate means to identify fire related plant specific vulnerabilities to severe accidents, and it provides a useful tool for ranking the various plant fires according to their significances, as well as technical basis for prioritizing the implementation of plant improvements. The applicability of the methodology proposed to the former Soviet Union designed reactors has been evaluated. Its usefulness to the purpose defined above is conclusive. However, some aspects need further consideration, among others data sources and screening criteria. Computer codes for studying fire effects and fire spread in plant locations are also dealt with. Some computer codes are shortly described, from simplified models to more complex ones which allow more accurate modelling of geometries and accounting for additional phenomena. 10 refs, 5 tabs

  19. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    Kernen, M.

    2006-01-01

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  20. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  1. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  2. Corrosion Investigations in Straw-Fired Power Plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Karlsson, A

    2001-01-01

    of accelerated corrosion. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely the Masnedø, Rudkøbing and Ensted CHP plants. Three types......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam...

  3. A fire hazard analysis at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Joerud, F.; Magnusson, T.

    1998-01-01

    The fire hazard analysis (FHA) of the Ignalina Nuclear Power Plant (INPP) Unit no.1 was initiated during 1997 and is estimated to finalise in summer 1998. The reason for starting a FHA was a recommendation in the Safety Analysis Report and its review to prioritise a systematic FHA. Fire protection improvements had earlier been based on engineering assessments, but further improvements required a systematic FHA. It is also required by the regulator for licensing of unit no.1. In preparation of the analysis it was decided to perform a deterministic FHA to fulfil the requirements in the IAEA draft of a Safety Practice ''Preparation of Fire Hazard Analyses for Nuclear Power Plants''. As a supporting document the United States Department of Energy Reactor Core Protection Evaluation Methodology for Fires at RBMK and WWER Nuclear Power Plants (RCPEM) was agreed to be used. The assistance of the project is performed as a bilateral activity between Sweden and UK. The project management is the responsibility of the INPP. In order to transfer knowledge to the INPP project group, training activities are arranged by the western team. The project will be documented as a safety case. The project consists of parties from INPP, Sweden, UK and Russia which makes the project very dependent of good communication procedures. The most difficult problems is except from the problems with translation, the problems with different standards and lack of testing protocols of the fire protection installations and problems to set the right level of screening criteria. There is also the new dimension of making it possible to take credit for the fire brigade in the safety case, which can bring the project into difficulties. The most interesting challenges for the project are to set the most sensible safety levels in the screening phase, to handle the huge volume of rooms for survey and screening, to maintain the good exchange of fire- and nuclear safety information between all the parties involved

  4. Energy from waste. Vol. 2; Energie aus Abfall. Bd. 2

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, K.J.; Beckmann, M.

    2007-07-01

    In the book under consideration, the thermal treatment in waste incinerators, in industrial power stations and in coal-fired power stations is in the foreground. Possibilities of gasification are described. The chapter 'Developments of thermal waste treatment' consists of the following chapter: (a) Maximal size of waste incineration plants (Johannes J.E. Martin); (b) Trends and highlights of the thermal waste treatment in Europe (Martin Brunner); (c) Utilization of waste heat from Vienna waste incinerators for the operation of a district cooling grid - Effects on the primary energy efficiency of district heating and district cooling in Vienna (Franz Schindelar, Alexander Wallisch); (d) Evolutionary plant development based on experiences (Hans-Peter Buechner); (e) Effects of increased chlorine freights at the cocombustion of secondary fuels at the site of the brown coal fired power station Jaenschwalde (Frank Mielke, Andreas Sparmann, Sven Kappa); (f) Refuse-fueled power stations and waste incinerators - different plant technology? (Hendrik Seeger); (g) Generation of fuel gas from high calorific wastes (Udo Hellwig, Michael Beyer); (h) Strength testing of steam vessels with increased testing pressure (Wolfgang Rossmaier). The chapter 'Energy efficiency of waste incinerators' consists the following contributions: (a) Evaluation of energy efficiency in plants of thermal waste treatment; (b) Scientific-technical and juridical rationality - a contradiction? Comments to the judgement o the VGH Baden-Wuerttemberg according to waste incineration (Bodo A. Baars and Adolf Nottrodt); (c) Determination of the energy efficiency in plants of thermal waste incineration - To the difficulties of equivalent values and calculation of the calorific value (Michael Beckmann, Reinhard Scholz). The chapter 'Optimization of the plant technology' contains the following contributions: (a) Stay a while - Considerations according to the first tank of thermal waste

  5. Waste-to-energy plants - a solution for a cleaner future

    International Nuclear Information System (INIS)

    Pfeiffer, J.

    2007-01-01

    Waste-to-energy plants reduce the municipal solid waste volume by about 80% and convert it into residue. The residue quality naturally depends on the burned waste quality and also on the combustion parameters. Hence, tighter control of the plant can improve the residue quality. The generated combustion energy is regarded as renewable energy and is typically used to feed a turbine to generate electricity. Waste-to-energy furnaces react slowly on changing waste charge, so they are not used for peak load generation. The generated electrical power is a plant by product and is sold as base load generation. Usually the waste is burned on a grate which limits the plant size to about 160,000 tons of waste per year or 20 tons of waste per hour or about 28 MW. More recent technology utilizes fluidized bed combustion, which allows larger plant sizes up to 50 MW. Due to the unknown waste composition and stringent environmental standards involved, waste-to-energy plants employ sophisticated flue gas cleaning devices for emission control. ABB's Performance Monitoring continuously compares actual plant and equipment performance to expected performance. This includes the on-line calculation of the waste calorific heat allowing operator decision support and automated control system responses. Dedicated reports offer detailed data on operations, maintenance and emissions to plant management staff. ABB combustion optimization solutions use model based predictive control techniques to reliably find the most suitable set-points for improving the heat rate and reducing emissions like NO x . (author)

  6. Experiences with high temperature corrosion at straw‐firing power plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Borg, U.

    2011-01-01

    to enable better lifetime prediction of vulnerable components in straw‐firing plants since the corrosion rates are so much faster than in coal firing plants. Therefore, there are continued investigations in recently commissioned plants with test tubes installed into actual superheaters. In addition...... temperature is measured on the specific tube loops where there are test tube sections. Thus a corrosion rate can be coupled to a temperature histogram. This is important since although a superheater has a defined steam outlet temperature, there is variation in the tube bundle due to variations of heat flux...

  7. A methodology for analyzing the detection and suppression of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Siu, N.; Apostolakis, G.

    1986-01-01

    The assessment of the fire risk in nuclear power plants requires the analysis of fire scenarios within specified rooms. A methodology that integrates the fire protection features of a given room into an existing fire risk analysis framework is developed. An important component of this methodology is a model for the time required to detect and suppress a fire in a given room, called the ''hazard time.'' This model accounts for the reliability of fire detection and suppression equipment, as well as for the characteristics rates of the detection and suppression processes. Because the available evidence for fire detection and suppression in nuclear power plants is sparse and often qualitative, a second component of this methodology is a set of methods needed to employ imprecise information in a statistical analysis. These methods can be applied to a wide variety of problems

  8. Waste management at the Ardennes power plant

    International Nuclear Information System (INIS)

    Abraham, J.P.

    1979-01-01

    In 1976, the SENA (with the participation of EDF, CEA and CEC in the framework of a research program on the management and storage of radioactive wastes) has developed an industrial pilot plant for the encapsulation of wastes in thermosetting polyester resins. The industrial putting in operation of the plant will enable most of the wastes from the nuclear station to be processed. The quality of products will be improved and the volume and processing cost reduced

  9. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  10. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  11. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  12. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  13. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  14. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  15. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  16. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  17. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  18. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  19. Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-12-01

    The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015 and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed

  20. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  1. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  2. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    Science.gov (United States)

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).

  3. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    1991-05-01

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  4. Acceptable knowledge document for INEEL stored transuranic waste - Rocky Flats Plant waste. Revision 2

    International Nuclear Information System (INIS)

    1998-01-01

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems

  5. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  6. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Literature study regarding fire protection in nuclear power plants. Part I: Fire rated separations

    International Nuclear Information System (INIS)

    Isaksson, S.

    1995-06-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Conventional building codes can not give guidance on where to make fire rated separations in order to separate redundant trains of safety systems. The separation must originate in functional demands from the authorities on what functions are essential during and after a fire, and under what circumstances these functions shall be retained, i.e. the number of independent faults and initiating events. As a basic demand it is suggested to rate the strength of separations according to conventional building code, based on fire load. The whole separating construction shall have the same fire rating, including the ventilation system. Deviations from the basic demand can de done in case it can be proven that it is possible to compensate some or all of the fire rating with other measures. There is a general lack of statistical information regarding the reliability of fire separating constructions such as walls, fire doors, penetration seals and fire dampers. The amount of cables penetrating a seal is in many cases much higher in real installations than what has been tested for type approval. It would therefore be valuable to perform a furnace test with a more representative amount of cables passing through a penetration seal. Tests have shown that the 20 foot horizontal separation distance stipulated by NRC is not a guarantee against fire damage. Spatial separations based on general requirements shall not be allowed, but considered from case to case based on actual circumstances. For fire protection by isolation or coatings, it is of great importance to choose the method of protection carefully, to be compatible with the material it shall be applied on, and the environment and types of fire that may occur. 48 refs, 2 figs, 5 tabs

  8. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  9. Field heritability of a plant adaptation to fire in heterogeneous landscapes.

    Science.gov (United States)

    Castellanos, M C; González-Martínez, S C; Pausas, J G

    2015-11-01

    The strong association observed between fire regimes and variation in plant adaptations to fire suggests a rapid response to fire as an agent of selection. It also suggests that fire-related traits are heritable, a precondition for evolutionary change. One example is serotiny, the accumulation of seeds in unopened fruits or cones until the next fire, an important strategy for plant population persistence in fire-prone ecosystems. Here, we evaluate the potential of this trait to respond to natural selection in its natural setting. For this, we use a SNP marker approach to estimate genetic variance and heritability of serotiny directly in the field for two Mediterranean pine species. Study populations were large and heterogeneous in climatic conditions and fire regime. We first estimated the realized relatedness among trees from genotypes, and then partitioned the phenotypic variance in serotiny using Bayesian animal models that incorporated environmental predictors. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). An estimate on a subset of stands with more homogeneous environmental conditions was not different from that in the complete set of stands, suggesting that our models correctly captured the environmental variation at the spatial scale of the study. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire-related trait for evolutionary change in the wild. © 2015 John Wiley & Sons Ltd.

  10. The evolution of fire and invasive alien plant management practices in fynbos

    Directory of Open Access Journals (Sweden)

    B.W. van Wilgen

    2010-01-01

    Full Text Available The history and development of fire and invasive alien plant management policies in fynbos during the 20th century are reviewed. Fire was initially condemned outright as a destructive force, but as its vital role became better understood, management policies switched from protection to active burning in 1968. During the 1970s, large, coordinated research programmes were established, resulting in a solid basis of knowledge on which to develop fire management policies. Despite policies of prescribed burning, wild fires remain the dominant feature of the region, fortunately driving a variable fire regime that remains broadly aligned with conservation objectives. The problem of conserving fire-adapted fynbos is complicated by invading alien trees that are also fire-adapted. Research results were used to demonstrate the impacts of these invasions on water yields, leading to the creation of one of the largest alien plant control programmes globally. Despite improvements in control methods, alien trees, notably pines, continue to spread almost unchecked. Biological control offered some hope for controlling pines, but was ruled out as too high a risk for these commercially-important trees. Failure to address this problem adequately will almost certainly result in the severe degradation of remaining fynbos ecosystems.

  11. Biogas plants: Utilization of microorganisms for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, E A; Trieu, C

    1984-05-01

    The continuous realisation of the basic principles of environmental conservation and compatability demands concern about the problems of eliminating wastes in an industrialised society. Biogas- and therefore technical plants for methane generation by anaerobic fermentation have promoted to effective means of environmental protection and sources of alternate energy from organic wastes. Methane fermentation has been employed for the stabilisation of sludges at municipal waste treatment plants for decades. However, the anaerobic digestion process shows promising applications both for industrial effluents and agricultural wastes as well as municipal solid wastes and covered waste deposits. In view of the advances achieved interdisciplinary cooperation the actual potential and perspective of methane fermentation technology with respect to the solution of the increasing problems of waste management and energy supply is discussed.

  12. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    International Nuclear Information System (INIS)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira

    2007-01-01

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO 2 ), with thermoelectric power plants being responsible for about 7% of global CO 2 emissions. Microalgae can reduce CO 2 emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO 2 . When cultivated with 6% and 12% CO 2 , C. kessleri showed a high maximum specific growth rate (μ max ) of 0.267/day, with a maximum biomass productivity (P max ) of 0.087 g/L/day at 6% CO 2 . For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO 2 . We also found that these two microalgae also grew well when the culture medium contained up to 18% CO 2 , indicating that they have potential for biofixation of CO 2 in thermoelectric power plants

  13. Assessing the adequacy and reliability of fire barriers in nuclear power plants

    International Nuclear Information System (INIS)

    Beard, A.N.

    1991-01-01

    Fire barriers on nuclear power plants are essential for proper segregation of redundant trains of safety equipment. The contribution they make to nuclear safety is obviously significant, but difficult to quantify. As a result, the analysis of fire barriers for nuclear safety justification purposes tends to concentrate on demonstrating that they are adequate instead. The paper discusses various methods of analysing fire barriers and introduces work being completed on a method for quantifying the reliability of a fire barrier. (orig.)

  14. Investigating the Utility of Iron Ore Waste in Preparing Non-fired Bricks

    Science.gov (United States)

    Lamani, Shreekant R.; Mangalpady, Aruna; Vardhan, Harsha

    2017-10-01

    Iron ore waste is a major problem for mine owners due to the difficulty involved in its storage, handling and other environmental related issues. An alternative solution to this is utilisation of iron ore waste (IOW) as some value added product in construction industry. An attempt has been made in this paper in examining the possibility of making non-fired bricks from iron ore waste with some additives like cement and fly-ash. Each of the additives were mixed with IOW in different ratios and different sets of bricks were prepared. The prepared IOW bricks were cured for 7, 14, 21 and 28 days and their respective compressive strength and percentage of water absorption were determined. The results show that IOW bricks prepared with 9% and above cement and with 28 days of curing are suitable for brick making and meet the IS specifications. It was also observed that the weight of the prepared bricks with 9% cement with 28 days of curing varies between 2.35 and 2.45 kg whereas the weight of compressed fire clay bricks varies from 2.80 to 2.89 kg. Results also show that the cost of bricks prepared with cement ranging from 9 to 20% is comparable to that of commercially available compressed bricks.

  15. New fire and security rules change USA nuclear power plant emergency plans

    International Nuclear Information System (INIS)

    Garrou, A.L.

    1978-01-01

    New safety and security rules for nuclear power plants have resulted from the Energy Reorganisation Act and also from a review following the Browns Ferry fire. The content of the emergency plan which covers personnel, plant, site, as well as a general emergency, is outlined. New fire protection rules, the plan for security, local and state government assistance are also discussed, with a brief reference to the impact of the new rules on continuity of operations. (author)

  16. Filter safety tests under solvent fire in a cell of nuclear-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji

    1988-01-01

    In a nuclear-fuel reprocessing plant, a solvent fire in an extraction process is postulated. Since 1983, large scale solvent fire tests were carried out by Fire/Filter Facility to demonstrate solvent burning behavior in the cell, HEPA filter integrity by the fire and radioactive confinement by air-ventilation of the plant under postulated fire conditions. From results of 30 % TBP-70 % n-dodecane fire, burning rate of solvent in the cell, smoke generation rate and smoke deposition onto duct surface were obtained by a relation between air-ventilation rate into the cell and burning surface area of the solvent. The endurance of HEPA filter due to smoke plugging was measured by a pressure drop across the filter during the fire. The confinement of radioactive materials from the burning solvent was determined by the measurement of airborne concentrations in the cell for stable nuclei simulated fission products, radioactive tracers and uranium nitrate. (author)

  17. Radiation doses from coal-fired plants in Oxfordshire and Berkshire

    International Nuclear Information System (INIS)

    Wan, S.L.; Wrixon, A.D.

    1988-12-01

    This report contains an assessment of the radiation doses to members of the public living in Oxfordshire and Berkshire from the releases to atmosphere of natural radioactivity from Didcot Power Station and the coal-fired boilers that operate at the Atomic Weapons Establishment (AWE) at Aldermaston and the Harwell Laboratory of UKAEA. The calculated annual effective dose equivalents to adults from the emissions from Didcot Power Station and the coal-fired plants at AWE, Aldermaston, and UKAEA, Harwell, at 5 km from the sites are, respectively, 0.3, 0.06 and 0.01 μSv. The dose to red bone marrow are broadly comparable with these values. The doses to the other age groups considered (1-year-old and 10-year-old children) are similar to those to the adults. The conclusion is therefore drawn that the discharges from the coal-fired plants make a negligible contribution to the total radiation doses received by the population living around the sites. (author)

  18. Fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    Wright, H.A.

    1981-01-01

    This lecture describes briefly the chronological order of events which may arise for a very serious emergency situation in a nuclear power plant for which preparations should be made even though the situation has an extremely low probability of happening. The planning and preparedness required are expected to cope with a whole spectrum of emergency situations, from minor accidents to serious plant failures which also lead to releases of significant quantities of radioactive material beyond the site boundary. Fire protection aspects will be briefly covered, and some guidance will be provided on exercises to ensure the plans are feasible and the appropriate personnel and facilities are in a satisfactory state of preparedness. (orig./RW)

  19. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired......Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  20. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  1. Plant Community and Soil Environment Response to Summer Fire in the Northern Great Plains

    Science.gov (United States)

    Fire is a keystone process in many ecosystems, especially grasslands. However, documentation of plant community and soil environment responses to fire is limited for semiarid grasslands relative to that for mesic grasslands. Replicated summer fire research is lacking, but much needed because summe...

  2. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.; Heldebrant, David J.; Freeman, Charles J.

    2016-05-11

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankine Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.

  3. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  4. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  5. Strategy and system of fire protection at Guangdong Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhou Weihong

    1999-12-01

    The fire protection is an important safety issue of nuclear power utilities. The author depicts the strategy and management system of fire protection implemented successfully at Guangdong Daya Bay Nuclear Power Plant of China

  6. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued

  7. Aqueous Waste Treatment Plant at Aldermaston

    International Nuclear Information System (INIS)

    Keene, D.; Fowler, J.; Frier, S.

    2006-01-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  8. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw-fired...

  9. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  10. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  11. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  12. Fire simulation in radioactive waste disposal and the radiation risk associated

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento

    2018-01-01

    An atmospheric dispersion of radioactive material is one of the possible consequences of an accident scenario in nuclear installations, radiative and radioactive waste deposit. Taking into account a possibility of this release of radioactive material into the atmosphere this work proposes a modeling of the atmospheric dispersion from a fire scenario in a deposit of radioactive waste of low and middle level of radiation varying the amount of inventory released in the fire. For this simulation was adopted the software of physical codes of medical health, the HotSpot Health Physics Codes which uses the Gaussian model to calculate an atmospheric dispersion based on the Pasquill atmospheric stability classes. This software calculates a total effective dose in relation to distance, such as a compromised dose in a list of specific organs, among them the lung, object of work study for calculating the risk of cancer associated with a low dose of radiation. The radiological risk calculation is held by the BEIR V model, Biological Effects of Ionizing Radiations, one of the models to estimate the relative risk of cancer induced by ionizing radiation. (author)

  13. Radioactive emission from thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1981-07-01

    Radioactive hazards of the emissions and wastes of thermal power plants arising from fuel impurities of uranium and thorium are discussed. The hazard due to radioactive emission is calculated for an average Australian bituminous coal which contains 2 ppm of U and 2.7 ppm of Th. When the dust removal efficiency of a coal-fired power plant is 99%, the radioactive hazard is greater than that of a nuclear reactor of the same electrical output. After 500 years the radioactive toxicity of the coal waste will be higher than that of fission products of a nuclear reactor and after 2,000 years it will exceed the toxicity of all the nuclear wastes including actinides. The results of a recent calculation are shown, according to which the radioactive hazard of a coal-fired power plant to the public is from several hundred to several tens of thousands of times higher than that of a total fuel cycle of plutonium. It is found that in some regions, such as Japan, the hazard due to /sup 210/Po through seafood could be considerable.

  14. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  15. Waste Treatment & Immobilization Plant Project

    Data.gov (United States)

    Federal Laboratory Consortium — In southeastern Washington State, Bechtel National, Inc. is designing, constructing and commissioning the world's largest radioactive waste treatment plant for the...

  16. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    International Nuclear Information System (INIS)

    Fernández-Fernández, M.; Gómez-Rey, M.X.; González-Prieto, S.J.

    2015-01-01

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ 15 N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH 4 + –N and NO 3 − –N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ 15 N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years. - Highlights: • We hypothesized

  17. Superheater corrosion in biomass-fired power plants: Investigation of Welds

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Carlsen, B; Biede, O

    2002-01-01

    -fired Masnedø combined heat and power (CHP) plant to investigate corrosion at temperatures higher than that of the actual plant. The highest steam temperature investigated was 570°C. Various alloys of 12-22% chromium content were welded into this test loop. Their corrosion rates were similar and increased...... condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A test superheater was built into the straw...... with temperature. The mechanism of attack was grain boundary attack as a precursor to selective chromium depletion of the alloy. In addition welds coupling various tubes sections were also investigated. It was seen that there was preferential attack around those welds that had a high nickel content. The welds...

  18. Fire analysis. Relevant aspects from Spanish nuclear power plants experience

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Pedro; Villar, Tomas [Empresarios Agrupados A.I.E., Madrid (Spain). Nuclear Safety Dept.

    2015-12-15

    Empresarios Agrupados A.I.E. leads the development and updating of fire analysis for the Spanish NPP's. Some of them decided to voluntarily adopt standard NFPA-805 as an alternative to the current fire protection rules. Fire Probabilistic Risk Assessment (PRA) methodologies have been continuously evolving during recent years. This paper will briefly present experience gained in relationship with some relevant aspects of fire risk analysis. Associated circuits need to be evaluated to determine if cable faults can prevent or cause the maloperation of redundant safety related systems. If a circuit is not properly protected by an isolation device, fire damage to a cable could propagate to other safe shutdown cables. In order to check that the coordination is adequate, existing electrical protections coordination studies have been analyzed and, for some plants, additional analyses have been performed for DC and AC for instrumentation an control (I and C) systems. Spurious actuations are also a basic part of the analysis of the consequence of a fire, which should consider any possible actuation that can prevent or affect the performance of a system or safety function. In this context, it was furthermore necessary to take into account the possibility of a combination of several spurious actuations that can result in a specific consequence, according to Appendix G of NEI 00-01 Rev. 2. These are the so-called Multiple Spurious Operations (MSOs). One key element in fire analysis is the availability of validated fire models used to estimate the spread of fire and the failure time of cable raceways. NFPA 805 states that fire models shall only be applied within the limitations of the given model. The applicability of the validation results is determined using normalized parameters traditionally used in fire modeling applications. Normalized parameters assessed in NUREG-1934 may be used to compare NPP fire scenarios with validation experiments. If some of the parameters do

  19. Savannah River Plant Separations Department mixed waste program

    International Nuclear Information System (INIS)

    Wierzbicki, W.M.

    1988-01-01

    The Department of Energy's (DOE) Savannah River Plant (SRP) generates radioactive and mixed waste as a result of the manufacture of nuclear material for the national defense program. The radioactive portion of the mixed waste and all nonhazardous radioactive wastes would continue to be regulated by DOE under the Atomic Energy Act. The Separations Department is the largest generator of solid radioactive waste at the Savannah River Plant. Over the last three years, the Separations Department has developed and implemented a program to characterize candidate mixed-waste streams. The program consisted of facility personnel interviews, a waste-generation characterization program and waste testing to determine whether a particular waste form was hazardous. The Separations Department changed waste-handling practices and procedures to meet the requirements of the generator standards. For each Separation Department Facility, staging areas were established, inventory and reporting requirements were developed, operating procedures were revised to ensure proper waste handling, and personnel were provided hazardous waste training. To emphasize the importance of the new requirements, a newsletter was developed and issued to all Separations supervisory personnel

  20. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  1. New Mexico waste plant sits idle amid controversy

    International Nuclear Information System (INIS)

    Lovejoy, L.A. Jr.

    1994-01-01

    The Department of Energy (DOE) hopes to permanently dispose of radioactive waste from its weapons program at a Waste Isolation Pilot Plant about 26 miles from Carlsbad, New Mexico. The plant has been plagued by problems, according to Lindsay A. Lovejoy, Jr., an assistant attorney general of New Mexico. Among them are cracks in the walls of some of the underground rooms slated for storage of radioactive waste. Meanwhile, above-ground problems involve DOE's struggle toward regulatory compliance. The Environmental Protection Agency (EPA), under the Resource Conservation Recovery Act, has assumed a regulatory role over DOE's radioactive waste-disposal efforts, which is a new role for the agency. Lovejoy proposes that EPA, in its regulation of the New Mexico plant, develop compliance criteria and involve DOE and the public in ongoing open-quotes dialogue aimed at ferreting out any and all problems before a single scrap of radioactive waste is deposited into the earth beneath new Mexico.close quotes

  2. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  3. Radiological impact of the storage of solid wastes from coal-fored power plants

    International Nuclear Information System (INIS)

    Hugon, J.; Caries, J.C.; Patellis, A.; Roussel, S.

    1983-01-01

    Solid wastes from the coal-fired power plant of GARDANNE are stared in piles, outside near the unit. The coal contains a high proportion of sulfur, so the storage pile is a very reducing middle. The radium coming from the ore, which is mostly retained in the bottom ashes, could then be solubilized again, by physicochemical processes, leached by the rain and reach the nearest population through the food-chain pathways. Leaching-tests where made with three sampling series. The measurement datas show that only 15% of the 226 Ra can be solved and that the Ra 226 observed concentrations in vegetal samples come mostly from transportation of dust by the wind [fr

  4. Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions

    Science.gov (United States)

    Alves-Silva, Estevão; Del-Claro, Kleber

    2013-06-01

    Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant-plant-herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant-plant mutualism.

  5. Dechlorane Plus (DP) in air and plants at an electronic waste (e-waste) site in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shejun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tian Mi; Wang Jing; Shi Tian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Luo Yong [Guangdong Forestry Survey and Planning Institute, Guangzhou 510520 (China); Luo Xiaojun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Mai Bixian, E-mail: nancymai@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-05-15

    Air and foliage samples (Eucalyptus spp. and Pinus massoniana Lamb.) were collected from e-waste and reference sites in South China and analyzed for Dechlorane Plus (DP) and two dechlorinated DPs. DP concentrations in the air were 13.1-1794 pg/m{sup 3} for the e-waste site and 0.47-35.7 pg/m{sup 3} for the reference site, suggesting the recycling of e-waste is an important source of DP to the environment. Plant DP, with concentrations of 0.45-51.9 ng/g dry weight at the e-waste site and 0.09-2.46 ng/g at the reference site, exhibited temporal patterns similar to the air DP except for pine needle at the reference site. The air-plant exchange of DP could be described with the two-compartment model. Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. The ratios of anti-Cl{sub 11} DP to anti-DP in the air and plants may indicate the preferential uptake of dechlorinated DP by plant compared with DP. - Highlights: > Dechlorane Plus was widely present in the air and plants in South China. > Temporal patterns of the plant DP could be described with the two-compartment model. > Plant uptake can efficiently reduce air DP concentration at the reference site. > Anti-Cl{sub 11} DP was measured in most air and plant samples from the e-waste site. - E-waste recycling in South China results in wide occurrence of DP in the air and plant.

  6. Aerosols released from solvent fire accidents in reprocessing plants

    International Nuclear Information System (INIS)

    Jordan, S.; Lindner, W.

    1985-01-01

    Thermodynamic, aerosol characterizing and radiological data of solvent fires in reprocessing plants have been established in experiments. These are the main results: Depending on the ventilation in the containment, kerosene-TBP mixtures burn at a rate up to 120 kg/m 2 h. The aqueous phase of inorganic-organic mixtures might be released during the fire. The gaseous reaction products contain unburnable acidic compounds. Solvents with TBP-nitrate complex shows higher (up to 25%) burning rates than pure solvents (kerosene-TBP). The nitrate complex decomposes violently at about 130 0 C with a release of acid and unburnable gases. Up to 20% of the burned kerosene-TBP solvents are released during the fire in the form of soot particles, phosphoric acid and TBP decomposition products. The particles have an aerodynamic mass median diameter of about 0.5 μm and up to 1.5% of the uranium fixed in the TBP-nitrate complex is released during solvent fires. (orig.)

  7. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  8. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  9. Fire protection requirements of the insurance industry and their impact on nuclear power plant design and construction

    International Nuclear Information System (INIS)

    Deitchman, J.V.; King, W.T. Jr.; Nashman, T.A.

    1976-01-01

    The insurance industry, with its wealth of knowledge and experience in the fire protection area and with preservation of its funds at stake, has always been heavily involved in the fire protection programs of nuclear power plants. Since it was concerned with property preservation in addition to nuclear safety, the insurance industry placed more detailed emphasis on fire protection requirements than did the nuclear regulatory bodies. Since the Browns Ferry fire, however, the insurance industry, the Nuclear Regulatory Commission, the Advisory Committee on Reactor Safeguards and the utilities themselves have re-examined their approaches to fire protection. A more coordinated approach seems to have emerged, which is based largely upon insurance industry specifications and guidelines. The paper briefly summarizes the fire protection requirements of the insurance industry as they apply to nuclear power plants. Some of the ways these requirements affect project planning, plant design, and construction timing are reviewed, as well as some of the more controversial fire protection areas

  10. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  11. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  12. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  13. B-Plant canyon fire foam supply

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    A new raw water supply was installed for the B-Plant fire foam system. This document details tests to be performed which will demonstrate that the system can function as designed. The tests include: Verification of the operation of the automatic valves at the cells; Measurement of water flow and pressure downstream of the proportioner; Production of foam, and measurement of foam concentration. Included as an appendix is a copy of the work package resolution (J4 ampersand J4a)

  14. Improvements of radioactive waste management at WWER nuclear power plants

    International Nuclear Information System (INIS)

    2006-04-01

    This report is part of a systematic IAEA effort to improve waste management practices at WWER plants and to make them consistent with the current requirements and standards for safe and reliable operation of nuclear power plants. The report reviews the wet and dry solid waste management practices at the various types of WWER nuclear power plants (NPP) and describes approaches and recent achievements in waste minimization. Waste minimization practices in use at western PWRs are reviewed and compared, and their applicability at WWER plants is evaluated. Radioactive waste volume reduction issues and waste management practices are reflected in many IAEA publications. However, aspects of waste minimization specific to individual WWER nuclear power plant designs and WWER waste management policies are not addressed extensively in those publications. This report covers the important aspects applicable to the improvement of waste management at WWER NPP, including both plant-level and country-level considerations. It is recognized that most WWER plants are already implementing many of these concepts and recommendations with varying degrees of success; others will benefit from the included considerations. The major issues addressed are: - Review of current waste management policies and practices related to WWERs and western PWRs, including the influence of the original design concepts and significant modifications, liquid waste discharge limits and dry solid waste clearance levels applied in individual countries, national policies and laws, and other relevant aspects affecting the nature and quantities of waste arisings; - Identification of strategies and methods for improving the radioactive waste management generated in normal operation and maintenance at WWERs. This report is a composite (combination) of the two separate initiatives mentioned above. The first draft report was prepared at the meeting 26-30 May 1997 by five consultants. The draft was improved during an

  15. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  16. Improving plant performance through efficient nuclear waste management - The French experience

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1986-01-01

    This paper discusses high and low level waste management and its effect on Plant Performance. In France, high level waste policy is an improtant factor in plant performance. The LLW section of the paper discusses the role of French Industry organization as well as the benefits of standard plants with standard practices. The regulation of the production of waste and the waste processing by utilities is covered

  17. Fighting fire with gas. CO{sub 2} extinguishes smouldering fires in biomass silos and waste bunkers; Effizientes Feuerwehr-Gas. CO{sub 2} loescht Schwelbraende in Biomasse-Silos und Abfallbunkern

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-07-01

    Organic materials are a great source of energy and so biomass is in big demand. But wherever large amounts of wood, waste and straw are stored in huge silos, there is also a risk of smouldering fires and even explosions. Conventional methods are relatively ineffective at extinguishing fires such as these. But a new extinguishing system from Linde uses CO{sub 2} to effectively fight smouldering fires at the source. (orig.)

  18. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  19. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  20. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  1. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  2. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    de Morais, M.G.; Costa, J.A.V. [Federal University of Rio Grande, Rio Grande (Brazil)

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({lambda}{sub max}) of 0.267/day, with a maximum biomass productivity (P-max) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  3. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil); Costa, Jorge Alberto Vieira [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil)]. E-mail: dqmjorge@furg.br

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({mu} {sub max}) of 0.267/day, with a maximum biomass productivity (P {sub max}) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  4. Radioactive commitment due to use of coal in power plants

    International Nuclear Information System (INIS)

    Fenger, J. and H. Flyger.

    1980-11-01

    A short review of the literature on release of radioactivity due to use of coal in power plants with the emphasis on the stack effluent and waste products. It is concluded that during normal operation coal fired power plants give a larger dose commitment than nuclear power plants, but both types have insignificant effects. The problem of waste management has never been studied in detail; ash deposit should probably be monitored. (Auth)

  5. Advancing grate-firing for greater environmental impacts and efficiency for decentralized biomass/wastes combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Li, Shuangshuang

    2017-01-01

    to well suit decentralized biomass and municipal/industrial wastes combustion. This paper discusses with concrete examples how to advance grate-firing for greater efficiency and environmental impacts, e.g., use of advanced secondary air system, flue gas recycling and optimized grate assembly, which...

  6. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  7. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  8. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  9. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  10. Report of the international fire safety mission to Temelin, unit 1 nuclear power plant Czech Republic 4 to 14 February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents the results of an IAEA Fire Safety Mission conducted within the scope of Technical Co-operation Project CZR/9/005 to assess the licensing process, design, analysis and operational management of the Temelin Nuclear Power Plant with regards to fire safety of the plant. The Temelin Nuclear Power Plant currently has two units under construction. Each unit is equipped with a pressurized water reactor of the WWER design with a net electrical output of about MWe. The plant has already made significant upgrading in fire protection from the original design. The Team's evaluation is based on the IAEA Safety Series No. 50-SG-D2 (Rev.1), Fire Protection in Nuclear Power Plants, and other fire protection guidelines currently produced by the IAEA. The evaluation, conclusions and recommendations presented in this report reflect the views of the Fire Safety Mission experts. The recommendations are provided for consideration by the responsible authorities in the Czech Republic towards enhancing fire safety at the Temelin plant

  11. Use of a field model to analyze probable fire environments encountered within the complex geometries of nuclear power plants

    International Nuclear Information System (INIS)

    Boccio, J.L.; Usher, J.L.; Singhal, A.K.; Tam, L.T.

    1985-08-01

    A fire in a nuclear power plant (NPP) can damage equipment needed to safely operate the plant and thereby either directly cause an accident or else reduce the plant's margin of safety. The development of a field-model fire code to analyze the probable fire environments encountered within NPP is discussed. A set of fire tests carried out under the aegis of the US Nuclear Regulatory Commission (NRC) is described. The results of these tests are then utilized to validate the field model

  12. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  13. Cernavoda nuclear power plant: Modifications in the fire protection measures of the CANDU 6 standard design

    International Nuclear Information System (INIS)

    Covalschi, V.

    1998-01-01

    Having as purpose the improvement of fire safety at the Cernavoda NPP - both in the prevention and the protection aspects in the case of fire - we implemented some modifications in the CANDU 6 standard design. These improvements are inspired, mainly, from two sources: the world-wide achievements in the field of fire protection techniques, introduced in nuclear power plants since the middle of 70's, when the CANDU 6 design was completed; the national practice and experience in fire protection, usually applied in industrial objectives (conventional power plants, in particular). The absence of any incident may be considered as a proof of the efficiency of the implemented fire preventing and protection measures. (author)

  14. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  15. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  16. Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain.

    Science.gov (United States)

    Kaye, Jason Philip; Romanyà, Joan; Vallejo, V Ramón

    2010-10-01

    We measured plant and soil carbon (C) storage following canopy-replacing wildfires in woodlands of northeastern Spain that include an understory of shrubs dominated by Quercus coccifera and an overstory of Pinus halepensis trees. Established plant succession models predict rapid shrub recovery in these ecosystems, and we build on this model by contrasting shrub succession with long-term C storage in soils, trees, and the whole ecosystem. We used chronosequence and repeated sampling approaches to detect change over time. Aboveground plant C increased from fire, which is substantially less than the 5,942 ± 487 g C m(-2) (mean ±1 standard error) in unburned sites. As expected, shrubs accumulated C rapidly, but the capacity for C storage in shrubs was 20 years post fire, and accounted for all of the difference in plant C between older burned sites and unburned sites. In contrast, soil C was initially higher in burned sites (~4,500 g C m(-2)) than in unburned sites (3,264 ± 261 g C m(-2)) but burned site C declined to unburned levels within 10 years after fire. Combining these results with prior research suggests two states for C storage. When pine regeneration is successful, ~9,200 g C m(-2) accumulate in woodlands but when tree regeneration fails (due to microclimatic stress or short fire return intervals), ecosystem C storage of ~4,000 g C m(-2) will occur in the resulting shrublands.

  17. Procedures and applications to enlarge the level 1+ PSA to internal fires in German nuclear power plants

    International Nuclear Information System (INIS)

    Berg, H.P.; Breiling, G.; Hoffmann, H.H.

    1997-01-01

    Investigations have shown that the consequences from fires in nuclear power plants can be significant. Methodologies considering fire in probabilistic safety analyses have been evolving in the last few years. In order to provide a basis for further discussions on benefits and limits of such an analysis in Germany, current methods are investigated. As a result a qualitative screening process is proposed to identify critical fire zones followed by a quantitative event tree analysis in which the fire caused frequency of initiating events and different core damage states will be determined. The models and data proposed for a probabilistic fire risk analysis have been successfully applied in complete and partial fire risk assessments in German nuclear power plants

  18. Technico-economic evaluation of abatement systems applying to air pollution resulting from coal-fired power plants

    International Nuclear Information System (INIS)

    Mounier, Marc.

    1981-09-01

    The aim of this study is to contribute to the analysis of the health care policies which could be considered in coal-fired power plants, in the comparative framework of the radiation protection in nuclear power plants. After a recall of the typical parameters of the air pollution due to the normal operation of a coal-fired power plant, we develop a heuristic model which allows, after having quantified the releases, to determine the theoretical health effects associated to a one-year operation of the power plant. The comparison of the various protection policies has been done with the help of a cost-effectiveness analysis. An examination of the results shows that the policy presently implemented forms a part of the cost-effective options. Nevertheless, it can be seen that the marginal protection cost is higher in nuclear power plants than in coal-fired power plants [fr

  19. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  20. Radioactive waste processing method for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kuriyama, O

    1976-06-04

    Object is to subject radioactive liquid waste in a nuclear power plant to reverse permeation process after which it is vaporized and concentrated thereby decreasing the quantity of foam to be used to achieve effective concentration of the liquid waste. Liquid waste containing a radioactive material produced from a nuclear power plant is first applied with pressure in excess of osmotic pressure by a reverse permeation device and is separated into clean water and concentrated liquid by semi-permeable membrane. Next, the thus reverse-permeated and concentrated waste is fed to an evaporator which control foaming by the foam and then further reconcentrated for purification of the liquid waste.

  1. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  2. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J E; Simms, N J [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A B [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  3. Shrub removal in reforested post-fire areas increases native plant species richness

    Science.gov (United States)

    Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford

    2016-01-01

    Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...

  4. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  5. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: the Mount Carmel range, Israel

    Science.gov (United States)

    Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo

    2016-04-01

    Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses (. The effects of two consequent fires (1989 and 2005) on SWR were assessed in the Carmel Mountains, Israel. Fire history, plant recovery and post-fire management were investigated as determining factors in a time dependent system. SWR was highest in the >50 years unburnt plots, where soil under Pinus halepensis is most hydrophobic. In the most disturbed soils (twice burnt), many sites have a low to absent SWR even if the soil is very dry. The dynamics and fluctuations in SWR differ in magnitude under different plant species. The areas treated with CC (chipping of charred trees) showed a much higher SWR than areas left untreated. From these insights, a conceptual model of the reaction of SWR on multiple fires was developed. KEYWORDS: Soil water repellency, WDPT, Wildfires, Vegetation recovery, post-fire management, Mediterranean.

  6. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  7. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  8. Carbon dioxide recovery from gas-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Ricardo Salgado; Barbosa, Joao Roberto [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mails: martinsr@epenergy.com; barbosa@mec.ita.br; Prado, Eduardo Lanari [Rice Univ., Houston, TX (United States). Jones Graduate School of Business]. E-mail: pradoe@epenergy.com; Vieira, Adriana de Moura [Instituto Brasileiro de Mercado de Capitais (IBMEC), Rio de Janeiro, RJ (Brazil). Dept. de Financas]. E-mail: vieiraa@epenergy.com

    2000-07-01

    Since 1996 the Brazilian electric sector has undergone a major restructuring. The aim of such change is to reduce the State's participation in the sector, and to induce the growth of private investments. In particular, this event created several opportunities for thermal power plant projects, leading to competition at the generation level. In this scenario of increased competition, the power plant efficiency becomes a key element for determining the feasibility and profitability of the project. Moreover, the utilization of the plant's own effluents as feedstock or as a source of additional revenue will impact positively in its economics. As an example, long term additional revenues could be created by the sale of CO{sub 2} extracted from the combustion products of thermal power plants. The production of CO{sub 2} also contributes to mitigate the environmental impacts of the power plant project by significantly reducing its airborne emissions. This paper shows how a gas-fired power plant can extract and utilize CO{sub 2} to generate additional revenue, contributing to a more competitive power plant. (author)

  9. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study

  10. Failure modes of safety-related components at fires on nuclear power plants

    International Nuclear Information System (INIS)

    Aaslund, A.

    2000-03-01

    Probabilistic assessment methods can be used to identify specific plant vulnerabilities. Application of such methods can also facilitate selection among system design alternatives available for safety enhancements. The quality of assessment results is however strongly dependent on realistic and accurate input data for modelling of system component behaviour and failure modes during conditions to be assessed. Use of conservative input data may not lead to results providing guidance on safety upgrades. Adequate input data for probabilistic assessments seems to be lacking for at least failure modes of some electrical components when exposed to a fire. This report presents an attempt to improve the situation with respect to such input data. In order to take advantage of information in existing documentation of fire incident occurrences some of the lessons learned from the fire at Browns Ferry Nuclear Power Plant on March 22, 1975 are discussed in this report. Also a summary of results from different fire tests of electrical cables presented in a fire risk analysis report is a part of the references. The failure modes used to describe fire-induced damage are 'open circuit' and 'hot short' which seems to be commonly accepted terms within the branch. Definitions of the terms are included in the report. Effects of the failure modes when occurring in some of the channels of the reactor protection system are discussed with respect to the existing design of the reactor protection system at Ringhals 2 nuclear power unit. Experiences from the Browns Ferry fire and results from fire tests of electrical cables indicate that the dominating failure mode for electrical cables is 'open circuit'. An 'open circuit' failure leads to circuit disjunction and loss of continuity. The circuit can no longer transmit its signal or power. When affecting channels of the reactor protection system an 'open circuit' failure can cause extensive inadvertent actions of safety related equipment

  11. Action taken by the french safety authorities for fire protection and fire fighting in basic nuclear plants

    International Nuclear Information System (INIS)

    Savornin, J.; Gibault, M.; Berger, R.; Kaluzny, Y.; Wallard, H.E.; Winter, D.

    1989-03-01

    The safety goal for nuclear installations is to prevent the dispersal of radioactive substances, both in the work area and outside the buildings into the environment. It is therefore at the design stage, then during construction and subsequent operation that it is necessary to take preventive measures against the outbreak of fire, and to take precautions to ensure that the consequences will always be limited. The paper describes the arrangements made by the French safety authorities to provide protection against fire in both nuclear plants and nuclear fuel cycle installations at all these stages

  12. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  13. Radioactivity level of soil around Baqiao coal-fired power plant in China

    International Nuclear Information System (INIS)

    Lu, Xinwei; Zhao, Caifeng; Chen, Cancan; Liu, Wen

    2012-01-01

    Natural radioactivity level of soil around Baqiao coal-fired power plant in China was determined using gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K in the studied soil samples range from 27.6 to 48.8, 44.4 to 61.4 and 640.2 to 992.2 Bq kg −1 with an average of 36.1, 51.1 and 733.9 Bq kg −1 , respectively, which are slightly higher than the average values of Shaanxi soil. The radium equivalent activity, the air absorbed dose rate and the annual effective dose rate were calculated and compared with the internationally reported or reference values. The radium equivalent activities of the studied samples are below the internationally accepted values. The air absorbed dose rate and the annual effective dose rate received by the local residents due to the natural radionuclides in soil are slightly higher than the mean value of Xi'an and worldwide. - Highlights: ► Natural radioactivity in soil around the coal-fired power plant was determined. ► Radiological parameters were used to assess radiation hazard. ► The coal-fired power plant has affected the local radioactivity level.

  14. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  15. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  16. Radioactive waste treatment technology at Czech nuclear power plants

    International Nuclear Information System (INIS)

    Kulovany, J.

    2001-01-01

    This presentation describes the main technologies for the treatment and conditioning of radioactive wastes at Czech nuclear power plants. The main technologies are bituminisation for liquid radioactive wastes and supercompaction for solid radioactive wastes. (author)

  17. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  18. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  19. Development of bitumization plant of radioactive waste

    International Nuclear Information System (INIS)

    Lee, S.H.; Chun, K.S.; Song, H.Y.; Park, S.H.; Park, W.J.; Ryoo, R.; Cho, W.J.; Wee, K.S.; Lee, J.D.

    1981-01-01

    This study is to develop the bitumization techniques of radioactive waste concentrates from nuclear power plants (PWR), Cold-run and hot-run bitumization pilot plant were designed and constructed, and testing was carried out. The results show that the range of pH 7 to 8, in which a soluble product could form, is suitable for feeding in the waste and for its incorporation into asphalt, domestic blown asphalt is suitable up to an exposure of 10 8 rad. The estimated viscosity of the asphalt/waste product is about 14 poises at 175 0 C and the asphalt/wastes products in simulated sea-water for three weeks showed no evidence of swelling. The leaching rate from the spent resin/asphalt products in distilled water less than 1/1000 of that from the cement-products. It is considered that the resin content which is suitable for the incorporation of spent resin into asphalt is less than 50 wt%

  20. Coal-Fired Power Plants, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Approximate locations of active coal-fired power plants located in US EPA's Region 9. Emission counts from the 2005 National Emissions Inventory (NEI) are included...

  1. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  2. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  3. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  4. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  6. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  7. Waste Isolation Pilot Plant No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program

  8. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  9. The exploitation of sludge from aggregate plants in the manufacture of porous fired clay bricks

    Directory of Open Access Journals (Sweden)

    Chamorro-Trenado, M. A.

    2016-09-01

    Full Text Available Aggregates (gravel and sand are, after water, the Earth’s second most used natural resource, representing about 50% of all consumed mineral resources. Aggregate production generates a large quantity of waste from the aggregate washing process. This waste is made up of suspended solids – sludge – which has a great environmental impact. It is deposited in huge troughs because of the impossibility of discharging it directly into rivers. Many plants have incorporated decanters and filter presses to separate the solid from the liquid fraction. This paper evaluates the possibility of exploiting the solid fraction (i.e. sludge in the manufacture of fired clay bricks. The added value of these bricks is, on the one hand, the exploitation of sludge as a currently useless waste product, and on the other, the use of this sludge to enhance the physical and mechanical properties of conventional fired clay bricks.Los áridos son la segunda materia prima más consumida en la Tierra después del agua, representando alrededor del 50% de todos los recursos minerales consumidos. El proceso de elaboración de estos áridos genera una gran cantidad de residuos procedentes de su lavado. Se trata de partículas sólidas en suspensión – lodos – de gran impacto ambiental, que se depositan en grandes charcas ante la imposibilidad de verterlos directamente al rio. Muchas empresas han incorporado decantadores y filtros de prensa para separar la fracción solida de la líquida. El presente trabajo evalúa la posibilidad de utilizar la fracción sólida, es decir el barro, para la fabricación de piezas cerámicas. El valor añadido de estas piezas es por un lado el aprovechamiento del barro como producto residual, que en estos momentos es desechable, y por otro, conseguir que este barro mejore las propiedades físico-mecánicas de la cerámica convencional.

  10. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  11. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste

    International Nuclear Information System (INIS)

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations

  12. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  13. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  14. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  15. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  16. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  17. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  18. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  19. Energy from waste by gasification; Energi ur avfall genom foergasning

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader; Nilsson, Torbjoern; Berge, Niklas [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    At present the investigation on alternative techniques to solve the problem with the growing amount of the wastes within European countries is a highly propitiated research area. The driving forces behind this priority are the current EU-legislations regarding the ban on landfill of combustible wastes and also the regulation on emission limits from waste treatment plants. The alternatives for waste treatment besides recycling are incineration, direct co-combustion and gasification. Co-combustion of waste with biomass can be considered a short-term solution for the problem but has the disadvantages of decreasing the capacity for clean fuels such as biomass and set demands on intensive modifications in the existing heat or heat and power plants. Waste gasification is an attractive alternative that can compete with incineration and co-combustion processes when the environmental and economical aspects are concerned. The product gas from a waste gasifier can be burned alone in conventional oil fired boilers or be co-fired with biomass in biomass plant. Fuel quality, gas cleaning system and questions related to ash treatment are the key parameters that must be considered in design and construction of a waste gasification process. Gasification of waste fractions that have limited contents of contaminants such as nitrogen, sulfur and chlorine will simplify the gas cleaning procedure and increase the competitiveness of the process. Heavy metals will be in captured in the fly ash if a gas filtering temperature below 200 deg C is applied. Activated carbon can be used as a sorbent for mercury, lime or alkali for capturing chlorine. For fuels with low Zn content a higher gas filtering temperature can be applied. Direct co-combustion or gasification/co-combustion of a fuel with low heating value affects two main parameters in the boiler: the adiabatic combustion temperature and the total capacity of the boiler. It is possible to co-fire: a) sorted MSW: 25%, b) sorted industrial

  20. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  1. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  2. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  3. Fire safety in the atomic age

    International Nuclear Information System (INIS)

    Whitman, L.E.

    1980-01-01

    This nontechnical review of radiation hazards acquaints those faced with radiation fire-safety problems (firemen, plant safety personnel, technicians, and others) with what the hazards are, where they may be found, and how to deal with them. It removes unnecessary fears and misconceptions by giving a picture of radiation as something that is neither to be feared nor ignored, but rather something that can be lived with safely. Since all radioactive materials emit energy that has the power to damage living tissue, those involved with fire protection who might come into contact with such materials must understand both the real dangers from a variety of radiation exposures, and the safest, most-effective ways to avert danger to themselves and others. Whitman discusses in detail the potential hazards, from contamination from radioactive waste to transportation of radioactive materials, from nuclear power plants to radiation machinery and nuclear weapons. He presents the basic facts and includes practical problems to be solved. 14 references, 65 figures

  4. Fire-driven alien invasion in a fire-adapted ecosystem

    Science.gov (United States)

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  5. Fire-driven alien invasion in a fire-adapted ecosystem.

    Science.gov (United States)

    Keeley, Jon E; Brennan, Teresa J

    2012-08-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  6. Optimum power yield for bio fuel fired combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Nystroem, Olle; Joensson, Mikael

    2012-05-15

    Plant owners, suppliers, research institutions, industry representatives and (supporting) authorities are continuing to question the viability of what can be expected by increasing the steam data and the efficiency of cogeneration plants. In recent years, the overall conditions for investment in CHP have changed. Today, there is access to new materials that allow for more advanced steam data while maintaining availability. Although the financial environment with rising prices of electricity, heating and fuel along with the introduction of energy certificates and the interest in broadening the base of fuel has changed the situation. At the same time as the increased interest in renewable energy production creates competition among energy enterprises to find suppliers, increased prices for materials and labor costs have also resulted in increased investment and maintenance costs. Research on advanced steam data for biomass-fired power cogeneration plants has mainly emphasized on technical aspects of material selection and corrosion mechanisms based on performance at 100 % load looking at single years. Reporting has rarely been dealing with the overall economic perspective based on profitability of the CHP installations throughout their entire depreciation period. In the present report studies have been performed on how the choice of steam data affects the performance and economy in biomass-fired cogeneration plants with boilers of drum type and capacities at 30, 80 and 160 MWth with varied steam data and different feed water system configurations. Profitability is assessed on the basis of internal rate of return (IRR) throughout the amortization period of the plants. In addition, sensitivity analyses based on the most essential parameters have been carried out. The target group for the project is plant owners, contractors, research institutions, industry representatives, (supporting) authorities and others who are faced with concerns regarding the viability of what

  7. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  8. Criteria for classification and reporting of fire incidences in nuclear power plants of India

    International Nuclear Information System (INIS)

    Kapoor, R.K.

    1998-01-01

    Is is important that all fires in and around fire effective neighbourhood of Nuclear Power Plant (NPP) should be promptly reported (Reportable fires) and investigated. However, the depth of investigation and the range of authorities to whom the individual fire incidence need to be reported depends upon the severity of fire. In case of conventional non-chemical industries, the severity of fire depends mainly on the extent of loss caused by fire on property and the burn injury to persons. In case of NPP, two additional losses viz, release of radioactivity to working/public environment and the risk to safety related systems of NPP due to fire assume greater importance. This paper describes the criteria used in NPPs of India for classification of reportable fire incidences into four categories, viz. Insignificant, small, medium and large fires. It also gives the level of investigation depending upon the severity of fire. The fire classification scheme is explained in this paper with the help of worked out examples and two incidences of fire in Indian NPPs. (author)

  9. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  10. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  11. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    1998-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include ''engineering tools'' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire PRA analyses are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (author)

  12. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    2000-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include 'engineering tools' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire probabilistic risk analyses (PRA) are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (orig.) [de

  13. Management of low level wastes at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Moriya, N.; Ochi, E.

    2006-01-01

    Full text: At Rokkasho Reprocessing Plant (RRP), after start-up of the commercial operation, radioactive wastes will be generated. Wastes generated from a reprocessing plant generally consist of many kinds of characteristics in view of ''activity level'', ''nuclide composition'', ''chemical properties'', ''physical properties'', and so on. For stable operation of a reprocessing plant, we should t reat , ''condition'' and ''dispose'' these wastes considering these wastes characteristics. To contribute to the nuclear fuel cycle project, it is important to evaluate technologies such as, ''Treatment'', ''Conditioning'' and ''Final Disposal'', not only for technical but also for economical aspects. Considering the final disposal in the future, the basic policy in ''Treatment'' and ''Conditioning'' at RRP is shown below: Recover and reuse chemicals (such as nitric acid and TBP, etc.) in plant; Radioactive waste shall be divided, classified and managed according to activity level, nuclide composition, the radiation level, its physical properties, chemical properties, etc.; Treat them based on ''classification'' management with proper combination; Condition them as intermediate forms in order to keep flexibility in the future disposal method; Original volume of annually generated wastes at RRP is estimated as 5600m3 except highly radioactive vitrified waste, and these wastes shall be treated in the following units, which are now under commisioning, in order to reduce and stabilize wastes. Low-level concentrated liquid waste to be treated with a ''Drying and peptization'' unit; Spent solvent to be treated with a ''Pyrolysis and hydrothermal solidification'' unit; Relatively low-level non-alfa flammable wastes to be treated with a ''Incineration and hydrothermal solidification'' unit; CB/BP (Channel Box and Burnable Poison) to be processed with a ''Cutting'' unit; Other wastes to be kept as their generated state with a ''Intermediate storage''. As a result of these

  14. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  15. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  16. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  17. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  18. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  19. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  20. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang

    2014-01-01

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  1. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  2. Mechanistic Evaluation of the Effect of Calcium Carbide Waste on ...

    African Journals Online (AJOL)

    OLUWASOGO

    amounts of wastes from ceramic, steel industry and coal-fired power plants every year. ... slag dust, hydrated lime, hydraulic cement, fly ash, loess or other suitable ..... (2011). The. Effect of using Glass Powder Filler on Hot Asphalt Concrete.

  3. Digital bus technology in new coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Blaney, J.; Murray, J. [Emerson Process Management (United States)

    2007-10-15

    The main issues associated with including digital bus technology such as Foundation fieldbus, Profibus-DP or DeviceNet, in a coal-fired power plant are deciding which systems to install and determining how to implement it. Although still new, digital bus experiences to date have shown that the technology performs solidly and when wiring best practices are followed a significantly shorted commissioning cycle can be achieved. 1 fig., 2 tabs.

  4. Fire hazard analysis at the first unit of the Ignalina nuclear power plant: 1. Analysis of fire prevention and ventilation systems and secondary effects

    International Nuclear Information System (INIS)

    Poskas, P.; Simonis, V.; Zujus, R. and others

    2004-01-01

    Evaluation of the fire prevention and ventilation systems and the secondary effects on safety at the Ignalina NPP from the point of view of fire hazard using computerized system is presented. Simplified screening algorithms for fire prevention, ventilation and the evaluation of secondary effects are developed, which allow accelerating fire hazard analysis at the Ignalina NPP. The analysis indicated that the fire prevention systems practically meet the national requirements and international recommendations for fire prevention. But it is necessary to introduce in separate rooms the measures improving fire prevention to guarantee the effective functioning of the ventilation systems and the reduction of the influence of secondary effects on safety. Computerized system of fire prevention and ventilation systems and evaluation of secondary effects on safety can be easily applied for fire hazard analysis at different big plants. (author)

  5. Risk-informed decision-making analysis for the electrical raceway fire barrier systems on a BWR-4 plant

    International Nuclear Information System (INIS)

    Wu, Ching-Hui; Lin, Tsu-Jen; Kao, Tsu-Mu; Chen, Chyn-Rong

    2003-01-01

    This paper describes a risk-informed decision-making approach used to resolve the fire barrier issue in a BWR-4 nuclear plant where Appendix R separation requirements cannot be met without installing additional fire protection features such as electrical raceway fire barrier system. The related risk measures in CDF (core damage frequency) and LERF (large early release frequency) of the fire barrier issue can be determined by calculating the difference in plant risks between various alternative cases and that met the requirement of the Appendix R. In some alternative cases, additional early-detection and fast-response fire suppression systems are suggested. In some other cases, cable re-routing of some improper layout of non-safety related cables are required. Sets of fire scenarios are re-evaluated more detailed by reviewing the cable damage impact for the BWR-4 plant. The fire hazard model, COMPBRM III-e, is used in this study and the dominant results in risk measures are benchmarked with the CFD code, FDS 2.0, to ensure that the risk impact of fire barrier is estimated accurately in the risk-informed decision making. The traditional deterministic qualitative methods, such as defense-in-depth, safety margin and post-fire safety shutdown capability are also proceeded. The value-impact analysis for proposed alternatives of fire wrapping required by Appendix R has been completed for technical basis of the exemption on Appendix R application. The outcome of the above analysis should be in compliance with the regulatory guidelines (RG) 1.174 and 1.189 for the applications in the risk-informed decision-making of the fire wrapping issues. (author)

  6. Polymer solidification of mixed wastes at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-01-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene

  7. Browns Ferry nuclear power-plant fire on March 22, 1975

    International Nuclear Information System (INIS)

    Scott, R.L.

    1976-01-01

    A review is presented of the March 22, 1975, fire at the Browns Ferry nuclear power plant. The fire originated in the electrical cable trays and burned for 7 hr before it was extinguished by water. The use of water was delayed until the reactors were in a stable shutdown condition because of the possibility of shorting circuits, which might have caused further degradation of conditions that would have been more difficult to control. However, when water was authorized, the fire was quickly extinguished. The fire-fighting efforts and the damage caused by the fire are described. The loss of electrical power and control circuits resulted in the unavailability of emergency core-cooling systems and hampered efforts to provide normal cooling to the reactor fuel. The availability of alternate cooling methods is reviewed, the efforts to maintain cooling of the reactor fuel are discussed, and the basic reasons for the common-mode failures are described. Assessments of the fire were made by three groups in the U.S. Nuclear Regulatory Commission (NRC), as well as by an independent insurance group. Some of the details of these assessments are presented, in particular, some deficiencies that the NRC Office of Inspection and Enforcement found during its investigation and some of the lessons learned from the events as determined by the NRC Special Review Group

  8. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  9. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  10. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  11. B Plant complex hazardous, mixed and low level waste certification plan

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria

  12. B Plant complex hazardous, mixed and low level waste certification plan

    Energy Technology Data Exchange (ETDEWEB)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  13. Q Fever Outbreak among Workers at a Waste-Sorting Plant.

    Directory of Open Access Journals (Sweden)

    Eva Alonso

    Full Text Available An outbreak of Q fever occurred in February-April 2014 among workers at a waste-sorting plant in Bilbao (Spain. The outbreak affected 58.5% of investigated employees, 47.2% as confirmed cases (PCR and/or serology and 11.3% as probable cases (symptoms without laboratory confirmation. Only employees who had no-access to the waste processing areas of the plant were not affected and incidence of infection was significantly higher among workers not using respiratory protection masks. Detection by qPCR of Coxiella burnetii in dust collected from surfaces of the plant facilities confirmed exposure of workers inside the plant. Animal remains sporadically detected among the residues received for waste-sorting were the most probable source of infection. After cleaning and disinfection, all environmental samples tested negative. Personal protection measures were reinforced and made compulsory for the staff and actions were taken to raise farmers' awareness of the biological risk of discharging animal carcasses as urban waste.

  14. Elution behaviour of solid residues from thermal waste treatment and disposal

    International Nuclear Information System (INIS)

    Vetter, G.

    1992-01-01

    In the research part carried through so far, the leaching behaviour of residues of different waste combustion methods was compared with that of other materials frequently deposited at landfills as regards heavy metals and anions. Furthermore, specifically residues from different types of waste subjected to the Siemens semicoking process were investigated. The leaching behaviour of well vitrified slags approaches very much the favourable values of melting-chamber granulate from a black-coal-fired power plant. By contrast, poorly vitrified slags or slags from an ordinary waste combustion plant yield eluate concentrations exceeding in part the limiting values applicable to landfilling material. With vitrified slags, the type of waste burnt has no recognizable influence on leaching behaviour. (orig.) [de

  15. Hanford Waste Vitrification Plant capacity increase options

    International Nuclear Information System (INIS)

    Larson, D.E.

    1996-04-01

    Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package

  16. Model-based Fuel Flow Control for Fossil-fired Power Plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr

    2010-01-01

    -fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...

  17. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  18. Conceptual project of waste treatment plant of CDTN

    International Nuclear Information System (INIS)

    Gabriel, J.L.; Astolfi, D.

    1983-01-01

    This paper presents the conceptual project of the waste treatment plant of CDTN. Several areas, such as: process area, material entrance and exit area are studied. The treatment processes are: evaporation, filtration, cementation, cutting and processing of solid wastes. (C.M.)

  19. Safety improvements made at the Loviisa nuclear power plant to reduce fire risks originating from the turbine generators

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Comprehensive upgrading measures have been completed for the Loviisa Nuclear Power Plant (modified VVER440/V213). These were carried out from the start of the design phase and during operation to ensure safe plant shutdown in the event of a large turbine generator oil fire. These modifications were made mainly on a deterministic basis according to specific risk studies and fire analyses. As part of the probabilistic safety assessment, a fire risk analysis was made that confirmed the importance of these upgrading measures. In fact, they should be considered as design basis modifications for all VVER440 plants. (author)

  20. Some insights from fire risk analysis of US nuclear power plants

    International Nuclear Information System (INIS)

    Kazarians, M.; Lambright, J.A.; Frank, M.V.

    1998-01-01

    Fire risk analysis has been conducted for a significant portion of the nuclear power plants in the U.S. using either Probabilistic Risk Assessments (PRAs) or FIVE or a combination of the two methodologies. Practically all fire risk studies have used step-wise, screening approach. To establish the contents of a compartment, the cable routing information collected for Appendix R compliance have been used in practically all risk studies. In several cases, the analysts have gone beyond the Appendix R and have obtained the routing of additional cables. For fire impact analysis typically an existing PRA model is used. For fire frequencies, typically, a generic data base is used. Fire scenarios are identified in varying levels of detail. The most common approach, in the early stages of screening, is based on the assumption that given a fire, the entire contents of the compartment are lost. Less conservative scenarios are introduced at later stages of the analysis which may include fire propagation patterns, fires localized to an item. and suppression of the fire before critical damage. For fire propagation and damage analysis, a large number of studies have used FIVE and many have used COMPBRN. For detection and suppression analysis, the generic suppression system unavailabilities given in FIVE have been used. The total core damage frequencies typically range between 1x10 -6 to 1x10 -4 per year. Control rooms and cable spreading rooms are the two most common areas found to be significant contributors to fire risk. Other areas are mainly from the Auxiliary Building (in the case of PWRs) and Reactor Building (in the case of BWRs). Only in one case, the main contributor to fire is the turbine building, which included several safety related equipment and cables. (author)

  1. PAH emissions from coal combustion and waste incineration.

    Science.gov (United States)

    Hsu, Wei Ting; Liu, Mei Chen; Hung, Pao Chen; Chang, Shu Hao; Chang, Moo Been

    2016-11-15

    The characteristics of PAHs that are emitted by a municipal waste incinerator (MWI) and coal-fired power plant are examined via intensive sampling. Results of flue gas sampling reveal the potential for PAH formation within the selective catalytic reduction (SCR) system of a coal-fired power plant. In the large-scale MWI, the removal efficiency of PAHs achieved with the pilot-scaled catalytic filter (CF) exceeds that achieved by activated carbon injection with a bag filter (ACI+BF) owing to the effective destruction of gas-phase contaminants by a catalyst. A significantly lower PAH concentration (1640ng/g) was measured in fly ash from a CF module than from an ACI+BF system (5650ng/g). Replacing the ACI+BF system with CF technology would significantly reduce the discharge factor (including emission and fly ash) of PAHs from 251.6 to 77.8mg/ton-waste. The emission factors of PAHs that are obtained using ACI+BF and the CF system in the MWI are 8.05 and 7.13mg/ton, respectively. However, the emission factor of MWI is significantly higher than that of coal-fired power plant (1.56mg/ton). From the perspective of total environmental management to reduce PAH emissions, replacing the original ACI+BF process with a CF system is expected to reduce environmental impact thereof. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii volcanoes national park

    Science.gov (United States)

    Alison Ainsworth; J. Boone Kauffman

    2010-01-01

    Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr...

  3. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  4. Fire as a control agent of demographic structure and plant performance of a rare Mediterranean endemic geophyte.

    Science.gov (United States)

    Diadema, Katia; Médail, Frédéric; Bretagnolle, François

    2007-09-01

    We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.

  5. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  6. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  7. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  8. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  9. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  10. Hanford Waste Vitrification Plant Clean Air Act permit application

    International Nuclear Information System (INIS)

    1990-04-01

    This document briefly describes the Hanford Site and provides a general overview of the Hanford Waste Vitrification Plant (HWVP). Other topics include sources of emissions, facility operating parameters, facility emissions, pollutant and radionuclide control technology and air quality. The HWVP will convert mixed wastes (high-activity radioactive and hazardous liquid wastes) to a solid vitrified form (borosilicate glass) for disposal. Mixed wastes pretreated in the Hanford Site B Plant will be pumped into double- shell tanks in the 200 East Area for interim storage. This pretreated mixed waste will be batch transferred from interim storage to the HWVP facility, where the waste will be concentrated by evaporation, treated with chemicals, and mixed with glass-forming materials. The mixture will then be continuously fed into an electrically heated glass melter. The molten glass will be poured into canisters that will be cooled, sealed, decontaminated, and stored until the vitrified product can be transferred to a geologic repository. 25 refs., 18 figs., 32 tabs

  11. Survey of radionuclide emissions from coal-fired power plants and examination of impacts from a proposed circulating fluidized bed boiler power plant

    International Nuclear Information System (INIS)

    Steiner, C.P.; Militana, L.M.; Harvey, K.A.; Kinsey, G.D.

    1995-01-01

    This paper presents the results of a literature survey that examined radionuclide emissions from coal-fired power plants. Literature references from both the US and foreign countries are presented. Emphasis is placed on references from the US because the radionuclide emissions from coal-fired power plants are related to radionuclide concentrations in the coal, which vary widely throughout the world. The radionuclides were identified and quantified for various existing power plants reported in the literature. Applicable radionuclide emissions criteria discovered in the literature search were then applied to a proposed circulating fluidized bed boiler power plant. Based upon the derived radionuclide emission rates applied to the proposed power plant, an air quality modeling analysis was performed. The estimated ambient concentrations were compared to the most relevant existing regulatory ambient levels for radionuclides

  12. Interim guidelines for protecting fire-fighting personnel from multiple hazards at nuclear plant sites

    International Nuclear Information System (INIS)

    Klein, A.R.; Bloom, C.W.

    1989-07-01

    This report provides interim guidelines for reducing the impact to fire fighting and other supporting emergency response personnel from the multiple hazards of radiation, heat stress, and trauma when fighting a fire in a United States commercial nuclear power plant. Interim guidelines are provided for fire brigade composition, training, equipment, procedures, strategies, heat stress and trauma. In addition, task definitions are provided to evaluate and further enhance the interim guidelines over the long term. 19 refs

  13. Radiological impact from airborne routine discharges of Coal-Fired power plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Kathiravale, Sivapalan

    2010-01-01

    Radioactivity exists everywhere in nature. We are exposed to intense and continuous natural radiation coming from the sun, cosmic radiation, telluric radiation and even to the internal radiation of our own body. The fly ash emitted from burning coal for electricity by a power plant carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. This paper presents the information of studies on the radiological impact from airborne routine discharge of coal-fired power plants. (author)

  14. Fire protection of safe shutdown capability at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Sullivan, K.

    1993-01-01

    The comprehensive industrial safety standards and codes that exist today have evolved from lessons learned through past experience, research results, and improvements in technological capabilities. The current requirements for fire safety features of commercial nuclear power stations operated in the U.S. are a notable example of this practice. Although fire protection has always been an important design requirement, from the aftermath of a serious fire that occurred in 1975 at the Browns Ferry plant, it was learned that the life safety and property protection concerns of the major fire insurance underwriters may not sufficiently encompass nuclear safety issues, particularly with regard to the potential for fire damage to result in the common mode failure of redundant trains of systems, and composites important to the safe shutdown of the reactor. Following its investigations into the Browns Ferry fire, the Nuclear Regulatory Commission (NRC) promulgated guidance documents, which ultimately developed into mandatory regulations, necessary to assure the implementation of a fire protection program that would address nuclear safety concerns. The new criteria that evolved, contain prescriptive design features, as well as personnel and administrative requirements the Commission determined to be necessary to provide a defense-in-depth level of protection against the hazards of fire and its associated effects on safety related equipment. These criteria are primarily contained in Appendix R of Title 10 to the Code of Federal Regulations (10 CFR 50)

  15. Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought.

    Science.gov (United States)

    Parra, Antonio; Moreno, José M

    2017-05-01

    Understanding how drought affects seeder and resprouter plants during post-fire regeneration is important for the anticipation of Mediterranean vegetation vulnerability in a context of increasing drought and fire caused by climate change. A Mediterranean shrubland was subjected to various drought treatments (including 45% rainfall reduction, 7 months drought yr -1 ), before and after experimental burning, by means of a rainout-shelter system with an irrigation facility. Predawn shoot water potential (Ψ pd ), relative growth rate (RGR), specific leaf area (SLA) and bulk leaf carbon isotopic composition (δ 13 C) were monitored in the main woody species during the first 3 yr after fire. Cistus ladanifer seedlings showed higher Ψ pd , RGR and SLA, and lower δ 13 C, than unburned plants during the first two post-fire years. Seedlings under drought maintained relatively high Ψ pd , but suffered a decrease in Ψ pd and RGR, and an increase in δ 13 C, relative to control treatments. Erica arborea, E. scoparia and Phillyrea angustifolia resprouts had higher Ψ pd and RGR than unburned plants during the first post-fire year. Resprouters were largely unaffected by drought. Overall, despite marked differences between the two functional groups, post-fire environments were favourable for plant functioning of both seeder and resprouter shrubs, even under the most severe drought conditions implemented. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. PFBC development for lignite-fired CC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Meier, H.J.; Smuda, J.V.; Stuhlmueller, F. [VEAG Vereinigte Energiewerke AG (Germany)

    1994-12-31

    A power station design based on pressurised combustion in a circulating fluid-bed is used to illustrate the principle, layout and potential of a lignite-fired combined power station. The fundamental reasons for concentrating on the circulating pressurised fluid-bed consist in its improved emission values, the possibility of separating heat source and heat sink, and better operating performance (part-load). This design has been developed as part of a feasibility study supported by the Federal Ministry for Research and Tehcnology. The paper describes the design of the power plant components. Combustion trials carried out at the pilot plant in Friedrichsfield are reported and the cost-effectiveness of the innovatory design discussed. 10 figs.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  18. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  19. Optimization of use of waste in the future energy system

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2011-01-01

    of mixed waste, anaerobic digestion of organic waste, and gasification of part of the potential RDF (refuse derived fuel) for CHP (combined heat and power) production, while the remaining part is co-combusted with coal. Co-combustion mainly takes place in new coal-fired power plants, allowing investments...... production in Denmark in a 2025 scenario with 48% renewable energy. Investments in a range of waste conversion technologies are facilitated, including waste incineration, co-combustion with coal, anaerobic digestion, and gasification. The most economically feasible solutions are found to be incineration...

  20. Nuclear and coal-fired power plant capital costs 1978 -June 1981

    International Nuclear Information System (INIS)

    Harbour, R.T.

    1981-07-01

    This bibliography covers 16 papers dealing with the economics of power generation - mainly comparisons between the capital costs of nuclear and coal fired plants. Some of the papers additionally discuss fuel, operating and maintenance costs, and performance. (U.K.)

  1. Corrosion protection pays off for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  2. Non-greenhouse gas emissions from coal-fired power plants in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Within the Twelth Five-Year Plan, the Chinese Government has made addressing air quality problems a key environmental priority, with an intention to accelerate the development of systems, institutions and a technical knowledge base for sustained improvement. A major focus is on the coal power sector for which standards have been introduced that require the installation of modern, very high efficiency SO2, NOx and particulates emissions control systems. Nine key regions, which are facing very significant air quality challenges, are the three major economic zones around the cities of Beijing, Shanghai (Yangtze River Delta) and Guangzhou (Pearl River Delta), together with six areas around the cities of Shenyang, Changsha, Wuhan, Chengdu Chongqing, the Shandong peninsula, and the coastal area west of the Taiwan strait. These regions comprise the population and economic centres of the country, accounting for 64% of national GDP, 43% of total energy use, and 39% of the population. In these locations, all existing and new coal-fired power plants will have to achieve particulate, SO2 and NOx emissions limits of 20, 50 and 100 mg/m3 respectively, with new plants expected to meet the standards from 1 January 2012 and existing plants by 1 July 2014. At the same time, there will be an increasing emphasis on limiting any new coal-fired power plants in these regions. For the rest of the country, the standards are not quite so strict and the SO2 limits for existing plants are less severe than for new plants. The new pollutant that will be regulated on coal-fired power plants is mercury and its compounds, for which the limit has been set at a level that represents a core control. This means that providing the power plant operator meets the new particulate, SO2 and NOx standards then the mercury standard should be met without the need to introduce an additional capture device, although the emissions level will have to be measured on a regular basis. From a global perspective, this

  3. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  4. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  5. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  6. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  7. A deterministric and probabilistric model for oilspill fires in nuclear power plants

    International Nuclear Information System (INIS)

    Karlsson, B.

    1988-03-01

    A deterministic and probabilistic model for oilspill fires in nuclear power plant compartments has been developed. It's objective is to predict whether certain components in the compartment will cease to function as a result of the fire and to give the probability of failure. Results are presented for several scenarios in two compartments. The model has been implimented in the computer code OSFIC, a tool for safety engineers to compare various component configurations in different compartments. (author)

  8. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  9. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  10. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  11. A new semi-mobile plant for radiation processing of waste

    International Nuclear Information System (INIS)

    Iacoboni, V.; Liccione, G.; Schwarz, M.; Tata, A.; Fantini, M.

    1998-01-01

    A new pilot/demonstrative semi-mobile irradiation plant, named TRIRIS (TRIsaia-RIfiuti-Sterilizzazione, namely ''Trisaia Res. Center - Wastes - Sterilization''), has been designed and erected in order to propose and explore new technological opportunities, based on in ''in-situ'' effective cleaning process. The main general goal is to face increased problems and concerns related to the treatment/disposal of different solid-liquid wastes, particularly with reference to emergency situation (e.g. need of quick environment restoring operation following an accident with groundwater pollution). The project, which was jointly carried out by ENEA and Hitesys Co., an Italian electron accelerators manufacturer, foresees a LINAC type EB-machine (s band) having 4-6 MeV and till 1000 W as beam features. A highly flexible automatic system allows materials (solid or liquid wastes) transporting and handling to be equipped with a belt conveyor and a piping net. Scattered radiation shielding is performed by a water pool surrounding the EB-machine head, filled up before operations. Auxiliary systems, control console and analytical chemical laboratories are hosted in suitable containers near the plant and are easily transportable. The whole plant and annexed systems disassembling and reassembling in a new site can be easily carried out in a short time (few days). The plant, located at ENEA-Trisaia Res. Center (Basilicata, southern Italy), allows a large operative flexibility: groundwater and wastewater decontamination (1800 to 70 kg/h in the 1 to 25 kGy dose range), organic and chlorinated waste streams (25 kg/h at 75 kGy), solid hospital wastes (50 kg/h at 35 kGy) or hazardous wastes like polycyclic aromatic compounds (180 to 35 kg/h in the 10 to 50 kGy dose range). The paper describes and illustrates the plant in details and presents the first available operating results so far performed by the installed plant

  12. Making Plant-Support Structures From Waste Plant Fiber

    Science.gov (United States)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  13. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  14. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  15. Wildland fire in ecosystems: effects of fire on flora

    Science.gov (United States)

    James K. Brown; Jane Kapler Smith

    2000-01-01

    VOLUME 2: This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community...

  16. Radioactive waste disposal: Waste isolation pilot plants (WIPP). (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in separate bibliographies. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  17. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants

    International Nuclear Information System (INIS)

    Nowinski, Piotr; Hodge, Vernon F.; Gerstenberger, Shawn; Cizdziel, James V.

    2013-01-01

    Rock varnish is a manganese–iron rich coating that forms on rocks, most often in arid climates. To assess its utility as an environmental monitor of mercury contamination, cold vapor atomic absorption spectrometry (CVAAS) was used for analysis. Samples were collected in the fallout patterns of two coal-fired power plants in southern Nevada: the defunct Mohave Power Plant (MPP) and the operating Reid Gardner Power Plant (RGPP). The resultant Hg concentrations in rock varnishes were plotted as a function of the distance from each power plant. The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. In addition, past tracer plume studies carried out at MPP show that the highest tracer concentrations coincide with the highest rock varnish Hg concentrations. However, additional samples are required to further demonstrate that power plants are indeed the sources of mercury in varnishes. -- Highlights: •We analyze desert varnish samples collected in the fallout patterns of two coal-fired and analyzed for Hg by CVAA. •The resultant Hg concentrations in the desert varnish samples were plotted as a function of the distance from each power plant. •The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. •Data indicate the utility of desert varnish as a passive environmental monitor for Hg atmospheric pollution. -- Cold vapor atomic absorption spectrometry (CVAAS) was used for analysis of mercury in varnished rocks collected in the fallout zones of two coal-fired power plants

  18. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  19. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  20. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in